
1 23

Multimedia Tools and Applications
An International Journal

ISSN 1380-7501

Multimed Tools Appl
DOI 10.1007/s11042-013-1794-0

EnContRA: a generic multimedia
information retrieval meta-framework

Ricardo Dias, Manuel J. Fonseca, Nelson
Silva & Tiago Cardoso

1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

Multimed Tools Appl
DOI 10.1007/s11042-013-1794-0

EnContRA: a generic multimedia information retrieval
meta-framework

Ricardo Dias · Manuel J. Fonseca · Nelson Silva ·
Tiago Cardoso

© Springer Science+Business Media New York 2013

Abstract Over the last years, multimedia collections have largely increased as new items
are produced every day, such as pictures, audio/music or video. In Multimedia Informa-
tion Retrieval, this exponential growth leads content-based approaches to gain advantage
over other solutions, not only because they take advantage of the intrinsic information con-
tained in the objects, but also because they automatically process and extract it, reducing the
burden taken by developers. Several domain specific frameworks have been developed to
efficiently retrieve multimedia items empowering the creation of new content-based appli-
cations. However, these frameworks are attached to a specific media type, are too complex
to be used in a fast prototyping environment, and are not very flexible nor extensible. To
solve these issues, we developed EnContRA, an architectural meta-framework that provides
generic building blocks for creating domain specific frameworks. Our meta-framework aims
at being ready to be used for fast prototyping, with support for rich and multimodal queries,
allowing validation of new descriptors, indexing structures or searching algorithms, while
creating domain specific frameworks. In this paper we present the meta-framework archi-
tecture and describe in detail its modules and features. To validate the meta-framework, we
created an image retrieval framework and a demo application that combines image descrip-
tors with textual information, showing how the hierarchical design of EnContRA could be
applied to a searching system and to empower the creation of queries.

R. Dias (�) · M. J. Fonseca
Department of Information Systems and Computer Science, INESC-ID/IST/ULisboa, Lisbon, Portugal
e-mail: ricardo.dias@ist.utl.pt

M. J. Fonseca
e-mail: mjf@inesc-id.pt

N. Silva · T. Cardoso
inEvo R&D, Lda, Lisboa, Portugal

N. Silva
e-mail: nelson.silva@inevo.pt

T. Cardoso
e-mail: tiago.cardoso@inevo.pt

Author's personal copy

mailto:ricardo.dias@ist.utl.pt
mailto:mjf@inesc-id.pt
mailto:nelson.silva@inevo.pt
mailto:tiago.cardoso@inevo.pt

Multimed Tools Appl

Keywords Architectural meta-framework · Multimedia information retrieval · Query
processing

1 Introduction

Every day people take pictures with their smartphones and digital cameras, record and
upload videos to online streaming services and acquire music for only a few cents. These
are just a few examples of production and consumption of multimedia items that has
taken part of people daily lives over the past years, making the organization, indexing and
retrieval tasks harder to do. Therefore, this exponential increase in the size of the multimedia
databases created the need for efficient solutions able to deal with these collections.

Content-based solutions have gained much attention from researchers and have been
widely explored not only because they take advantage of intrinsic (and extracted) infor-
mation from multimedia objects, but also because their mechanisms can be performed
automatically, making it suitable for large multimedia collections. Several domain-specific
and generic frameworks have been created to efficiently retrieve multimedia objects and
empower prototyping development. The MESSIF [5] and the OBsearch1 frameworks are
two examples of generic frameworks that allow the development of custom solutions, using
indexing and similarity search for different media types. The MARSYAS [17] and Virage
[3], on the other hand, are two specific frameworks for audio and image retrieval. Although,
these frameworks make the development easier, they still have issues, like for instance,
their specificity for a particular media type (e.g., image or audio only) and therefore not
adaptable to other types (or to a combination of different types); their difficulty of use,
which increases the development effort required to develop new research prototypes and
applications; and finally, their flexibility and extensibility on testing and validating specific
research components are limited.

To overcome these problems, we propose EnContRA (Engine for Content-based
Retrieval Approaches), an architectural meta-framework that provides structure and generic
building blocks for creating domain specific frameworks and retrieval applications, with
minimum effort. This meta-framework aims at being easy to use for fast prototype
research, including validating new descriptors, indexing structures, searching algorithms,
etc. Designed as a set of interconnected empty containers, defining the main components
and their links, EnContRA modular architecture not only offers to developers the common
structure and building blocks for typical Information Retrieval (IR) tasks, such as, indexing,
searching and querying [4], but also provides the necessary abstraction so they can add new
behavior whenever they need. In this paper we describe the meta-framework infrastructure
and provide details about modules and features developed to achieve our goals. To validate
EnContRA we applied it to a concrete case, by developing an image retrieval framework
and a demo application, named Clipart Finder. In this example we used EnContRA to cre-
ate a simple query-by-example image retrieval system, exemplifying the usage of the main
building blocks, and how we can create modules to fill the EnContRA structure.

In the remainder of the paper, we first give an overview of the related frameworks for
content-based retrieval. Section 3 describes the EnContRA meta-framework architecture,
its modules and the main building blocks to support the creation of domain specific frame-
works. In Section 4 we describe the use of EnContRA for the development of a image

1http://obsearch.net/

Author's personal copy

http://obsearch.net/

Multimed Tools Appl

retrieval framework and a prototype application, Clipart Finder. Finally, in Section 5 we
conclude the paper and discuss further work directions.

2 Related work

Several frameworks, both generic and content-specific, have been proposed to help
researchers and developers create content-based solutions. In this section we describe the
most relevant works on these two categories, focusing on their scalability, modularity and
flexibility.

MUVIS2 [9] is a generic framework for managing (indexing, exploring, searching, etc.)
digital multimedia collections (audio, video and images). This solution provides basic
mechanisms to index video in real time and pictures in different formats (JPEG, GIF, BMP,
TIFF, etc.). Searching, retrieving and browsing operations are also supported for any of the
different types of media. Although, this framework supports typical IR tasks and different
media, it is not easy to use nor to quickly create prototypes.

The MUFIN framework (Multi-feature Indexing Network)3 [14, 15] is another generic
multimedia information retrieval framework aiming at being scalable and extensible. This
framework is based on the metric space, and therefore being suitable for any metric distance
function used in the different scientific research fields, such as biology, geography, etc.
To ensure scalability, MUFIN was designed over a Peer-to-Peer (P2P) model, supporting
logarithmically upper-bounded routing to peers, in order to process large amounts of data.
Performance was also taken into account in MUFIN, by integrating approximate similarity
measures and load balancing in the peers. Although, MUFIN provides a generic framework
for multiple research fields, it requires a complex infrastructure to hold the framework,
making prototyping a hard task.

The MESSIF framework (Metric Similarity Search Implementation Framework)4 [5], is
another framework that explores the metric space to facilitate the development of appli-
cations supporting similarity querying. It supports different types of multimedia objects
and has a very modular and extensible architecture allowing the easy development of new
components, such as, new indexing structures. Moreover, this framework also provides an
out-of-the-box set of basic features for storage and automatic performance indicators. A
client tool to evaluate and test the indexing structures is also available. Although, concep-
tually this framework covers the majority of the identified problems, it was not designed to
support multimodal queries (using different media types) nor for fast prototyping.

MMRetrieval.net5 [19] is a multimodal search engine that allows multimedia and
multi-language queries, and makes use of the total available information in a multimodal
collection. All modalities are indexed and searched separately. Results can be fused with
different methods depending on the noise and completeness characteristics of the modali-
ties in a collection, and whether the user is in a need of high initial precision or high recall.
Beyond fusion, this engine also provide a two-stage retrieval by first thresholding the results
obtained by secondary modalities targeting recall, and then re-ranking them based on the
primary modality. The engine demonstrated the feasibility of the proposed architecture and

2http://muvis.cs.tut.fi/
3http://mufin.fi.muni.cz
4http://lsd.fi.muni.cz/trac/messif/
5http://www.mmretrieval.net

Author's personal copy

http://muvis.cs.tut.fi/
http://mufin.fi.muni.cz
http://lsd.fi.muni.cz/trac/messif/
http://www.mmretrieval.net

Multimed Tools Appl

methods on the ImageCLEF 2010 Wikipedia collection. Scalability and performance con-
cerns were also taken into account, by allowing the indexes to be held in different machines.
However, the authors were not concerned about providing support for the development of
solutions including other types of media nor in extending the current behavior.

Started as a Google Summer of Code 2007 project, OBSearch is a multimedia search
engine written in Java, that aids in creating innovative applications, like for instance, Open
Source software license violation, similarity search for music and pictures, etc. This frame-
work is able to deal with computational heavy objects, like graphs and trees, has a very
compact API and is very stable and scalable (can be used in a single machine or in net-
work). Though it is a very interesting framework, supporting fast prototyping of solutions,
this library was not designed to support the addition of new behavior neither multi-modal
querying.

LIRe (Lucene Image Retrieval)6 [11] is an Open Source library that provides a simple
way for retrieving images and photos based on their color and texture characteristics. LIRe
uses a Lucene index7 of image features for content-based image retrieval. Available image
descriptors were taken from the MPEG-7 Standard.8 This library is part of the Caliph &
Emir project [10], whose main objective is to easily endow CBIR features in standalone
applications. Although, it has a compact API allowing developers to add new descriptors to
their specific solutions, their intent is solely to endow CBIR features in innovative applica-
tions. Recently, Amato et. al [1], developed a new technique to empower existing Digital
Library Management Systems with similarity search capabilities, using the Lucene engine,
where they combine full-text search with approximate similarity search capabilities, by
converting low level features into a textual form.

Virage [3] was a 90’s content-based search engine that supported visual queries based on
color, composition, texture and structure, by giving different weights to these four features.
MARS (Multimedia analysis and retrieval system) [8] was another system for multimedia
analysis and retrieval from the 90’s, that differed from other systems, as it was an inter-
disciplinary approach for the integration of computer vision, database management and
information retrieval. Its main goal was to organize the various visual features into a mean-
ingful retrieval architecture which could dynamically adapt to different applications and
different users. MARS also proposed a relevance feedback architecture in image retrieval
while integrating it at various levels during retrieval, including query vector refinement,
automatic matching tool selection, and automatic feature adaption.

Regarding music, jAudio [12, 13] is a software library for extracting features from audio
files as well as for iteratively developing and sharing new features. These extracted fea-
tures can then be used in many areas of Music Information Retrieval research, often via
processing with machine learning frameworks such as ACE.9 jAudio current distribution
includes 28 implemented basic features and while some of these features are standard fea-
tures with proven efficacy, others are more innovative and were presented to the research
community for experimentation. MARSYAS [17] is an open source audio processing frame-
work with specific emphasis on building Music Information Retrieval Systems. It has been
under development since 1998 and has been used for a variety of projects in both academia
and industry. The guiding principle behind the design of MARSYAS has always been to

6http://www.semanticmetadata.net/lire/
7http://lucene.apache.org/
8http://mpeg.chiariglione.org/standards/mpeg-7/mpeg-7.htm
9http://dtai.cs.kuleuven.be/ACE/doc/

Author's personal copy

http://www.semanticmetadata.net/lire/
http://lucene.apache.org/
http://mpeg.chiariglione.org/standards/mpeg-7/mpeg-7.htm
http://dtai.cs.kuleuven.be/ACE/doc/

Multimed Tools Appl

provide a flexible, expressive and extensive framework without sacrificing computational
efficiency. It has been widely used in Music Information Retrieval to test descriptor extrac-
tors and to train classification algorithms. Nonetheless, both frameworks have their focus
only on music (audio) and only provide support for very low-level operations.

In summary, generic-type frameworks are not suitable for fast prototyping and testing,
as their structure and description is complex, and thereby require from developers an extra
effort to learn how to use them. However, on the other hand they allow the re-use of their
components to develop solutions for different types of media. Media specific solutions are
too closely related to the media they handle, and therefore they are not suitable for other
media types. So, there is a need for a meta-framework that could easily support the devel-
opment of domain specific frameworks and the evaluation of new research ideas, with a
minimum effort.

3 EnContRA

Has stated in the previous section, there has been some effort over the years to develop
domain specific frameworks that help developers creating content-based retrieval appli-
cations. However, although there is a common structure across these frameworks, little
research has been conducted in order to create a generic meta-framework that could easily
support the development of domain specific frameworks, and therefore retrieval solutions,
with a minimum effort. This is the main driver behind EnContRA.

Developed in Java, EnContRA10 is an architectural meta-framework that provides
generic building blocks which allow the creation of domain specific frameworks and valida-
tion of new descriptors, indexing structures or searching algorithms (see Fig. 1). EnContRA
architecture can be seen as a set of interconnected abstract containers, defining the main
components of a framework and their links (connections), but not how the containers are
filled. This task is done during the creation of domain specific frameworks.

In the next subsections we describe the architecture of EnContRA, its main modules (and
building blocks), and finally, how it can be used to create an image retrieval framework and
a simple demo application (Clipart Finder).

3.1 Architecture and modules

Figure 1 presents the various levels of EnContRA architecture and shows where the
domain specific frameworks and the applications fit, evidencing the EnContRA main role
in this process. Our meta-framework, at the left, provides structure and building blocks to
developers, so they can create new domain specific frameworks (e.g., an image retrieval
framework). To perform this task, developers must add specific behavior to the empty build-
ing blocks provided by EnContRA (e.g., an image descriptor, like for instance the Scalable
Color [10], or a multidimensional indexing structure like the NB-Tree [7]), and describe how
they are combined. Finally these specific frameworks can be used to create applications, in
a one-to-many schema (see Fig. 1), allowing developers to re-use the artifacts produced. A
detailed example of this architecture applied to an image retrieval framework is depicted in
Fig. 2, and will be explained later in Section 4.

10Source and documentation can be found at http://encontra.github.io/

Author's personal copy

http://encontra.github.io/

Multimed Tools Appl

Fig. 1 Application creation process stack using EnContRA

EnContRA is organized as a set of inter-related modules that separate the different
concepts of the meta-framework and that can be combined to create domain specific
frameworks. Each module provides a well-defined API to avoid exposing its internal
representation and to keep EnContRA extensible. The main modules are organized and
distributed around the IR tasks covered in [4], namely, descriptor extraction and transfor-
mation from input data; storing and indexing of the extracted information; query processing
and searching through the indexes using rich queries. Bellow we briefly describe each
EnContRA modules:

– Storage - Module that exposes the storage API allowing the use of different storage
approaches (for example, a standard database, a memory based storage, etc.).

– Indexing - Holds the API for indexing mechanisms and operations, such as, inserting,
removing, traversing, etc.

– Query Processing - Module that abstracts the query processing mechanism and defines
the query operations and operators.

– Descriptor Extraction - Module that defines the API for describing descriptors,
descriptor extractors, and common methods and operations used during descriptor
extraction.

– Search - Holds the search API for retrieving information from indexes and storage
components.

Notice that these modules only provide structure. Therefore, two aspects must be taken
into consideration: to create domain specific frameworks, developers must add behavior
to each of the empty building blocks, for example, by defining the descriptors to be used,
the indexes, etc; second, performance issues only depend on the components developed for
domain specific frameworks that are not part of EnContRA.

Author's personal copy

Multimed Tools Appl

3.2 EnContRA building blocks

The main building blocks included in EnContRA (see Fig. 2) are focused on storing,
indexing and searching tasks. In this subsection we provide an overview of each of these
modules.

3.2.1 Storing

During the creation of a typical content-based retrieval framework and application, we usu-
ally start by defining a data model with the specific properties for the input data collection.
In EnContRA this is also the starting point, and a data model can include different media
types to describe an object.

Consider for example the context where we are creating an image retrieval framework,
and we need to define an entity, ImageModel, that combines an image and its textual
description. To store and retrieve it using a framework developed using EnContRA, we need
to implement the IEntity interface and annotate the accessor methods with @Indexed. By
doing this, we are telling EnContRA that these two fields should be used during indexing
(more details on Section 3.2.2). The Listing 1 illustrates the definition of this entity.

When passing this entity to EnContRA it knows, from the annotations, that those two
fields have to be indexed (image and description), but since EnContRA only provides struc-
ture, this definition does not hard code the indexes to be used in the framework. This task is
left for developers to later add this behavior, which will be described later on this section.

Fig. 2 Typical architecture of a solution using EnContRA

Author's personal copy

Multimed Tools Appl

Listing 1 Example of defining an entity using EnContRA

1 public class ImageModel implements IEntity {
2 ...
3 private String description;
4 private BufferedImage image;
5
6 public ImageModel(String description, BufferedImage image) {...}
7
8 @Indexed
9 public String getDescription() {
10 return description;
11 }
12
13 @Indexed
14 public BufferedImage getImage() {
15 return image;
16 }
17 ...
18 }

During the indexation of ImageModel instances, the EnContRA framework uses a fac-
tory to break the entity into smaller objects (called IndexedObject). In this example it will
be one for the image and another for the description, making it easier to handle by the dif-
ferent indexes. This way, indexes do not deal directly with instances of the data model, but
with the actual data they are expecting.

Listing 2 Example of an EntityStorage definition

1 public class MyEntityStorage implements EntityStorage<Long, ImageModel>{
2 ...
3 //stores the instances in memory
4 List<ImageModel> storage = getMemoryStorage();
5 //returns the object given its id
6 public ImageModel get(Long id){
7 return storage.get(id);
8 }
9
10 //saves an ImageModel instance
11 public ImageModel save(ImageModel object) {
12 storage.add(object);
13 }
14
15 //deletes an ImageModel from the storage entity
16 public void delete(ImageModel object) {
17 storage.remove(object.getId());
18 }
19 ...
20 }

Author's personal copy

Multimed Tools Appl

After defining our data model, we must specify how we plan to store it for later use by
creating a EntityStorage. This entity exposes saving, deleting and retrieving methods, as the
example below illustrates:

3.2.2 Indexing

A fundamental task in IR when we want to deal efficiently with large collections is index-
ing [4]. EnContRA offers an API for defining and creating indexes that exposes common
operations they support, such as, inserting and removing entries, iterating, etc. The example
below illustrates the Index API:

Listing 3 Index abstract definition

1 public interface Index<E extends IEntry> extends EntityStorage {
2 ...
3 //inserts an element into the index
4 public boolean insert(E entry);
5
6 //removes an element from the index
7 public boolean remove(E entry);
8
9 //gets the first element in the index
10 public E getFirst();
11
12 //gets the last element in the index
13 public E getLast();
14
15 //gets the next element from the index. uses an internal iterator
16 public E getNext();
17
18 //gets the previous element from the index
19 public E getPrevious();
20 ...
21 }

Notice that conceptually, indexes are also EntityStorage instances, because they share
the same operations of the EntityStorage API, like the insert, remove and get methods. This
means that one might reuse an index implementation for different purposes, such as, a stor-
age mechanism. Also, notice that indexes do not provide direct methods for searching. We
took this decision to allow developers to apply different searching strategies regardless of
the indexes being used. However, this approach does not prevent developers from extending
indexes to embed the searching behavior.

3.2.3 Descriptor extraction

To index data, developers usually start by extracting features from it. These features, called
descriptors, describe and give details about a multimedia object. A descriptor is therefore
a measurable feature of an object that allows developers to compare objects among them

Author's personal copy

Multimed Tools Appl

(using similarity measures). EnContRA provides APIs for creating descriptors, extractors,
similarity measures, etc. To illustrate this, we present an example of the definition of a new
descriptor and its extractor that uses the euclidean distance as the similarity measure:

Listing 4 Definition of a new descriptor and its extractor

1 //Example of descriptor
2 public class MyNewDescriptor extends Vector<Double> implements Descriptor {
3 ...
4 protected DistanceMeasure distanceMeasure = new EuclideanDistanceMeasure();
5
6 @Override
7 public double getDistance(Descriptor other) {
8 return distanceMeasure.distance(this, other);
9 }
10
11 @Override
12 public void setValue(Object o) {
13 Vector<Double> val = (Vector<Double>)o;
14 this.setValues(val.getValues());
15 }
16 ...
17 }
18
19 //Example of a descriptor extractor
20 public class MyNewDescriptorExtractor extends DescriptorExtractor<

IndexedObject<Long, BufferedImage>, MyNewDescriptor> {
21 ...
22 @Override
23 public MyNewDescriptor extract(IndexedObject<Long, BufferedImage> object) {
24
25 MyNewDescriptor descriptor = computeDescriptor(object);
26 ...
27 return descriptor;
28 }
29 ...
30 }

Although the previous example is very simple, it highlights some of the flexibility
EnContRA allows. More complex and specific descriptors can be implemented in EnCon-
tRA, like for example, multiple descriptors for the same object, or composite local
descriptors.

Notice that descriptor extraction and similarity measuring are different concepts in
EnContRA. This separation allows developers to test and implement different techniques
for both extraction and comparison of descriptors. As an example, developers can test dif-
ferent similarity measures for the same descriptors, so they can select the one that gives the
best results. Moreover, similarity measures can be more complex than just typical pairwise

Author's personal copy

Multimed Tools Appl

comparisons, for example, by relying on information extracted from other objects in the
dataset, like in the TF-IDF algorithm [16].

3.2.4 Searching algorithms and query processing

Querying and searching are other two central tasks of Information Retrieval [4] and a great
asset for EnContRA. Stored and indexed data are only meaningful if we can access it easily
and efficiently.

Searchers are very tied up to Indexes and Storage mechanisms, as they are searchable
components by nature. Their combination allows developers to create complex frameworks
to fulfill their needs. Searching components take a specific query, break it down with the
help of query processors and lookup for relevant information.

Queries allow us to retrieve information from indexes. Creating a query is a fundamen-
tal part of how to search through all the data indexed using domain specific frameworks.
EnContRA offers a programmatic query mechanism, which allows developers to easily cre-
ate queries without having to learn any kind of Structured Query Language. Queries are
created in an object-oriented approach, using a builder to specify the criteria to be applied.
Below is an example of the creation of a query builder and a query object, to retrieve
ImageModel instances:

Listing 5 Creating a Query Builder

1 //creating a builder and a query
2 QueryBuilder cb = new CriteriaBuilderImpl();
3 Query query = cb.createQuery(ImageModel.class);

To retrieve data from indexes, developers must add criteria to the queries created, which
represents the conditions to be satisfied. To specify the fields of the data model to be used
as criteria in a query, EnContRA applies a meta-model representation to describe the data
model. Taking the ImageModel previously described as an example, if we want to create
a meta-representation of the ImageModel itself, we just have to define a Path object (line 2
in Listing 6). To access the image and description fields, we have to obtain the Path objects
that represent these two fields, from the meta-representation of the ImageModel (line 3 and
4 in Listing 6).

Listing 6 Specifying the fields to be used in a query

1 //Path objects are a meta-representation of the entity objects
2 Path<ImageModel> imageModelPath = query.from(ImageModel.class);
3 Path<BufferedImage> imagePath = imageModelPath.get(“image”);
4 Path<String> descriptionPath = imageModelPath.get(“description”);

In the remainder of this subsection we will complement the querying mechanism by
describing the available operators and how to combine them to build complex multimodal
queries.

Query operators

Query operators allow us to create queries by defining the criteria that constrain the data
that will be retrieved. EnContRA offers a query mechanism with support for standard oper-

Author's personal copy

Multimed Tools Appl

ators (EQUAL and NOT), predicates (AND and OR), and a similarity operator (SIMILAR),
inspired by the work developed in [1, 2].

While the EQUAL operator is the simplest one and allows the frameworks to look for a
specific object or property value in the storage/indexes (just like a Point Query), the SIM-
ILAR operator allows searchers to lookup for objects that are relatively close to the given
query, but that are not necessarily the same object (KNN Query) [5, 15].

The AND and OR predicates allow us to combine expressions, retrieving only the results
which logical value respects the expressions and the boolean operator. These predicates
accept an arbitrary number of clauses, with a minimum of at least two. Using again the
ImageModel as an example, imagine we want to look for images containing red cars and
with the keyword “me” in the description. To do this in a domain specific framework created
using EnContRA, we have to create two similar expressions (see lines 6 and 7 in Listing
7), one for the picture and another for the textual description, and then combine them using
an AND predicate (line 10 in Listing 7). Finally, a query is created by filling the WHERE
clause (line 13 in Listing 7). Figure 3 shows a visual representation of the query described
in Listing 7.

Listing 7 Creating a query with an AND predicate

1 //Data
2 String descriptionExample = “me”;
3 BufferedImage imageExample = getImageContent();
4
5 //creating the similar expressions
6 Expression descriptionSimilarityClause = cb.similar(descriptionPath,

descriptionExample);
7 Expression imageSimilarityClause = cb.similar(imagePath, imageExample);
8
9 //combining the similar expressions using AND predicate
10 Expression andExp = cb.and(descriptionSimilarityClause, imageSimilarityClause);
11
12 //create a query with the AND expression
13 Query query = queryBuilder.createQuery().where(andExp);

A NOT operator is also available and can be applied to any of the previously described
operators.

Query Processor

Queries must be processed so indexes and searching algorithms can make sense of it, and
therefore the applications retrieve the information we want to find. The Query Processor is
a feature that allows the creation of domain specific frameworks that fit the requirements
of their developers, in terms of flexibility and performance. Query Processors define how
the queries are broken into smaller pieces that searching algorithms can handle, but also,
how the flow of this process unfolds (for example, in a cascade or parallel mode). Query
Processors implement the IQueryProcessor interface, which the main entry point is the
search method. Listing 8 shows an example of a cascade Query Processor.

Author's personal copy

Multimed Tools Appl

Listing 8 Query Processor Interface

1 public class MyQueryProcessor<ImageModel> extends IQueryProcessor {
2 ...
3 //controls the process of breaking the query
4 public ResultSet search(Query query) {
5 //parses the query and obtains a tree representating the query
6 QueryParserNode node = queryParser.parse(query);
7
8 //check if there is an available operator for root tree node
9 if (isOperatorAvailable(node)){
10 //gets the operator and processes the node in a cascade style
11 QueryOperatorProcessor operator = getOperator(node);
12 return operator.process(node);
13 } else {
14 logger.info(“No operator was found for: ” + node.getName());
15 return new ResultSet<ImageModel>();
16 }
17 }
18 ...
19 }

4 Test case: image indexing and retrieval

In the previous section we described EnContRA, a generic meta-framework that can
enable developers to more easily create domain specific frameworks and applications. We
described EnContRA’s architecture, its main modules and building blocks that support the
creation of solutions that deal with multimodal data.

In this section, we apply EnContRA in a concrete and complete example to evaluate and
validate the potential of it. First we develop a framework for image retrieval that combines
image descriptors with textual metadata: then, we describe how this framework can be used
to create an example application.

Consider the following scenario: we have a dataset of cliparts, and we want to use image
descriptors combined with textual metadata to create a framework capable of retrieving
cliparts by similarity. This is a typical use of the EnContRA meta-framework, involving

Fig. 3 Visual representation of a Query composed by an AND predicate and two Similar expressions

Author's personal copy

Multimed Tools Appl

querying and retrieving information as the result of combining multimodal queries. The
following sections detail how we can use EnContRA to address this problem.

4.1 Creating the framework

Based on the scenario defined, we must first develop a framework that will allow us to
create the image retrieval application, Clipart Finder. This task consists in filling the build-
ing blocks of EnContRA (see Fig. 2) with specific implementations for each one: storage,
descriptor extraction, indexing, query processing and searching.

4.1.1 Storage

Regarding storage, we must first define an Entity that describes the data we intent to model.
To this end, we can reuse the previously defined ImageModel (see Section 3.2.1), that
contains two fields, an image (clipart) and a textual description.

Listing 9 Defining an instance of JPAStorage for ImageModels

1 //ID is of type Long and this entity stores ImageModel objects
2 public class ImageModelStorage extends JPAStorage<Long, ImageModel>

implements EntityStorage<Long, ImageModel> {
3 ...
4 //JPA entity manager
5 EntityManager entityManager;
6
7 public ImageModel get(Long id) {
8 return entityManager.find(ImageModel.class, id);
9 }
10
11 @Override
12 public ImageModel save(ImageModel object) {
13 EntityTransaction tx = entityManager.getTransaction();
14 tx.begin();
15 ImageModel res=entityManager.save(object);
16 tx.commit();
17 return res;
18 }
19
20 @Override
21 public void delete(ImageModel object) {
22 entityManager.remove(object);
23 }
24 ...
25 }

Next, we have to define a storage mechanism (EntityStorage) for handling ImageModels.
As previously said, EnContRA only provides containers and links to combine them, so no
concrete implementations of this EntityStorage is available out-of-the-box. However, for

Author's personal copy

Multimed Tools Appl

Fig. 4 Creating descriptors for image

validation and example purposes we implemented two approaches for handling storage: a
memory-based mechanism, and a database wrapper. While the first approach consists in
leaving all the information in memory, and it is very useful for rapid prototyping and testing,
the second approach consists in storing data into a persistent database, and it is useful when
we want to deal with huge amounts of objects. The behavior of this storing mechanism is
very similar to the one provided by some frameworks, such as Hibernate11 or OpenJPA12,
where developers must specify how the data model will be saved by annotating it.

In this example, we choose to use the second approach as it is able to deal with larger
data sets (closer to real world constrains). This definition is shown in Listing 9.

4.1.2 Descriptor extraction

Concerning descriptor extraction, we have to focus separately in the different types of data:
text and image. As for text, it will be left out, because the chosen implementation of the
storage mechanism can effectively handle text indexing and searching. Therefore focus will
be on the image feature extraction.

For filling this module in EnContRA structure we implemented a descriptor extraction
module for images. In this module we adapted the MPEG7 descriptors implemented in LIRe
[10], namely, the Scalable Color, the Color Layout and the Dominant Color descriptors.
Though we could use only one descriptor for defining this image retrieval framework, we
decided to combine more than one so when retrieving we could select which ones would be
used for comparison between objects (see Section 4.2). Figure 4 shows the three descriptors
extracted for this framework.

11http://www.hibernate.org/
12http://openjpa.apache.org/

Author's personal copy

http://www.hibernate.org/
http://openjpa.apache.org/

Multimed Tools Appl

4.1.3 Indexing

To set up image indexing, we have to define the indexing structures to be used and how we
want to index the data extracted (the descriptors). In this case, we will assign each descriptor
in Fig. 4 to a single indexing structure, so searching can later be performed individually.
Here, we used a total of three indexes.

We have implemented three different indexes for validating the EnContRA indexing API:
a simple index useful for testing and quick prototyping; a Lucene-based index mechanism
to save information [11] (based on the adaptations taken by the LIRe library); and an index
using a B+Tree [6]. This index uses the B+tree implementation of the jdbm project.13

For this concrete framework, we decided to use B+Tree indexes to index image
descriptors (see Listing 10), because it is very efficient while dealing with large datasets.

Listing 10 Defining a B+Tree Index in EnContra

1 public class BPlusTree implements Index<IndexedObject> {
2 ...
3 protected jdbm.btree.BTree btree;
4 protected jdb.helper.TupleBrowser browser;
5
6 public BPlusTree() {
7 btree = new Btree();
8 }
9
10 public boolean insert (IndexedObject entry) {
11 btree.insert (entry.getID(), entry, false);
12 }
13
14 public IndexedObject getNext() {
15 Tuple nextTuple = new Tuple();
16 browser.getNext(nextTuple);
17 return nextTuple;
18 }
19 ...
20 }

4.1.4 Query processing

In this test case, query processing shows the capability of EnContRA to deal with multi-
modal queries. EnContra Query API allows developers to combine queries for image and
text in the same query. Nevertheless, the way queries are broken into searchable pieces for
searching algorithms is another module developers must fill in.

To develop our domain specific framework, we implemented two approaches for query
processing: a cascade version, and a hierarchical / parallel mechanism. While the cascade
query processor works like regular cascade algorithms (processing each subquery at a time

13http://jdbm.sourceforge.net/

Author's personal copy

http://jdbm.sourceforge.net/

Multimed Tools Appl

Fig. 5 Clipart Finder example. Performing a search combining image descriptors and text

in a depth-first style), the second approach works by iteratively processing the query in a
hierarchical fashion and searching in parallel whenever it is possible. Taking as an exam-
ple the query created in the previous subsection (see Fig. 3 as a tree representation of the
query), when the processor finds the AND (or OR if available) predicate, it starts processing
it in parallel. This is performed at all levels in the query-tree structure, constituting an hier-
archical mechanism. Only simple operators, like EQUAL, NOT or SIMILAR are therefore
directly handled by concrete searching algorithms.

Regarding result fusion, at the moment it works at every predicate node by applying pair-
wise combination to the results from each child nodes. However, this mechanism can also
take advantage of the hierarchical query processor, because Query Processors at each pred-
icate node could take advantage of results retrieved by other leaves and provide feedback to
the remaining ones, to improve performance.

In the current example framework we decided to use the parallelized version of the query
processor, whenever it was required, to ensure a good performance of the test case.

4.1.5 Search

Once all the indexing setup is done, including storing and descriptor extraction, we must
define how we will perform searching. In this test case, there are two levels of search-
ing: concrete searching algorithms that iterate over the indexes to find relevant data, and
structural searching for controlling the searchers at index level.

A possible solution for this two level searching problem is to hierarchically assign one
concrete searcher for each index, and a coordinator searcher for dealing with individual
image searchers, and working with our ImageModel instances (see Listing 11). This solu-
tion is scalable and allows parallelization at the different searching levels. Another solution
could be to use a single index and searcher, and therefore only one descriptor as the result
of combining the three individual descriptors.

As concrete searching algorithms we implemented two approaches: a linear search (par-
allelized), and an algorithm optimized for multidimensional descriptors using the NB-Tree
approach [7]. The NBTreeSearcher uses the KNN (k-nearest neighbors) algorithm presented
in Fonseca’s NB-Tree approach[7] to deal efficiently with high dimensional descriptors. In

Author's personal copy

Multimed Tools Appl

Listing 11 Defining how searching will be performed

1 //create the top-level searcher for searching
2 Searcher topLevelSearcher = new SimpleParallelSearcher();
3 topLevelSearcher.setQueryProcessor(new QueryProcessorDefaultParallelImpl());
4
5 //create the image searchers for the different descriptors
6 Searcher scalableColorImageSearcher = new NBTreeSearcher();
7 scalableColorImageSearcher.setIndex (new BTreeIndex());
8 //add the searcher to the top-level image searcher
9 topLevelSearcher.setSearcher(“scalableColorSearcher”, scalableColorImageSearcher);
10 topLevelSearcher.setDescriptorExtractor(new ScalableColorExtractor());
11 ...
12 //do the same for the other image descriptor extractors

this implementation, we used a parallel version of the algorithm to improve performance,
applying the Actor’s Model paradigm.14,15

4.2 Creating the application

In the previous sections we developed an image retrieval framework (see Fig. 2) that can be
used for indexing and retrieving similar images, based on queries containing pictures and
textual metadata. This framework allows the creation of different applications by loading a
concrete dataset, creating a user interface, and so on.

Taking the image retrieval framework defined in the previous section we created an
application for searching and retrieving cliparts (see Figs. 2 and 5). This application indexes
a relatively large clipart database (approximately 26,000 cliparts), and lets users retrieve
cliparts from the indexed collection, through the query-by-example paradigm.

Listing 12 shows the creation of a query to retrieve the top-20 most similar images.
Figure 5 depicts the resulting application, showing a set of similar results to the submitted
query.

Listing 12 Performing a query-by-example using the image retrieval framework

1 //creating the query builder, obtain the meta-model representation
2 QueryBuilder queryBuilder = new CriteriaBuilderImpl();
3 Query query = queryBuilder.createQuery();
4 Path<BufferedImage> imagePath = query.from(ImageModel.class).get(“image”);
5
6 //create the similar expression
7 BufferedImage imageContent = getQueryImage();
8 Expression similarImage = queryBuilder.similar(imagePath, imageContent);
9
10 //retrieve the top-20
11 query = query.where(similarImage).limit(20);
12 ResultSet results = topLevelSearcher.search(query);

14http://en.wikipedia.org/wiki/Actor model/
15http://akka.io/

Author's personal copy

http://en.wikipedia.org/wiki/Actor_model/
http://akka.io/

Multimed Tools Appl

If we also want to search by the textual description (e.g, a string “me”), we can add a
textual field to the previous query, by replacing line 11 by the following one:

Listing 13 Combining content-based queries with textual metadata

1 query = query.where(similarImage).limit(20).storageQuery(“me”);

Though in the previous examples we are using all the available descriptors and indexes
defined in the framework, developers can still decide and control the ones to be used. This is
possible due to the hierarchical structure defined in the framework (see Section 4.1.4). For
example, we can create variations of this application by combining the available searchers
(and therefore the indexes and descriptors, because of the structure defined in Section 4.1.5),
and compare the performance of the solutions developed (see Listing 14).

Listing 14 Pairwise combination of searchers

1 /**
2 * Available Searchers: scalableColorSearcher, colorLayoutSearcher,
3 * dominantColorSearcher
4 */
5 List < Searcher > availableSearchers = topLevelSearcher.getAvailableSearchers();
6
7 //activate two searchers
8 topLevelSearcher.setActiveSearchers(“scalableColorSearcher”, “colorLayout

Searcher”);
9
10 //perform the query
11 ResultSet results = topLevelSearcher.search(query);
12 print(results);
13 ...
14
15 //activate just one searcher
16 topLevelSearcher.setActiveSearchers(“dominantColorSearcher”);
17
18 //perform the query
19 ResultSet results = topLevelSearcher.search(query);
20 print(results);
21 ...

In short, in this section we used EnContRA capabilities to create an image retrieval
framework that combines image descriptors with textual information. We showed how
the hierarchical design of EnContRA can be applied to a searching structure and how it
empowers the creation of queries. Finally, for validation purposes we developed an example
application that used this framework for retrieving images from a clipart dataset.

Author's personal copy

Multimed Tools Appl

5 Conclusions and future work

In this paper we described EnContRA, an architectural meta-framework for creating domain
specific frameworks. EnContRA offers structure, main building blocks, and connections
between them, so developers can create frameworks and applications with minimum effort,
by filling EnContRA main building blocks with concrete implementations. It also allows
developers to easily test new indexing structures, descriptor extractors and empower the
creation of new content-based applications and prototypes for different multimedia object
types. Its modular and flexible architecture allows developers to easily extend and add new
behavior whenever they intend to. To validate the concepts behind our meta-framework, we
developed an image retrieval framework and applied it in a demo application for retrieving
cliparts, Clipart Finder, showing how the hierarchical design of EnContRA can be applied
to a searching structure and how it empowers the creation of queries.

As for future work, we are willing to follow three directions: the first one is to work
on a specific module for result fusion; the second is to embed a benchmarking module
into the meta-framework; and finally, we intent to provide wrappers for other languages
more suitable for fast prototyping. Regarding the result fusion mechanism, we intend to
take advantage of the result fusion API, by develop and evaluating different hierarchical
algorithms not only to speed up result fusion, but also to improve the performance of the
whole searching process. We will start by analyzing previous work on this field, such as
the one developed by Wimmers et. al [18]. Because performance is essential in Information
Retrieval systems and applications, we plan to add a benchmarking tool to help developers
analyze the performance of their frameworks and applications and allow direct comparisons
in typical tasks, such as, time for indexing activities, time and amount of memory used
by a specific searching algorithm, etc. As one of EnContRA main goals is to allow fast
prototyping, another work in progress is the creation of wrappers for other languages more
suitable for fast prototyping, such as, Groovy, Scala or JRuby. This is possible due to recent
efforts to add support for dynamic languages into the Java Virtual Machine (JVM).16

Acknowledgments This work was supported by national funds through FCT –Fundação para a Ciência
e a Tecnologia, under project PEst-OE/EEI/LA0021/2013, by ADI through the ColaDI project and through
the Crush project, PTDC/EIA-EIA/108077/2008. Ricardo Dias was supported by FCT, grant reference
SFRH/BD/70939/2010.

References

1. Amato G, Bolettieri P, Gennaro C, Rabitti F (2013) Quick and easy implementation of approximate simi-
larity search with lucene. In: Digital libraries and archives, communications in computer and information
science, vol. 354. Springer, pp 163–171

2. Amato G, Debole F (2005) A native xml database supporting approximate match search. In: Rauber A,
Christodoulakis S, Tjoa A (eds) Research and advanced technology for digital libraries, lecture notes in
computer science, vol. 3652. Springer, Berlin, pp 69–80

3. Bach JR, Fuller C, Gupta A, Hampapur A, Horowitz B, Humphrey R, Jain RC, Shu CF (1996) Virage
image search engine: an open framework for image management. SPIE, pp 76–87

4. Baeza-Yates RA, Ribeiro-Neto B (1999) Modern information retrieval. Addison-Wesley Longman
Publishing Co., Inc., Boston

5. Batko M, Novak D, Zezula P (2007) Messif: metric similarity search implementation framework. In:
DELOS07

16http://openjdk.java.net/projects/mlvm/

Author's personal copy

http://openjdk.java.net/projects/mlvm/

Multimed Tools Appl

6. Comer D (1979) Ubiquitous b-tree. ACM Comput Surv 11(2):121–137
7. Fonseca MJ, Jorge JA (2003) Indexing high-dimensional data for content-based retrieval in large

databases. In: DASFAA
8. Huang TS, Electrical MRNO, Engineering C (1996) Multimedia analysis and retrieval system (mars)

project. In: Proceeding of 33rd annual clinic on library application of data processing - digital image
access and retrieval

9. Kiranyaz S, Gabbouj M (2006) Generic content-based audio indexing and retrieval framework. IEE Proc
Vision Image and Signal Process 153(3):285–297

10. Lux M (2009) Caliph & emir: Mpeg-7 photo annotation and retrieval. In: Proceedings of the 17th ACM
international conference on multimedia, MM ’09. ACM, New York, pp 925–926

11. Lux M, Chatzichristofis SA (2008) Lire: lucene image retrieval: an extensible java cbir library. In: Pro-
ceedings of the 16th ACM international conference on multimedia, MM ’08. ACM, New York, pp 1085–
1088

12. Mcennis D, Mckay C, Depalle P (2005) Jaudio : a feature extraction library. In: International conference
on music information retrieval

13. Mcennis D, Mckay C, Fujinaga I (2006) Jaudio: additions and improvements. In: Proceeding of the 7th
international conference on music information retrieval (ISMIR), p 385

14. Novak D, Batko M (2009) Metric index: an efficient and scalable solution for similarity search. In:
Proceedings of the 2009 2nd international workshop on similarity search and applications, SISAP ’09.
IEEE Computer Society, Washington, pp 65–73

15. Novak D, Batko M, Zezula P (2009) Generic similarity search engine demonstrated by an image
retrieval application. In: Proceedings of the 32nd international ACM SIGIR conference on research and
development in information retrieval, SIGIR ’09. ACM, New York, pp 840–840

16. Rajaraman A, Ullman JD (2011) Cambridge University Press
17. Tzanetakis G, Cook P (2000) Marsyas: a framework for audio analysis. Organized Sound 4
18. Wimmers E, Haas L, Roth M, Braendli C (1999) Using fagin’s algorithm for merging ranked results

in multimedia middleware. In: Proceedings. 1999 IFCIS international conference on cooperative
information systems, 1999. CoopIS 99, pp 267-278

19. Zagoris K, Arampatzis A, Chatzichristofis SA (2010) www.mmretrieval.net: a multimodal search engine.
In: Proceedings of the third international conference on SImilarity search and APplications, SISAP ’10.
ACM, New York, pp 117–118

Ricardo Dias is a PhD student at the Computer Science and Engineering Department at IST/TU Lisbon,
Portugal. He is a researcher at INESC-ID Visualization and Intelligent Multimodal Interfaces Group since
2010. He participated in two National projects (ColaDI and Crush). His research interests are in Music
Visualization and Retrieval, Playlist Generation and Music Recommendation, and in Indexing Structures that
combine multidimensional data and relational databases.

Author's personal copy

www.mmretrieval.net

Multimed Tools Appl

Manuel J. Fonseca is an Assistant Professor at the Computer Science and Engineering Department at
IST/TU Lisbon, Portugal, where he teaches Human-Computer Interaction and Multimedia Information
Retrieval. He received a PhD degree in Information Systems and Computer Engineering from IST/TU Lis-
bon in 2004, discussing “Sketch-based retrieval in large sets of drawings”. He has been a member in National
and European projects, including SmartSketches, Eurotooling21 and SATIN, being responsible for INESC-
ID participation in the last two. From 1998 until now he is a researcher at INESC-ID’s Visualization and
Intelligent Multimodal Interfaces Group, being responsible for the scientific area of Multimedia Information
Retrieval and Visualization. His research interests are in Multimedia Information Retrieval using sketches,
User-Centered Retrieval, Interactive Visualization, Human-Computer Interaction and Sketch Recognition.
He has published more than 80 technical papers on these and other topics, has participated in more than 20
conference program committees and has been a reviewer for various international journals and conferences.
He is Senior member of IEEE, and a member of ACM and EG.

Nelson Silva is a Software Engineer and a founding partner of inEvo. He received his BS degree in Informa-
tion Systems and Computer Science in 2003 from Instituto Superior Técnico, Technical University of Lisbon.
He worked as a researcher for the Visualization and Intelligent Multimodal Interfaces Group at INESC-ID
from 2002 to 2004 during which he participated in the SmartSketches and Eurotooling21 EC funded projects.
He has been in charge of a large number of software projects at inEvo since its beginning in 2004 and his
main interests are on web programming, rich interfaces and artificial intelligence.

Author's personal copy

Multimed Tools Appl

Tiago Cardoso is a founding partner at inEvo where he works as a Computer Science Engineer. He received
his BS degree in Information Systems and Computer Science in 2003 from Instituto Superior Técnico, Tech-
nical University of Lisbon. From 2002 to 2004, he worked as a researcher for the VIMMI Group at INESC-ID
having participated in SmartSketches and Eurotooling21 EC funded projects. He has coorientated several
MSc thesis and research in areas from rich web interfaces to data visualization. At inEvo, he has devel-
oped and participated in several projects and his main interests are on innovative web applications, data
visualization and artificial intelligence.

Author's personal copy

	EnContRA: a generic multimedia information retrieval meta-framework
	Abstract
	Introduction
	Related work
	EnContRA
	Architecture and modules
	EnContRA building blocks
	Storing
	Indexing
	Descriptor extraction
	Searching algorithms and query processing

	Test case: image indexing and retrieval
	Creating the framework
	Storage
	Descriptor extraction
	Indexing
	Query processing
	Search

	Creating the application

	Conclusions and future work
	Acknowledgments
	References

