
© The Author 2005. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org

doi:10.1093/comjnl/bxh145

From Consensus to Atomic
Broadcast: Time-Free

Byzantine-Resistant Protocols
without Signatures

Miguel Correia
∗
, Nuno Ferreira Neves and Paulo Veríssimo

Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
∗Corresponding author: mpc@di.fc.ul.pt

This paper proposes a stack of three Byzantine-resistant protocols aimed to be used in practical
distributed systems: multi-valued consensus, vector consensus and atomic broadcast. These
protocols are designed as successive transformations from one to another. The first protocol,
multi-valued consensus, is implemented on top of a randomized binary consensus and a reliable
broadcast protocol. The protocols share a set of important structural properties. First, they do
not use digital signatures constructed with public-key cryptography, a well-known performance
bottleneck in this kind of protocols. Second, they are time-free, i.e. they make no synchrony
assumptions, since these assumptions are often vulnerable to subtle but effective attacks. Third,
they are completely decentralized, thus avoiding the cost of detecting corrupt leaders. Fourth, they
have optimal resilience, i.e. they tolerate the failure of f = �(n − 1)/3� out of a total of n processes.
In terms of time complexity, the multi-valued consensus protocol terminates in a constant expected
number of rounds, while the vector consensus and atomic broadcast protocols have O(f ) complexity.
The paper also proves the equivalence between multi-valued consensus and atomic broadcast in the
Byzantine failure model without signatures. A similar proof is given for the equivalence between
multi-valued consensus and vector consensus. These two results have theoretical relevance since

they show once more that consensus is a fundamental problem in distributed systems.
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1. INTRODUCTION

Distributed protocols capable of tolerating Byzantine faults
have been studied for more than two decades [1, 2, 3, 4].
Recently, interest in these protocols has gained a new
momentum under the designation of intrusion tolerance [5].
The basic idea is that the security concepts of attack,
intrusion and vulnerability can be considered as faults,
more precisely as arbitrary faults, also called Byzantine
faults. A consequence of this assertion is that Byzantine-
resistant protocols can be important building blocks for the
construction of secure systems.

Byzantine-resistant (or intrusion-tolerant) protocols
usually have higher time and message complexities than
crash-tolerant protocols do. They are also more CPU-time
demanding since they must use cryptography,1 and often
public-key cryptography. This CPU-time issue is frequently
dismissed since the processing power of computers is
constantly increasing. However, new classes of computing

1Here we are talking about practical systems. Theoretically we can
assume private channels connecting the processes, therefore cryptography
is not an absolute requirement.

environments are appearing in which resources are scarce,
e.g. embedded systems. This is an important motivation for
the design of less CPU-time consuming intrusion-tolerant
protocols. Moreover, public-key cryptography operations
can be an important bottleneck for the performance of
intrusion-tolerant systems even in more powerful hard-
ware. Castro and Liskov designed an intrusion-tolerant NFS
system which performs on average only 3% slower than
standard NFS, in part due to avoiding the use of signatures
based on public-key cryptography [6].

An argument of this paper is that the design of
efficient Byzantine-resistant protocols is crucial for the
implementation of practical intrusion-tolerant systems;
therefore these protocols have to avoid as much as possible
the use of public-key cryptography. Moreover, practical
intrusion-tolerant systems require protocols with other
characteristics, like strict asynchrony, optimal resilience and
low time complexity. The paper provides a modular and
consistent family of protocols with these properties.

Paper results. The paper presents a stack of three
message-passing Byzantine-resistant protocols: multi-valued
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FIGURE 1. Protocol architecture.

consensus, vector consensus and atomic broadcast (see
Figure 1). Consensus is a distributed systems problem
with both theoretical and practical interest. The problem
can be stated this way: how does a set of distributed
processes achieve agreement on a value despite a number
of process failures? The paper implements two flavors of
consensus: multi-valued consensus that makes agreement
on values with an arbitrary size and vector consensus that
makes agreement on a vector with the values proposed by
several of the processes. An atomic broadcast protocol is
a communication protocol that delivers the same messages
to all processes in the same order. Atomic broadcast is,
for instance, the main component of fault-tolerant systems
based on the state-machine approach, with both crash [7]
and Byzantine faults [6, 8]. The protocols in the paper do
not solve consensus from scratch but are built on top of a
randomized binary consensus protocol (e.g. [9, 10]) and a
reliable broadcast protocol (e.g. [9])—see Figure 1.

The problem of consensus has been studied with
different system models, such as the synchronous and the
asynchronous time models, the crash and the arbitrary
failure models, and in message-passing and shared-memory
systems. In asynchronous systems, consensus has been
shown to be constrained by the FLP impossibility result,
which says that it is impossible to solve consensus
deterministically in a completely asynchronous system [11].
Consequently, various researchers have proposed ways to
circumvent this limitation:2 using randomization [3, 4, 9,
10, 12, 13, 14], making synchrony or timing assumptions
on the behavior of the system [15, 16, 17], using failure
detectors [18, 19, 20, 21, 22] or ordering oracles [23],
using wormholes [24, 25, 26] or imposing conditions on
inputs [27, 28]. Some common misunderstandings about
consensus and FLP are discussed in [29].

The protocols presented in the paper are intended to be
practical. Their modularity allows a system designer to
implement only the protocols he/she needs, instead of the
full stack. Moreover, the protocols share the following set of
important structural properties:

• Signature free. The protocols do not use signatures
based on public-key cryptography.

2We use the expression to circumvent FLP since it is common in the
literature. However, what the expression means is that the model for which
FLP was stated is modified so that FLP no longer applies.

• Asynchrony. The protocols are asynchronous, i.e. there
are no synchrony assumptions whatsoever.
• Decentralization. Decisions are taken in a decentralized

way, i.e. there are no coordinators, leaders or token-
holders.
• Optimal resilience. The protocols tolerate f =
�(n−1)/3� faulty processes out of a total of n processes.

A stack of protocols with this combination of character-
istics is novel, to the best of our knowledge. We argue that
all of them are important if the protocols are to be used in
practice. The argument for avoiding public-key cryptogra-
phy (first property) has already been done above, so let us
discuss the importance of the other three properties.

Many protocols in the literature are designated
‘asynchronous’ but make synchrony assumptions, either
explicitly [15, 16, 17] or contained in the unreliable failure
detector abstraction [19, 20, 21, 22]. These assumptions can
make the protocols vulnerable to subtle but effective attacks
in the domain of time, something that cannot happen in time-
free systems. Some discussion about these kinds of attacks
and the corresponding vulnerabilities can be found in [6, 14].
Our protocols are time-free or strictly asynchronous (second
property) but circumvent FLP by being built on top of a ran-
domized binary consensus protocol. Randomized protocols
have a probability of satisfying their properties that increase
with the number of rounds executed. The protocols in the
paper satisfy deterministically all their properties except
termination; that nevertheless happens with probability 1.

The third property—decentralization—is important
because it eludes the need for detecting faulty coordinators,
leaders or token-holders. This detection usually has a price
in terms of time and messages transmitted. Moreover, even
a common failure like a process crash cannot be detected in
a strictly asynchronous system, since there are no bounds on
the communication delays.

The resilience of a protocol can be defined as the maximum
number of faults in the presence of which the protocol
still behaves according to its specification. The optimal
resilience for asynchronous consensus has been shown to be
�(n − 1)/3� [13] and we prove that atomic broadcast is an
equivalent problem, so the optimal resilience is the same (this
has already been claimed by [13, 30, 31]). Optimal resilience
is an important property because the need for additional
processes to tolerate the same number of faults involves a cost
in terms of additional resources (e.g. additional hardware).

The evaluation of a distributed protocol is usually made
in terms of time and message complexities, so we evaluate
the protocols in terms of both. In asynchronous systems,
time complexity is usually measured in terms of maximum
number of asynchronous rounds. An asynchronous round
involves a process sending a message and receiving one or
more messages sent by the other processes. For randomized
protocols, the metric is usually the expected number of
asynchronous rounds. Our multi-valued consensus protocol
has time complexity O(1), i.e. it has a constant expected
number of rounds. The complexities of the vector consensus
and the atomic broadcast protocols are both O(f ), although
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they are reduced to O(1) when all processes are correct.
These complexities are at least as good as previous works,
except for one vector consensus that manages to have time
complexity O(1) at the cost of a significatively higher
message complexity [32]. The message complexities,
measured in expected number of messages sent, are usually
higher than those obtained by protocols that use signatures,
so there is a tradeoff involved.

The paper has a further contribution. Atomic broadcast
has been shown to be equivalent to multi-valued consensus
in systems prone to crash faults [18, 30]. For systems prone
to Byzantine faults with signatures there is also a proof [31].
Here we prove this equivalence without the requirement
of signatures. Moreover, we also prove that multi-valued
consensus and vector consensus are equivalent in the same
system model.

Paper organization. The paper is organized as follows.
The following section defines the system model and the
two components used by our protocols: reliable broadcast
and binary consensus. Section 3 presents our multi-valued
consensus protocol and proves its correctness. Sections 4
and 5 present respectively, the vector consensus and atomic
broadcast protocols. Section 6 proves the equivalence multi-
valued consensus/atomic broadcast, and Section 7 proves
the equivalence multi-valued consensus/vector consensus.
Section 8 assesses the performance of the protocols.
Section 9 discusses some related work and Section 10
concludes the paper.

2. DEFINITIONS

2.1. System model

The system is composed of a set of n processes P =
{p1, p2, . . . , pn}. A process is said to be correct if it does not
fail during the execution of the protocol, i.e. if it follows the
protocol. We assume that at most f = �(n−1)/3� processes
can fail and we call these processes corrupt. These failures
can be Byzantine, meaning that processes can stop, omit
messages, send incorrect messages, send several messages
with the same identifier etc. Additionally, corrupt processes
can pursue their goal of breaking the properties of the protocol
alone or in collusion with other corrupt processes.

Processes are fully-connected by reliable channels with
two properties: if the sender and the recipient of a message
are both correct then (i) the message is eventually received
and (ii) the message is not modified in the channel.3

The system is asynchronous, which means that there
are no bounds on the processing times or communication
delays.

3In practice, reliable channels have to be implemented using
retransmissions and cryptography, e.g. with message authentication codes
(MACs) that are based on symmetric cryptography [33]. Processes have to
share symmetric keys in order to use MACs. In the paper we assume these
keys are distributed before the protocol is executed. In practice, this can
be solved using key distribution protocols available in the literature, but the
issue is out of the scope of the paper.

2.2. Reliable broadcast

A reliable broadcast protocol ensures essentially that all
correct processes deliver the same messages, and that
messages broadcast by correct processes are delivered.
Moreover, it ensures that no different messages with the
same identifier are delivered. This identifier includes the
typical information in a protocol header: protocol type,
sender, broadcast channel and sequence number. An
example of an asynchronous Byzantine-resistant reliable
broadcast protocol is the one proposed by Bracha [9]. We
consider that the reliable broadcast is executed by calling
the function R_Broadcast(M) (see, e.g. Algorithm 1
below).

Formally, a reliable broadcast protocol can be defined in
terms of the following properties [30, 31]:

• RB1 Validity: if a correct process broadcasts a message
M , then some correct process eventually delivers M .
• RB2 Agreement: if a correct process delivers a message

M , then all correct processes eventually deliver M .
• RB3 Integrity: for any identifier ID, every correct

process p delivers at most one message M with identifier
ID, and if sender(M) is correct then M was previously
broadcast by sender(M).

The predicate sender(M) gives the field of the message
header that identifies its sender. We consider that the sender
also delivers the messages it broadcasts.

Note that property RB3 prevents the behavior we discussed
above: it prevents a correct process from delivering two
messages with the same ID broadcast by the same malicious
process. This is important for the protocols in this paper, as
we will see later. However, it has only to be satisfied during
the execution of the protocol that uses reliable broadcast, not
forever.

2.3. Binary consensus

A binary consensus protocol performs consensus on a binary
value b ∈ {0, 1}. The problem can be formally defined in
terms of three properties:

• BC1 Validity: if all correct processes propose the same
value b, then any correct process that decides, decides b.
• BC2 Agreement: no two correct processes decide

differently.
• BC3 Termination: every correct process eventually

decides.

This definition has two immediate consequences that we
state and prove for later reference in the paper.

Theorem 1. If a correct process decides b, then b was
proposed by some process.

Proof. If all processes propose the same value b, then BC1
guarantees that this is the value decided. If processes propose
different values then the value decided must have been
proposed since there are only two possible values: {0, 1}.

Theorem 2. If a value b is proposed only by corrupt
processes, then no correct process that decides, decides b.
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ALGORITHM 1. Multi-valued consensus protocol (for
process pi).

Function M_V_Consensus (vi , cid)

Initialization:

1: INIT_deliveredi ←∅; {INIT messages delivered}
2: activate task (T1,T2);

Task T1:

3: R_Broadcast ( 〈INIT, vi , cid, i〉 );
4: wait until (at least (n − f ) INIT messages have been

delivered);
5: ∀j : if (〈INIT, vj , cid, j〉 has been delivered) then Vi[ j]
← vj ; else Vi[ j]←⊥;

6: if (∃1
v : #v(Vi) ≥ (n− 2f )) then

7: wi ← v;
8: else
9: wi ←⊥;

10: R_Broadcast ( 〈VECT, wi , Vi , cid, i〉 );
11: wait until (at least (n− f ) valid messages 〈VECT, wj ,

Vj , cid, j〉 have been delivered);
12: ∀j : if (〈VECT, wj , Vj , cid, j〉 has been delivered) then

Wi[ j]←wj ; else Wi[ j]←⊥;
13: if (∀j,k Wi[ j] =Wi[k]⇒Wi[ j] =⊥ or Wi[k] =⊥) and

(∃w: #w(Wi) ≥ (n− 2f )) then
14: bi ← 1;
15: else
16: bi ← 0;
17: ci ←B_Consensus(bi , cid);
18: if (ci = 0) then
19: return ⊥;
20: wait until (at least (n−2f ) valid messages 〈VECT, vj ,

Vj , cid, j〉 with vj = v have been delivered);
21: return v;

Task T2:

22: when mi = 〈INIT, vj , cid, j〉 is delivered do
23: INIT_deliveredi ← INIT_deliveredi

⋃
{mi};

Proof. If a value b is proposed only by corrupt processes
then all correct processes proposed ¬b since b ∈ {0, 1}.
Therefore, BC1 guarantees that any correct process that
decides, decides ¬b, i.e. does not decide b.

Besides satisfying this definition, the binary consensus
protocol to be used in the stack has to be compatible with
the structural properties given in the introduction: it cannot
use public-key signatures, has to be asynchronous, has
to take decisions in a decentralized way and has to have
optimal resilience. Examples of protocols that satisfy these
requirements are [9, 10]. Appendix A presents an efficient
protocol that also satisfies these requirements, although it
does not avoid public-key cryptography entirely (it uses a
variation of the Diffie–Hellman problem).

Throughout the paper we consider that the binary
consensus protocol is executed by calling the function

B_Consensus(b, bcid), where b is the binary value pro-
posed and bcid the protocol execution identifier.

3. MULTI-VALUED CONSENSUS

The first protocol of the stack proposed in the paper is a multi-
valued consensus. The definition of the problem is similar
to the binary consensus, except that processes can propose
values with arbitrary length v ∈ V (V is the domain of values
that can be proposed). The protocol can decide one of the
proposed values or a default value ⊥ /∈ V . The definition is:

• MVC1 Validity 1. If all correct processes propose the
same value v, then any correct process that decides,
decides v.
• MVC2 Validity 2. If a correct process decides v, then v

was proposed by some process or v = ⊥.
• MVC3 Validity 3. If a value v is proposed only by

corrupt processes, then no correct process that decides,
decides v.
• MVC4 Agreement. No two correct processes decide

differently.
• MVC5 Termination. Every correct process eventually

decides.

The problem of multi-valued consensus is often stated in
terms of the properties MVC4, MVC5 and either MVC1 or
MVC2 (e.g. MVC1 in [15, 34, 35] and MVC2 in [20, 22, 21]).
We define consensus using all three validity properties
following the definition used in the original Byzantine
Generals paper [2].4 Moreover, a consensus protocol that
satisfies only MVC1 or MVC2 has limited interest in practice.
Property MVC1 does not say anything about which value is
decided when the correct processes do not propose the same
value. Property MVC2 does not impose that the value
decided is proposed by a correct process. Notice that we
proved, respectively in Theorems 1 and 2, that for binary
consensus, Validity 1 implies Validity 2 and Validity 3.

A word is due about why the other papers do not use a
definition more similar to ours. The reason is probably that
the interest of these other papers in consensus is theoretical.
These papers are mostly interested in proving that consensus
can be solved under a certain model, e.g. in the presence of
partial synchrony [15], with a quietness failure detector [34]
or with a muteness failure detector [20]. Our interest on
Byzantine consensus, on the contrary, follows, for example,
Guerraoui and Schiper that aim to solve practical problems
using this type of protocol, albeit with a crash failure model
in their case [36].

3.1. The protocol

The protocol is presented in Algorithm 1. Local variables are
designated by lowercase letters with a subscript indicating
the process to which they belong: wi , bi , ci in process pi .
Vectors have one entry per process in P and are designated

4The original definition is in the context of the ‘Byzantine Generals’
metaphor used in the paper: ‘(1) All loyal generals decide upon the same
plan of action; (2) A small number of traitors cannot cause the loyal generals
to adopt a bad plan.’ [2].
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by an uppercase letter, e.g. vector Vi has entries Vi[1],
Vi[2], …, Vi[n]. Function #x(V) counts the number of
occurrences of x in vector V. The maximum number of faulty
processes is a function of the total number of processes n:
f = �(n− 1)/3�. The protocol uses two types of messages:
INIT and VECT. The content of messages is represented
inside angles: 〈. . .〉. A set called INIT_deliveredi is used
to store the received INIT messages. A call to return causes
the termination of all the protocol’s tasks. The value returned
is the result of the protocol, i.e. the decided value.

FunctionM_V_Consensus is called with two arguments:
the value proposed by the process (vi) and the consensus
identifier (cid). There is an initialization and tasks T1 and T2
are started concurrently (lines 1 and 2). Task T1 does most
of the work, while task T2 simply receives INIT messages
and stores them in INIT_deliveredi (lines 22 and 23).

Task T1 begins by reliably broadcasting an INIT message
with the value vi proposed by process pi (line 3). The
identifier of the message includes the message type (INIT),
the consensus (cid) and sender identifiers (i). Then, the task
waits for the reception of (n− f ) INIT messages (including
its own) and stores the proposed values in vector Vi (lines 4
and 5). The reliable broadcast protocol guarantees that two
correct processes pi and pj do not receive different proposals
from the same process (see Section 2.2). However, Vi can
be different from Vj since the first (n − f ) INIT messages
received by the two processes do not have to be the same.

If all correct processes propose the same value v then all
correct processes receive at least (n − 2f ) INIT messages
with v. If a process receives this number of messages
with a value v, then it selects this value (lines 6 and 7)
and reliably broadcasts it to all processes together with the
vector Vi that justifies the selection (line 10). Otherwise, it
selects the default value ⊥, which it also broadcasts. After
broadcasting this message (VECT), the process waits for
(n−f ) valid VECT messages, i.e. messages known to have a
vector with real proposals and a value substantiated by those
proposals. The identifier of a message VECT includes the
protocol type (VECT) and also the consensus (cid) and sender
identifiers (i).

Definition 1. A message 〈VECT, wj , Vj , cid, j〉 is said to
be valid at process pi iff:

• ∀k , Vj [k] =⊥ or there is a message 〈INIT, vk , cid, k〉 ∈
INIT_deliveredi so that Vj [k] = vk

• wj =⊥ ⇔ #wj
(Vj ) ≥ (n− 2f )

If the process does not receive two VECT messages with
different values w = w′, and it receives at least (n − 2f )

messages with w, it proposes 1 for the binary consensus,
otherwise it proposes 0 (lines 13–16). If the binary consensus
decides 0, the vector consensus protocol decides on the
default value ⊥ (lines 17–19).

If the binary consensus decides 1, the process waits until
it received (n − 2f ) valid VECT messages with the same
value v (line 20). The process does not wait until it received
(n − 2f ) valid VECT messages with the same value in line
20 but rather until it received cumulatively these messages

since the beginning of the protocol execution (some of them
were received in line 11). When these messages are received,
the protocol returns v (line 21). The protocol can be sure that
there can only be one value v for which a correct process
can consider (n − 2f ) VECT messages to be valid, or two
different correct processes might decide different values. We
show that this is true in the proof of Theorem 6.

3.2. Correctness proof

The protocol in Algorithm 1 is correct if it satisfies properties
MVC1–MVC5. A preliminary result is given by the
following lemma:

Lemma 1. If a message 〈VECT, wi , Vi , cid, i〉 is reliably
broadcast by a correct process pi , then eventually all correct
processes will consider it valid.

Proof. The INIT messages are reliably broadcast (line 3).
Consequently, all correct processes eventually deliver the
same INIT messages (properties RB1–RB3 in Section 2.2).
A correct process only puts in Vi values vj it received in
INIT messages (line 5). Therefore, for every value v in a
VECT message sent by a correct process, there is an INIT
message that is eventually delivered by all correct processes.
Additionally, a correct process always sends VECT messages
with at least (n− f ) values (lines 4, 5 and 10). This proves
the lemma, attending to the definition of valid message.

Theorem 3. (Validity 1). If all correct processes propose
the same value v, then any correct process that decides,
decides v.

Proof. If all correct processes propose the same value v, then
all processes deliver at least (n − 2f ) INIT messages with
v and at most f INIT messages with v′ = v (at most f

processes are corrupt). Consequently, all correct processes
make wi = v, and send this value in a VECT message
(lines 6–10). Moreover, all correct processes deliver at least
(n − 2f ) valid VECT messages in line 11 (Lemma 1). No
valid VECT message can have wi = v since at most f

(corrupt) processes send INIT messages with a value different
from v. Therefore, all correct processes make bi = 1 (lines
13 and 14). All correct processes start a binary consensus
protocol (line 17) that decides 1 (property BC1). The value
decided is necessarily v (lines 18–21).

Theorem 4. (Validity 2). If a correct process decides v,
then v was proposed by some process or v = ⊥.

Proof. The proof is obtained with a trivial inspection of the
protocol.

Theorem 5. (Validity 3). If a value v is proposed only
by corrupt processes, then no correct process that decides,
decides v.

Proof. The proof is by contradiction. If a correct process
decides v then it received at least (n − 2f ) valid VECT
messages with v. For a VECT message to be valid there
has to be at least (n − 2f ) > f INIT messages with v, but
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the theorem assumes only corrupt processes proposed v: a
contradiction.

Theorem 6. (Agreement). No two correct processes
decide differently.

Proof. All correct processes get the same decision from the
binary consensus protocol (property BC2). The proof can be
divided into two cases, depending on the value ci decided
by the binary consensus (line 17). The first case, ci = 0, its
trivial: all correct processes decide ⊥ (lines 18 and 19).

For the second case, ci = 1, the proof is by contradiction.
Two correct processes p1 and p2 decide differently if: (i) p1
delivers (n− 2f ) valid VECT messages with the same value
v1 (line 20); and (ii) p2 delivers also (n − 2f ) valid VECT
messages but with a value v2 = v1.

The binary consensus protocol decided 1, so at least one
correct process p1 (without loss of generality) proposed 1
in line 17 (Theorem 2). p1 proposed 1, therefore the two
conditions in line 13 were satisfied. The second condition
implies that p1 received at least (n − 2f ) valid VECT
messages with value v1 in line 11. The first condition implies
that p1 did not receive any valid VECT message with a value
different from v1. Therefore, p1 received:

• m1 valid VECT messages with v1, and m1 ≥ (n− 2f );
• m2 valid VECT messages with ⊥, and m1 + m2 ≥

(n− f ).

Now, the proof assumes p2 received m3 = (n− 2f ) valid
VECT messages with v2. However, there can be at most
one valid VECT message per process for an execution of the
consensus protocol, totalizing n, due to the reliable broadcast
protocol’s property RB3. Therefore, we have:

m1 +m2 +m3 ≤ n

⇒ (n− f )+ (n− 2f ) ≤ n

⇔ n ≤ 3f

This is a contradiction since we assume that f =
�(n− 1)/3�, what implies that n > 3f .

Theorem 7. (Termination). Every correct process eventu-
ally decides.

Proof. Correct processes decide when they execute lines 19
or 21. The places of the protocol in which we have to prove
that the protocol makes progress are the two executions of the
reliable broadcast protocol (lines 3 and 4 and 10 and 11),
the execution of the binary consensus protocol (line 17) and
the reception of VECT messages in line 20.

The termination of the reliable broadcast protocol is
guaranteed by its Validity and Agreement properties (RB1,
RB2). All correct processes eventually deliver (n− f ) INIT
messages in line 4 because all correct processes reliably
broadcast an INIT message in line 3, and there are at most
f corrupt processes. This proves that the protocol makes
progress in lines 3 and 4. The justification for lines 10 and
11 is identical. The binary consensus protocol executed in
line 17 is guaranteed to terminate by property BC3.

The protocol waits for the condition in line 20 only if
the binary consensus decides 1. If all correct processes

had proposed 0 for the binary consensus, then the process
would have decided 0 (lines 17–19). Therefore, at least
one correct process proposed 1 for the binary consensus. A
correct process proposes 1 for the binary consensus only if
it delivered (n − 2f ) valid VECT messages with the same
value w (second condition in line 13 and lines 11 and 12). The
VECT messages are reliably broadcast, therefore if a correct
process delivers (n−2f ) valid VECT messages with w, then
all correct processes eventually do the same. Therefore no
correct process blocks in line 20 and all terminate.

4. VECTOR CONSENSUS

Vector consensus makes agreement on a vector with a subset
of the values proposed, instead of a single value [20, 26].
In systems where Byzantine faults can occur, the vector is
useful, e.g. to implement atomic broadcast, only if a majority
of its values were proposed by correct processes. Therefore,
the decided vector needs to have at least (2f+1) values. This
problem is ultimately an adaptation for asynchronous systems
of the classical problem of interactive consistency defined for
synchronous systems [1]. The difference between the two
problems is that interactive consistency makes agreement on
a vector with the values proposed by all correct processes,
while vector consensus guarantees only that the majority of
the values were proposed by correct processes. The reason
for this difference is that in asynchronous systems it is not
possible to ensure that the vector has the proposals of all
correct processes, since they can be arbitrarily delayed.

Vector consensus can be defined in terms of the following
properties:

• VC1 Vector validity: every correct process that decides,
decides on a vector V of size n:

• ∀pi
: if pi is correct, then either V [i] is the value

proposed by pi or ⊥;
• at least (f + 1) elements of V were proposed by

correct processes.

• VC2 Agreement: no two correct processes decide
differently.
• VC3 Termination: every correct process eventually

decides.

4.1. The protocol

The protocol is implemented by the function
Vector_Consensus presented in Algorithm 2. The
arguments are the value proposed (vi) and the vector con-
sensus identifier (vcid). The protocol starts by reliably
broadcasting a VC_INIT message with the value proposed
by the process (line 2). This message is identified by the
protocol type (VC_INIT), the vcid and the sender (i). Then,
the protocol runs one or more rounds until a decision is
made (lines 3–8).

The algorithm begins each round by waiting for the
reception of (n−f +ri) VC_INIT messages (line 4). Notice
that line 4 does not restart from scratch waiting for the
(n− f + ri) messages but rather waits until that number of
messages has cumulatively been received since the beginning
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ALGORITHM 2. Vector consensus protocol (for process
pi).

Function Vector_Consensus (vi , vcid)

1: ri ← 0; {round number}
2: R_Broadcast ( 〈VC_INIT, vi , vcid, i〉 );
3: repeat
4: wait until (at least (n − f + ri) VC_INIT messages

have been delivered);
5: ∀j : if ( 〈VC_INIT, vj , vcid, j〉 has been delivered)

then Wi[j]← vj ; else Wi[j]←⊥;
6: Vi ←M_V_Consensus (Wi , (vcid,ri));
7: ri ← ri + 1;
8: until (Vi = ⊥);
9: return Vi ;

of the execution of the protocol. Next, the process builds a
vector Wi with the values it received from other processes
(at least (n− f ) in round 0, (n− f + 1) in round 1, . . .) and
proposes the vector for a multi-valued consensus (lines 5 and
6). The identifier of the multi-valued consensus is unique for
each execution by using a combination of vcid and the round
number, ri .

VC_INIT is reliably broadcast, therefore all correct
processes will eventually receive the same VC_INIT
messages and build identical W vectors. When enough
processes propose the same W vector for the multi-valued
consensus, W is decided by this protocol and immediately
after by the vector consensus (lines 6–9).

4.2. Correctness proof

The protocol in Algorithm 2 is correct if it satisfies the
properties VC1, VC2 and VC3.

Theorem 8. (Vector validity). Every correct process that
decides, decides on a vector V of size n: (i) ∀pi

: if pi is
correct, then either V[i] is the value proposed by pi or⊥; and
(ii) at least (f+1) elements of V were proposed by correct
processes.

Proof. The values proposed by each process are reliably
broadcast so all correct processes eventually deliver the
same values (lines 2 and 4). Any correct process calls
M_V_Consensus in line 6 with a vector Wi that satisfies
the two conditions of the theorem: (i) each entry j of the
vector contains either the value proposed by process pj or
⊥; and (ii) Wi has at least (n − f ) elements from which at
least (n−2f ) ≥ (f +1) were proposed by correct processes
(at most f processes are corrupt). (n− 2f ) must be greater
or equal to (f + 1) because f = �(n − 1)/3�. The value
decided by the protocol (line 9) is the value decided on the last
execution of the multi-valued consensus (line 6). This value is
one of the values proposed (property MVC2) and cannot have
been proposed only by corrupt processes (property MVC3).
Therefore, the value must have been proposed by at least
one correct process so the two conditions of the theorem are
satisfied.

Theorem 9. (Agreement). No two correct processes
decide differently.

Proof. The value decided is equal to the value decided on
the last execution of the multi-valued consensus (lines 5 and
6). All correct processes execute the same sequence of multi-
vector consensuses because the identifier of each execution
includes the round number (line 6). Therefore, the theorem
is a trivial consequence of the Agreement property MVC4 of
the multi-valued consensus.

Theorem 10. (Termination). Every correct process event-
ually decides.

Proof. All VC_INIT messages reliably broadcast by correct
processes are eventually delivered by all correct processes
(properties RB1–RB3). Let pi be any correct process.
Process pi executes one or more calls to M_V_Consensus,
and each of these calls eventually terminates (property
MVC5). Each round of the loop, pi waits for one more
VC_INIT message (line 4) before engaging in the multi-
valued consensus (line 6). If pi does not leave the
loop and terminates before, the latest by round r = f

process pi and all other correct processes propose for the
multi-valued consensus a vector with the values from all
processes. Therefore, in that round all correct processes
propose the same vector, the multi-valued consensus decides
a value different from ⊥ (property MVC1) and the protocol
terminates (lines 8 and 9).

5. ATOMIC BROADCAST

The problem of atomic broadcast, or total order reliable
broadcast, is the problem of delivering the same messages in
the same order to all processes. The definition of the problem
is equal to the definition of reliable broadcast plus a total order
property:

• AB1 Validity: if a correct process broadcasts a message
M , then some correct process eventually delivers M .
• AB2 Agreement: if a correct process delivers a message

M , then all correct processes eventually deliver M .
• AB3 Integrity: for any identifier ID, every correct

process p delivers at most one message M with identifier
ID, and if sender(M) is correct then M was previously
broadcast by sender(M).
• AB4 Total order: if two correct processes deliver two

messages M1 and M2 then both processes deliver the
two messages in the same order.

The identifier of an atomic broadcast message includes the
protocol type (A_MSG), the message number (num) and the
sender identifier (i).

The atomic broadcast protocol is implemented on top of
the vector consensus protocol. It could also be implemented
directly on top of the multi-valued consensus but, in the end,
the functionality of the vector consensus protocol would have
to be implemented in the protocol anyway. The approach
we use is more modular and elegant, besides providing the
two protocols, either of which may be useful for the system
designer.
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5.1. The protocol

The protocol is presented in Algorithm 3. It is inspired from
the algorithms of Chandra, Hadzilacos and Toueg [18, 30],
which assume crash faults. The initialization is carried
out before the first transmission or reception of a message
(lines 1–4). A process atomically broadcasts a message by
calling the procedureA_Broadcast, which simply reliably
broadcasts the message to all processes (lines 5 and 6). The
message number num guarantees that all messages broadcast
by a correct process are unique, since this number is unique.
If a malicious process tries to call R_Broadcast twice
with the same message, then the reliable broadcast protocol
delivers the message only once (see property RB3, Integrity).

The delivery of messages is handled by tasks T1 and
T2. When a message is delivered by the reliable broadcast
protocol, it is inserted in the set R_deliveredi (lines 15 and
16). Whenever this set is not empty, the process tries to agree
with the other processes on the delivery of the messages in
the set (lines 7–14). The task starts by constructing a vector
Hi with a hash of each of the messages in R_deliveredi

(line 8). A hash works essentially as a fixed-length unique
identifier of the message. The objective is to compress
the input supplied to the vector consensus protocol, since
the performance of this protocol depends on the size of the
value (e.g. the communication time depends on the size of
the messages). A hash is obtained using a hash function h

defined by the following properties [33]:

• HF1 Compression: h maps an input x of arbitrary finite
length, to an output h(x) of fixed length.
• HF2 One way: for all pre-specified outputs, it is com-

putationally infeasible to find an input that hashes to that
output.
• HF3 Weak collision resistance: it is computationally

infeasible to find any second input that has the same
output as a specified input.5

• HF4 Strong collision resistance: it is computationally
infeasible to find two different inputs that hash to the
same output.

The value proposed by a process to the vector consensus is
itself a vector with the hashes of the messages, Hi (lines 8 and
9). The vector consensus protocol decides on a vector Xi with
at least (2f + 1) vectors H from different processes. If the
hash of a message appears in at least (f +1) of these vectors,
the process can be confident that the hash was proposed
by at least one correct process (there are at most f corrupt
processes); therefore there is no doubt that the message was
reliably broadcast to all processes. This is important because
a malicious process might provide a hash for which there was
no message to deliver. The process waits until all messages
that are to be delivered are put in R_deliveredi (line 10), then
it stores them in A_deliveri (line 10). Finally, the process

5A guessing attack is expected to break the property HF3 in 2m hashing
operations, where m is the number of bits of the hash. A birthday attack
can be expected to break property HF4 in 2m/2 hashing operations. In a
practical setting, a hashing function with 160 bits like SHA-1 [37] can be
considered secure enough for our protocol. Nevertheless, we consider HF2,
HF3 and HF4 to be assumptions.

ALGORITHM 3. Atomic broadcast protocol (for process
pi).

Initialization:

1: R_deliveredi ←∅; {messages delivered by the reliable
broadcast protocol}

2: aidi ← 0; {atomic broadcast identifier}
3: numi ← 0; {message number}
4: activate task (T1,T2);

When Procedure A_Broadcast (m) is called do

5: R_Broadcast ( 〈A_MSG, numi , m, i〉 );
6: numi ← numi + 1;

Task T1:

7: when (R_deliveredi = ∅) do
8: Hi ← {hashes of the messages in R_deliveredi};
9: Xi ←Vector_Consensus (Hi , aidi);

10: wait until (all messages with hash in f + 1 or more
cells in vector Xi are in R_deliveredi);

11: A_deliveri ← {all messages with hash in f + 1 or
more cells in vector Xi};

12: atomically deliver messages in A_deliveri in a
deterministic order;

13: R_deliveredi ←R_deliveredi - A_deliveri ;
14: aidi ← aidi + 1;

Task T2:

15: when 〈A_MSG, num, m, i〉 is delivered by the reliable
broadcast protocol do

16: R_deliveredi ←R_deliveredi

⋃

{〈A_MSG, num, m, i〉};

delivers the messages in A_deliveri in a pre-established order,
removes them from R_deliveredi , and increments the atomic
broadcast identifier (lines 12–14).

5.2. Correctness proof

The atomic broadcast protocol in Algorithm 3 is correct if it
satisfies the properties AB1, AB2, AB3 and AB4.

Theorem 11. (Validity). If a correct process broadcasts a
message M, then some correct process eventually delivers M.

Proof. A correct process broadcasts a message M by calling
A_Broadcast(m). Then, the atomic broadcast protocol
adds a header to the message and broadcasts it using
the reliable broadcast protocol (line 5). The properties
of this reliable broadcast protocol ensure that all correct
processes eventually receive M (properties RB1–RB3). This
guarantees that there is an execution of the lines 7–14 when
all correct processes put the hash of M in H (line 8), unless
these processes already delivered M in a previous execution
of line 12. When all correct processes put the hash of M

in H, the vector consensus decides on a vector that includes
at least f + 1 entries with that hash (property VC1, Vector
validity). Therefore, if the protocol does not block, all correct
processes deliver M (lines 10–12).
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The protocol might block only in lines 9 and 10. It
does not block in line 9 because the vector consensus is
guaranteed to terminate (property VC3, Termination). Line
10 waits until all messages that have to be delivered by
the atomic broadcast protocol (those with f + 1 hashes in
the vector) are in R_delivered. A message with f + 1
hashes in the vector must have been already delivered by
the reliable broadcast protocol to at least one correct process.
Therefore, this protocol will eventually deliver the message
to all correct processes (properties RB1–RB3), so no correct
process blocks in line 10.

Theorem 12. (Agreement). If a correct process delivers
a message M, then all correct processes eventually deliver M.

Proof. The theorem assumes that one correct process, say
pi , delivers M . Therefore: (i) the vector consensus in line 9
decides on a vector with at least f + 1 hashes of M; and (ii)
the reliable broadcast protocol delivers M to pi ; therefore it
delivers M to all correct processes (properties RB1–RB3).
All correct processes get the same results from the vector
consensus so all eventually deliver M .

Theorem 13. (Integrity). For any message M, every
correct process p delivers M at most once, and if sender(M)
is correct then M was previously broadcast by sender(M).

Proof. The proof of the first assertion is trivial from the
inspection of the algorithm, assuming the properties of hash
functions. The proof of the second assertion follows directly
from the properties of the communication channels.

Theorem 14. (Total order). If two correct processes
deliver two messages M1 and M2 then both processes deliver
the two messages in the same order.

Proof. Any correct process delivers messages only after an
execution of Vector_Consensus (line 9). All correct
processes execute the same instances of the vector consensus
protocol, identified by aid= 0, 1, 2, . . . The messages which
are delivered are all those with at least f + 1 hashes in the
vector returned by Vector_Consensus and the order of
delivery is deterministic (line 12). Therefore, all processes
deliver the same messages in the same order.

6. MULTI-VALUED CONSENSUS AND ATOMIC
BROADCAST EQUIVALENCE

The equivalence between crash-tolerant multi-valued con-
sensus and atomic broadcast has been proved in [18, 30].
The equivalence for environments prone to Byzantine faults
with signatures has been proved in [31]. Here we prove a
similar result but without the requirement of signatures. This
result has been previously stated but never proved [18, 30].

We follow an approach similar to [18, 30], i.e. we provide
a transformation from multi-valued consensus (as defined
in Section 3) to atomic broadcast and a transformation
from atomic broadcast to multi-valued consensus. The
first transformation was, in fact, presented in two steps
in Sections 4 and 5. The transformation from atomic
broadcast to consensus is presented in Algorithm 4. The

ALGORITHM 4. Transformation from atomic broadcast to
multi-valued consensus (for process pi).

Function M_V_Consensus_AB (vi , cid)

1: INIT_deliveredi ←∅; {INIT messages delivered}
2: A_Broadcast ( 〈INIT, vi , cid, i〉 ); {atomic broadcast}
3: wait until (at least (n−f ) INIT messages from different

senders have been atomically delivered);
4: ∀j : if (〈INIT, vj , cid, j〉 has been delivered) then Vi[ j]
← vj ; else Vi[j]←⊥;

5: if (∃v : #v(Vi) ≥ (n− 2f )) then
6: return v;
7: else
8: return ⊥;

transformations are independent of the technique used to
circumvent FLP.

The protocol is similar to the first part of Algorithm 1 so
there is no need to describe its behavior. The protocol is
correct if it satisfies the properties MVC1 through MVC5
provided in Section 3.

Theorem 15. (Validity 1). If all correct processes propose
the same value v, then any correct process that decides,
decides v.

Proof. If all correct processes propose the same value v, then
all processes deliver at least (n− 2f ) INIT messages with v

in line 3 since at most f processes can broadcast messages
with different values. It follows immediately from lines 5
and 6 that any correct process that decides, decides v.

Theorem 16. (Validity 2). If a correct process decides v,
then v was proposed by some process or v = ⊥.

Proof. The proof is obtained from a trivial inspection of the
protocol.

Theorem 17. (Validity 3). If a value v is proposed only
by corrupt processes, then no correct process that decides,
decides v.

Proof. For a correct process to decide v (line 6), at least
(n − 2f ) processes must have broadcast that value. There
can be at most f < (n − 2f ) corrupt processes so no
correct processes can decide a value proposed only by those
processes.

Theorem 18. (Agreement). No two correct processes
decide differently.

Proof. The atomic broadcast protocol guarantees that all
correct processes deliver the INIT messages in the same
order. Therefore, all correct processes deliver the same INIT
messages in line 3 and decide the same in lines 5–8.

Theorem 19. (Termination). Every correct process
eventually decides.
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ALGORITHM 5. Transformation from vector consensus to
multi-valued consensus (for process pi).

Function M_V_Consensus_VC (vi , cid)

1: Vi ←Vector_Consensus (vi , cid);
2: if (∃v : #v(Vi) ≥ (n− 2f )) then
3: return v;
4: else
5: return ⊥;

Proof. The proof is trivial taking into account that the atomic
broadcast protocol terminates (properties AB1 and AB2) and
that there are at least (n− f ) correct processes.

The proof that Algorithm 4 satisfies the definition of multi-
valued consensus concludes the demonstration that atomic
broadcast and multi-valued consensus are equivalent. An
immediate consequence is that the FLP impossibility result
also applies to Byzantine-resilient atomic broadcast, i.e. this
problem cannot be solved deterministically in asynchronous
systems. The protocol shown in this paper circumvents this
result using randomization, i.e. by not being deterministic.

7. MULTI-VALUED CONSENSUS AND VECTOR
CONSENSUS EQUIVALENCE

Vector consensus is apparently a stronger problem than
consensus. Doudou and Schiper proved that a flavor
of multi-valued consensus defined in terms of properties
MVC1/MVC4/MVC5 is reducible to vector consensus [20].
Here we prove that a multi-valued consensus defined by
properties MVC1–MVC5 is equivalent to vector consensus.
The transformation from multi-valued consensus to vector
consensus was given in Section 4. The reverse transformation
is shown in Algorithm 5. We skip the correctness proof of this
transformation given its simplicity. The two transformations
together prove the equivalence of the two problems.

8. PERFORMANCE EVALUATION

Multi-valued consensus. The time complexity of the
multi-valued consensus protocol is twice the number of
asynchronous rounds executed by the reliable broadcast
protocol Lrb (lines 3 and 10) plus the time complexity of
the binary consensus protocol Lbc (line 17). The reliable
broadcast protocol by Bracha runs in exactly three rounds [9].
The time complexity of the binary consensus protocol is
measured in expected number of asynchronous rounds, since
the protocol is randomized, therefore probabilistic. The
binary consensus protocol in Appendix A has constant
expected time complexity O(1), or, more precisely, Lbc =
20. The protocol by Canetti and Rabin has also constant
expected time but has a high message complexity so we do
not consider it here [10].6 Therefore, the time complexity of

6The binary consensus protocol by Bracha has also an expected number
of rounds of O(1) if f = O(

√
n), but O(2n−f ) otherwise [9].

the multi-valued consensus protocol is (we use capital L for
expected number of asynchronous rounds):

Lmvc = 2Lrb + Lbc = 26 = O(1) (1)

The protocol can be optimized by replacing the second
reliable broadcast in line 10 by a (normal) broadcast or by
the transmission of the VECT message individually to all
processes. In this case, one correct process might receive
(n − 2f ) messages with the value to be decided v, while
another correct process would not. To circumvent this
problem, all correct processes that receive (n−2f ) messages
with the value v (line 11) have to resend these messages to all
other processes. This optimization reduces the three rounds
of the reliable broadcast protocol to two rounds.

Table 1 presents both the expected time complexity of
the protocol (Lmvc) and the time complexity in the best
case (lmvc). The best case for the multi-valued consensus
protocol is when the binary consensus runs in lbc = 10 rounds
instead of the expected Lbc = 20 rounds (see Appendix A).
Notice that the reliable broadcast runs in a constant number
of rounds, therefore lrb = Lrb = 3.

Message complexities differ if the communication is point-
to-point or broadcast. If the communication is point-to-
point, the message complexity of Bracha’s reliable broadcast
is Mrb = 2n2+n and the expected message complexity of the
binary consensus in the appendix is Mbc = 12n3+8n2. If the
messages are broadcast, these complexities are respectively:
M ′rb = 2n+1 and M ′bc = 12n2+8n. The expected message
complexity of our multi-valued consensus corresponds to 2n

executions of the reliable broadcast plus one binary consensus
(Table 2):

Mmvc = 2nMrb +Mbc = 16n3 + 10n2 = O(n3) (2)

M ′mvc = 2nM ′rb +M ′bc = 16n2 + 10n = O(n2) (3)

These complexities can be reduced by merging or piggy-
backing some messages in others.

Vector consensus. The vector consensus protocol runs in
the best case in one round, in the worst in f + 1 rounds
(e.g. if n = 4, f = 1, the protocol terminates in one or
two rounds). In the best case the loop in lines 3–8 will
be executed only once so the time complexity will be the
sum of those of the reliable broadcast (line 2) and the multi-
valued consensus (line 6). If the protocol does not terminate
in the end of the first round, it is reasonable to expect that
all VC_INIT messages reliably broadcast will be delivered
during the first execution of M_V_Consensus, since this
consensus involves several rounds of message exchange (two
reliable broadcasts plus one binary consensus). This would
make the protocol terminate in the second round. However,
if we make the (pessimistic) assumption that the malicious
processes control the communication, then they can schedule
the messages in such a way that they delay the protocol
a maximum of f rounds. Therefore, the expected time
complexity of the algorithm is O(f ):

Lvc = Lrb + (f + 1)Lmvc = O(f ) (4)

The Computer Journal, 2005



From Consensus to Atomic Broadcast 11 of 14

TABLE 1. Time complexities of the three protocols (asynchronous rounds).

Protocol Best time complexity Expected time complexity

Multi-valued consensus lmvc = 2lrb + lbc = 16 Lmvc = 2Lrb + Lbc = 26 = O(1)

Vector consensus lvc = lrb + lmvc = 19 Lvc = Lrb + (f + 1)Lmvc = O(f )

Atomic broadcast lab = lrb + lvc = 22 Lab = Lrb + Lvc = O(f )

TABLE 2. Message complexities of the three protocols (messages).

Expected message complexity Expected message complexity
Protocol (point-to-point) (broadcast)

Multi-valued consensus Mmvc = 2nMrb +Mbc = O(n3) M ′mvc = 2nM ′rb +M ′bc = O(n2)

Vector consensus Mvc = nMrb + (f + 1)Mmvc = O(f n3) M ′vc = nM ′rb + (f + 1)M ′mvc = O(f n2)

Atomic broadcast Mab = Mrb +Mvc = O(f n3) M ′ab = M ′rb +M ′vc = O(f n2)

The best case is the execution of a single multi-valued
consensus with an execution of the best case of the binary
consensus:

lvc = lrb + lmvc = 19 (5)

The expected message complexities correspond to n

executions of the reliable broadcast plus f + 1 multi-valued
consensuses:

Mvc = nMrb + (f + 1)Mmvc = 18n3 + 11n2 + 16n3f

+ 10n2f = O(f n3) (6)

M ′vc = nM ′rb + (f + 1)M ′mvc = 18n2 + 11n+ 16n2f

+ 10nf = O(f n2) (7)

Atomic broadcast. The time complexity of the atomic
broadcast protocol is equivalent to one reliable broadcast (line
5) plus one vector consensus (line 9); therefore the expected
number of rounds is O(f ) per message:

Lab = Lrb + Lvc = O(f ) (8)

The best time complexity is one reliable broadcast plus a
best case execution of the vector consensus:

lab = lrb + lvc = 22 (9)

The expected message complexities depends on the
amount of messages being transmitted. If only occa-
sional messages are sent, the expected message complex-
ities are respectively with point-to-point and broadcast
communication:

Mab = Mrb +Mvc = 18n3 + 13n2 + n+ 16n3f

+ 10n2f = O(f n3) (10)

M ′ab = M ′rb +M ′vc = 18n2 + 13n+ 1+ 16n2f

+ 10nf = O(f n2) (11)

However, if messages go on arriving during a certain
execution of the vector consensus protocol, in the next round

task T1 will try to make agreement on several messages
instead of only one. Therefore this protocol exhibits the
virtuous characteristic that its number of messages decline
considerably if the rate of transmissions increases.

Tables 1 and 2 summarize the results for all protocols.

9. RELATED WORK

The FLP impossibility result implies that any consensus
protocol in a strictly asynchronous environment has to
be randomized. Most randomized consensus protocols
presented in the literature are binary. An exception is the
multi-valued crash-tolerant protocol in [38]. Also for crash
failures, there is one transformation from binary to multi-
valued consensus available [39]. Turpin and Coan presented
a transformation from binary to multi-valued consensus for
Byzantine synchronous systems [40]. Toueg presented a
transformation for asynchronous systems [12]. The main
difference of this transformation to Algorithm 1 is that
Toueg uses signatures; therefore its algorithm does not
require a reliable broadcast primitive but a weaker echo
broadcast protocol. His protocol has optimal resilience,
time complexity O(1), and lower message complexity than
ours, but needs asymmetric cryptography. Cachin et al.
[31] proposed a similar transformation, but the algorithm is
based on voting the selection of the value proposed by each
successive process. The protocol has optimal resilience, time
complexity O(1) and lower message complexity but uses
public-key signatures and threshold cryptography. Several
non-randomized, Byzantine-resilient, asynchronous multi-
valued consensus protocols have been proposed in the
literature [15, 21, 22, 34, 35]. Lower bounds on the number
of rounds necessary for (Byzantine) consensus and atomic
broadcast have been defined in [41].

Interactive consistency was defined as the problem of
agreeing on a vector with one value per correct process [1].
However, in asynchronous systems it is not possible to
differentiate slow from crashed processes, and with a
Byzantine fault model it might also be impossible to
distinguish malicious from crashed processes. Therefore,
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for Byzantine asynchronous systems the vector consensus
problem was defined [20]. Two vector consensus protocols
based on failure detectors and one based in wormholes
have been specified [20, 21, 26]. Recently, Ben-Or and
El-Yaniv presented a randomized vector consensus protocol
with optimal resilience, time complexity O(1) and no
signatures [32]. However, the message complexity is
considerably higher than ours, since the protocol runs nmulti-
valued consensus protocols in parallel, while ours runs, in the
worst case, n− (2f + 1)+ 1 multi-valued consensuses.

For the crash fault model, some transformations from
multi-valued consensus to atomic broadcast have been
defined [18, 30, 36]. Cachin et al. [31] defined a transfor-
mation from multi-valued consensus to atomic broadcast for
Byzantine faults with signatures. Doudou et al. [22] pre-
sented a transformation closer to ours. It also uses signatures
and it can have a higher communication complexity since it
gives the full messages to the consensus module, instead of
hashes, which are generally smaller. Doudou and Schiper
briefly discuss a reduction of atomic broadcast to vector con-
sensus [20].

A collection of randomized atomic broadcast protocols
can be found in [42]. These protocols rely on signatures
to guarantee the authenticity of the messages and do not
have optimal resilience. Other Byzantine-resistant atomic
broadcasts for asynchronous systems can be found in
Rampart [19] that uses signatures and SecureRing [43] that
uses a signed token. BFT [6] does not use signatures when
there are no faults; therefore it is very efficient. Unlike
ours, all these three protocols need a failure detector to put
away corrupt processes. Apart from the added complexity,
the design of Byzantine failure detectors that are complete
is still an open research issue. Défago et al. [44] present
an interesting classification of atomic broadcast protocols.
In terms of that classification, our protocol is a destination
agreement algorithm, i.e. processes receive messages without
ordering information and run agreements to order them.

10. CONCLUSION

This paper proposes a stack of intrusion-tolerant or
Byzantine-resistant protocols. These protocols form a coher-
ent family, sharing effective and efficient structural proper-
ties: signature freedom, full asynchrony, decentralization and
optimal resilience.

The stack shows a series of protocol transformations:
from binary consensus to multi-valued consensus, from
multi-valued consensus to vector consensus and from vector
consensus to atomic broadcast. The objective is to provide
a modular set of protocols that a designer can use in
practice in the construction of intrusion-tolerant systems,
especially in systems with limited resources like embedded
environments. Therefore, the protocols evade a set of
characteristics that might constitute a shortcoming in a
real system: the use of public-key signatures, a known
performance bottleneck in intrusion-tolerant systems, time
assumptions, often vulnerable to some attacks and the
existence of leaders whose failure might be costly to detect.

The multi-valued consensus protocol terminates in a
constant expected number of rounds. However, due to
the severe nature of malicious faults, vector consensus is
more effective as a system building block for security-related
applications. The time complexity of the vector consensus
proposed is O(f ). The time complexity of the atomic
broadcast protocol is also O(f ) (per message), although
the average number of rounds can be considerably lower if
there are several messages being transmitted. Both the time
complexities of the vector consensus and atomic broadcast
protocols are reduced to O(1) when all processes are correct.
These results look very promising.

Besides presenting the stack of protocols, the paper also
proves the equivalence between multi-valued consensus and
atomic broadcast in the Byzantine failure model without
signatures. A similar proof is given for the equivalence
between multi-valued consensus and vector consensus.
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A. A BINARY CONSENSUS PROTOCOL

This appendix presents a Binary consensus protocol
compatible with the properties we stated in Section 1: it does
not use signatures; it is asynchronous (uses randomization to
circumvent FLP); decisions are taken in a decentralized way
during the normal operation; it has optimal resilience, f =
�(n − 1)/3�. Moreover, its time complexity is O(1). The
protocol is a version of Bracha’s protocol in [9] enhanced with
the dual-threshold coin-tossing scheme by Cachin et al. [14].
The protocol does not avoid public-key cryptography entirely
since the coin-tossing scheme is based on the Diffie–Hellman
problem.

The (n,k,f) dual-threshold coin-tossing scheme assumes n

processes, at most f of which can be corrupt. The processes
hold shares of a function F mapping a coin name C to its
value F(C) ∈ {0, 1}. The main property of the scheme is
that to construct the value of a coin, a process needs k coin
shares from different processes, with t < k ≤ n − f . Here
we consider the specific case of k = n− f .

The scheme assumes a trusted dealer that generates
secret keys SK1, . . . , SKn and verification keys VK,

VK1, . . . , VKn. The dealer gives every process pi a secret
key SKi and all verification keys. A process uses SKi to
produce coin shares and the verification keys to construct the

values of coins. The existence of the dealer does not collide
with the protocol being decentralized (in the sense above),
because the dealer has no role during the execution of the
protocol.

The modification of Bracha’s protocol is simple. Lets
us define a coin name C as a unique combination of the
consensus execution identifier bcid and the round number
r , e.g. C = bcid + 1/r . In Step 3, the protocol may have
to set a variable ip to 1 or 0 with probability 1/2 [9]. The
modification is to use the dual-threshold coin-tossing scheme
to give identical random numbers to all correct processes,
i.e. coins with name C. More precisely, the line of Bracha’s
protocol that sets ip to 1 or 0 is substituted by Step 4 of the
ABBA protocol [14]. After that step, ip is set to the value of
coin C.

This protocol avoids the use of digital signatures and
threshold signatures of the original protocol in [14] at the
cost of additional rounds of message exchange. However,
the expected time complexity is still O(1), or more precisely
(considering the reliable broadcast in [9]):

Lbc = 6Lrb + 2 = 20 (12)

In the best case the protocol runs in a single round:

lbc = 3lrb + 2 = 10 (13)

The expected message complexities are Mbc = 12n3+
8n2 = O(n3) with point-to-point communication or M ′bc =
12n2 + 8n = O(n2) with broadcast communication.
However, several messages of the executed reliable broadcast
might be merged or piggy-backed, thus reducing these
numbers.
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