Specification-driven Unit Test Generation for
Java Generic Classes

Francisco R. de Andrade?, Jodio P. Faria?'3, Anténia Lopes!, and Ana C.R. Paiva®
1 Faculdade de Ciéncias da Universidade de Lisboa
2 Faculdade de Engenharia, Universidade do Porto
3 INESC Porto
{francisco.andrade,jpf,apaiva} @fe.up.pt, mal @di.fc.ul.pt

Abstract. Several approaches exist to automatically derive test cases that check
the conformance of the implementation of abstract data types (ADTs) with respect
to their specification. However, they lack support for the testing of implementa-
tions of ADTs defined by generic classes. In this paper, we present a novel tech-
nique to automatically derive, from specifications, unit test cases for Java generic
classes that, in addition to the usual testing data, encompass implementations for
the type parameters. The proposed technique relies on the use of Alloy Analyzer
to find model instances for each test goal. JUnit test cases and Java implementa-
tions of the parameters are extracted from these model instances.

1 Introduction

Algebraic specifications have been successfully used for the formal specification of
abstract data types (ADTs) and several approaches exist to automatically derive test
cases that check the conformance of the implementation of ADTs with respect to their
algebraic specifications (e.g., [3,5,8,11,17]). In these approaches, because ADTs are
described in an axiomatic way, the derivation of tests involves choosing some instanti-
ations of the axioms or their consequences. Then, concrete tests are generated to check
if these properties hold in the context of the implementation under test (IUT).

Many data types admit different versions in different applications—e.g., sets of
strings, dates, messages. Nowadays, the implementation of these data types in main-
stream object-oriented languages, such as Java and C#, strongly relies on generic classes.
However, existing methods and techniques to automatically generate test suites from
specifications cannot be directly applicable in these cases.

Genericity poses new difficulties for testing. To write tests for a generic class one
has to commit to a set of types for its parameters and this raises several problems. First,
in the case of non trivial parameters, types for instantiating them may not be available
at test time (e.g., trees of intervals as defined by edu.stanford.nlp.util.IntervalTree have
intervals as parameters and no implementation for this type is available there [16]).
Second, the types available for instantiating the parameters may not cover all the possi-
bilities allowed by the parameters. For instance, partially ordered sets that have a type
parameter that corresponds to partial orders can be tested with strings or integers, how-
ever, the properties of these sets that hold vacuously in total orders will not be properly
tested. Third, in order to isolate the source of possible failures, one may not want to
depend on the implementation of other types besides the one under test (this is a unit

testing best practice). A technique that is often used to overcome these difficulties in
manual test generation is the use of mock objects [14]. One of the challenges in auto-
matic test generation for generic classes is the automatic generation of mock objects for
their parameters, removing from the user the burden of providing the types for instanti-
ating the type parameters.

In this paper we address the generation of unit test cases for Java implementations of
ADTs defined by generic classes, that comprise automatically generated mock classes
and mock objects that can be used to instantiate their type parameters. As illustrated in
Fig. 1, we consider that ADTs are described by parameterized specifications and that the
abstraction gap between the specifications and the implementations is bridged through
refinement mappings. Parameterized specifications are supported by several specifica-
tion languages. In contrast, refinement mappings were defined in [15] for CONGU spec-
ifications [4]. Herein, we revisit this notion and reformulate it in a more general setting.

specification TotalOrder
sorts
Orderable
observers
geq: Orderable Orderable;
axioms
E, F, G: Orderable;
E = F if geq(E, F) and geq(F ,E);
specification SortedSet[TotalOrder]
sorts
SortedSet[Orderable]
constructors
empty: --> SortedSet[Orderable];
insert: SortedSet[Orderable] Orderable --> SortedSet[Orderable];
observers
isEmpty: SortedSet[Orderable];
isIn: SortedSet[Orderable] Orderable;
largest: SortedSet[Orderable] -->? Orderable;
domains
S: SortedSet[Orderable];
largest(S) if not isEmpty(S);
axioms
E, F: Orderable; S: SortedSet[Orderable];
isEmpty(empty());
not isEmpty(insert(S, E));
largest(insert(S, E)) = E if isEmpty(S);
largest(insert(S, E)) = E if not isEmpty(S) and geq(E, largest(S));
largest(insert(S, E)) = largest(S) if not isEmpty(S) and not geq(E, largest(S))

end specification

refinement <E>

public class TreeSet<E extends IOrderable<E>>{ SortedSet[TotalOrder] is TreeSet<E> {

public TreeSet<E>O{...} empty: --> SortedSet[Orderable] is TreeSet<E>()
PUB{}C ZOIf 1nsgr§(E of...} insert: SortedSet[Orderable] e:Orderable -->
public boolean istmpty(){...} SortedSet[Orderable] 1is void insert(E e);

public boolean isIn(E e){...}
public E largest(){ ...}

" |interface IOrderable<E>{ TotalOrder is E {

boolean greaterEq(E e); geq: Orderable e:Orderable is boolean greatertq(E e)
} }

end refinement

Fig. 1. The aim is to generate tests for checking if a set of classes correctly implements an ADT.

Following the tradition of specification-based testing, the developed technique in-
volves considering some abstract tests obtained through the instantiation of the axioms.

The difference is that, in our case, this instantiation is not exclusively achieved at the
syntactical level by substitution of axiom variables by ground terms; it also involves
assigning a value to some variables according to a specific model of the parameter
specification. For the generation of abstract tests, the proposed technique relies on Al-
loy Analyzer [13], a tool that finds finite models of relational structures. Abstract tests
are then translated into JUnit tests for a given implementation of the specification. This
translation takes into account the correspondence between specifications and Java types
defined by the given refinement mapping. Fig. 2 presents an overview of this process.

Vv
Spec2Alloy Alloy Abs. Tests
Translator Analyzer Jolances Extractor

JUnit Tests
Generator

ADT I = — mm m e Refinement ADT
I e vttt T T T e P ; ———=p .
Specification depends on Mapping Implementation

Fig. 2. Overview of the test generation process.

The organisation of the paper is as follows. Sec. 2 presents the specifications we
have considered in our approach and their semantics. In Sec. 3, we introduce a notion
of abstract test appropriate for parameterized specifications and present a technique for
the generation of these tests that relies on the encoding of specifications into Alloy and
on Alloy Analyzer for finding model instances. In Sec. 4, we show how to automatically
translate abstract tests to JUnit tests for a concrete implementation. Sec. 5 presents some
evaluation experiments and Sec. 6 concludes the paper and discusses future work.

2 Specifications of Generic Data Types

In algebraic specification, the description of ADTs that admit different versions is sup-
ported by parameterized specifications [6]. The description of algebraic specifications
in general, and parameterized specifications in particular, is supported by different lan-
guages (e.g., [2,6,7]) with significant variations in terms of syntax and semantics. In this
section, we present the specifications considered in our approach and their semantics.

Preliminaries. We use X' to represent a many-sorted signature (S, F, P), where S is
the set of sorts and F' and P are the sets of, respectively, operation and predicate sym-
bols. Moreover, we use Spec to represent a specification (X, Ax), where Az is the set
of axioms described by formulas in first-order logic (with equality). An example of a
specification is TotalOrder, partially described in Fig. 1 using the language of CONGU.
It has the sort Orderable, a single predicate symbol geq and no operation symbols. Its
set of axioms includes Ve: Orderable ¥V f: Orderable . geq(e, f) A geq(f,e) = e = f.
We use PSpec to represent a parameterized specification, i.e., a pair { Param, Body)
of specifications with Param (the formal parameter) included in Body (the body). An
example of a parameterized specification is SortedSet| TotalOrder], also partially de-
scribed in Fig. 1. The formal parameter is TotalOrder and the body is SortedSet, a
specification that contains what is in TotalOrder and the sort SortedSet]|Orderable],
the operation symbols empty, insert and largest, the predicate symbols is Empty and
1sIn, and several axioms that express the properties of these operations and predicates.

2.1 Specifications

In this work, we restrict our attention to a set of parameterized specifications that can
be described in CONGU. More concretely, we consider specifications in which opera-
tion symbols are classified as constructors or observers and that are obtained through
the extension of a given specification Spec with an increment, i.e.,: (i) a single sort s,
(ii) constructors that produce elements of sort s, (iii) observers and predicate symbols
that take an element of sort s as first argument, (iv) axioms that express properties of the
new operation and predicate symbols only. An increment can define a specification by
itself or rely on sorts, operations and predicates available in the base specification Spec.
In any case, we use Spec+Spec, to represent the extension of Spec with an increment
centred on sort s and Spec, +...+Spec, to represent a sequence of increments. For
the body of PSpec, we also require that all increments different from Param include at
least one creator, i.e., a constructor that does not have elements of the introduced sort
among its arguments. In the sequel, we use Body— Param to refer to sorts, operations,
predicates and axioms in Body but not in Param. It is easy to see that TotalOrder and
SortedSet fulfill these requirements: TotalOrder is an extension of the empty spec-
ification while SortedSet is an extension of TotalOrder that indeed introduces one
creator (empty) of the introduced sort (SortedSet|Orderable]).

In the sequel we will use T'ermy and CTermyx to denote, respectively, the set of
ground terms and the set of canonical ground terms (i.e., terms defined exclusively in
terms of constructors). For terms, canonical terms and formulas built over a set X of
variables typed by sorts in X, we use Termyx(X), CTermx(X) and Formyx(X).

In what concerns the axioms, we assume they have one of the following forms:
Vo1 :81..V2y : Sy . @ Vx1:51..YZy ¢ Sp. op = defined(op(z1, ..., zp))
where op is an operation symbol and ¢, 1),,, are quantifier-free first-order logic formu-
las built over Y. The first type of axioms is used for expressing usual properties of
operations and predicates. The other type of axioms supports the definition of a do-
main condition of an operation, i.e., the condition under which the operation must be
defined (these are needed because operations can be interpreted as partial functions). In
SortedSet[TotalOrder], all operations but largest must be interpreted by total func-
tions and, hence, their domain conditions are true while largest has to be defined for
non empty sets, i.e., Vs : SortedSet[Orderable]. —isEmpty(s)=defined(largest(s)).

We further assume there is exactly one domain condition for each operation, which
allows us to define the formula defined” (¢) that, as we will see later on, defines suffi-
cient conditions for the term ¢ to be defined.

Definition 1. defined™(t) is the formula defined inductively in the structure of term t
as follows: (1) defined™(x) = true if x is a variable, (2) defined™ (op(t1,...,tn)) =
defined” (t1)A...Adefined” (t,,) N Yop[t1/x1,...tn/2n] if Op : 51, ..., Sp, — s is an oper-
ation with domain condition V1:81..5xy,:8p. Yop = defined(op(x1, ..., xp)).

2.2 Semantics

Specifications are interpreted in terms of Y'-algebras. More concretely, we take -
algebras as triples A = ({As}ses, F,P), where A, is the carrier set of sort s, F
defines the interpretation of operation symbols as partial functions and P defines the

interpretation of predicate symbols as relations. We use [t]*** to denote the interpreta-
tion of a term ¢ in Term s (X) with an assignment p of X into A, i.e., a function that
assigns a value in A, to each variable x:s in X. Given that operation symbols can be
interpreted by partial functions, [t]4” might not be defined. In fact, [t]** is defined
if and only if A, p F defined(t). The interpretation of equality also has to take into ac-
count the possibility of terms not being defined. Equality is interpreted as being strong,
i.e., t1 = to holds in a X'-algebra A when the values of both terms are defined and equal
or both are undefined. In what concerns predicates, when they are applied to undefined
terms they are always false (see [2] for the rational of this choice).

There are various forms of semantic construction in the algebraic approach to spec-
ification of ADTs. For the purpose at hand, the appropriate construction is loose seman-
tics. It associates to Spec=(X, Ax) the class of all X'-algebras which satisfy its axioms
Ax; these are called Spec-algebras. According to this semantics, an implementation of
the ADT in which all specified properties hold is considered to be correct.

For parameterized specifications, loose semantics associates to (Param,Body) the
class of functions 7,4y that assign to each Param-algebra A, a Body-algebra Tpoq, (A)
that coincides with A when restricted to Param. This means that an implementation of
a parameterized specification is correct if it has all the specified properties, when in-
stantiated with any correct implementation of its parameter.

3 Generation of Abstract Tests

The envisaged strategy for deriving test cases for implementations of generic data types
encompasses the generation of tests for their parameterized specifications. We call them
abstract tests because their target are abstract models (algebras). For testing Java imple-
mentations, we need to convert them into object-oriented tests (JUnit tests, in our case).

3.1 Tests for Parameterized Specifications

A test for an algebraic Spec is usually defined as a ground and quantifier-free formula
that is a semantic consequence of Spec and, hence, valid in every Spec-algebra [8].
This can be generalised to parameterized specifications but the result is not interest-
ing as specifications used as parameters are not expected to have creators and so, the
corresponding set of ground terms is empty. In fact, specifications used as parameters
are not expected to have constructors as they often correspond to a required “ability”.
For instance, in our example, TotalOrder corresponds to a requirement for the actual
parameter of a sorted set to have a comparison operation that defines a total order.

The notion of test that we found useful for parameterized specifications is one in
which we fix a specific Param-algebra.

Definition 2. A closed test for a parameterized specification PSpec = (Param, Body)
is a tuple (A, X, ¢, pp, pp) where A is a Param-algebra; X is a finite set of variables
typed by sorts in Body; ¢ is a quantifier-free logic formula in Formx(X); pp is an
assignment of Xp into A, where Xp is the set of variables in X typed by sorts in
Param; pp is a function that assigns a term pg(x) in Term3,(Xp) to each x:s in
Xp=X\Xp; such that Tgoay(A), pp E pi(0), for every Tpoqy in the semantics of
PSpec, where p’;(¢) is the translation of formulas induced by pp.

Notice that, in these tests, the instantiation of the variables in the formula is achieved
through the combination of (i) a syntactic replacement of variables in X p by terms and
(i1) an assignment of variables in X p into the fixed Param-algebra. In this way, we can
exercise the test in any X'p,qy-algebra that extends A.

We are interested in tests that result from the instantiation of axioms of the form
Vr1:81..V2,:8,. ¢. Closed tests may involve the replacement of variables by terms
and their interpretation in a specific 2,4, -algebra might be undefined and, hence, this
instantiation needs to be conditioned by the definedeness of these terms. Because the
formula defined™ (t) provides a sufficient condition for the term ¢ to be defined in any
Spec-algebra (for details, see [1]), we can use the formula Ae x , defined* (pp(z))=¢.

Proposition 1. Let PSpec = (Param, Body) be a parameterized specification and
Va1:81...VTy,: 8. ¢ an axiom in Body. If A is a Param-algebra, X is a set of variables
including {x1:51,...,xn:8,}, pp is an assignment of Xp into A and pgp is a function
that assigns a term pp(x) in Term$,(Xp) to each x:s in Xp, then

<Aa X7 (/\IEXB deﬁned*(PB (.TL'))) = ¢» PP, pB>
is a closed test for PSpec.(See [1] for the proof.)

As an example, let us consider the axiom Vs:SortedSet[Orderable]. Ve: Orderable.
—isEmpty(insert(s,e)) of SortedSet| TotalOrder]. As a result of Prop. 1:
— the TotalOrder-algebra TO? with two elements, say, Ord0 and Ordl and geq
interpreted as the relation {(Ord1, Ord0), (Ordl, Ordl), (Ord0, Ord0)}
— the set of variables {s:SortedSet|Orderable], e: Orderable}
— the formula true = —isEmpty(insert(s,e))
- pp: {e:Orderable — Ord0} and pp: {s:SortedSet[Orderable] — empty()}

defines a closed test for SortedSet| TotalOrder].

3.2 Generation Technique

When tests are obtained through ground instantiation of axioms, performing a test ex-
periment just requires evaluating a ground formula in the IUT. The generation of closed
tests for parameterized specifications also involves the instantiation of axioms, but this
instantiation is only partial — the instantiation of an axiom involving a set of variables
X is limited to the variables in X 5. Hence, the generation of closed tests involves the
generation of models for the parameter specification and evaluations in these models for
the variables in X p. In this subsection, we describe a technique for the generation of
abstract test suites for parameterized specifications that can be subsequently translated
into JUnit test suites for testing Java implementations.

As pointed out in [8], test thoroughness is increased by generating multiple test
cases for each axiom, through the partitioning of each axiom into a finite set of “cases”,
either by successively unfolding the premises of equational axioms or by considering
the conjunctive terms in the Disjunctive Normal Form (DNF) of the axiom expression.
In our case, since axioms are not restricted to equational ones, DNF partitioning is
more directly applicable, with the advantage of not mixing together different axioms. To
further assure that the different cases are disjoint, and hence avoid generating redundant
tests, we take a special DNF form — the Full Disjunctive Normal Form (FDNF). The
FDNF of a logical formula that consists of Boolean variables connected by logical

operators is a canonical DNF in which each Boolean variable appears exactly once
(possibly negated) in every conjunctive term (called a minterm) [9].

The technique consists in considering each of the axioms Vxp:s1...Vx,:s,. ¢ in
Body— Param that do not express a domain condition and start by converting it to
FDNF. Assuming that the result is Vz1:51...VZ,:8,. ¢1V...V@y then, for every 1<i<k,
the technique involves using Alloy Analyzer to find a Body-algebra M such that: (1) M
is finite; (2) M satisfies sort generation constraints for sorts in Body— Param (each of
these sorts is constrained to be generated by the declared constructors); (3) M satisfies
a stronger version of the domain condition of every operation op in Body— Param:
Vz1:81 ..V2n:8p. Yop < defined(op(x1, ..., zy)); (4) M satisfies x1:51...3,,:5,. ¢;.

Only axioms in Body—Param are considered because these are the axioms that
express the properties of the generic data type that we are interested to check in the
IUT (the other axioms concern properties that are expected to hold in actual parame-
ters). In what concerns the constraints imposed on the finding of the Body-algebra (the
model instances of the Alloy specification): condition 1 is a requirement imposed by
the model finder tool, which limits search to finite models; condition 2 excludes models
that have junk in the carrier sets as we will need to subsequently convert the elements
of this model to arbitrary X' g,q,-algebras that extend M |pgram (the restriction of M
to Param); condition 3 avoids the generation of some models that define an evalua-
tion for terms that are undefined in other Body-algebras; condition 4 ensures we get
from the model finder tool an assignment p of the variables in ¢; into M satisfying it.
Since the formula is in FDNF, all variables of the axiom occur in ¢; and, hence, p is an
assignment of X={x1:s1,..., x5, } into M.

Because M restricted to sorts in Body— Param is a generated model, for each x in
Xp, there exists (i) a canonical term t,€CTermx (Y,) for some set Y, of variables
typed by sorts in Param and disjoint from X, and (ii) an assignment p,. of Y, into M
such that [t,]™*= = p(z). This family of terms and assignments can be used to define
a closed test for PSpec as follows:

<M|Param; X/7 (bla PP, PB>
— M| param is the restriction of M to Param
X' =Upex, Yo UX
@' is the formula (A,cx,, defined™ (pp(z))) = ¢
— pp coincides with p for X p and with p,, for Y,, for every x€ Xp
— pp is the function that maps each z in X p into ¢,

The correctness of the proposed technique is an immediate consequence of Prop. 1.
Proposition 2. The tuple (M |param, X', &', pp, pB) is a closed test for PSpec.

Consider, for instance, the axiom of SortedSet| TotalOrder]:

Vs:SortedSet[Orderable].Ve: Orderable.
—isEmpty(s) A —geq(e, largest(s))=-largest(insert(s, e))=largest(s)
One minterm of the corresponding FDNF is —isEmpty(s) A —geq(e, largest(s)) A
largest(insert(s, e))=largest(s). The application of the technique just described in-
volves using Alloy Analyzer to obtain a SortedSet-algebra that satisfies this minterm
(and fulfills the other three requirements described before). Fig. 3 presents an example

Empty

SortedSet1
isEmpty: True
isin: Ord0->False, Ord1->False

/nsen [Ord1] we‘n [Ord0)
SortedSet2 :> sm(e:)Seta
isEmpty: False insert [Ord1] .) insert [Ord0]
_— isEmpty: False
fsin: Ord->False, Ord1->True isin: Ord0->True, Ord1->False

"{argest insert [Ord0] T /nsert [Ord1]
1 4”
) -
ord1 ~ SortedSetD
(E) (largest| isEmpty: False insert [OrdD] Dinsert [Ord1]
geq: OrdD->False, Ord1->True \ isin: OrdD->True, Ord1->True
\
\
\
\
A

!
; / largest

\ /
\ /

OrdD
geq: Ord0->True, Ord1->True

Fig. 3. A model instance defining a SortedSet-algebra and an assignment to variables e and s.

of one of these algebras (referred as SS? in the sequel), represented as an Alloy model
instance. In fact, it also defines p:{e: Orderable — Ordl, s:SortedSet|Orderable]—
SortedSet3}. The last step is to find a pair (¢, ps) that represents SortedSet3. Through
the analysis of SS2, we find the term insert(empty(), f) and the assignment ps:
{f:Orderable — Ord0}. As a result, we obtain the closed test (TO?, X', ¢, pp, pB)
for SortedSet| TotalOrder], where

- X'={s:SortedSet[Orderable], e: Orderable} U Ys with Yy = {f: Orderable}
- ¢ is defined” (insert(empty(), f)) =
(misEmpty(s) A —geq(e, largest(s))=-largest(insert(s,e))=largest(s)),
with defined” (insert(empty(), f)) = true A true A true
— pp is the assignment {e — Ord1, f — Ord0}
— pp is the function {s — insert(empty(), f)}.
The number of tests generated for each axiom is in general smaller than the number
of minterms in the corresponding FDNF since a minterm may not be satisfiable by
Body-algebras. In particular, this happens in minterms that require the satisfaction of
the negation of the definedeness condition of some term. This is the case of the minterm
isEmpty(s) A —geq(e,largest(s)) Alargest(insert(s, e))=largest(s).

3.3 From Algebraic Specifications to Alloy and Back

The technique just described requires the ability to generate Alloy models from a pa-
rameterized specification PSpec=(Param, Body) and model finding commands for
Alloy Analyzer (Alloy “run” commands) and, in the end, to extract abstract closed tests
from the model instances found by Alloy Analyzer.

Encoding of algebraic specifications in Alloy. The encoding of PSpec in Alloy takes
into account the sorts, operations, predicates and axioms in Body and, at the same time,

sig Orderable {
geq: Orderable -> one BOOLEAN/Bool

sig SortedSet {
insert:Orderable -> one SortedSet,
isEmpty:one BOOLEAN/Bool,
isIn:Orderable ->one BOOLEAN/Bool,
largest: lone Orderable

one sig start{
empty: one SortedSet

fact SortedSetConstruction{
SortedSet in (start.empty).*{x: SortedSet, y: x.insert[Orderable]}

¥
fact domainSortedSet0{
all S:SortedSet |
S.isEmpty != BOOLEAN/True implies one S.largest else no S.largest

¥
fact axiomSortedSet4{
all E:Orderable, S:SortedSet |
(S.isEmpty = BOOLEAN/False and E.geq[S.largest] = BOOLEAN/False]
implies (S.insert[E].largest = S.largest)

// ... other axioms of Orderable and SortedSet
run run_axiomSortedSet4_0{
some E:Orderable, S:SortedSet |
S.isEmpty = BOOLEAN/False and E.geq[S.largest] = BOOLEAN/False
and S.insert[E].largest = S.largest
} for 6 but exactly 2 Orderable
// ... other run commands for other minterms and axioms

Fig. 4. Excerpt of the Alloy model and run commands for SortedSet| TotalOrder].

has to ensure conditions 2 and 3 of Sec. 3.2: there is no junk in the parameterized sorts
and partial operations are defined if and only if their domain condition holds.

Due to space limitation we explain the translation rules (presented in full detail in
[1]) using our running example. Fig. 4 shows an excerpt of the Alloy model produced
for SortedSet|TotalOrder]. Sorts are translated into Alloy signatures. A special signa-
ture start with a single instance is defined to represent the root of the graph view of
each model instance found by Alloy Analyzer (see Fig. 3), holding fields corresponding
to the creators of all sorts (e.g., empty). Other operations and predicates are encoded
as fields of the signature corresponding to their first argument. To allow this encod-
ing for predicates without further arguments (e.g., isE'mpty), predicates are handled
as operations of return type Boolean. Partial operations (e.g., largest) originate fields
with lone multiplicity (0 or 1) and a fact encoding their (strong) domain condition.
To exclude junk for a sort s, a fact is introduced (e.g., SortedSetConstruction fact in
Fig. 4) imposing that all its instances are generated by applying constructors (a creator
followed by other constructors). When constructors have extra arguments that also have
to be constructed, it is necessary to ensure that all instances can be constructed in an
acyclic way, e.g., by imposing in the construction fact that, in each step, it is possible
to construct an instance y by using only instances 1, ..., ,, that precede y in a partial
ordering (to be found by Alloy Analyzer) of all instances. Axioms are straightforwardly
encoded as Alloy facts (e.g., ariomSortedSet4 in Fig. 4).

Generation of model finding commands. In order to find a model instance that sat-
isfies each minterm of the FDNF of each axiom in Body— Param, a “run” command
that encodes condition 4 of Sec. 3.2 is generated. This is illustrated in the bottom of
Fig. 4 for the same axiom and minterm used in the example of Sec. 3.2. The exploration

bounds can be configured by the user. In the example of Fig. 4, we are searching for
models with at most 6 instances of each signature and exactly 2 instances of Orderable.

Extraction of abstract tests from the model instances found. When a “run” com-
mand is executed, each model instance found by Alloy Analyzer can be visualized as
a graph as illustrated in Fig. 3. From this instance an abstract test can be extracted as
partially explained in Sec. 3.2. The canonical term to be assigned to each variable x in
Xp (e.g., S in Fig. 3) is obtained by following a path from the start node to the node
assigned to that variable (e.g., SortedSet3). When constructors have extra parameters
that have also to be constructed, only paths obeying the partial ordering of all instances
imposed by the construction fact are considered. In the example, the extracted Alloy ex-
pression is start.empty.insert[Ord0]. Since a canonical term cannot contain elements
of carrier sets, values of parameter sorts (Ord0 in this case) are replaced by variables
in the expression and their values are recorded in an assignment (pp).

Prop. 1 ensures the correctness of the test generation technique in abstract terms.
Obviously, the preservation of this correctness result depends on how specifications are
encoded into Alloy. Concretely, it is necessary to ensure that all model instances of the
generated model, restricted to the elements of Param, define a Param-algebra. For the
encoding technique presented in this section, all model instances of the generated Alloy
model define a Body-algebra.

4 From Abstract Tests to JUnit Tests

In this work, we focus on Java implementations of ADTs. Hence, we consider imple-
mentations of parameterized specifications to be sets of Java classes and interfaces,
some of them defining generic types. The challenge we address in this section is the
translation of the abstract tests generated for the parameterized specification with the
help of Alloy Analyzer to concrete JUnit tests. The goal of these tests is to exercise the
IUT, instantiating its parameters with mock classes and mock objects derived from the
abstract tests.

The translation of abstract into concrete tests requires that a correspondence be-
tween what is specified algebraically and what is programmed is defined. We assume
this correspondence is defined in terms of a refinement mapping. This notion, defined
in the context of CONGU specifications in [15], is formulated in a more general setting.

4.1 Refinement Mappings

The correspondence between specifications and Java types as well as between opera-
tions/predicates and methods can be described in terms of what we have called a re-
finement mapping. We will restrict our attention to the set of specifications described in
Sec. 2.1. Hence, in the rest of this section we will consider a parameterized specification
PSpec with Body defined by B = Spec, +...+Spec, +Spec,+Spec, +...+Spec;, in
which Spec,, corresponds to the parameter specification. Moreover, to ease the presen-
tation, we will consider that Spec,, has a single sort and all increments Spec,, depend
on Spec,, (i.e., they cannot be moved to a position on the left of Spec,). For the same
reason, we also consider only Java generic types with a single parameter.

Definition 3. A refinement mapping from B to a set C of Java types consists of a type
variable V' and an injective refinement function R that maps:

10

each s; to a non-generic type defined by a Java class in C;

each t; to a generic type with a single parameter, defined by a Java class in C;

p to the type variable V;

each operation/predicate of Specg, with s € {81,...,8n,t1,..., 1}, t0 a method
of the corresponding Java type R(s) with a matching signature: (i) every n-ary
creator corresponds to an n-ary constructor; (ii) every other (n+1)-ary opera-
tion/predicate symbol corresponds to an n-ary method (object this corresponds
to the first parameter of the operation/predicate); (iii) every predicate symbol cor-
responds to a boolean method; (iv) every operation with result sort s corresponds
to a method with any return type, void included, and every operation with a result
sort different from s corresponds to a method with the corresponding return type;
(v) the i-th parameter of the method that corresponds to an operation/predicate
symbol has the type corresponding to its (i+1)-th parameter sort;

— each operation/predicate of Spec,, to a matching method signature such that, for
1<i<k, we can ensure that any type K that can be used to instantiate the parameter
of the generic type R(t;) possesses all methods defined by R for type variable V
after appropriate renaming — the replacement of all instances of V by K.

Fig. 1 partially shows a refinement mapping from SortedSet| TotalOrder] to the Java
types { TreeSet<E>,|Orderable<E>}, using CONGU refinement language. We can check
if the last condition above holds by inspecting whether any bounds are declared in
the class TreeSet for its parameter E, and whether those bounds are consistent with
the methods that were associated to parameter type E by the refinement mapping —
boolean greaterEq(E e). This is indeed the case: the parameter E of TreeSet is bounded
to extend IOrderable<E>, which, in turn, declares the method boolean greaterEq(E e).

4.2 Mock Classes and JUnit Tests

In order to test generic classes against their specifications, finite mock implementations
of their parameters are automatically generated, comprising mock classes, that are in-
dependent of the generated abstract tests, and mock objects, instances of mock classes
that are created and set up in each test method according to a specific abstract test.

public class OrderableMock implements IOrderable<OrderableMock> {
private HashMap<OrderableMock, Boolean> greaterEgMap =
new HashMap<OrderableMock, Boolean>();
public boolean greaterEq(OrderableMock o) {return greaterEgMap.get(o);}
public void add_greatertEq(OrderableMock o, boolean result) {
greaterEgMap.put(o, result);
}

Fig. 5. Mock class generated from the refinement mapping in Fig.1.

Mock classes. For the parameter sort p, a mock class named pMock is generated.
This class will be used to instantiate the parameter of all generic types R(¢;) and,
hence, has to implement all the interfaces that bound these parameters. For instance,
in our example, the class OrderableMock was generated (see Fig. 5) implementing
IOrderable<OrderableMock> because the parameter E of TreeSet is bounded to extend
IOrderable<E>. The mock class defines extensional implementations of all interface

11

methods that correspond to operations or predicates of the parameter specification (in
our example, just the method greaterEq). More concretely, for each interface method
m, the mock class provides: a hash map mMap, to store the method return values for
allowed actual parameters; an add_m method, to be used by the test setup code to define
the above return values; and an implementation of m itself, that simply retrieves the
value previously stored in the hash map.

JUnit tests: axiom tester method. Each axiom Vx1:51...Vx,:s, . ¢ in Body— Param
not defining a domain condition is encoded as a method (reused by all test methods gen-
erated for that axiom) with the axiom variables as parameters and a body that evaluates
and checks the value of ¢ for the given parameter values (see axiomSortedSet4Tester
in Fig. 6). In the case of a variable x; of a parameterized sort sg, since operations of
sk may be mapped to methods with side effects (see the case of insert in Figs. 1 and
6), a factory object (of type Factory<sy>) is expected as parameter instead of an object
of type si, to allow the creation of as many copies as needed of xj (a copy for each
occurrence of x in ¢) without depending on the implementation of clone. This way,
methods with side effects can be invoked on one copy without affecting the other copies.
Sub-expressions involving operations mapped to void methods are evaluated in separate
instructions (see insert in Fig. 6). Equality is evaluated with the equals method.

private interface Factory<T> {T create();}
private void axiomSortedSet4Tester(Factory<TreeSet<OrderableMock>> sFact,OrderableMock e) {
TreeSet<OrderableMock> s_@ = sFact.create();
TreeSet<OrderableMock> s_1 = sFact.create();
if(!s_0.isEmpty() && !e.greaterEq(s_0.largest())) {
s_1l.insert(e);
assertTrue(s_1.largest().equals(s_0.largest()));
}

public void test@_axiomSortedSet4_0(){
// mock objects for the parameter
final OrderableMock ord® = new OrderableMock();
final OrderableMock ordl = new OrderableMock();
ord@.add_greatertEq(ordd, true);
ord@.add_greaterEq(ordl, false);
ordl.add_greatertEq(ordd, true);
ordl.add_greatertEq(ordl, true);
// factory objects for the axiom var’s of parameterized type
Factory<TreeSet<OrderableMock>> sFact =
new Factory<TreeSet<OrderableMock>>() {
public TreeSet<OrderableMock> create() {
TreeSet<OrderableMock> s = new TreeSet<OrderableMock>();
s.insert(ord@);
return s; }

/} checking the axiom
axiomSortedSet4Tester(sFac, ordl);
}//.. other axioms and test cases

Fig. 6. Excerpt of JUnit test code generated corresponding to the model instance shown in Fig. 3.
JUnit tests: test methods encoding abstract tests. For each abstract test

<A7 X7 /\:CEXB deﬁned* (pB (.T)) = ¢, PP, PB>
generated according to the technique described in Sec. 3.2, a concrete JUnit test method
is generated comprising three parts (for an example, see Fig. 6):

— Mock objects: Creation of mock objects (instances of mock classes) for the values
in the carrier set of A, and addition of tuples for the functions and relations in A.

— Factory objects: Creation of a factory object of type Factory<s> for each variable
z : s in X p, that constructs an object of type s upon request according to the term

12

pp(x) and the mapping pp. The verification of the condition defined™ (pp(x)) is
performed incrementally in each step of the construction sequence, by checking the
domain condition before applying any operation with a defined domain condition
and issuing a warning in case it does not hold (not needed in the example).

— Axiom verification: Invocation of the method that checks ¢, passing as actual pa-
rameters the factory objects prepared in the previous step (for the variables in X)
and the values defined in pp (for the remaining variables).

5 [Evaluation

To assess the efficacy (defect detection capability of the generated test cases) and effi-
ciency (time spent) of the proposed technique, an experiment was conducted using dif-
ferent specifications. Herein, we report on the results of the experiment with our running
example. We started by generating abstract test cases for the specification SortedSet.
We measured the time spent by Alloy Analyzer on finding model instances for the sev-
eral run commands (axiom cases) and the number of run commands for which instances
were found. For the ones that Alloy Analyzer could not find instances, a manual analysis
was conducted to determine whether they could be satisfied with other search settings
(exploration bounds). After that, JUnit test cases generated from abstract tests and the
refinement mapping to TreeSet and IOrderable were executed to check the correctness
of the implementation and of the test suite. Subsequently, a mutation analysis was per-
formed to assess the quality of the test suite. Mutants not killed by the test suite were
manually inspected to determine if they were equivalent to the original code, and ad-
ditional test cases were added to kill the non-equivalent ones. A test coverage analyses
was also performed as a complementary test quality assessment technique. The exper-
iment was conducted on a portable computer with a 32 bits Intel Core 2 Duo T6600
@ 2.20 GHz processor with 2.97 GB of RAM, running Microsoft’s Windows 7. The
results are summarized in Table 1.

In terms of efficiency, we concluded that the time spent in finding model instances
(~ 2 minutes) is not a barrier for the adoption of the proposed approach. The percent-
age of axiom cases for which a model instance was not found was significant (44%).
A manual analysis showed that these cases were not satisfiable. Mutation analysis re-
vealed some parts of the implementation of equals and largest that were not adequately
exercised, due to the fact that conditions for inequality are not explicitly specified and
consequently not tested in this example, and due to the fact that the behaviour of opera-
tions outside their domain (in the example, the behaviour of largest over an empty set)
is not specified and consequently not tested.

6 Conclusions and Future Work

Although test generation from algebraic specifications has been thoroughly investi-
gated, existing approaches are based on flat specifications. In this paper, we have dis-
cussed testing from parameterized specifications and put forward a notion of a closed
test appropriate for these specifications, which generalises the standard notion of test as
a quantifier-free ground formula. Then, based on closed tests, we presented an approach

13

Table 1. Experimental results for the SortedSet example

Item Sorted Set
Size of algebraic specification (Body — Param) 25 lines (M
Total number of axioms 9
With instances found in all axiom cases 5
With instances found in some axiom cases 4
Total number of axiom cases (minterms) 36
Number of cases for which instances were found ?) 20 (56%)
Number of cases for which no instances were found () 16 (44%)
Time spent by Alloy analyzer finding instances @ 129 sec
Number of JUnit test cases generated) 20
Size of Java implementation under test 77 lines (V)
Number of failed test cases 0
Total number of mutants generated (with Jumble [12]) 41
Killed by the original test suite 35 (85%)
Not killed by the original test suite 6 (15%)
Equivalent to original implementation 0
Not equivalent to original implementation) 6
Coverage of Java implementation under test (measured with Eclemma [10]) 96,9%
Number of added test cases to kill all mutants (and achieve 100% code coverage) 3

(1) Ignoring comments and blank lines.(?) In this experiment, the exploration was limited to at most 12 instances per sort,
but exactly 3 Orderable. (3) Manual analysis showed that these cases were not satisfiable.) Only one test case was
generated for each satisfiable axiom case (corresponding to the first instance retrieved by Alloy Analyzer). (5) Related to

method invocation outside the domain and to insufficient testing of equals (lack of inequality cases).

for the generation of unit tests for Java implementations of generic ADTs from specifi-
cations in which the generated test code includes finite implementations (mocks) of the
parameters. This paper addresses the foundational aspects of the approach. A tool that
fully automates the test generation from specifications is currently under development.
The tool supports the translation of CONGU specifications to Alloy, the translation of
model instances found by Alloy Analyzer to JUnit as well as the tuning of exploitation
bounds. We envisage the tool can also provide support for other related problems, like
the automatic generation of actual parameters for methods when the type parameters
are interfaces (e.g., comparator in TreeSet<E>(Comparator<E> comparator)).

The proposed approach relies on a translation of specifications into Alloy and on
the capability of Alloy Analyzer to find model instances that satisfy given properties—
in our case, the minterms of the FDNF representation of each axiom. In the conducted
experiments, Alloy Analyzer was able to find model instances for all theoretically sat-
isfiable axiom cases in a moderate time. Mutation testing and code coverage analyses
showed that the generated test cases were of high quality, because they were able to kill
all the mutants and cover all the code apart from behaviours that were not explicitly
specified (behaviour outside operation domains and conditions for inequality).

Although Alloy Analyzer has scalability limitations due to the time required to find
instances of complex models, we did not find that to be an issue for unit testing ADTs.
The fact that Alloy Analyzer only performs model-finding over restricted scopes con-
sisting of a user-defined finite number of objects is what imposes a limitation of the
approach presented: the inability to generate tests for ADTs that do not admit finite

14

models, such as unbounded stacks (since the domain of push is true, it is always pos-
sible to create a bigger stack). To overcome that problem, we are currently working on
an extension of the approach to automatically handle that kind of specifications, that
encompasses transforming constructors into partial functions in the Alloy model and
inserting definedeness guard conditions in the axioms that use those constructors.

As future work, we also intend to extend the approach to rule out automatically by
static analysis unsatisfiable axiom cases and generate tests outside operations’ domains
and for properties not explicitly included in specifications such as those related with the
fact that equality is a congruence. This will reduce the dependence of the approach on
the correct implementation of equals.

Acknowledgement
This work was partially supported by FCT under contract PTDC/EIA-EIA/103103/2008.

References

1. Andrade, F., Faria, J.P., Lopes, A., Paiva, A.: Specification-driven unit test generation for
Java generic classes (2011), http://paginas.fe.up.pt/~jpf/research/TR-QUEST-2011-01.pdf
2. Bidoit, M., Mosses, P.: CASL User Manual, LNCS, vol. 2900. Springer (2004)
. Chen, H.Y., Tse, T.H., Chen, T.Y.: TACCLE: a methodology for object-oriented software
testing at the class and cluster levels. ACM Trans. Softw. Eng. Methodol. 10, 56-109 (2001)
4. Crispim, P., Lopes, A., Vasconcelos, V.T.: Runtime verification for generic classes with
ConGu2. In: Proceedings of SBMF’10: foundations and applications. LNCS, vol. 6527, pp.
33-48. Springer-Verlag (2011)
5. Doong, R.K., Frankl, P.G.: The ASTOOT approach to testing object-oriented programs.
ACM Trans. Softw. Eng. Methodol. 3, 101-130 (1994)
6. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1: Equations und Initial Se-
mantics, Monographs in Theoretical Computer Science (EATCS), vol. 6. Springer (1985)
7. Futatsugi, K., Goguen, J.A., Jouannaud, J.P., Meseguer, J.: Principles of OBJ2. In: Proceed-
ings of the 12th POPL. pp. 52-66. ACM, New York, NY, USA (1985)
8. Gaudel, M.C., Le Gall, P.: Testing data types implementations from algebraic specifications.
In: Formal methods and testing. LNCS, vol. 4949, pp. 209-239. Springer-Verlag (2008)

9. Hein, J.L.: Discrete Structures, Logic, and Computability. Jones & Bartlett Publishers (2009)
10. Hoffmann, M.R.: Ecclema: Java code coverage tool for Eclipse, http://www.eclemma.org/
11. Huges, M., Stotts, D.: Daistish: Systematic algebraic testing for OO programs in the presence

of side-effects. In: Proc. ISSTV. pp. 53-61. ACM (1996)

12. Irvine, S.A., Pavlinic, T., Trigg, L., Cleary, J.G., Inglis, S., Utting, M.: Jumble Java byte code
to measure the effectiveness of unit tests, http://jumble.sourceforge.net/ (2007)

13. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT Press (2006)

14. Mackinnon, T., Freeman, S., Craig, P.: Endotesting: Unit testing with mock objects. In: eX-
treme Programming and Flexible Processes in Software Engineering — XP2000 (2000)

15. Nunes, L., Lopes, A., Vasconcelos, V.T.: Bridging the gap between algebraic specification
and object-oriented generic programming. In: Runtime Verification. LNCS, vol. 5779, pp.
115-131. Springer-Verlag (2009)

16. The Stanford Natural Language Processing Group: http://nlp.stanford.edu/nlp/javadoc/javanlp/
edu/stanford/nlp/util/package-tree.html

17. Yu, B., King, L., Zhu, H., Zhou, B.: Testing Java components based on algebraic specifica-
tions. In: Proc. International Conference on Software Testing, Verification and Validation.
pp- 190-198. IEEE (2008)

(O8]

15

