
High-Performance Task Distribution for Volunteer Computing 

David P. Anderson 
Eric Korpela 
Rom Walton 

Space Sciences Laboratory 
University of California, Berkeley 

{davea, korpela, rwalton}@ssl.berkeley.edu 

Abstract 

Volunteer computing projects use a task server to 
manage work.  Clients periodically communicate with 
the server to report completed tasks and get new tasks.  
The rate at which the server can dispatch tasks may 
limit the computing power available to the project. 
This paper discusses the design of the task server in 
BOINC, a middleware system for volunteer computing.  
We present measurements of the CPU time and disk 
I/O used by a BOINC server, and show that a server 
consisting of a single inexpensive computer can 
distribute on the order of 8.8 million tasks per day.  
With two additional computers this increases to 23.6 
million tasks per day. 

1. Introduction 

Volunteer computing is a paradigm in which large 
numbers of computers, volunteered by members of the 
general public, provide computing and storage 
resources. Early volunteer computing projects include 
the Great Internet Mersenne Prime Search [10], 
SETI@home [1], Distributed.net [6] and 
Folding@home [12]. Volunteer computing is being 
used in high-energy physics, molecular biology, 
medicine, astrophysics, climate study, and other areas. 

BOINC (Berkeley Open Infrastructure for Network 
Computing) is a middleware system for volunteer 
computing [2]. BOINC is being used by a number of  
projects, including SETI@home, Climateprediction.net 
[5], LHC@home [13], Predictor@home [16], and 
Einstein@Home [7]. Volunteers participate by running 
a BOINC client program on their computers. They can 
“attach” each computer to any set of projects, and can 
control the resource fraction devoted to each project. 

BOINC-based projects are autonomous.  Each 
project operates a server consisting of several 
components: 

• Web interfaces for account and team 
management, message boards, and other features. 
• A task server that creates tasks, dispatches them 
to clients, and processes returned tasks. 
• A data server that downloads input files and 
executables, and that uploads output files. 

These components share various data stored on 
disk, including relational databases and 
upload/download files (see Figure 1). 

Figure 1: A BOINC server consists of several 
components, sharing several forms of storage. 

This paper addresses the design and performance of 
the BOINC task server. The other components can also 
impose significant server load, but are outside the 
scope of this paper. 

Each client periodically communicates with the task 
server to report completed work and to get new work. 
In addition, the server performs a number of 
background functions, such as retrying and garbage-
collecting tasks. The load on a task server depends on 
the number of volunteer hosts and their rates of 

Proceedings of the First International Conference on e-Science and Grid Computing (e-Science’05) 
0-7695-2448-6/05 $20.00 © 2005 IEEE 



communication. The number of volunteer hosts in 
current projects ranges from tens to hundreds of 
thousands, and in the future may reach tens or 
hundreds of millions. If servers become overloaded, 
requests fail and hosts become idle. Thus, server 
performance can limit the computing capacity 
available to a volunteer computing project. 

While developing and deploying BOINC we solved 
a variety of server performance problems. This paper 
describes the design of the BOINC server software, 
and presents measurements of the CPU time and disk 
bandwidth used by its various components. From these 
measurements we conclude that, using a single 
computer costing about $4,000, a BOINC project can 
dispatch about 8.8 million tasks per day. If each client 
is issued one task per day and each task uses 12 CPU 
hours on a 1 GFLOPS computer, the project can 
support 8.8 million clients and obtain 4.4 PetaFLOPS 
of computing power.  With two additional server 
computers, a project can dispatch about 23.6 million 
tasks per day. 

2. The BOINC computing model 

Grid computing [9] involves resource sharing 
between organizations that are mutually accountable. 
In contrast, participants in a volunteer computing 
project are not accountable to the project (indeed, their 
identity is unknown), and the volunteered hosts are 
unreliable and insecure. 

Thus, when a task is sent to a host, several types of 
errors are possible.  Incorrect output may result from a 
hardware malfunction (especially in hosts that are 
“overclocked”), an incorrect modification to the 
application, or a intentional malicious attack by the 
volunteer. The application may crash. There may  be 
no response to the project, e.g. because the host dies or 
stops running BOINC. An unrecoverable error may 
occur while downloading or uploading files. The result 
may be correct but reported too late to be of use. 

2.1) Persistent redundant computing 

Because the above problems occur with non-
negligible frequency, volunteer computing requires 
mechanisms for validation (to ensure that outputs are 
correct) and retry (to ensure that tasks eventually get 
done). BOINC provides a mechanism called persistent 
redundant computing that accomplishes both goals. 
This mechanism involves performing each task 
independently on two or more computers, comparing 
the outputs, looking for a “quorum” of equivalent 

outputs, and generating new instances as needed to 
reach a quorum. 

In BOINC terminology, a job is a computational 
task, specified by a set of input files and an application 
program. Each job J has several scheduling-related 
parameters: 

• DelayBound(J): a time interval that determines the 
deadline for instances of J. 
• NInstances(J): the number of instances of J to be 
created initially. 
• MinQuorum(J): the minimum size of a quorum. 
• Estimates of the amount of computing, disk space, 
and memory required by J. 
• Upper bounds on the number of erroneous, 
correct, and total instances. These are used to detect 
jobs that consistently crash the application, that return 
inconsistent results, or that cause their results to not be 
reported. 

A job instance (or just “instance”) refers to a job 
and specifies a set of output files.  An instance is 
dispatched to at most one host. An instance is 
reported when it listed in a scheduler request message. 
If enough instances of a job have been reported and are 
equivalent, they are marked as valid and one of them is 
selected as the job’s canonical instance.

BOINC implements persistent redundant computing 
as follows: 

1) When a job J is created, NInstances(J) instances for 
J are created and marked as unsent. 
2) When a client requests work, the task server selects 
one or more unsent instances and dispatches them to 
the host. Two instances of the same job are never sent 
to the same participant, making it unlikely that a 
maliciously incorrect result will be accepted as valid. 
The instance’s deadline is set to the current time plus 
DelayBound(J). 
3) If an instance’s deadline passes before it is reported, 
the server marks it as “timed out” and creates a new 
instance of J. It also checks whether the limit on the 
number of error or total instance of J has been reached, 
and if so marks J as having a permanent error. 
4) When an instance I is reported, and its job already 
has a canonical instance I*, the server invokes an 
application-specific function that compares I and I*, 
and marks I as valid if they are equivalent. If there is 
no canonical instance yet, and the number of successful 
instances is at least MinQuorum(J), the server invokes 
an application-specific function which, if it finds a 
quorum of equivalent instances, selects one of them as 

Proceedings of the First International Conference on e-Science and Grid Computing (e-Science’05) 
0-7695-2448-6/05 $20.00 © 2005 IEEE 



the canonical instance I*, and marks the instances as 
valid if they are equivalent to I*. Volunteers are 
granted credit for valid instances. 

2.2) Scheduling policy options 

BOINC’s task server can be configured for any of 
several scheduling policies.  In all policies, an instance 
it sent to a host only if the host has sufficient memory 
and disk and is likely to complete the instance by its 
deadline. Two instances of the same job are never sent 
to the same participant. The policy options are as 
follows: 
• Bag-of-tasks: no restrictions beyond the above. 
• Homogeneous redundancy: once an instance of a 
given job J has been sent, further instances of J are sent 
only to numerically equivalent hosts [18].  
• Locality scheduling: a host H is preferentially sent 
instances that use data files currently resident on H. 

The measurements in this paper use the bag-of-
tasks policy.  The other policies impose higher server 
load. 

3. BOINC task server architecture 

3.1) Task server components 

BOINC implements a task server using a number of 
separate programs, which share a common MySQL 
database (see Figure 2). 

Figure 2: The components of a BOINC task server

• The work generator creates new jobs and their 
input files. For example, the SETI@home work 
generator reads digital tapes containing data from a 
radio telescope, divides this data into files, and creates 
jobs in the BOINC database. The work generator 
sleeps if the number of unsent instances exceeds a 
threshold, limiting the amount of disk storage needed 
for input files. 
• The scheduler handles requests from BOINC 
clients. Each request includes a description of the host, 
a list of completed instances, and a request for 

additional work, expressed in terms of the time the 
work should take to complete. The reply includes a list 
of instances and their corresponding jobs. Handling a 
request involves a number of database operations: 
reading and updating records for the user account and 
team, the host, and the various jobs and instances. The 
scheduler is implemented as a Fast CGI program run 
from an Apache web server [3], and many instances 
can run concurrently. 
• The feeder streamlines the scheduler’s database 
access. It maintains a shared-memory segment 
containing 1) static database tables such as 
applications, platforms, and application versions, and 
2) a fixed-size cache of unsent instance/job pairs. The 
scheduler finds instances that can be sent to a particular 
client by scanning this memory segment. A semaphore 
synchronizes access to the shared-memory segment. To 
minimize contention for this semaphore, the scheduler 
marks a cache entry as “busy” (and releases the 
semaphore) while it reads the instance from the 
database to verify that it is still unsent. 
• The transitioner examines jobs for which a state 
change has occurred (e.g., a completed instance has 
been reported). Depending on the situation, it may 
generates new instances, flag the job as having a 
permanent error, or trigger validation or assimilation of 
the job. 
• The validator compares the instances of a job and 
selects a canonical instance representing the correct 
output.  It determines the credit granted to users and 
hosts that return the correct output, and updates those 
database records. 
• The assimilator handles job that are “completed”: 
i.e., that have a canonical instance or for which a 
permanent error has occurred. Handling a successfully 
completed job might involve writing outputs to an 
application database or archiving the output files. 
• The file deleter deletes input and output files that 
are no longer needed. 
• The database purger removes jobs and instance 
database entries that are no longer needed, first writing 
them to XML log files. This bounds the size of these 
tables, so that they act as a working set rather than an 
archive. This allows database management operations 
(such as backups and schema changes) to be done 
quickly. 

The programs communicate through the BOINC 
database. For example, when the work generator 
creates a job it sets a flag in the job’s database record 
indicating that the transitioner should examine it. Most 
of the programs repeatedly scan the database, 
enumerating records that have the relevant flag set, 
handling these records, and clearing the flags in the 

Proceedings of the First International Conference on e-Science and Grid Computing (e-Science’05) 
0-7695-2448-6/05 $20.00 © 2005 IEEE 



database. Database indices on the flag fields make 
these enumerations efficient. When an enumeration 
returns nothing, the program sleeps for a short period. 

Thus, a BOINC task server consists of many 
processes, mostly asynchronous with respect to client 
requests, that communicate through a database. This 
approach has the disadvantage of imposing a high load 
on the database server. One can imagine an alternative 
design in which almost all functions are done by the 
scheduler, synchronously with client requests. This 
would have lower database overhead. However, the 
current design has several important advantages: 

• It is resilient with respect to failures. For example, 
only the assimilator uses the application database, and 
if it unavailable only the assimilator is blocked. The 
other components continue to execute, and the BOINC 
database (i.e., the job records tagged as ready to 
assimilate) acts as a queue for the assimilator when it 
runs again. 
• It is resilient with respect to performance. If back-
end components (e.g. the validator or assimilator) 
perform poorly and fall behind, the client-visible 
components (the feeder and scheduler) are unaffected. 
• The various components can easily be distributed 
and/or replicated (see below). 

3.3) Distribution of components 

The programs making up a BOINC task server may 
run on different computers. In particular, the BOINC 
database may run on a separate computer (MySQL 
allows remote access). Many of the programs require 
access to shared files (configuration files, log files, 
upload/download data files) so generally the server 
computers are on the same LAN and use a network file 
system such as NFS. 

The server programs may also be replicated, either 
on a multiprocessor host or on different hosts. 
Interference between replicas is avoided by having 
each replica work on a different subset of database 
items. The space of database identifiers is partitioned: 
if there are n replicas, replica i handles only items (e.g., 
jobs) for which (ID mod n) = i. 

4. Performance measurements 

We made performance measurements of the various 
server components. All measurements were made on a 
Dell 3850 PowerEdge server, with 2 GB of RAM and 
2 Intel Xeon processors running at 2.4 Ghz.  The 
storage is 3 160 GB SCSI disks configured as Raid 0, 

with a peak throughput of about 100 Mbytes/sec. The 
server runs the Linux 2.4.21-20.ELsmp kernel. It runs 
the 4.0.22 version of MySQL, with the “max” 
configuration settings. The BOINC database tables use 
InnoDB. 

We used a synthetic workload consisting of 50,000 
jobs, each with NInstances(J) = 2 and MinQuorum(J) = 
2. Thus there were 100,000 instances. We measured 
each phase of the server’s functions in handling these 
jobs and instances.  In each phase, we ran the 
necessary programs and the MySQL server on a single 
host, and measured MySQL CPU time and disk traffic, 
and application CPU time. We averaged these 
measurements over several runs. 

This workload is simpler than the workload in a 
real BOINC system. For example, the synthetic 
workload involves a single user account and host.  The 
user does not belong to a team, so there is no lookup or 
update of team records.  The synthetic workload does 
not model instance timeout and errors.  The resulting 
database fits entirely in RAM, so little disk reading is 
done. 

4.1) Work creation 

We ran a program that creates 50,000 jobs, then ran 
the transitioner, which creates two instances per job. 

Elapsed time 44 seconds 
MySQL CPU time 15 seconds 
Work generator CPU time 1.2 seconds 
Transitioner CPU time 30 seconds 
Disk traffic 76 MB write, 0.3 MB 

read

4.2) Work dispatch 

We ran a driver program that generates a sequence 
of scheduler requests, piping them into a scheduler, 
with a feeder running concurrently. Each request gets 
one new instance, and reports the successful 
completion of the previous instance. Thus there were 
100,000 scheduler requests. 

Elapsed time  522 seconds 
MySQL CPU time 130 seconds 
Driver CPU time 37 seconds 
Feeder CPU time 12 seconds 
Scheduler CPU time 320 seconds 
Disk traffic 50 MB write, 7 MB read 

Proceedings of the First International Conference on e-Science and Grid Computing (e-Science’05) 
0-7695-2448-6/05 $20.00 © 2005 IEEE 



In an operational server, the scheduler runs under 
Apache using Fast CGI, a mechanism that allows a 
single process to handle many requests. Our 
performance measurements differ from this only in the 
absence of the overhead of network connection 
establishment and the forwarding of data from Apache 
to the scheduler process. This does not use a significant 
fraction of total CPU, does not occur in the MySQL 
server. 

4.3) Validation 

We ran the transitioner (which flags jobs as needing 
validation) and a “dummy validator” that marks all 
instances as valid and marks all jobs as ready to 
assimilate. 

Elapsed time 255 seconds 
MySQL CPU time 118 seconds 
Transitioner CPU time 1.12 seconds 
Validator CPU time 162.53 seconds 
Disk traffic  317 MB write, 1.2 MB read 

4.4) Assimilation 

We ran a “dummy assimilator” that marks jobs as 
assimilated. 

Elapsed time 107.32 seconds 
MySQL CPU time 12 seconds 
Assimilator CPU time 97.33 seconds 
Disk traffic 50 MB write, 0.9 MB read 

4.5) File deletion 

We ran the transitioner (which marks assimilated 
jobs as ready for file deletion) and then ran the file 
deleter. 

Elapsed time 49.73 seconds 
MySQL CPU time 45 seconds 
Transitioner CPU time 3.26 seconds 
File deleter CPU time 16.38 seconds 
Disk traffic 264 MB write, 1.5 MB read 

4.6) Database purge 

We ran the database purger, which purges jobs and 
their instances. 

Elapsed time  92.2 seconds 
MySQL CPU time 45 seconds 
Database purge CPU time 69.27 seconds 

Disk traffic  338 MB write, 2 MB read 

5) The limits of task server performance 

The performance measurements from the previous 
section give an upper bound on the rate at which a 
BOINC project can process instances. We calculate the 
instance-dispatch rate at which a system component 
(CPU or disk) will become “saturated”. We define this 
as a state where device utilization is above 50%. 

5.1) Single server computer 

Summing CPU times and disk bandwidths over all 
phases, we see that handling 100,000 instances uses 
980 CPU seconds and 1105 MB of disk I/O. On our 
reference machine (with 2 CPUs) the CPU is saturated 
at a rate of 8.8 million instances per day. At this rate, 
disk utilization is about 2.5%, so the CPU is the 
bottleneck resource. 

If each client is issued one instance per day and 
each instance uses 12 CPU hours on a 1 GFLOPS 
computer, the project can support 8.8 million clients 
and obtain 4.4 PetaFLOPS of computing power 

5.2) Multiple server computers 

Suppose the project can devote several computers 
(identical to our reference computer) to server 
functions. All server components except the MySQL 
server can be replicated arbitrarily, so the MySQL 
server is the system bottleneck. Summing the MySQL 
CPU load over all phases, we see that handling 
100,000 instances uses 365 CPU seconds. The MySQL 
server’s CPU will be saturated at a rate of 23.6 million 
instances per day. Disk utilization is about 6.5% at this 
rate.

At 23.6 million instances per day, the CPU 
utilization of other functions is as follows: 

Transitioner 0.048 
Work generator  0.0016 
Scheduler + feeder 0.45 
Validator 0.22 
File deleter 0.02 
DB purger 0.09 

Thus these functions can be handled by two other 
reference computers without CPU saturation. 

 5.3) The effects of database size 

Proceedings of the First International Conference on e-Science and Grid Computing (e-Science’05) 
0-7695-2448-6/05 $20.00 © 2005 IEEE 



Our synthetic workload involves a database that fits 
entirely in RAM.  To study the effects of larger 
databases, we measured SETI@home’s task server.  
SETI@home’s BOINC database occupies 36 GB of 
memory, and its database server has 8 GB of RAM.  
The CPU load on the database server is about 4%.  The 
average disk rate is 0.7 MB/sec read and 0.01 MB/sec 
write.  Thus, the MySQL server does 17 MB of disk 
I/O per CPU second.  With the synthetic workload, the 
MySQL server did 3.02 MB of disk I/O per CPU 
second. 

Thus, for SETI@home, a non-RAM-resident 
database increases disk I/O by a factor of roughly 6.  If 
we apply this factor to the cases in sections 5.1 and 5.2,  
we see that disk utilization increases to about 15% and 
40% respectively, so that CPU is still the system 
bottleneck. 

 5.4) Network bandwidth 

Network bandwidth may also be a system 
bottleneck. BOINC scheduler request and reply 
messages average about 10 KB. The average network 
bandwidth needed to dispatch 8.8 million instances per 
day would therefore be about 8.2 Mbits/sec (both 
incoming and outgoing). At 23.6 million instances per 
day the network bandwidth is about 21.9 Mbits/sec. 

Most volunteer computing participants use home 
computers, so this traffic goes over the commodity 
Internet.  Some research institutions have connections 
to the commodity Internet that are expensive and/or 
slow, and for which the above data rates would be 
infeasible. However, it is possible to circumvent this 
problem by using a separate dedicated connection 
(currently $1000-$2000 per month for a 100 Mbps 
connection). 

This network traffic is exclusive of file upload and 
download, which may be a performance issue. The 
BOINC architecture allows data servers to be located 
anywhere; they are simply web servers, and do not 
access the BOINC database. Current BOINC-based 
projects that use large files (Einstein@Home [7] and 
Climateprediction.net [5]) use replicated and 
distributed data servers, located at partner institutions. 
The upload/download traffic is spread across the 
commodity Internet connections of those institutions. 

5.5) Exponential backoff of client requests 

The BOINC task server performs best if the request 
arrival rate is stable. If the server is down for an 

extended behavior (e.g. several hours or days), it can 
potentially be overwhelmed by client requests when it 
comes back up. This can drive various parts of the task 
server (e.g. the database server) into modes that cause 
the task server as a whole to perform much worse than 
normal. To avoid this problem, the BOINC client uses 
random exponential backoff [15, 17] when server 
requests fail. As a result, the request arrival rate 
remains stable even after long server outages. 

6. Optimizing database queries 

Database performance dominates the performance 
of a BOINC task server. The BOINC server programs 
were originally developed using a database interface 
layer providing basic operations (insert, delete, update, 
select one record, enumerate a sequence of records). 
Each operation reads or writes all fields of the table. 

This interface is simple for the programmer but in 
some cases performs poorly. For example, the 
transitioner processes jobs J for which 
transition_time(J) < now, and for each such job 
examines all of its instances. Originally the instances 
were fetched with a separate query for each job. We 
replaced this with a query that returns jobs and their 
instances in a single stream (see Figure 3).  The 
optimized query is: 

SELECT * 
FROM job 
LEFT JOIN instance 
ON job.id = instance.jobid 
WHERE job.transition_time < now 
LIMIT 1000 

Figure 3: Old and new enumerations of jobs and 
their instances. 

The transitioner scans the stream returned by this 
query. It identifies complete groups of instances by 

Proceedings of the First International Conference on e-Science and Grid Computing (e-Science’05) 
0-7695-2448-6/05 $20.00 © 2005 IEEE 



noting when the job ID changes. (If the query returns 
fewer than 1000 rows, the last group is complete.) 

This query uses more bandwidth from the database 
server because each job is sent multiple times. 
However, the number of queries (and hence round-trips 
to the database server) is reduced by a factor of several 
thousand, providing much better system performance. 
A similar technique is used in the validator and feeder. 

The BOINC server database code does not use 
transactions, because they are not supported in some 
versions of MySQL and they often reduce 
performance. This decision led to some bugs involving 
conflicting updates. We fixed these problems using a 
combination of techniques: 

• Most fields are modified only by one program. 
• Updates modify only the fields that have actually 
changed. This also improves performance, because 
large fields (like “blobs” containing XML text) are 
updated only when necessary. 
• When possible, updates are relative (using 
increment or max()) rather than absolute. 

7. Related work 

The design of the BOINC task server is based 
largely on the experience of SETI@home [1]. When 
SETI@home was released in May 1999, it quickly 
acquired about 400,000 participants. Its task server 
(based on two Sun workstations) was soon 
overwhelmed. The server was modified to use a 
feeder/shared-memory scheme. Result validation was 
add to SETI@home as an afterthought, but not 
integrated with the credit system. This led to various 
“credit-cheating” attacks, which motivated the BOINC 
design. 

Folding@home [12] uses a two-level task 
scheduler. Clients contact a main server (which has a 
project-wide database) and are forwarded to one of 
several experiment-specific servers, each of which has 
a database of jobs for that experiment. This design is 
perhaps even more scalable than BOINC, at the 
expense of greater database management overhead. 

Xtremweb [8], an experimental middleware system 
for volunteer computing, has a task server that uses 
MySQL.  The Xtremweb web site reports that this 
server can dispatch 1 million tasks per week (0.14 
million per day). 

Commercial systems for volunteer and “desktop 
grid” computing (such as United Devices [19] and 
Entropia [4]) have roughly the same server functions as 
BOINC, and use relational databases to store task and 
participant data.  Measurements of their server 
performance are not available. 

There is a large body of work on scheduling for 
Grid systems [9]. These schedulers have functions that 
differ from BOINC’s; they deal with complex 
workflows rather than single tasks, and they do not 
deal with redundancy and credit. Published results 
describe the performance of the schedules, not the 
schedulers. Govindaraju et al. [11] studied the 
performance of XML generation and parsing in SOAP, 
an interface layer used in the current generation of Grid 
systems. The overhead of this layer (roughly 1 CPU 
second per 100,000 floating-point numbers) would 
create a severe bottleneck in a large volunteer 
computing project. BOINC does its own XML 
generation and parsing. 

Other researchers have proposed distributed 
schedulers; an extreme example is Liljeqvist and 
Bengtsson [14], who describe a Grid scheduler 
implemented in network routers. Such systems are 
often hard to deploy and debug in practice. 

8. Conclusion 

We have shown that a BOINC task server, running 
on inexpensive hardware, can potentially dispatch tens 
of millions of tasks a day. The database server (and in 
particular its CPU) is typically the system bottleneck.  

The network bandwidth needed for task serving is 
typically only a few Mbps, and because of BOINC’s 
multi-project design, a project’s task server need not be 
highly available.  Hence, at least for task serving, 
large-scale volunteer computing can be done using the 
hardware resources typically available to small 
research projects. There is no need for expensive 
servers and hosting facilities. 

Several aspects of the BOINC server design 
contributed to achieving this level of performance: 

• The use of a shared-memory work cache, 
replenished by a separate process, to reduce database 
traffic. 
• Optimization of database queries, and in particular 
using joins to reduce the number of queries. 
• The avoidance of high-overhead data 
representation layers. 

Proceedings of the First International Conference on e-Science and Grid Computing (e-Science’05) 
0-7695-2448-6/05 $20.00 © 2005 IEEE 



This work was supported by the National Science 
Foundation under grants SCI-0221529 and SCI-
0438443.  We thank Jeff Cobb, Matt Lebofsky, and 
Bob Bankay for their help in identifying and 
diagnosing performance problems in SETI@home’s 
BOINC server, which motivated much of the work 
described here. 

9. References 

[1]  D.P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, 
D. Werthimer. “SETI@home: An Experiment in 
Public-Resource Computing”. Communications of the 
ACM, 45(11), November 2002, 56-61.  

[2] D.P. Anderson. “BOINC: A System for Public-
Resource Computing and Storage”. 5th IEEE/ACM 
International Workshop on Grid Computing, pp. 365-
372, Nov. 8 2004, Pittsburgh, PA.  

[3] M.R. Brown. “FastCGI: A High-Performance 
Gateway Interface”, Fifth International World Wide 
Web Conference, 6 May 1996, Paris, France. 

[4] A. Chien, B. Calder, S. Elbert, and K. Bhatia. 
“Entropia: architecture and performance of an 
enterprise desktop grid system”, J. Parallel Distrib. 
Comput. 63(2003) 597-610. 

[5]  Climateprediction.net, http://climateprediction.net/  

[6]  Distributed.net, http://distributed.net 

[7]  Einstein@Home, http://einstein.phys.uwm.edu/  

[8] G. Fedak, C. Germain, V. Néri and F. Cappello. 
“XtremWeb : A Generic Global Computing System”, 
CCGRID2001 Workshop on Global Computing on 
Personal Devices, May 2001. 

[9]  I. Foster and C. Kesselman. The Grid: Blueprint 
for a New Computing Infrastructure, Morgan 
Kaufmann: San Francisco (CA), 1999. 

[10]  GIMPS, http://www.mersenne.org/prime.htm  

[11] M. Govindaraju, A. Slominski, K. Chiu, P. Liu, R. 
Engelen, M. Lewis. “Toward Characterizing the 
Performance of SOAP Toolkits”. 5th IEEE/ACM 
International Workshop on Grid Computing, pp. 365-
372, Nov. 8, 2004, Pittsburgh, PA.  

[12] S.M. Larson, C.D. Snow, M. Shirts and V.S. 
Pande. “Folding@Home and Genome@Home: Using 
distributed computing to tackle previously intractible 

problems in computational biology”. Computational 
Genomics, Horizon Press, 2002.  

[13]  LHC@home, http://athome.web.cern.ch/athome/  

[14] B. Liljeqvist and L. Bengtsson. “Grid Computing 
Distribution Using Network Processors”. 14th 
IASTED Conference on Parallel and Distributed 
Computing Systems, 2002, Cambridge, MA.  

[15] R.M. Metcalfe and D.R. Boggs. “Ethernet: 
Distributed packet switching for local computer 
networks”, Commun. ACM 19 (7), 395-404 (1976).  

[16]  Predictor@home, http://predictor.scripps.edu/  

[17] N.-O. Song, B.-J. Kwak and L. Miller. “On the 
Stability of Exponential Backoff”, J. Res. Natl. Inst. 
Stand. Technol. 108, 289-297 (2003).  

[18] M. Taufer, D.P. Anderson, P. Cicotti, C.L. Brooks 
III. “Homogeneous Redundancy: a Technique to 
Ensure Integrity of Molecular Simulation Results 
Using Public Computing”. Heterogeneous Computing 
Workshop, IPDPS 2005, Denver, April 4-8 2005. 

[19] United Devices, http://www.ud.com 

Proceedings of the First International Conference on e-Science and Grid Computing (e-Science’05) 
0-7695-2448-6/05 $20.00 © 2005 IEEE 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


