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Abstract. One of the most expensive and time consuming tasks of the software
construction process is the location of the fault responsible for a runtime error,
thereby any technique that makes it easier for the programmer to locate the faulty
parts of her software is highly desirable. In this paper we focus on finding faults
in object-oriented implementations of algebraic specifications, and present Flasji,
a model-based approach that exploits the specification and corresponding models
in order to interpret failures in implementations and discover their origin. Flasji
builds a comprehensive JUnit test that compares runtime outcomes of operation
implementations with expected ones, as specified by the model, and interprets the
results in order to identify the method to blame. Results of comparative experi-
ments are presented.

1 Introduction

The development and verification of software programs against specifications of de-
sired properties is growing weight among software engineering methods and tools for
promoting software reliability. In particular, algebraic specifications have the virtue of
being stateless, which allows to describe a given component operations in a way that is
independent of internal representation and manipulation.

In this paper we capitalize on and enrich the ConGu approach [16, 17] to the run-
time verification of Java implementations of algebraic specifications, by giving it the
capability of locating the methods that are responsible for detected faults. ConGu picks
a module of axiomatic specifications, together with a Java implementation and a map-
ping refining specification sorts and operations to Java types and methods, and verifies
that the implementation conforms to the specification. At present, the ConGu tool [5,
19] responds to an erroneous implementation by outputing the axiom that was violated;
this is often insufficient to find the faulty method, because all involved methods become
equally suspect. The ideal result would obviously be the exact localization of the fault,
however this has proven a difficult task.

Several methods have been proposed in the literature to the diagnosis of test failures,
that can be quite different in the way they approach the problem – static and dynamic
program slicing [14, 23] were proposed in the eighties, and have since been used in sev-
eral proposals; hit spectrum of executable statements from failed and passing tests is at
the base of many approaches to fault-location as, e.g. [10, 12, 13, 20, 24]; specification-
based approaches [6, 8, 11] to name just a few. In [25, 26] the authors classify, describe



and compare most of these approaches. In the related work section of this paper we will
focus our discussion on relevant aspects related to the work here presented.

We present Flasji (read “flashy”)1, a fault-location technique that is model-based
since it builds upon models of the specification to obtain a means to observe the imple-
mented behaviour against the intended one. Unlike several existing approaches, Flasji
does not inspect the executed code; instead, it exploits the specification and correspond-
ing models in order to be able to interpret some failures and discover their origin.

The remainder of this paper is organized as follows: section 2 gives an overview
of the runtime verification approach integrating ConGu and Flasji, while briefly intro-
ducing the main aspects of ConGu; section 3 focuses on the issues around our main
goal – fault-location; an evaluation experiment of the proposed approach is presented
in section 4 where results are compared with the ones obtained using two fault-location
tools; section 5 discusses related work and, finally, section 6 concludes.

2 Approach Overview

In this section we give a general overview of the integrated approach we propose to
fault-location. An example is also introduced that will be used throughout the paper.

Locating a runtime detected fault The ConGu/Flasji approach, illustrated in figure 1,
integrates the ConGu tool, which builds instrumented Java classes that are able to verify,
at runtime, whether the implementations satisfy the axioms of the specifications, with
Flasji, which locates the method that is responsible for a given detected fault.

In a first phase, the ConGu tool is fed with all necessary artifacts and it outputs a
collection of instrumented classes, which are the original ones equipped with contracts
(pre and post-conditions), capable of throwing contract violation exceptions whenever
an execution is not according to the specification. ConGu also outputs wrapper classes
to be used in place of the original ones, allowing clients to obtain monitorized execu-
tions without the need to modify their own code. Test suites can be created and executed
over these classes as if they were the original ones, because their interface is the same;
the difference lies in the way their instances react to ill-implemented operations2. All
details about the ConGu approach and tool are found elsewhere [5, 16, 17, 19].

In a second phase, client code is executed to exercize the monitorized classes, and
if some contract violation exception is thrown, Flasji component steps in. Flasji picks
part of the ConGu’s input and output elements, together with the axiom that was vio-
lated (the methods involved in it become potential suspects), and locates the fault by
generating and running special-purpose JUnit tests. These tests are model-based since
they build upon models of the specification – Flasji uses a model generator to find a
finite model of the specification which is used to define expected behaviours. Instances
of the implementation under verification are created and their behaviour compared with
the one expected. The results of these comparisons are interpreted in order to identify
the faulty method.

1 Fault-Location in Algebraic Specification Java Implementations
2 A tool [2, 3] already exists – GenT – that builds comprehensive test suites for Java implemen-

tations of ConGu specifications.
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Fig. 1. Overview of the ConGu/Flasji integrated approach.

An example We present a classical yet rich parameterized data type SortedSet and
explain the characteristics of the ConGu specification and refinement languages. Simple
sorts, sub-sorts and parameterized sorts can be specified with the ConGu specification
language, and mappings between those sorts and Java types can be defined using the
ConGu refinement language. Listing 1.1 presents the specifications of the SortedSet
parameterized sort and of the simple Orderable sort, which are identified as core and
parameter, respectively, in the corresponding module structure.

speci f icat ion SortedSet [ Tota lOrder ]
sorts

SortedSet [ Orderable ]
constructors

empty : −→ SortedSet [ Orderable ] ;
i n s e r t : SortedSet [ Orderable ] Orderable −→ SortedSet [ Orderable ] ;

observers
isEmpty : SortedSet [ Orderable ] ;
i s I n : SortedSet [ Orderable ] Orderable ;
l a r g e s t : SortedSet [ Orderable ] −→? Orderable ;

domains
S: SortedSet [ Orderable ] ;
l a r g e s t (S) i f not isEmpty (S) ;

axioms
E, F : Orderable ; S : SortedSet [ Orderable ] ;
. . .
i s I n ( i n s e r t (S,E) , F ) i f f E = F or i s I n (S, F ) ;
l a r g e s t ( i n s e r t (S, E) ) = E i f not isEmpty (S) and geq (E, l a r g e s t (S) ) ;
. . .

end speci f icat ion

speci f icat ion Tota lOrder |
sorts |

Orderable | module
others | core

geq : Orderable Orderable ; | SortedSet
axioms | parameter

E, F , G: Orderable ; | Tota lOrder
E = F i f geq (E, F ) and geq (F ,E) ; | end module
. . . |

end speci f icat ion |

Listing 1.1. SortedSet and Orderable specifications and specification module defining the
structure of the SortedSet parameterized datatype.



Depending on whether they have an argument of the sort under specification (self ar-
gument) or not, constructors are classified as transformers or creators. All non-constructor
operations must have a self argument. Functions can be partial (denoted by →?), in
which case a domains section specifies the conditions that restrict their domain.

The correspondence between sorts and Java types is described in terms of refinement
mappings. Listing 1.3 shows a refinement mapping from the specifications in listing 1.1
to Java types TreeSet and IOrderable (listing 1.2).

public interface IOrderable〈E〉 {
boolean greaterEq(E e);

}

public class TreeSet〈E extends IOrderable〈E〉〉 {
public TreeSet() {...}
public void insert(E e) {...}
public boolean isEmpty() {...}
public boolean isIn(E e) {...}
public E largest() {...}
...

}

Listing 1.2. Excerpt from a Java implementation of TotalOrder and SortedSet[TotalOrder]

refinement <E>
Tota lOrder is E {

geq : Orderable e : Orderable is boolean greaterEq (E e ) ;
}
SortedSet [ Tota lOrder ] is TreeSet<E> {

empty : −→ SortedSet [ Orderable ] is TreeSet ( ) ;
i n s e r t : SortedSet [ Orderable ] e : Orderable −→ SortedSet [ Orderable ] is vo id

i n s e r t (E e ) ;
isEmpty : SortedSet [ Orderable ] is boolean isEmpty ( ) ;
i s I n : SortedSet [ Orderable ] e : Orderable is boolean i s I n (E e ) ;
l a r g e s t : SortedSet [ Orderable ] −→? Orderable is E l a r g e s t ( ) ;

}
end refinement

Listing 1.3. Refinement mapping from ConGu specifications to Java types

These mappings associate ConGu sorts and operations to Java types and correspond-
ing methods. Notice that the parameter sort is mapped to a Java type variable that is used
as the parameter of the generic TreeSet implementation.

3 Fault-location with Flasji

The fault-location approach we present in this paper (see figure 2) is a model-based
one since it departs from models of the specification (and the abstract objects they
define) and verifies whether corresponding concrete Java objects behave the same as
abstract ones. Flasji interprets the deviations to the expected behaviour in order to find
the location of the fault. It follows an incremental integration strategy since only one
of the specification sorts is under verification – we call it the designated sort –, which
is the one at the root of the class association graph; the others are considered as being
correctly implemented (mock classes are generated that implement correct behaviour).

Flasji picks a ConGu specification module, a Java implementation and the mapping
from the former to the latter, and generates Java code that creates abstract and concrete
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Fig. 2. The Flasji model-based approach to fault-location.

objects, according to a model of the specification that it also generates, and compares
them. Flasji then runs the JUnit tests that accomplish those comparisons, and interprets
their results.

3.1 Obtaining a model of the specification

In order to obtain a model of our specification, we capitalize on the Alloy Analyzer [9]
which generates finite models from Alloy specifications. We may obtain Alloy speci-
fications equivalent to our ConGu ones by using a component of the GenT tool [2, 3].
GenT’s primary goal is the generation of tests suites from ConGu specifications and
it has two components – ConGu2Alloy, that picks Congu specifications and generates
equivalent Alloy specifications, and Alloy2JUnit, that generates JUnit tests.

So, Flasji executes ConGu2Alloy obtaining the corresponding Alloy specification
( [2, 3] for details) and runs the Alloy Analyzer to generate a model that satisfies it. Fig-
ure 3 shows a model for the running example. This model consists of 2 Orderable ob-
jects and 4 SortedSet ones. The result of every applicable operation is defined for each
of these objects (e.g. SortedSet2 contains the two Orderable objects, and results from
inserting Orderable0 into SortedSet0 or else inserting Orderable1 into SortedSet1).

The objects on this model define correct, expected behaviour; Flasji uses the non-
designated sort model objects (Orderable instances in the example) to create mock ab-
stract objects that are used instead of concrete ones, and it uses the designated sort
model objects (SortedSet instances in the example) to create mock abstract objects that
will be compared with concrete ones (TreeSet in the example). In order to create those
abstract objects, “mock” classes are generated, that are independent from the model.
public class OrderableMock implements IOrderable〈OrderableMock〉{

private HashMap〈OrderableMock, Boolean〉 greaterEqResult =
new HashMap〈OrderableMock, Boolean〉();

public boolean greaterEq(OrderableMock e) {return greaterEqResult.get(e);}
public void add_greaterEq(OrderableMock e, Boolean result) {

greaterEqResult.put(e, result);}
}

Listing 1.4. Mock class corresponding to the Orderable parameter sort.

Listing 1.4 presents the mock class generated for the parameter sort of the running
example. For each sort operation X, an attribute is defined to keep the information about



Fig. 3. A model for the SortedSet specification module found by the Alloy Analyzer.

the results of X, for every combination of the parameters; the add_X method “fills” that
attribute, and the X method retrieves the result for given values of the parameters.

This mock class will be used to generate parameter objects that will be inserted not
only in abstract TreeSets representing the model objects, but also in concrete ones; the
idea is to test the implementation of the designated sort for any parameter instantiation
that correctly implements the Orderable sort specification.

Flasji also generates a class to represent abstract objects of the designated sort,
which is not really a “mock” class since the signatures of the methods are not exactly
the same as in the concrete class. The idea here is not to use these abstract objects on
both abstract and concrete contexts, as we do with non-designated sort ones, but to use
them for what they really are – Java representations of the objects of the model – and, as
such, to compare them with concrete ones. Nevertheless, we will use the term “mock”.

3.2 Comparing abstract with concrete objects

Flasji generates a Java mock class for the type implementing the designated sort, and a
JUnit test class that (i) creates abstract objects corresponding to the objects defined by
the Alloy model; (ii) creates the designated sort concrete objects corresponding to the
abstract ones (by using the corresponding concrete constructors); and (iii) compares the
behaviour of those abstract and concrete objects.

A mock class is thus generated for the SortedSet implementation:
public class TreeSetMock 〈T〉{

private HashMap〈T,Boolean〉 isInResult = new HashMap〈T,Boolean〉();
private boolean isEmptyResult;
private T largestResult;

public boolean isIn (T e){return isInResult.get(e);}
public void add_isIn (T e, Boolean result){isinResult.put(e, result);}
public boolean isEmpty(){return isEmptyResult;}



public void add_isEmpty(boolean result){isEmptyResult = result;}
public T largest(){return largestResult;}
public void add_largest(T result){largestResult = result;}

...
// to be continued

}

Listing 1.5. Part of the mock class corresponding to the SortedSet sort.

Observer operations with non-designated sort results Let us first see how we can use
observer operations whose result type is different from the designated sort to compare
abstract with concrete objects, using the Alloy model of figure 3.

Flasji generates a test class (see listing 1.6) where the “abstract Java world” is first
populated with the abstract objects: 2 OrderableMock instances and 4 TreeSetMock

ones, as defined by the Alloy model.
@Test
public void abstractVSconcreteTest () {

//IOrderable Mocks
OrderableMock orderable0 = new OrderableMock();
OrderableMock orderable1 = new OrderableMock();
orderable0.add_greaterEq(orderable0, true);
orderable0.add_greaterEq(orderable1, true);
orderable1.add_greaterEq(orderable0, false);
orderable1.add_greaterEq(orderable1, true);

//Abstract objects TreeSet
TreeSetMock 〈OrderableMock〉 absTree3 = new TreeSetMock 〈OrderableMock〉();
absTree3.add_isEmpty(true);
absTree3.add_isIn(orderable0, false);
absTree3.add_isIn(orderable1, false);
TreeSetMock〈OrderableMock〉 absTree0= new TreeSetMock 〈OrderableMock〉();
absTree0.add_isEmpty(false);
absTree0.add_largest(orderable1);
absTree0.add_isIn(orderable0, false);
absTree0.add_isIn(orderable1, true);
TreeSetMock 〈OrderableMock〉 absTree1 = new TreeSetMock 〈OrderableMock〉();
absTree1.add_isEmpty(false);
absTree1.add_largest(orderable0);
absTree1.add_isIn(orderable0, true);
absTree1.add_isIn(orderable1, false);
TreeSetMock 〈OrderableMock〉 absTree2 = new TreeSetMock 〈OrderableMock〉();
absTree2.add_isEmpty(false);
absTree2.add_largest(orderable0);
absTree2.add_isIn(orderable0, true);
absTree2.add_isIn(orderable1, true);
// to be continued ...

Listing 1.6. (Part of) the test comparing abstract with concrete objects – building the abstract
objects.

Concrete objects corresponding to the ones of the designated sort will also be built,
using the corresponding methods, and comparisons will be made (see listing 1.7). For
now, we only present part of the test class, the one concerning the observers with non-
designated sort result. Whenever there are several ways to build an object, we choose the
shortest path in the model. Then we apply the observer operations to their abstract and
concrete versions. Notice that, in order to cope with undesired side effects of methods,
as many copies of a given concrete object are created as methods applied to it.



@Test
public void abstractVSconcreteTest () {

...
//Concrete objects TreeSet
//Create and compare with corresponding abstract
TreeSet〈OrderableMock〉 concTree3 = new TreeSet 〈OrderableMock〉();
TreeSet〈OrderableMock〉 concTree3_1 = new TreeSet 〈OrderableMock〉();
TreeSet〈OrderableMock〉 concTree3_2 = new TreeSet 〈OrderableMock〉();
TreeSet〈OrderableMock〉 concTree3_3 = new TreeSet 〈OrderableMock〉();
assertTrue(concTree3_1.isEmpty() == absTree3.isEmpty());
assertTrue(concTree3_2.isIn(orderable1) == absTree3.isIn(orderable1));
assertTrue(concTree3_3.isIn(orderable0) == absTree3.isIn(orderable0));
//Create and compare with corresponding abstract
TreeSet〈OrderableMock〉 concTree0 = new TreeSet 〈OrderableMock〉();
TreeSet〈OrderableMock〉 concTree0_1 = new TreeSet 〈OrderableMock〉();
TreeSet〈OrderableMock〉 concTree0_2 = new TreeSet 〈OrderableMock〉();
TreeSet〈OrderableMock〉 concTree0_3 = new TreeSet 〈OrderableMock〉();
TreeSet〈OrderableMock〉 concTree0_4 = new TreeSet 〈OrderableMock〉();
concTree0.insert(orderable1);
concTree0_1.insert(orderable1);
concTree0_2.insert(orderable1);
concTree0_3.insert(orderable1);
concTree0_4.insert(orderable1);
assertTrue(concTree0_1.isEmpty() == absTree0.isEmpty());
assertTrue(concTree0_2.largest() == absTree0.largest());
assertTrue(concTree0_3.isIn(orderable1) == absTree0.isIn(orderable1));
assertTrue(concTree0_4.isIn(orderable0) == absTree0.isIn(orderable0));
// two more to go...

Listing 1.7. Continuing... building the concrete objects and comparing with the corresponding
abstract ones.

Since the ultimate goal of this class is to find the method containing the fault, it
should be possible to reason about the results of all these comparisons, so we must be
able to test all the assert commands. Although we do not show it in this paper due
to space limitations, enclosing each assertTrue invocation in a try-catch block
allows to collect all results which will help composing a final test diagnosis. Moreover,
in order to benefit from the information ConGu gives about potential suspects, the test
class under construction is given the name of a method (through System.getProperties,
a way to input information into JUnit tests) – it denotes a method that is suspect of
containing the fault; the idea is to run the test class for each suspect in the suspects list.
Violations in assertTrue statements involving the suspect operation are signaled to
allow them to be interpreted accordingly.

Observer operations with designated sort result Let S be the designated sort of a
Congu specification module and C the Java class that implements it. Let observer obsA,
whose result is of sort S, be implemented by method C mObsA(...). Consider the case
where we want to compare abstract and concrete objects, whose references are kept in
variables absT1 and concT1, respectively, by applying to them the available observers.
So, we want to compare the result of applying mObsA to concT1 – call it X – with the
one that should be expected – call it Y . In this case, both X and Y are concrete objects,
instances of class C, and will be compared using equals.

We obtain X with concT1.mObsA(...). How to obtain Y ? The model gives, for
any of the sorts’ instances, the result of applying all operations (given all combinations
of parameters within the model), so we should ask absT1 (which is the “mock” object



that represents the corresponding abstract object) for the expected result. For this to
work, we must “feed” absT1 with that knowledge. How?

As can be observed in listings 1.6 and 1.7, the references to the concrete objects that
are created are kept within variables whose names are paired to the ones of the variables
that refer to corresponding abstract objects. So, if according to the model the result of
applying observer obsA to absT1 is the abstract object referenced by absT2, then, we
say that the expected result Y of concT1.mObsA(...) is the concrete object concT2.
We “feed” absT1 with this knowledge in order to keep it available. Let us see how.

Let our SortedSet specification also define removeLargest: SortedSet −→SortedSet,
an observer operation that has a result of the designated type SortedSet and has the do-
main condition removeLargest(S) if not isEmpty(S). As we know, an observer whose
result is of the designated sort may be implemented as a method with any return type:
(i) void (tipically used in mutable implementations); (ii) TreeSet (tipically used in
immutable implementations, but others also apply) and (iii) another different type (this
case should be treated as the others since we cannot know, at the abstract level, what
the result of the concrete method is supposed to be).

We only compare the relevant objects, which are (a) the concrete object correspond-
ing to the abstract object that the Alloy model determines as being the result of the oper-
ation, and (b) either the new state of the target concrete object after the concrete method
has been executed (for cases i and iii and also in mutable versions of ii) or the concrete
object that is the result of the concrete method execution (for immutable versions of ii).

For this purpose, the TreeSetMock class must declare variables and methods to
store the (abstract) results that the Alloy model establishes for this operation given
the combination of existing parameters, as well as the TreeSet concrete objects that
correspond to those abstract objects. Whatever the case (i, ii or iii), those are the needs.

In order to add these new observations to our running example, we add to the
TreeSetMock class an inner class Pair_TreeSetMock_TreeSet and define two mock
observer ”versions” of the removeLargest method in order to be possible to obtain
the expected abstract and concrete results of the operations.

public class TreeSetMock〈T〉{
...

private class Pair_TreeSetMock_TreeSet 〈T〉{
TreeSetMock〈T〉 aVal;
TreeSet〈T〉 cVal;
void setAbsVal (TreeSetMock〈T〉 av) { aVal = av;}
void setConcVal (TreeSet〈T〉 cv) { cVal = cv;}

}

private Pair_TreeSetMock_TreeSet removeLargestResult = new
Pair_TreeSetMock_TreeSet ();

public void add_removeLargest (TreeSetMock〈T〉 absVal, TreeSet〈T〉 concVal){
removeLargestResult.setAbsVal(absVal);
removeLargestResult.setConcVal(concVal);

}
public TreeSetMock〈T〉 removeLargest (){return removeLargestResult.aVal;}
public TreeSet〈T〉 removeLargest_C (){return removeLargestResult.cVal;}

...
private HashMap〈T,Pair_TreeSetMock_TreeSet〉 insertResult = new HashMap〈T,

Pair_TreeSetMock_TreeSet〉 ();

public void add_insert (T e, TreeSetMock〈T〉 absVal, TreeSet〈T〉 concVal){
Pair_TreeSetMock_TreeSet p = new Pair_TreeSetMock_TreeSet();



p.setAbsVal(absVal);
p.setConcVal(concVal);
insertResult.put(e, p);

}
public TreeSetMock〈T〉 insert (T e){return insertResult.get(e).aVal;}
public TreeSet〈T〉 insert_C (T e){return insertResult.get(e).cVal;}

...

Listing 1.8. TreeSetMock class with observers with designated sort result.

Why is insert also added to the mock class? The applications of the construc-
tor operations that were not covered by the shortest path adopted to build the objects,
should also be exercized as observations in order to be able to test the dynamics of
the construction process that leads to a given object – e.g. suppose a table constructor
that, given a key k and a value v, adds the pair 〈k, v〉 to the table object if it does not
contain any pair with that same key already, and substitutes the old value by the new
one, otherwise. Moreover, suppose the constructor implementation does not perform
the substitution when it should. If we only pick the shortest path objects, that fault will
not arise because none of those objects will be the target of two applications of the con-
structor with the same key. So, we should be able to test all applications of constructors
present in the model, even if they do not generate new, different, objects: we will treat
non-creator constructors as observers whose result is of the designated sort.

Let us refactor our example in listing 1.6 to cope with the existence of this kind
of observers. We must define the results of observers over the abstract objects us-
ing the methods add_xObserver of the mock classes. The abstract behaviour of the
removeLargest observer (not part of the original example) is: removeLargest(absTree3)
is not defined, removeLargest(absTree0) and removeLargest(absTree1) have
both absTree3 as result, and absTree0 is the result of removeLargest(absTree2).
//Adding results of observers to abstract objects
...
//absTree3 does not satisfy domain condition of removeLargest
//the two inserts were already covered (to obtain absTree0 and absTree1)
...
absTree0.add_removeLargest(absTree3, concTree3);
// insert of orderable0 was already covered (to obtain absTree2)
absTree0.add_insert(orderable1, absTree0, concTree0);
...
absTree1.add_removeLargest(absTree3, concTree3);
absTree1.add_insert(orderable0, absTree1, concTree1);
absTree1.add_insert(orderable1, absTree2, concTree2);
...
absTree2.add_removeLargest(absTree0, concTree0);
absTree2.add_insert(orderable0, absTree2, concTree2);
absTree2.add_insert(orderable1, absTree2, concTree2);

Listing 1.9. Adding results of the remaining observers to abstract objects.

Finally, we compare the abstract and concrete objects using all possible observers
(remember listing 1.7 already shows the comparisons using the other observers).

To verify whether a given observer whose result is of the designated sort is well
implemented, we compare the concrete object that the concrete method returns with the
concrete object that it should return were the observer operation correctly implemented.
We consider here that the given observer is implemented with a void result type, which
is consistent with the mutable characteristic of the original example, so we must first
invoke the concrete method using the concrete object as a target, and then we compare



(using equals) its new state with the concrete object that, according to the abstract
corresponding object, should be the correct result.
//Comparing results of removeLargest
concTree0_5.removeLargest ();
assertTrue(concTree0_5.equals(absTree0.removeLargest_C ()));
concTree1_5.removeLargest ();
assertTrue(concTree1_5.equals(absTree1.removeLargest_C ()));
concTree2_5.removeLargest ();
assertTrue(concTree2_5.equals(absTree2.removeLargest_C ()));

//Comparing results of insert
cconcTree0_6.insert (orderable1);
assertTrue(concTree0_6.equals(absTree0.insert_C (orderable1)));
concTree1_6.insert (orderable0);
assertTrue(concTree1_6.equals(absTree1.insert_C (orderable0)));
concTree1_7.insert (orderable1);
assertTrue(concTree1_7.equals(absTree1.insert_C (orderable1)));
concTree2_6.insert (orderable0);
assertTrue(concTree2_6.equals(absTree2.insert_C (orderable0)));
concTree2_7.insert (orderable1);
assertTrue(concTree2_7.equals(absTree2.insert_C (orderable1)));

Listing 1.10. Comparing results of the designated sort observers.

Interpreting the results The interpretation of these tests’ results is based upon the
following observations: (i) whether several and varied observers fail or only one fails –
this is important to decide whether to blame a constructor or a given, specific, observer;
(ii) whether varied observers fail when applied to concrete objects directly created by
the constructor-creator, or when applied to objects that were the target of non-creator
constructors – this is important to decide which constructor is the faulty one. The modus
operandi used is:

– if only a given observer ob fails→ decide ob is the faulty method
– else (several observers fail)
• if those failures (also) happen when observers are applied to an object directly

created by a constructor-creator cc method→ decide cc is the faulty method
• else
∗ if some of the observations made by a non-creator constructor ncc fail→

decide ncc is the faulty method
∗ else→ inconclusive

The relevance of being a suspect lies in the (reduced) confidence one may have in
its results; thus, less weight is given to observations using a suspect method.

4 Evaluation

To evaluate the effectiveness of our Flasji approach, we applied it to two case studies
– this paper’s SortedSet running example, and a MapChain specification module and
corresponding implementations; the Java classes implementing the designated sorts of
both case studies where seeded with faults covering all the specification operations. We
also picked two fault-location tools – GZoltar [1, 21] and EzUnit4 [4, 22] – that work



Faulty method Faulty method ranked:
# tests failed tests Flasji EzUnit4 GZoltar

S
or

te
dS

et

isEmpty 20 5 1st nth 2nd

isEmpty 20 1 1st 1st 2nd

isIn 20 1 1st nth 1st
largest 20 7 1st 1st 1st
largest 20 1 1st 1st 2nd

private insert 20 2 No nth 2nd

public insert 20 5 1st nth 2nd

M
ap

C
ha

in

get 17 4 No nth 1st
get 17 3 No 2nd 1st
get 17 4 No nth nth

isEmpty 17 2 1st 2nd 1st
isEmpty 17 1 1st nth 1st
put 17 0 1st No No
put 17 1 1st 1st 2nd

put 17 2 1st 1st 2nd

remove 17 1 1st 2nd 2nd

remove 17 1 1st 2nd 2nd

Table 1. Results of comparative experiments. “Flj”, “EzU” and “GZ” stand for Flasji, EzUnit4
and GZoltar respectively. “1st”, “2nd” and “nth” stand for first, second and third or worse, re-
spectively. “No” means the faulty method has not been ranked as suspect.

on JUnit tests and, alike Flasji, have methods as the units under test, and compared the
three approaches’ results.

For this evaluation task we used tests generated by the GenT tool [2, 3] for the two
case studies, which exercise all the methods implementing specified operations and all
axioms of the specification. In what concerns our approach, these tests executions cor-
respond to the “Client code execution” box of figure 1 in section 2. Runtime errors were
detected and Flasji was put to work: it generated new, model-based tests and executed
them in order to find guilty methods. The other two tools – EzUnit4 and GZoltar – in-
spected the several executions of the GenT tests in order to create a ranking of suspects.

For each of several faulty versions of the designated sorts implementations (for
example, two different faults were seeded in SortedSet isEmpty method, three in
MapChain get method, etc) table 1 shows the results of executing the GenT tests (20
tests for the SortedSet case, and 17 for the MapChain). For each seeded fault we show
the number of failed GenT tests and whether the faulty method was ranked, by each
tool, as most probable guilty (1st), second most probable guilty (2nd) or third or less
probable (nth). A fourth type of result – “No” – means the guilty method has not been
ranked as suspect at all.

Flasji provided very accurate results in general (see a summary in figure 4). The bad
results in the three faults for method get of the MapChain case study (there were no sus-
pects found whatsoever) are due to the fact that equals uses the get method, therefore
becoming unreliable whenever method get is faulty. This case exemplifies the oracle
problem (see section 5). Applying an alternative method of observation (see [18]) – one



Flasji
GZoltar

EzUnit4

ranked faulty method as first suspect in 
SortedSet case study

85% 70%

28% 40%

43% 20%
ranked faulty method as first suspect in 

MapChain case study

Fig. 4. Summary of the evaluation experiment. The bars measure the success of each approach in
ranking the faulty method as first suspect.

where the equals method is not used and, instead, only the outcomes of observers
whose result is not of the designated sort are used in comparisons – we obtain the right
results for this case, i.e. get is ranked as prime suspect. However, the good results we
had for faulty methods put iii and remove i got worse – they are ranked second
instead of first. These particular cases indicated isEmpty as prime suspect because the
seeded fault of both put iii and remove i was the absence of change in the number
of elements in the map whenever insertion/removal happens, which made isEmpty fail.

Another critical issue w.r.t. our approach is the one concerned with private methods.
The fault in private method insert of the SortedSet case study caused Flasji to rank
the public insert method, instead, as the most probable suspect (the public insert

method is composed of one only statement which invokes the private insert method).
As expected, private methods are not identified as suspects by Flasji because they do not
directly refine any specification operation (as defined in the refinement mapping from
specifications to implementations); instead, the public, specified, methods that invoke
them are identified.

A case worth mentioning is the one corresponding to the first seeded fault in the put
method of the MapChain case study, where none of the seventeen GenT tests fail. As a
consequence, neither EzUnit4 and GZoltar detected the fault; the same happened with
our approach because Flasji was not applied (remember figure 1 in section 2). However,
putting Flasji to work led to the identification of the guilty method.

5 Related work

Several approaches to testing implementations of algebraic specifications exist, that
cover test generation, and many compare the two sides of equations where variables
have been substituted by ground terms ([6–8, 11] to name a few) – differences exist in
the way ground terms are generated, and in the way comparisons are made. The gap
between algebraic specifications and implementations makes the comparison between
concrete objects difficult, giving rise to what is known as the oracle problem, more
specifically, the search for reliable decision procedures to compare results computed by
the implementation. Whenever one cannot rely on the equals method, there should
be another way to investigate equality between concrete objects. Several works have
been proposed that deal with this problem, e.g. [7, 15, 27]. In [18] we tackle this issue
by presenting an alternative way of comparing concrete objects, one that relies only in
observers whose result is of a non-designated sort. In some way this complies with the
notion of observable contexts in [7] – all observers but the ones whose result is of the
designated sort constitute observable contexts.



Many other fault-location approaches have been proposed over the years that are
not based on specifications (in [25, 26] the authors present a very comprehensive survey
where they classify fault-location approaches). Among these, program spectrum-based
methods (e.g. [4, 10, 12, 13, 20–22, 24]) from which we have chosen two tools to be part
of our evaluation experiment, as presented in section 4.

Program spectrum-based methods record information about several aspects of the
execution of tests and use it to identify most probably faulty pieces of code. Differences
between approaches include the use of failed tests only or both passed and failed ones,
the way they calculate the suspiciousness of each piece of code, the unit of suspicion
(basic statements, methods), etc. The tools we used in section 4 – GZoltar [1, 21] and
EzUnit4 [4, 22] – compute the probability of Java methods being faulty given their
participation in a number of passing and failing test cases, differing essentially in the
way they calculate the suspiciousness of each executed method.

6 Conclusions

We presented Flasji, a model-based approach to the location of Java methods that in-
correctly implement algebraic specifications. Flasji capitalyzes on ConGu, GenT and
Alloy Analyzer tools and builds JUnit tests whose goal is the identification of the faulty
method. These tests are based in models of the specification and aim at comparing the
behaviour of instances of concrete implementations with the one that is expected as de-
fined by the model. The results of the comparisons are interpreted in order to find the
method responsible for the fault.

The structured nature of ConGu specifications, where functions and axioms are de-
fined sort by sort, and where the latter are independently implemented by given Java
types, is essential to the incremental integration style of the Flasji fault-location tech-
nique – a Java type implementing a specification sort is tested conditionally, i.e. pre-
suming all others from which it depends are correctly implemented.

An evaluation experiment is presented where Flasji is compared with two other
fault-location tools over two case studies where faults have been seeded in the imple-
menting Java classes.
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