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Abstract. Executing comprehensive test suits allows programmers to strengthen the confidence on their soft-
ware systems. However, given some failed test cases, finding the faults’ locations is one of the most expensive
and time consuming tasks, thereby any technique that makes it easier for the programmer to locate the faulty
components is highly desirable.

In this paper we focus on finding faults in object-oriented, more precisely Java, implementations of data types
that are described by algebraic specifications. We capitalize on the ConGu and GenT approaches, namely on
the models for the specification under study and the corresponding generated JUnit test suits that cover all
axioms of the specification, and present a collection of techniques and underlying methodology, that give the
programmer a means to find the location of a fault that causes the implementation to violate the specification.
We propose Flasji, a stepwise process for finding the faulty method, which is transparent to the programmer,
that applies the proposed techniques to find a collection of initial suspect candidates and to subsequently decide
the prime suspect among them. We carried out an experiment to evaluate Flasji and obtained very encouraging
results.

1 Introduction

Comprehensive testing of software programs against specifications of desired properties is growing weight among
software engineering methods and tools for promoting software reliability. In particular, algebraic specifications
have the virtue of being stateless, which allows to describe a given component operations in a way that is inde-
pendent of internal representation and manipulation. This aspect makes them suitable for describing abstract data
types (ADTs) [8].

In this paper we capitalize on and enrich an integrated approach to specification-guided software development,
which comprises the ConGu approach [18, 19] to the development of generic Java implementations of parame-
terized algebraic specifications, and the GenT tool [3, 4] that generates test cases for those implementations. We
forward the reader to the referred papers to a justification of the chosen languages and methodologies, and to the
comparison with other proposals with similar objectives.

Generating test cases for generic Java implementations that are known to be comprehensive, i.e. that cover all
axioms/properties of the specification, as ConGu and GenT do, is a very important activity, because the confidence
we may gain on the correction of the software we use, greatly depends on it. But, in order for these tests to be of
effective use, we must be able to use their results to localize the faulty entities. At present, the ConGu tool output
is often insufficient to the task of finding the faulty method; moreover, simply executing the JUnit tests generated
by GenT fail to give the programmer clear hints about the faulty method — all methods used in failed tests are
equally suspect. The ideal result of a test suite execution is the exact localization of the fault(s), however this has
proven a very difficult task.

Several methods have been proposed in the literature to the diagnosis of test failures, that can be quite different
in the way they approach the problem — static and dynamic program slicing [16, 24] were proposed in the eighties,
and have since been used in several proposals; hit spectrum of executable statements from failed and passing tests
is at the base of many approaches to fault-location as, e.g. [12, 14, 15, 21, 25]; specification-based approaches [6,
10, 13] to name just a few, etc. In [26, 27] the authors classify, describe and compare most of these approaches. In
this paper we will focus our discussion of the state of the art on some particular aspects related to the work here
presented. Onde pour??

In a situation where all methods are equaly suspect, the comparison between abstract (correctly behaved)
objects and concrete (observed behaviour) ones can be unworthy, due to the eventual lack of trust on the results
given by observer methods.



Whenever we have a particular suspect, however, we may consider that it is relatively safe to use the other,
not previously suspect, methods to inspect the concrete objects and, in that way, be able to compare their char-
acteristics with the ones of the corresponding abstract objects. We propose Flasji (read “flashy™)!, a collection
of techniques and underlying methodology, that allows to interpret and manipulate the results of ConGu/GenT
failed tests in order to give the programmer a good hint about the Java method, among the ones that implement the
specification, where the fault lies. The presented approach, unlike several existing approaches to fault-location,
does not exclusively inspect the executed code; instead, it exploits the specification and corresponding models in
order to be able to interpret some failures and discover their origin.

Departing from failed JUnit tests, an initial universe of suspects is identified through the application of two
different techniques to those tests; that set of suspects is then reduced by the stepwise application of the other pro-
posed techniques, eventually obtaining a unique suspect. Some of these techniques imply the automatic generation
of new tests from the initial ones, that give new and useful information towards the goal of reducing the number
of suspects.

Alike other fault-location tools and approaches, the unit of failure Flasji is able to detect is the method, leaving
to the programmer the task of identifying the exact instruction within it that is responsible for the failure. If more
than one failure exists, the repeated application of the approach, together with the correction of the identified faulty
method, should be adopted.

In what concerns integration testing strategy, Flasji applies an incremental one in the sense that the Java types
implementing the specification sorts are not tested all together; instead, each one is tested conditionally, presuming
all others from which it depends are correctly implemented (mock classes are used that are built according to the
overall specification models, thereby correct). This incremental integration is possible since the overall specifica-
tion is given as a structured collection of individual specifications (a ConGu module), whose structure is matched
by the structure of the software system that implements it.

The remainder of this paper is organized as follows: section 2 gives an overview of the Flasji approach both
in the broader context of ConGu and GenT approaches, and isolated; it also presents an example that will be used
throughout the paper; section 3 gives the reader some background information about GenT test generation since
the techniques proposed in this paper use several of GenT’s artifacts to draw conclusions and generate additional
information; four probing techniques are presented in section 4 whose main objective is to collect suspect methods
and decide the guilty one; section 5 integrates these techniques resulting in the Flasji approach; an evaluation
experiment of Flasji is presented in section 6 and results are compared with the ones obtained using two fault-
location tools [22, 23]; section 7 discusses related work and, finally, section 8 concludes and identifies topics to be
improved.

2 Approach Overview

In this section the reader will be given a general overview of the integrated approach we propose to fault-location,
given a structured set of specifications defining an abstract data type, and a set of Java types implementing it. An
example is also introduced that will be used throughout the paper to illustrate the several languages and techniques
presented.

2.1 From failed tests to fault-location

We work with ConGu specifications and structure-defining modules (ahead in this text) [18, 19], and (refinement)
mappings that define the correspondence between the sorts and operations of the specifications, and the Java types
and methods of the implementations.

These elements are used as input to the GenT tool [3, 4], which generates additional elements that will be used
by our fault-location approach — Flasji —, as illustrated in figure 1.

In a first phase, GenT is partially applied — the ConGu2Alloy part — to a structured set of ConGu specifications
(.spc files containing the individual specifications, and .mod file defining the structure of the ADT). GenT translates
the possibly parameterized data type to an equivalent Alloy specification (a file with .als extension) that also
contains extra Alloy run commands for a thorough coverage of specification axioms.

In a second phase, the GenT Alloy2JUnit part is applied to this Alloy specification and to the ConGu re-
finement mapping and the Java types that implement the ConGu specification module (no source code needed,
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Fig. 1. Overview of the integrated approach.

only bytecode), resulting in the creation of comprehensive JUnit tests together with mock classes to be used for
parameter types (see section 3 for a detailed explanation).

Finally, Flasji picks the generated Alloy specification, JUnit tests and mock classes, and the original refinement
mapping and Java classes implementing the specification module, and applies the several techniques presented in
this paper, in an integrated way, as briefly overviewed in figure 2.

In order to obtain a reasonable conviction of some method’s guilt, departing from a situation in which one or
more tests fail and all methods are suspect, we pick some particular failed tests and try to look at the behaviour
of the involved operations in a different perspective, as a way to unveil other facets of those operations and
obtain aditional significant information. The several techniques we present in this paper are used, as illustrated in
figure 2, to identify possible suspects and to strengthen or weaken suspicions of guilt. The main objective is to end
up identifying the strongest suspect and, eventually, other possible guilt implementations.

Mock
classes

Jjava

user class
.class

=l .als

L Alloy
refinement spec B|

Generate
model-based

Any
exception
other than
AssertionEr,
ror?

pny faileq
test

involves

observer

Guilty

Some
tests fail
?

No

N? - test and run it jethod

(technique
section 4.4)

tests for
different
axioms 2,

Run GenT
tests

+ other
suspects

D
suspects
list L={}

Collect suspects
in £ by inspecting
exception
message stack
and failed test
code (technique
section 4.3)

Inspect common

constructor c. If ¢

is found suspect,
add cto L.
(technique
section 4.1)

Increase,

maintain, or
decrease op's
suspicion score.

(technique

section 4.2)

L NN Y

TN —> Data flow
test: i
.ie:v: || - > Action flow

Fig. 2. Overview of the Flasji approach.



An initial important source of information about possible guilty operations may be found in JUnit tests that fail
due to some exception other than java.lang.AssertionError. If amethod throws aNullPointerException,
for example, it may be because some (other) method was executed when it should not (its pre-condition evaluates
to true instead of false), thus wrongly letting the system try other further operations. We devised an algorithm
(section 4.3) to collect potential suspects out of this kind of errors.

Other two techniques (presented in sections 4.1 and 4.2) are devised that inspect both specification and Java
code involved in certain failed tests, and automatically generate new tests that reveal some otherwise hidden
information that is then used to strengthen/weaken guilt suspicions on specific operations implementation.

The fault-location process ends with the application of a fourth technique, that is presented in section 4.4,
which generates new, thorough model-based tests, where the information about who are the suspect operations
counts to constrain the confidence that can be put on their results; these tests compare the results obtained by
application of the Java methods implementing specification operations against the results that they should obtain,
as given by abstract information taken from models of the specification.

2.2 An example

We pick a classical yet rich parameterized data type — the sorted set — and begin presenting the ConGu specification
module that specifies it, while explaining the characteristics of the ConGu specification and refinement languages.
We also choose one of its many possible implementations to be used throughout the paper.

Simple sorts, sub-sorts and parameterized sorts can be specified with the ConGu specification language, and
mappings between those sorts and Java types, and between those sorts’ operations and Java methods, can be
defined using the ConGu refinement language — detailed information about the ConGu approach can be found
in [1, 18-20].

Listings 1.1 and 1.2 present the specifications of theSortedSet parameterized sort (the core sort) and of the
simple sort Orderable (the parameter sort).

specification SortedSet[TotalOrder]
sorts
SortedSet[Orderable]
constructors
empty: — SortedSet[Orderable];
insert: SortedSet[Orderable] Orderable — SortedSet[Orderable];
observers
isEmpty: SortedSet[Orderable];
isIn: SortedSet[Orderable] Orderable;
largest: SortedSet[Orderable] —? Orderable;
domains
S: SortedSet[Orderable];
largest(S) if not isEmpty(S);
axioms
E, F: Orderable; S: SortedSet[Orderable];

isin (insert(S,E), F) iff E = F or isIn(S, F);
largest(insert(S, E)) = E if not isEmpty(S) and geq(E, largest(S));

end specification

Listing 1.1. Specification of the parameterized sort (core) SortedSet

We have constructor, observer and other operations, where constructors compose the minimal set of operations
that allow to build all instances of the sort, observers allow to analyse those instances, and the other operations are
usually comparison operations or operations derived from the others.

specification TotalOrder
sorts
Orderable
others
geq: Orderable Orderable;
axioms

E, F, G: Orderable;
E =F if geq(E, F) and geq(F ,E);

end specification

Listing 1.2. Specification of the Orderable parameter sort used by SortedSet

Depending on whether they have an argument of the sort under specification (self argument) or not, con-
structors are classified as transformers or creators. All non-constructor operations must have a self argument.



Functions can be partial (denoted by —>7?), in which case a domains section specifies the conditions that restrict
their domain.

The correspondence between sorts and Java types as well as between operations/predicates and those types’
methods, can be described in terms of refinement mappings. Listing 1.4 shows a refinement mapping from the
specifications in listings 1.1 and 1.2 to Java types TreeSet and IOrderable (listing 1.3).

public interface IOrderable(E) {
boolean greaterEqg(E e);
}

public class TreeSet(E extends IOrderable(E)) {
public TreeSet () {...}
public void insert(E e) {...}
public boolean isEmpty () {...}
public boolean isIn(E e) {...}
public E largest () {...}

}
Listing 1.3. Excerpt from a Java implementation of specificationsTotalOrder and SortedSet[TotalOrder]

refinement <E>
TotalOrder is E {
geq: Orderable e:Orderable is boolean greaterEq(E e);

SortedSet[TotalOrder] is TreeSet<E> {
empty: — SortedSet[Orderable] is TreeSet();
insert: SortedSet[Orderable] e:Orderable — SortedSet[Orderable] is void insert(E e);
isEmpty: SortedSet[Orderable] is boolean isEmpty () ;
isIn: SortedSet[Orderable] e:Orderable is boolean isln(E e);
largest: SortedSet[Orderable] —? Orderable is E largest();
}

end refinement

Listing 1.4. Refinement mapping from ConGu specifications to Java types

These mappings associate ConGu sorts and operations to Java types and corresponding methods. Notice that
the parameter sort is mapped to a Java type variable that is used as the parameter of the generic TreeSet imple-
mentation.

3 Test generation from ConGu specifications

The fault-location approach we present in this paper — Flasji — capitalizes on the GenT tool since many of GenT’s
artifacts constitute both its starting point and working material, namely the Alloy specification that GenT generates
from the ConGu module, and the JUnit tests and parameter related mock classes.

In [4], where the GenT approach and tool are presented, the generation of Alloy [11] specifications from
ConGu modules is introduced, followed by the construction of test cases from Alloy specifications and models,
and ConGu refinement mappings. These tests cover all axioms of the data abstraction specification and, together
with the Alloy specification, are key to the Flasji approach.

In this section we briefly present these subjects, considering that the original ConGu module respects the
following: (i) it is satisfiable by finite models in order to be possible to use the Alloy Analyzer; (ii) the core sorts
include at least a creator and a transformer.

3.1 Generation of Alloy specification and abstract tests

Listing 1.5 presents part of the Alloy specification that is generated from the ConGu module composed of
SortedSet and Orderable sorts.

sig Element {}
sig SortedSet extends Element {
largestOp : lone Orderable,
isInOp : (Orderable) —) one BOOLEAN/Bool,
isEmptyOp : one BOOLEAN/Bool,
insertOp : (Orderable) —) one SortedSet

sig Orderable extends Element {
geqOp : (Orderable) —) one BOOLEAN/Bool

one sig start {
emptyOp : one SortedSet



fact SortedSetConstruction {
SortedSet in (start.emptyOp).x({coreSort : SortedSet, nextCoreSort : coreSort.insertOp[Orderable]})

}
fact OrderableUsedVariables {
Orderable in (SortedSet.largestOp + SortedSet.isInOp.BOOLEAN/Bool + SortedSet.insertOp.SortedSet +
Orderable .geqOp .BOOLEAN/ Bool)

fact domainSortedSet0 {
all SVar : SortedSet | SVar.isEmptyOp != BOOLEAN/True implies one SVar.largestOp else no SVar.
largestOp

}
/7 (...)
fact axiomSortedSet3 {
all EVar, FVar : Orderable, SVar : SortedSet | SVar.insertOp[EVar].isInOp[FVar] = BOOLEAN/True iff
(EVar = FVar or SVar.isIlnOp[FVar] = BOOLEAN/True)

}
/7 (...)
fact axiomSortedSet5 {
all EVar : Orderable, SVar : SortedSet | (SVar.isEmptyOp != BOOLEAN/True and EVar.geqOp[SVar.
largestOp] = BOOLEAN/True) implies SVar.insertOp[EVar].largestOp = EVar

Listing 1.5. Excerpt of the Alloy specification generated for the SortedSet module.

Axiom or composing Boolean expression|Cases to practice (FDNF minterms)
Simple conditional axiom: A and B
Bif A not A and B
not A and not B
Disjunctive logic: A and B
AorB A and not B
not A and B
Biconditional axiom: A and B
Aiff B not A and not B
Ternary conditional axiom: Apply previous rules to the pair:
X =Y when A else Z X=YifA
X =Zifnot A
Multiple variables of the same type: A =B and Expression(A, B)
Expression(A, B) A !=B and Expression(A, B)

Table 1. Cases to be practiced in conditional axioms and Boolean expressions.

In what concerns the syntactic part of the translation, sorts originate Alloy signatures (non-primitive signa-
tures extend Element); operations that are not creators are translated to fields (relations) of corresponding Alloy
signatures, omitting the self argument (partial operations originate lone relations — to 0 or 1); creator operations
originate fields in the special signature start, which has a single instance and is the root of all instances in every
model (see empty); predicates are treated as operations with boolean result; Alloy construction facts are generated
in order to avoid junk in models, that is, the instances of the core sorts are restricted to the ones that can be rep-
resented by terms using only constructors (a creator followed by O or more transformers); Alloy usage facts are
generated in order to avoid superfluous instances of non-core signatures (Element and Orderable in the example)
in models, imposing each instance of a non-core signature to be used as input or output of a core signature relation,
or to be an instance of a sub-signature of the non-core signature.

In what concerns the semantic part of the translation, domain restrictions that relate to partial operations are
translated to Alloy facts that enforce the corresponding field to be defined inside the domain (see the case of
largest); axioms are translated to Alloy facts, with universal quantification over corresponding free variables.

In order to fully test all axioms, the adopted coverage criterion implies the generation of as many test cases as
there are minterms in each axiom, when represented in their full disjunctive normal form (FDNF) (see table 1).
The FDNF of a logical formula that consists of Boolean variables connected by logical operators is a canonical
DNF in which each Boolean variable appears exactly once (possibly negated) in every conjunctive term (called a
minterm) [9].

/(..)



run axiomSortedSet3.0 {
some EVar, FVar : Orderable, SVar : SortedSet | (SVar.insertOp[EVar].isInOp[FVar] = BOOLEAN/True
and (EVar = FVar and SVar.isInOp[FVar] = BOOLEAN/True))
} for 6 but exactly 4 SortedSet

run axiomSortedSet3.1 {
some EVar, FVar : Orderable, SVar : SortedSet | (SVar.insertOp[EVar].isInOp[FVar]
and (EVar = FVar and SVar.isInOp[FVar] != BOOLEAN/True))
} for 6 but exactly 4 SortedSet

BOOLEAN/ True

run axiomSortedSet3.2 {
some EVar, FVar : Orderable, SVar : SortedSet | (SVar.insertOp[EVar].isInOp[FVar] = BOOLEAN/True
and (EVar != FVar and SVar.isInOp[FVar] = BOOLEAN/True))
} for 6 but exactly 4 SortedSet

run axiomSortedSet3.3 {
some EVar, FVar : Orderable, SVar : SortedSet | (SVar.insertOp[EVar].isInOp[FVar] != BOOLEAN/True
and (EVar != FVar and SVar.isInOp[FVar] != BOOLEAN/True))
} for 6 but exactly 4 SortedSet
/7 (...)

Listing 1.6. Alloy run commands generated to test axiomSortedSet3 of Fig. 1.5.
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Fig. 3. A model for the axiomSortedSet3_0 run command found by the Alloy Analyzer.

Although not all minterms are necessarily satisfied, at least one minterm, for each axiom, must be so. Further-
more, in cases where there exist more than one free variable, the several combinations of equality are also covered.
For this purpose, an Alloy run command is generated for each minterm and equality combination between free
variables of an axiom, that allows to find, through the Alloy Analyzer, models and values for the free variables
satisfying it (see listing 1.6).

Models satisfying the specification are generated by the Alloy Analyzer for each consistent run — figure 3
shows a model for the axiomSortedSet3_0 run command found by the Alloy Analyzer. These models define the
objects that will be created in each JUnit test that GenT generates.

3.2 JUnit tests generated from Alloy models

The GenT tool then creates as many JUnit tests as consistent runs (for each axiom, one or more tests can be
generated). All tests for a given axiom will test the same assertion — the axiom itself; the difference between them
lies in the objects that are created, over which the assert statements are verified — each test verifies the axiom
over a given instance of the model, which was found by Alloy Analyzer, that satisfied a given run of that axiom
(remember each run corresponds to a clause/minterm of the FDNF of the axiom). Finite implementations of the



parameter sorts are automatically generated, for each test, from the models found by the Alloy Analyzer. This is
done in two steps: (i) mock classes are created for each parameter sort, which are independent from the models
(see listing 1.7); (ii) mock objects (instances of mock classes) are created and initialized in each test, according to
the corresponding model (see listing 1.8).

public class OrderableMock implements IOrderable(OrderableMock) {
private HashMap(OrderableMock, Boolean) greaterEgMap = new HashMap(OrderableMock, Boolean) ();

@Override public boolean greaterEq(OrderableMock e) {
return greaterEgMap.get (e);

}

public void add_greaterEqg(OrderableMock e, Boolean result) {
greaterEgMap.put (e, result);
}

Listing 1.7. Mock class corresponding to the Orderable parameter sort.

In each generated JUnit test for a given axiom we can identify a first part where the parameters of the generic
ADT are created and initialized (mock objects) according to the Alloy model found for the corresponding run,
followed by the configuration of the free variables used by the given axiom, according to the same model, and
finally the axiom verification, where intermediate axiomatic terms are built and an assertion is verified which
consists of the translation of the axiom expression. Comprehensive test cases result from this generation process
insofar as all operations are tested for cases that cover every consistent minterm of all axioms.

@Test
public void axiomSortedSet3_0() {
// IOrderable Mocks
final OrderableMock orderableSort0 = new OrderableMock () ;
final OrderableMock orderableSortl = new OrderableMock () ;
orderableSort0.add_greaterEg(orderableSort0, true);
orderableSort0.add_greaterEqg(orderableSortl, false);
orderableSortl.add_greaterEqg(orderableSort0, true);
orderableSortl.add_greaterEqg(orderableSortl, true);
// Prepare Core Var Factories
CoreVarFactory(TreeSet (OrderableMock)) sVarFac = new CoreVarFactory(TreeSet(OrderableMock)) () {
@Override
public TreeSet(OrderableMock) create() {
TreeSet (OrderableMock) s = new TreeSet (OrderableMock) ();
s.insert (orderableSort0) ;
s.insert (orderableSortl);
return s;
}
i
// Test the Axiom
axiomSortedSet3Tester (sVarFac, orderableSortl, orderableSortl);

}

private void axiomSortedSet3Tester (
CoreVarFactory(TreeSet (OrderableMock)) sVarFac, OrderableMock eVar,
OrderableMock fVar) {

TreeSet (OrderableMock) sVar_0 = sVarFac.create();

TreeSet (OrderableMock) sVar_l = sVarFac.create();

sVar_0.insert (eVar);

assertTrue (sVar_0.isIn(fVar) == (eVar == fVar || sVar_1l.isIn(fVar)));

// isIn(insert (S,E), F) iff E = F or isIn(S, F);

Listing 1.8. JUnit test for the axiomSortedSet3_0 run command and respective model (fig. 3).

4 Finding suspects and strengthening/weakening suspicions

The techniques we present in this section depart from a situation where we have:

an Alloy specification corresponding to the original ConGu module;

the Java types that implement the module, where a fault exists in the class corresponding to the sort under
study;

a set of JUnit tests created by GenT, where some have failed, and the information about the exception they
launched;

mock classes for the parameter sorts.



Each proposed technique capitalizes, in its own way, on these “materials”, trying to look at the specifica-
tion operations, the corresponding Java methods and the failed tests in such a way that allows it to obtain more
information about the location of the fault.

The tests we work with are conditional in the sense that they test the implementations of the sort under study
— the designated sort, from now on — assuming that the implementations of the other sorts of the ConGu module
are correct. We use GenT generated mock classes for parameter sorts and, if necessary, we generate mock classes
for other non-designated, non-parameter sorts.

Our approach is not based on hit spectrum of executed statements; instead, it uses the specification and its
models to try to find any deviation of the implemented methods to the expected results, both in terms of axiom
compliance and individual method execution result. This means that we search and find guilty methods among
the ones that implement the specification operations, not among private methods or others that are not specified
in the initial ConGu specification module. If a given method m, that implements a given specification operation
op, invokes a private method p that is faulty, our technique will point to m, meaning that it does not correctly
implement op.

We propose two techniques that together can be used to find an initial list of possible suspects, departing from
the set of failed tests, and two others that, given a suspect, can be used to strengthen or weaken the suspicions of
guilt. In section 5 we delineate the stepwise approach that integrates these techniques.

Some useful concepts Before presenting our integrated approach to fault location, let us formalize some concepts
that will be used in coming sections.

We consider each axiom (fact) of the Alloy specification in its full disjunctive normal form (FDNF) where
each clause or minterm is a conjunction containing all literals of the axiom. For a given axiom, at least one of the
minterms is satisfiable. More concretely, let our specification declare a set of axioms {ax} where each ax is of the

form:
vw1:81,...,xntsn \/ Pj
1<j<m

for variables x; and sorts s; and where each of the m minterms of ax is of the form:

Pi = /\ Ajk

1<k<l

where a1, represents a literal (an atom or its negation), and [ is the number of literals in axiom ax.

For each axiom ax = ¢1 V ...V ¢, Alloy run commands R; exist, at least one for each one of the m
clauses or minterms of ax. In addition, when there is more than one free variable of the same type in an axiom, the
various equality combinations among them (equal or diferent) are also covered. Some of the runs will eventually
be inconsistent, but at least one from each axiom is consistent.

Generated from model instances for the consistent I2; runs, JUnit tests are created by the GenT tool that allow
to test axiom ax for each generated model instance. All these tests verify the disjunction of the same assert
statements (corresponding to the m minterms ; of axiom ax). They only differ one from another in the objects
that they create and manipulate, which correspond to the model instances generated for the corresponding run
commands.

The following abbreviations will be used in the next sections, considering fixed a specification, an implemen-
tation, a refinement, and corresponding Alloy runs and GenT generated tests:

— ap is the assertion verified in run R (minterm)
— « is the assertion verified in test ¢ (it corresponds to the axiom that is at the base of test ¢)
— tp is the Java test generated from run R

4.1 Working on constructor operations

The objects involved in a given GenT test are created according to an Alloy model for the overall specification
added with a specific run. The assert statement that is verified over those objects corresponds to an axiom of
the specification (the one from which the given run originated). This means that the result of ¢z, and tg, is
not necessarily the same as the result of an hypothetical test ¢, ¢ r, (generated from the run that joins ag, and
ar, using conjunction). This is because the tests ¢tp, and ti, have assert statements over potentially different
objects, while the test {r, ¢, r, Would test the conjunction of the same assertions over the objects that correspond
to an instance of the Alloy model for the compound run.



Although the failure of two or more tests, each one over a specific set of objects, gives us valuable information
about the involved operations, knowing the behaviour of suspicious operations when applied over the same set of
objects, and looking at that behaviour in a different perspective, can bring aditional significant information. We
propose gathering the runs that originate the failed tests, using the strategy described ahead, as a way to unveil the
potentially guilty operations.

The idea here is to pick two failed tests that test different axioms but use the same constructor, and mix them
to try to unveil more information about that constructor. Because they originate from different axioms, there is a
possibility that they only have the constructor operation in common.

The Strategy We gather the runs that originated those two failed tests into a new run that joins (using conjunction)
the two runs’ assertions, and generate a new model that satisfies this new run. We want this model to be such that,
if we generate a test — call it £1; — from this new, compound, run, the test fails. Although it may seem obvious,
this is not always the case: on the one hand, the model we use to build the new test is not necessarily the same
as the ones that were used for the original failed tests; on the other hand, test 11 corresponds to a conjunction of
disjunctions of clauses — from all these clauses, only two of them correspond to the two clauses that form the new,
compound, run.

Once we are certain that the test 17 generated from this new run fails, we generate a further new test — call
it oo — that negates both assertions. This new test is built over the same objects used by ¢;7, which we know to
represent a model that satisfies the above new, compound, run.

We claim that, if this new test passes, we can increase the guilt of the constructors — since the two original
failed tests test for diferent axioms, the constructors are the only operations we can ensure they have in common.
So, we can see here a further clue to increase suspicion of their guilt. The fact that the model that is used in these
new tests is such that it should verify both axioms, we can say that, if the test negating both assertions passes, we
have a very good clue leading to a deficiency in the implementation of the constructor that both assertions have in
common.

If this new test fails we can be sure that one of the assertions of the original compound test had to be true in
order to obtain a falsity when negating both assertions (the other was necessarily false — remember that test 17
above, which operated over the same objects, failed). Both assertions use the same constructors but one succeeds
and the other does not, so, we claim that, in this case, the guilt should not rely on the common constructor.

Putting it to work Lett; and ¢, be two failed tests, such that:

- ty and t, test different axioms
- ty and t, involve the same constructors
- ty and t, originate from runs Ry and R,

Because t; and t, test different axioms, they pottentially test diferent observers over the same constructors.
Let Ry, be a new, compound, run that results from joining the assertions from the two runs corresponding to the
two failed tests. The assertion for this runis ag,, = ar; A ag,.

Let Alloy generate models for this new run. Then, generate the test ¢ ¢4 as usual, using a model that ensures its
failure. As expected, this new test is such that «; fo =0, N oy

Because test t ¢4 is built over a set of objects that corresponds to a model for run Ry, and the constructor is
the only operation we can guarantee the original tests have in common, then:

1. if oy, and o, fail, we can strengthen the suspicion of guilt of the common constructor;
2. if oy, fails and o, passes, or vice-versa, the guilt should be sought for some other operation but the construc-
tor.

We must be able to find which is the case (1 or else 2). The following reasoning accomplishes the task:

— To find whether both oy ; and ay, fail, we build a new test, over the same objects, where we negate both ay ;
and Qg s and run it; if it passes, then (1) is the case;

— To find whether one sub-expression fails while the other passes, we can use the same above built test where
ay, and oy were negated, if it fails, then (2) is the case.

So, we build test ¢ yo40 from ¢ ;, using the same model instance satisfying Ry, such that ay ., = —ay, A —ay,
Next we execute test ¢ rq0:
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— If it passes:
e the original problem may be caused by the constructors used in ¢, (strengthens the guilt).
- If it fails:
e the original problem should not be caused by the constructors used in ¢y, (weakens the guilt);

If this new test fails due to some exception other than java.lang.AssertionError (e.g. NullPointerEx
ception, ArrayIndexOutOfBoundsException, etc), we cannot conclude nothing more about the constructor
involved. We can identify three possible reasons for such a case:

— The characteristics of the short-circuit Java operators s and | | — they only evaluate the second argument if
the first is true or false, respectively — makes the order in which disjuncts and conjuncts are picked revelant;

— The new Alloy model for the compound run may be such that some pre-condition be violated in the Java
implementation, that was not violated before.

Some examples We modify a particular implementation of the SortedSet ADT by “’planting” some faults in order
to exemplify the application of this technique.

EXAMPLE 1 — THE PRIVATE insert CONSTRUCTOR OF SortedSet IS ILL-IMPLEMENTED.

private Node(E) insert (Node(E) node, E e) {
if (node == null)
return new Node(E) (null, e, null);
if (e.equals(node.data)
return node;
if (e.greaterEqg(node.data))
// node.right = insert (node.right, e); this is right

node.left = insert (node.left, e); // fault here!
else

// node.left = insert (node.left, e); this is right

node.right = insert (node.right, e); // fault here!

return node;

As aresult of this fault, some of the GenT generated tests fail; among them, the tests for runs axiomSortedSet3_0
(that gives semantic to operation isInOp):

run axiomSortedSet3.0
some EVar, FVar : Orderable, SVar : SortedSet | (SVar.insertOp[EVar].islnOp[FVar] = BOOLEAN/True
and (EVar = FVar and SVar.isInOp[FVar] = BOOLEAN/True))
} for 6 but exactly 4 SortedSet

and axiomSortedSet5_0 (that gives semantic to operation largest):

run axiomSortedSet5.0 {
some EVar : Orderable, SVar : SortedSet | ((SVar.isEmptyOp != BOOLEAN/True and EVar.geqOp[SVar.
largestOp] = BOOLEAN/True) and SVar.insertOp[EVar].largestOp = EVar)
} for 6 but exactly 4 SortedSet

that correspond to axiom 3:

fact axiomSortedSet3 {
all EVar, FVar : Orderable, SVar : SortedSet | SVar.insertOp[EVar].isInOp[FVar] = BOOLEAN/True iff
(EVar = FVar or SVar.isInOp[FVar] = BOOLEAN/True)
}

and axiom 5, respectively:

fact axiomSortedSet5 {
all EVar : Orderable, SVar : SortedSet | (SVar.isEmptyOp != BOOLEAN/True and EVar.geqOp[SVar.
largestOp] = BOOLEAN/True) implies SVar.insertOp[EVar].largestOp = EVar
}

Since they involve the same constructor operation — insertOp —, we will join these two runs and create a compound
run as explained above. A new run axiomSortedSet3_0_5.0 is created:

run axiomSortedSet3.0.5.0 {
some EVar, FVar : Orderable, SVar : SortedSet |
(SVar.insertOp[EVar].isInOp[FVar] = BOOLEAN/True and (EVar = FVar and SVar.isInOp[FVar] =
BOOLEAN/ True) )
and
((SVar.isEmptyOp != BOOLEAN/True and EVar.geqOp[SVar.largestOp] = BOOLEAN/True) and SVar.
insertOp[EVar]. largestOp = EVar)
} for 6 but exactly 4 SortedSet

11



We execute the Alloy Analyzer for this run in order to find models satisfying it, and we generate a test for
it based on an Alloy model that guarantees this test’s failure. The chosen model defines that SVar is a SortedSet
into which orderable0 and orderable1 are inserted; EVar is orderable1 and FVar is also orderable1; moreover,
orderable1 is greater or equal to orderable0.

@Test
public void axiomSortedSet3_0_5_0() {
// Mocks’ setup
OrderableMock OrderableSort_0 = new OrderableMock () ;
OrderableMock OrderableSort_1 = new OrderableMock();
OrderableSort_0.add_greaterEq(OrderableSort_0, true);
OrderableSort_0.add_greaterEq(OrderableSort_1, false);
OrderableSort_1.add_greaterEqg(OrderableSort_0, true);
OrderableSort_1.add_greaterEqg(OrderableSort_1, true);
// Factories core var setup
CoreVarFactory(TreeSet (OrderableMock)) SVar_Factory = new CoreVarFactory(TreeSet(OrderableMock)) ()
{
@Override
public TreeSet(OrderableMock) create() {
TreeSet(OrderableMock) __var__ 0 = new TreeSet(OrderableMock)();
__var__0.insert (OrderableSort_0);
var__0.insert (OrderableSort_1);

return var__0;

}
Vi
// Test the Axiom
axiomSortedSet3_0_5_0Tester (SVar_Factory, OrderableSort_1, OrderableSort_1);
}

private void axiomSortedSet3_0_5_OTester (
CoreVarFactory(TreeSet (OrderableMock)) sVar_Factory,
OrderableMock eVar, OrderableMock fVar) {

TreeSet(OrderableMock) sVar_0 = sVar_Factory.create();
TreeSet(OrderableMock) sVar_1 = sVar_Factory.create();
TreeSet(OrderableMock) sVar_2 = sVar_Factory.create();
TreeSet(OrderableMock) sVar_3 = sVar_Factory.create();
TreeSet(OrderableMock) sVar_4 = sVar_Factory.create();

//axiom 3

sVar_0.insert (eVar) ;

assertTrue (sVar_0.isIn(fVar) == (eVar == fVar || sVar_l.isIn(fVar)));
//axiom 5

if(!sVar_2.isEmpty () && eVar.greaterEqg(sVar_3.largest())) {
sVar_4.insert (eVar) ;
assertTrue (sVar_4.largest () .equals (eVar));

Next we generate the modified test for this run (the one that negates both axiom assertions), as explained above,
and execute it. The part of this new test method that creates the objects over which the test works is obviously
similar because it uses the same model. The difference lies in the tester method it calls, which is the following:

private void axiomSortedSet3_ON_5_0ONTester (
CoreVarFactory(TreeSet (OrderableMock)) sVar_Factory,
OrderableMock eVar, OrderableMock fVar) ({
// create the treesets

// test the negation of the axioms

//axiom 3 negated

sVar_0.insert (eVar) ;

assertTrue (sVar_0.isIn(fVar) != (eVar == fVar || sVar_1l.isIn(fVar)));

//axiom 5 negated

sVar_4.insert (eVar);

assertTrue (!sVar_2.isEmpty () && eVar.greaterEqg(sVar_3.largest()) && !sVar_4.largest () .equals(eVar));
}

To simplify reading the example, we did not use the FDNF of axioms in this test but, instead, a direct negation of
the axioms (from == to != and from (B if A) to (A and not B)).

This test passed, so we can strengthen the suspicions of guilt of the constructor — insert — that is common to
both axioms. In the implementation of the SortedSet specification that is used in this example, the public insert
constructor almost only invokes the private insert one, so, making public insert a suspect also makes the private
insert a suspect.

EXAMPLE 2 — THE PUBLIC insert CONSTRUCTOR OF SortedSet IS ILL-IMPLEMENTED. If we test the
implementation with the following fault in the public constructor insert:
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public void insert(E e) {
if (root == null || root.data.greaterEqg(e)) // fault here
root = insert (root, e);

}

we obtain the same tests failing as above — the ones that correspond to runs 3_0 and 5_0 — and we have to try
with more than one of the model instances that Alloy gives us for the compound run until we obtain one that
makes the corresponding test fail. Some of them would originate an error on the test (an exception other than
java.lang.AssertionError). The final result tells us that we can strengthen the suspicions of guilt of the
constructor, that is, the test with the negated axioms passes.

EXAMPLE 3 — WHEN TEST tf.04y0 FAILS. The next case exemplifies the situation where the fault does not lie
in the constructor implementation, and test ¢ ;0440 fails, as it should, weakening the suspicions. This example
is taken from another ConGu module and its respective Java implementation — MapChain specification and a
HashTableChain implementation.

The fault lies in the get observer:

public Object get (Object key) {
int index = find(key);
if (table[index] != null) {
return table[index].get (0); // fault here; should be following cycle instead
/* Search the list at table[index] to find the key.
for (Entry nextItem : table[index]) {
if (nextItem.key.equals (key))
return nextItem.value;
}o*/
}
return null;

}

As aresult of this fault, some of the GenT generated tests fail; among them, the tests for runs axiomMapChain4_1
(that gives semantic to operation remove):

run axiomMapChain4_1 {
some MVar : MapChain, VVar : Value, KVar, KiVar : Key | (KVar != KiVar and MVar.putOp[KVar][VVar].
removeOp[K1Var] = MVar.removeOp[K1Var].putOp[KVar][VVar])
} for 7 but exactly 4 MapSort

and axiomMapChain8_0 (that gives semantic to operation put):

run axiomMapChain8.0 {
some MVar : MapChain, VVar, ViVar : Value, KVar, KiVar : Key | (KVar != K1Var and MVar.putOp[KVar][
VVar].putOp[K1Var][ViVar] = MVar.putOp[K1Var][V1iVar].putOp[KVar][VVar])
} for 7 but exactly 4 MapSort

that correspond to axiom 4:

fact axiomMap4 {
all MVar : MapChain, VVar : Value, KVar, KiVar : Key | KVar = KiVar implies MVar.putOp[KVar][VVar].
removeOp[K1Var] = MVar.removeOp[K1Var] else MVar.putOp[KVar][VVar].removeOp[K1Var] = MVar.
removeOp[K1Var]. putOp[KVar][VVar]

}

and axiom 8, respectively:

fact axiomMap8
all MVar : MapChain, VVar, ViVar : Value, KVar, KiVar : Key | KVar != KiVar implies MVar.putOp[KVar
][ VVar]. putOp[K1Var][ViVar] = MVar.putOp[K1Var][V1Var].putOp[KVar][VVar]

}
The reason why the execution of the corresponding tests fails is that the method equals of class HashTableChain
is used to compare HashTableChain instances, and it uses method get.

Since the tests involve the same constructor operation — put —, we will join these two runs and create a com-
pound run as explained above. A new run axiomMapChain4_1_8_0 is created:

run axiomMapChain4_1_8.0
some MVar : MapChain, VVar, ViVar : Value, KVar, KiVar : Key |
(KVar != KiVar and MVar.putOp[KVar][VVar].removeOp[K1Var] = MVar.removeOp[K1Var].putOp[KVar][VVar])
and
(KVar != KiVar and MVar.putOp[KVar][VVar].putOp[K1Var][V1Var] = MVar.putOp[K1Var][V1Var]. putOp[KVar
1[VVar])
} for 7 but exactly 4 MapSort

We execute the Alloy Analyzer for this run in order to find models satisfying it, and we generate a test for it
based on an Alloy model that guarantees its failure. This chosen model defines that MVar is an empty MapChain;
both VVar and V1Var are Value0, and KVar is Key0 and K1Var is Key1.
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Then we generate the modified test for this run and execute it. This test fails, so we weaken the suspicions of
guilt of the constructor that is common to both axioms — put.

@Test
public void axiomMapChain4_1N_8_ON() {
// Mocks’ setup
final ObjectMock ValueO = new ObjectMock () ;
final ObjectMock Key0 = new ObjectMock () ;
final ObjectMock Keyl = new ObjectMock () ;
// Factories core var setup
CoreVarFactory(HashtableChain) MVar_Factory = new CoreVarFactory(HashtableChain) () {
@Override
public HashtableChain create() {
HashtableChain __var__ 0 = new HashtableChain();
return __var__ 0;
}
}i
// Test the Axiom
axiomMap4_1N_8_ONTester (MVar_Factory, ValueO, Value0O, Key0O, Keyl);
}

private void axiomMap4_1N_8_ONTester (
CoreVarFactory(HashtableChain) Mvar_Factory, ObjectMock Vvar,
ObjectMock Vl1Var, ObjectMock KVar, ObjectMock KlVar) {
//axiomd partl negated — not (B if A) = A and not B
HashtableChain MVarl = MVar_Factory.create();
Mvarl.put (KVar, VVar);
MVarl.remove (K1lVar) ;
HashtableChain MVar2 = MVar_Factory.create();
MVar?2.remove (K1lVar) ;
assertTrue ((KVar == KlVar) && ! (MVarl.equals (MVar2)));
//axiomd part2 negated - not (C if not A) = not A and not C
HashtableChain MVar3 = MVar_Factory.create();
MVar3.put (KVar, VVvar);
MVar3.remove (K1lVar) ;
HashtableChain MVar4 = MVar_Factory.create();
MVar4d.remove (K1lVar) ;
Mvard.put (KVar, VVar);
assertTrue ((KVar != KlVar) && ! (MVar3.equals (MVar4)));
// axiom8 negated - not (B if A) = A and not B
HashtableChain MVar5 = MVar_Factory.create();
MVar5.put (KVar, VVvar);
MVar5.put (K1Var, V1Var);
HashtableChain MVar6 = MVar_Factory.create();
MVaré6.put (KlVar, Vl1Var);
MVaré6.put (KVar, Vvar);
assertTrue ((KVar != KlVar) && !MVar5.equals (MVare6));

4.2 Working on non-constructor operations

Here we do not build a new, compound run, but instead we manipulate and modify parts of a failed test in order to
try to extract further information. The idea is to try to discover whether the tests fail due to a wrong implementation
of a given non-constructor operation op or not.

Apart from failed tests, some prior suspicion on a given operation op gives us a means to better focus our
effort. That can be obtained, e.g., by using the strategy described in section 4.3.

The Strategy From the originally failed test — call it ¢ —, we generate a further new test — call it ., — resulting
from modifying the assertions in ¢ in such a way that the ones involving op, in the disjunct corresponding to the run
that originated ¢, are negated. This new test is built over the same objects used by ¢, which we know to represent a
model instance that satisfies the original run corresponding to .

We claim that, if this new test passes, we can increase the suspicion of guilt of operation op, because it shows
that the main cause of failure of the original tests was really op. We may also generate a further test — call it ¢,, —
from ¢, by negating the assertions in ¢ that do not involve op in the disjunct corresponding to the run that originated
t. If this new test passes, we can weaken the suspicion of guilt of operation op.

Putting it to work Let ¢ be a failed test and op an operation that was pointed as a suspect, for which we want to
strengthen/weaken that suspicion. Let further:

— t contains operation op
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— t originates from run R which corresponds to a given, particular, axiom, whose FDNF has m minterms
- ay=T(ar \/12j2(m71) ag;)

where 7 denotes the result of the translation from the Alloy run to the JUnit test (this translation includes all Java
instructions and methods that are necessary to create the objects implementing the Alloy model entities, and the
JUnit expressions that test the above assertions). For the rest of the paper, we will supress the translation function
T, considering it implicit in all cases where it should apply.

Because Alloy run commands from which GenT tests originate are in FDNF, we know that each disjunct
corresponds to a clause or minterm, that is, to a conjunction of literals. Some of these literals involve op, others
do not, and the idea is to separate ones from the others in the distinguished disjunct Assertr and treat them
differently in what follows. In order to simplify, and without loss of generality, we follow by exemplifying the
case where the number m of clauses or minterms of the given axiom is equal to 2.

ap = ar V aR,

We can now represent Assertr, as a conjunction of two possible conjunctions — one that contains terms
containing op, which we call o, and other with no terms containing op, which we call n.

ar=(0An)Vag,

Remember test ¢ failed, thus all its disjuncts are necessarily false. Because ¢ is built over a set of objects that
correspond to a model for run R, then:

1. if all the conjuncts in o are false, while the ones in n are true, we can strengthen the suspicion of guilt of the
method implementing operation op;

2. if o s true, the guilt should be sought for some other operation but op. For test ¢ to fail and o to be true, n must
be false.

We must be able to find which is the case (1 or else 2). The following reasoning accomplishes the task:

— We build a new test, over the same objects, where we negate all the conjuncts of o, and run it; if it passes, then
(1) is the case;

— We build yet another test, over the same objects, where we negate all the conjuncts of n, and run it; if it passes,
then (2) is the case.

So, we build tests ¢,, and ¢,, from ¢ using the same model instance satisfying I, such that:
at,, = (noAn)Vag,

where 7o denotes the conjunction of the negation of the terms in o (remember o is a conjunction of terms involving
operation op).
ar, = (0 Ann) V ag,

n

where nn denotes the conjunction of the negation of the terms in n (remember n is a conjunction of terms not
involving operation op).
Next we execute tests t,, and t,,:

- If t,, passes:
e the original problem may be caused by the method implementing operation op (strengthens the guilt).
- If t, passes:
e the original problem should not be caused by the method implementing operation op (weakens the guilt).

The ideal, effective, results are the ones where one of the two tests succeeds and the other fails; any other
paired results are inconclusive.

Some examples We give two examples where we succeed in strengthening and weakening, respectively, the guilt
of an observer operation implementation, by applying the technique presented in this section.
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EXAMPLE 4 — AN EXAMPLE WHERE TEST top PASSES AND t,, FAILS (CORRECTLY STRENGTHENS SUSPICION
OF GUILT) This case exemplifies the situation where the fault lies in the suspected observer, which is the method
isEmpty, and test ., succeeds and test ¢,, fails, as it should be, strengthening the suspicions on isEmpty.

public boolean isEmpty () {

return root != null; // fault here! should be: return root == null;

}

As aresult of this fault, some of the GenT generated tests fail; among them, the test for run axiomMapChain4_1,
that includes the suspect i sEmpty observer:

run axiomSortedSet4.2 {
some EVar Orderable ,
largestOp != EVar)
} for 6 but exactly 4 SortedSet

SVar SortedSet | (SVar.isEmptyOp != BOOLEAN/True and SVar.insertOp[EVar].

and that corresponds to axiom 4:

fact axiomSortedSet4 {
all EVar Orderable, SVar
largestOp = EVar

SortedSet | SVar.isEmptyOp = BOOLEAN/True implies SVar.insertOp[EVar].

The model used for this test defines that SVar contains two orderables, and EVar is the smallest of those two
orderables.
private void axiomSortedSet4Tester (CoreVarFactory(TreeSet(OrderableMock)) sVarFac, OrderableMock eVar) {

TreeSet (OrderableMock) sVar0 = sVarFac.create();
TreeSet (OrderableMock) sVarl = sVarFac.create();

if (sVarO.isEmpty()) {
sVarl.insert (evar) ;
assertTrue (sVarl.largest () .equals (eVar));

Now we transform the tested axiom to its full disjunctive normal form:

private void axiomSortedSet4Tester (CoreVarFactory(TreeSet(OrderableMock)) sVarFac, OrderableMock eVar) ({

TreeSet (OrderableMock) sVar0 = sVarFac.create();

TreeSet (OrderableMock) sVarl = sVarFac.create();

TreeSet(OrderableMock) sVar2 = sVarFac.create();

TreeSet (OrderableMock) sVar3 = sVarFac.create();

TreeSet (OrderableMock) sVar4 = sVarFac.create();

TreeSet (OrderableMock) sVar5 = sVarFac.create();

sVar_1.insert (evVar);

sVar_3.insert (evVar);

sVar_b5.insert (evVar);

assertTrue ((sVar_0.isEmpty () && sVar_1l.largest ().equals (eVar)
|| (!sVar_2.isEmpty () && !sVar_3.largest().equals (eVar))
|| (!'sVar_4.isEmpty () && sVar_5.largest ().equals(eVar)));

}

and then create two new tests according to the technique presented in this section:

private void axiomSortedSet4TesterOp(CoreVarFactory(TreeSet(OrderableMock)) sVarFac, OrderableMock eVar) {

TreeSet (OrderableMock) sVar0 = sVarFac.create();

TreeSet (OrderableMock) sVarl = sVarFac.create();

TreeSet (OrderableMock) sVar2 = sVarFac.create();
TreeSet(OrderableMock) sVar3 = sVarFac.create();

TreeSet (OrderableMock) sVar4 = sVarFac.create();

TreeSet (OrderableMock) sVar5 = sVarFac.create();
sVar_1.insert (eVar);

sVar_3.insert (eVar) ;

sVar_b5.insert (evVar);

assertTrue ((sVar_0.isEmpty () && sVar_1l.largest ().equals (eVar)

[l (! (!sVar_2.isEmpty()) && !sVar_3.largest().equals (eVar)

|| (!'sVar_4.isEmpty ()

}

&& sVar_5.largest () .equals(eVar)));

private void axiomSortedSet4TesterN (CoreVarFactory(TreeSet(OrderableMock)) sVarFac, OrderableMock eVar) {
sVar0 =
svVarl =

TreeSet (OrderableMock)
TreeSet (OrderableMock)
TreeSet (OrderableMock)
TreeSet (OrderableMock)
TreeSet (OrderableMock)
TreeSet (OrderableMock)

sVar2
sVar3
sVar4

sVar5 =

sVarFac.
sVarFac.
sVarFac.
sVarFac.
sVarFac.
sVarFac.

create();
create (
create (
create (
create (
create (

);
) ;
) ;
);
)

16



sVar_1.insert (evar);
sVar_3.insert (eVar);
sVar_5.1insert (eVar) ;

assertTrue ((sVar_0.isEmpty () && sVar_1l.largest ().equals (eVar)
|| (!sVar_2.isEmpty () && ! (!sVar_3.largest().equals(eVar)))
|| (!sVar_4.isEmpty () && sVar_5.largest () .equals(eVar)));

}

Notice that the changes were made to the second minterm of the disjunction, which is the one that corresponds
to the run that originated the failed test. In the ¢, test, we negated the literals that include the suspect observer
(isEmpty). In t,, we negated the literals that do not include i sEmpty.

Test t,,;, succeeds and test t,, fails, so we strengthen the suspicions of guilt of i sEmpty.

EXAMPLE 5 —AN EXAMPLE WHERE {,,, FAILS AND TEST ¢,, PASSES (CORRECTLY WEAKENS GUILT) This case
exemplifies the situation where the fault does not lie in the suspected observer, which is the method l1argest, and
test ¢, fails and test ¢,, passes, as it should be, weakening the suspicions on largest.

We pick the exact same case as in example 4, where the real guilty method is isEmpty. All steps are the
same except for the one where tests t,, and ¢,, are created. In ¢,, we negate, on the second minterm, the literals
that include largest, because this is the suspect now, and in ¢,, we negate the literals where largest does not
appear:

private void axiomSortedSet4TesterOp(CoreVarFactory(TreeSet(OrderableMock)) sVarFac, OrderableMock eVar) {

TreeSet (OrderableMock) sVar0 = sVarFac.create();

TreeSet (OrderableMock) sVarl = sVarFac.create();

TreeSet (OrderableMock) sVar2 = sVarFac.create();

TreeSet(OrderableMock) sVar3 = sVarFac.create();

TreeSet (OrderableMock) sVar4 = sVarFac.create();

TreeSet (OrderableMock) sVar5 = sVarFac.create();

sVar_1.insert (eVar);

sVar_3.insert (eVar) ;

sVar_b5.insert (evVar);

assertTrue ((sVar_0.isEmpty () && sVar_1l.largest ().equals (eVar)
|| (!'sVar_2.isEmpty () && ! (!sVar_3.largest () .equals (eVar)))
|| (!'sVar_4.isEmpty () && sVar_5.largest ().equals(eVar)));

}

private void axiomSortedSet4TesterN (CoreVarFactory(TreeSet(OrderableMock)) sVarFac, OrderableMock eVar) {

TreeSet (OrderableMock) sVar0 = sVarFac.create();
TreeSet(OrderableMock) sVarl = sVarFac.create();
TreeSet (OrderableMock) sVar2 = sVarFac.create();
TreeSet (OrderableMock) sVar3 = sVarFac.create();
TreeSet (OrderableMock) sVar4 = sVarFac.create();
TreeSet(OrderableMock) sVar5 = sVarFac.create();
sVar_1.insert (evVar);
sVar_3.insert (eVar);
sVar_5.insert (eVar) ;
assertTrue ((sVar_0.isEmpty () && sVar_1l.largest ().equals (eVar)
[l (! (!sVar_2.isEmpty()) && !sVar_3.largest().equals (eVar)
|| (!sVar_4.isEmpty () && sVar_5.largest () .equals(eVar)));

Notice that, by coincidence, these tests are perfectly equal to the ones in the previous example (except for their
meaning to the results). This happens because the literals where 1argest appears are exactly the same as the ones
where i sEmpty does not appear and vice-versa.

Test t,,, fails and test ¢,, succeeds, so we weaken the suspicions of guilt of largest.

4.3 Test failure caused by an exception other than java.lang.AssertionError

Here we reason about the clues we may get from a test failure due to an unchecked exception as, for example,
NullPointerException, ArrayIndex OutOfBounds Exception, etc. Apart from the obvious suspect (if it
exists) — the method belonging to the class implementing the designated sort that threw the exception —, other meth-
ods can be suspect candidates. For example, if the methods that are used in its pre-condition are ill-implemented,
it can be the case that a corrected implemented method throws an exception because it is invoked in a state where
it should not.

Departing from a situation where the source code of the class under study is not available, but the failed test
code and the exception messages stack are, the following reasoning may apply:
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— the method where the exception is thrown is ill-implemented or

— some method used in its pre-condition is ill-implemented causing the pre-condition to evaluate to true instead
of false, thus letting the system try to execute another operation when it should not, causing it to abort, or

— some method that is used to calculate some of the arguments of the aborted method is ill-implemented or
wrongly used, giving a result that the latter cannot absorb.

We must observe the exception messages stack to find the method where the exception was raised, and inves-
tigate its pre-condition because the operations that are involved in it become suspicious.

If the method that raised the exception is not a candidate for the suspects list — for example, it is a method
belonging to a class that is not the one that implements the designated sort, thus a mock, correct implementation
is used — we must investigate the parameters used in its invocation.

Furthermore, if we have other tests that also abort from some unexpected exception, we may try to find the
most probable suspect by intersecting the obtained sets of suspects.

The following algorithm describes the necessary steps to build the suspects list, having in mind the above
discussed cases:

1. for each test that fails with an exception different from AssertionError:

(a) inspect the first line in the message stack, identifying the method m that launched the exception:
i. if my is of the designated sort, make m this method
ii. else, find the(a) method(s) that is(are) used to compose the parameter(s) of m; in the exception-

throwing invocation and make m(;) this(these) method(s)

(b) add m(;) to the suspects list;

(c) if (each) m(;) has a pre-condition p:
i. add the methods that are used in p to the suspects list;

2. in the end, intersect the suspects lists of all the wrong tests to obtain the most probable guilty operations.

The succession of steps 1.(a).i.(b) covers the cases where the method m that launched the exception is ill-
implemented (example 6 below); the succession of steps 1.(a).i.(b).(c).i covers the cases where the method m
that launched the exception failed because it was incorrectly invoked, and a defect in some method involved in
its pre-condition caused this to be evaluated to true instead of false (example 7 below); the succession of steps
1.(a).ii.(b).(c).1 covers the cases in which method m failed because other methods that were invoked before it were
wrongly invoked (their pre-conditions were satisfied when they should not) and their anomalous results originated
an a posteriori exception (example 8 below).

Some examples Some examples follow that cover the cases referred above.

Example 6 — the fault lies in the method where the exception is launched If we test the TreeSet implementation
with the following fault in largest:

public E largest() {
if (root == null)
return null;
Node(E) rightMost = root;
while (rightMost != null) // fault here! - should be: while (rightMost.right != null)
rightMost = rightMost.right;
return rightMost.data;

}

we only obtain failures caused by exceptions other than java.lang.AssertionError. The specific exception
in this case is NullPointerException in tests 4.0, 5.0, 52, 5.5, 6.0, 6_1 and 6_2. All these tests invoke the

largest method, and they all point to this method as the source of the exception:
Failure Trace
java.lang.NullPointerException

at SortedSet.TreeSet.largest (TreeSet.java:66)

at SortedSet.TreeSet2.axiomSortedSet4Tester (TreeSetTest.java:198)
at SortedSet.TreeSet2.test0_axiomSortedSet4_0 (TreeSetTest.java:198)

According to the algorithm above, the 1argest method is added to the suspects list.
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Example 7 — the guilty operation is used in the pre-condition of the method that launched the exception In the
SortedSet example, let method i sEmpty be faulty and method 1argest, whose pre-condition is ! isEmpty, be
implemented in such a way that it launches ArrayIndexOutOfBoundsException when the set is empty.

If the fault is such that the isEmpty method gives a false result when executed over an empty set, some
test may fail with that exception, and the 1argest method is the one that the exception message stack points to.
According to the algorithm above, the 1argest and i sEmpty methods are added to the suspects list.

Example 8 — the guilty operation is used in the pre-condition of a method that is used to obtain a parameter
of the method where the exception is launched In the SortedSet example, let method isEmpty be faulty and
method largest, whose pre-condition is ! i sEmpty, be implemented in such a way that it returns null whenever
isEmpty returns true. If an empty set appears to be non-empty due to the faulty i sEmpty method, an exception
may subsequently occur, not when calling the 1argest method, but when its nul1l result is compared with some
other orderable value. In this case a NullPointerException is launched while executing the comparison
method, which has no pre-conditions.
If we test the implementation with the following fault in i sEmpty:

public boolean isEmpty () {
return root != null; // fault here! should be: return root == null;

}
we obtain NullPointerException in tests 5_5 and 6_4. These tests have their assertion testing protected by a
condition. For example, the tester for axiom 5 is:

private void axiomSortedSet5Tester (CoreVarFactory(TreeSet (OrderableMock)) sVarFac,OrderableMock evVar) {
TreeSet (OrderableMock) sVar_0 = sVarFac.create();
TreeSet(OrderableMock) sVar_1 sVarFac.create () ;
TreeSet (OrderableMock) sVar_2 sVarFac.create () ;

if(!svVar_0.isEmpty () && eVar.greaterEg(sVar_1l.largest())) {
sVar_2.insert (eVar) ;
assertTrue (sVar_2.largest () .equals (eVar)) ;

According to the exception message stack,

Failure Trace
java.lang.NullPointerException

at SortedSet.OrderableMock.greaterEqg(OrderableMock. java:17)

at SortedSet.TreeSet2.axiomSortedSetS5Tester (TreeSetTest.java:293)

at SortedSet.TreeSet2.testO_axiomSortedSet5_5 (TreeSetTest.java:379)
the exception is raised in the second condition of the i £ guard — evVar.greaterEq(sVar_1.largest ()). The
operation greaterEq is not a suspect because it is not a designated sort operation, meaning that we are only using
a mock implementation of it (which, by definition, is corrrect). So, the guilty method cannot be greaterEqg and
we turn our suspicion to the parameter that is fed to it, which involves the 1argest method. As a consequence,
we add largest to the suspects list.

Furthermore, the operation largest has a pre-condition involving isEmpty, which says that the operation
largest is defined when the sorted set is not empty, and undefined otherwise. This leads us to add isEmpty to
the suspects list.

The exact same behaviour happens in test 6_4. The tester for this axiom is:

private void axiomSortedSeté6Tester (CoreVarFactory(TreeSet(OrderableMock)) sVarFac, OrderableMock eVar) {

TreeSet (OrderableMock) sVar_0 = sVarFac.create();
TreeSet (OrderableMock) sVar_l = sVarFac.create();
TreeSet (OrderableMock) sVar_2 = sVarFac.create();
TreeSet (OrderableMock) sVar_3 = sVarFac.create();

if (!sVar_0.isEmpty () && !eVar.greaterEqg(sVar_1l.largest())) {
sVar_2.insert (eVar) ;
assertTrue (sVar_2.largest () .equals(sVar_3.largest()));

}

and the raised exception is the same. The reasoning is also the same as above.

4.4 Abstract VS Concrete objects

As already discussed, in a situation where all methods are equaly suspect, the comparison between abstract (cor-
rectly behaved) objects and concrete (observed behaviour) ones can be unworthy, due to the eventual lack of trust
on the results given by observer methods.
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Whenever we have a particular suspect, however, we may consider that it is relatively safe to use the other, not
previously suspect, methods to inspect the concrete objects and, in that way, be able to compare their characteristics
with the ones of the corresponding abstract objects.

The Strategy We want to be able to compare the Java objects obtained from executing the methods that im-
plement a given ADT’s operations, with corresponding abstract objects that result from applying those abstract
operations. So, we must build the abstract objects and be able to inspect them too; we want to do this in the most
cost effective way.

The idea here is to use the models found by the Alloy Analyzer that satisfy the specification, to obtain the
information we need to verify the correctness of the corresponding Java objects.

A Java (mock) class is created whose instances represent Alloy model objects of the designated sort, that has
the same public, specified, methods as the class that implements that sort (although some of them have different
signatures as we will see ahead). As many instances of that class are built as the number of objects of this sort
defined by the model. The methods, when invoked over an instance of this class, will give the same results as the
ones determined by the Alloy model.

We then build the concrete objects that correspond to the ones defined by the Allloy model, using the Java
methods that implement ADT operations, and compare them, step by step, with the abstract corresponding ones.

We use ordinary mock classes for all the non-designated sorts of the specification module (some of them will
have already been created by the GenT tool, namely the ones for the parameter sorts). During the comparison, we
only use concrete objects (ones created and manipulated by the Java concrete implementation methods) for the
designated sort; any object from other sort will be a mock one, therefore no concrete versus abstract comparison
will be executed for its implementation.

Putting it to work A new test is built that compares abstract with concrete objects. For this, we must first
generate mock classes for the sorts that compose the specification module. If the module contains parameterized
specifications, we already have mock classes for the parameter sorts. The mock class for the designated sort
is different from the others because the signatures of some of its methods are different from the ones of the
corresponding concrete methods. No problem comes from that because its instances are only used in the context
of this kind of tests.

As an example, a mock class is generated for the SortedSet implementation — TreeSet.

public class TreeSetMock (T){
private HashMap(T,Boolean) isInResult = new HashMap(T,Boolean) ();
private boolean isEmptyResult;
private T largestResult;

@Override
public boolean isIn (T e) {
return isInResult.get (e);

}

public void add_isIn (T e, Boolean result) {
isinResult.put (e, result);
}

@Override

public boolean isEmpty () {
return isEmptyResult;

}

public void add_isEmpty (boolean result) {
isEmptyResult = result;
}

@Override

public T largest () {
return largestResult;

}

public void add_largest (T result) {
largestResult = result;

}

// to be continued

Listing 1.9. Part of the mock class corresponding to the SortedSet sort.
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This mock class brings nothing new in what concerns methods that implement ADT observer operations
whose result type is different from the designated sort. The novelty lies in methods that implement non-creator
constructors and observers whose result is of the SortedSet type. Before entering that subject, let us see how we
can use the simple, non-problematic observers to compare abstract with concrete objects.

We generate an Alloy model for the whole Alloy specification; we do this by executing the Alloy run command
with an empty body. Figure 4 shows the first model obtained by executing the Alloy command: run {} for 6 but
exactly 4 SortedSet.

\ | sortedsetz
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Fig. 4. A model for the SortedSet specification found by the Alloy Analyzer.

A test class is generated that creates, inspects and compares the abstract and concrete objects corresponding
to the obtained model. The abstract Java world is first populated with the abstract objects: two OrderableMock
instances and four TreeSetMock ones, as indicated by the Alloy model below, reflecting each and every object of
the model and their inter-relationships. The concrete Java world objects will also be built, using the corresponding
methods, and comparisons will be made between each pair (abstract, concrete) of objects of the designated sort.
For now, we only present part of the test class, the one that concerns the above observers:

@Test

public void testO ()

{
//IOrderable Mocks
OrderableMock orderable0 = new OrderableMock () ;
OrderableMock orderablel = new OrderableMock();
orderable0.add_greaterEq(orderablel, true);
orderable0.add_greaterEqg(orderablel, true);
orderablel.add_greaterEg(orderable(0, false);
orderablel.add_greaterEqg(orderablel, true);

//Abstract objects TreeSet

TreeSetMock (OrderableMock) absTree3 = new TreeSetMock (OrderableMock) ();
absTree3.add_isEmpty (true);

absTree3.add_isIn(orderable0O, false);

absTree3.add_isIn (orderablel, false);

TreeSetMock (OrderableMock) absTree0= new TreeSetMock (OrderableMock) ();
absTree0.add_isEmpty (false);

absTreel.add_largest (orderablel);

absTreel.add_isIn (orderable(0, false);

absTreel.add_isIn (orderablel, true);

TreeSetMock (OrderableMock) absTreel = new TreeSetMock (OrderableMock) ();
absTreel.add_isEmpty (false) ;

absTreel.add_largest (orderable0) ;

absTreel.add_isIn (orderable0, true);

absTreel.add_isIn(orderablel, false);
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TreeSetMock (OrderableMock) absTree2 = new TreeSetMock (OrderableMock) ();
absTree2.add_isEmpty (false) ;

absTree2.add_largest (orderable0) ;

absTree2.add_isIn (orderablel, true);

absTree2.add_isIn(orderablel, true);

//Concrete objects TreeSet

//Create and compare with corresponding abstract

TreeSet (OrderableMock) concTree3 = new TreeSet (OrderableMock) ()
TreeSet (OrderableMock) concTree3_1 = new TreeSet (OrderableMock) ();
TreeSet (OrderableMock) concTree3_2 = new TreeSet (OrderableMock) ();
TreeSet (OrderableMock) concTree3_3 = new TreeSet (OrderableMock) ();

7

assertTrue (concTree3_1.isEmpty () == absTree3.isEmpty());
assertTrue (concTree3_2.isIn(orderablel) == absTree3.isIn(orderablel));
assertTrue (concTree3_3.isIn(orderablel) == absTree3.isIn(orderable0));

//Create and compare with corresponding abstract
TreeSet (OrderableMock) concTree0 = new TreeSet (OrderableMock) ();

// to be continued

Listing 1.10. (Part of) Abstract versus concrete objects test.

In order to be possible to give adequate feedback to the user concerning the differences between abstract and
concrete objects, that is, between the results concrete Java methods should obtain and the results they really obtain,
we must be able to test all the assert commands. A possible solution is to enclose each assertTrue invocation
in a try-catch block that collects all results which will help composing a final test diagnosis.

Now we see how to cope with methods implementing non-creator constructors and SortedSet result type
observers.

Constructor operations The GenT tool generates a test for each of the runs discussed in section 3.2, where
objects found to verify the assertion are built using the corresponding methods in Java. Whenever there are several
ways to build an object, GenT chooses the shortest path in the model. Here, we also pick the shortest path to build
the designated sort objects of the model, and, by applying the observer operations to their abstract and concrete
versions, test the several methods (see listings 1.10 and 1.11). Notice that, in order to cope with undesired side
effects of methods, as many copies of a given concrete object are created as mehods applied to it.

@Test
public void test0 ()
{

//Create and compare with corresponding abstract

TreeSet (OrderableMock) concTree0 = new TreeSet (OrderableMock) (
TreeSet (OrderableMock) concTree0_1 = new TreeSet (OrderableMock
TreeSet (OrderableMock) concTree0_2 = new TreeSet (OrderableMock
TreeSet (OrderableMock) concTree0O_3 = new TreeSet (OrderableMock
TreeSet (OrderableMock) concTree0_4 = new TreeSet (OrderableMock
concTree(O.insert (orderablel);

concTree(O_1.insert (orderablel);

concTreeO_2.1insert (orderablel) ;

concTreeO_3.insert (orderablel) ;

concTreeO_4.insert (orderablel);

assertTrue (concTree(O_1.isEmpty () == absTreeO.isEmpty());
assertTrue (concTree(O_2.largest () == absTreel.largest());

assertTrue (concTree0_3.1isIn (orderablel) == absTreelO.isIn (orderablel)
assertTrue (concTree0_4.1isIn (orderablel) == absTree(.isIn (orderable0)

7

R )

)i
)i

//Create and compare with corresponding abstract

TreeSet (OrderableMock) concTreel = new TreeSet (OrderableMock) (
TreeSet (OrderableMock) concTreel_1 = new TreeSet (OrderableMock
TreeSet (OrderableMock) concTreel_ 2 = new TreeSet (OrderableMock
TreeSet (OrderableMock) concTreel_3 = new TreeSet (OrderableMock
TreeSet (OrderableMock) concTreel_4 = new TreeSet (OrderableMock
concTreel.insert (orderable0);

concTreel_l.insert (orderable0) ;

concTreel_2.insert (orderable0) ;

concTreel_3.insert (orderablel);

concTreel_4.insert (orderablel);

assertTrue (concTreel_1.isEmpty () == absTreel.isEmpty());
assertTrue (concTreel_2.largest () == absTreel.largest());

assertTrue (concTreel_3.isIn (orderablel) == absTreel.isIn (orderablel));
assertTrue (concTreel_4.isIn(orderable0) == absTreel.isIn(orderable0));

7

RN

//Create and compare with corresponding abstract
TreeSet(OrderableMock) concTree2 = new TreeSet (OrderableMock)();
TreeSet (OrderableMock) concTree2_1 = new TreeSet (OrderableMock) ();
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TreeSet (OrderableMock) concTree2_2
TreeSet (OrderableMock) concTree2_3
TreeSet (OrderableMock) concTree2_4
concTree2.insert (orderablel) ;
concTree2.insert (orderablel) ;
concTree2_1l.insert (orderablel);
concTree2_1.insert (orderablel);
concTree2_2.insert (orderablel);
concTree2_2.insert (orderablel);
concTree2_3.insert (orderablel);
concTree2_3.insert (orderablel);
concTree2_4.insert (orderablel);
concTree2_4.insert (orderablel) ;
assertTrue (concTree2_1l.isEmpty () == absTree2.isEmpty());

assertTrue (concTree2_2.largest () == absTree2.largest());

assertTrue (concTree2_3.isIn(orderablel) == absTree2.islIn(orderablel));
assertTrue (concTree2_4.isIn (orderablel) == absTree2.isIn(orderable0));

new TreeSet (OrderableMock) ();
new TreeSet (OrderableMock) ();
new TreeSet (OrderableMock) ();

Listing 1.11. (Part of) Abstract versus concrete objects test.

The reader might wonder why is it that we compare OrderableMock objects by using == instead of equals,
knowing that their type is not a primitive one? The answer is simple to understand, and is given by steps. Knowing
that:

— in the generic class Treeset(T), that implements the designated sort SortedSet, there is no way to create
new parameter objects unless clone is used, because it is not possible to have new T () (this means that, in
cases where parameter types are not obliged to be cloneable, there is no way a generic class can create new
parameter objects);

— we use the OrderableMock type to instantiate the parameter type variables of both TreeSetMock and
TreeSet objects, that is, all parameter objects that populate the sets in the test are of type OrderableMock;

— we create only as many parameter objects as defined by the Alloy model (two in this example test: orderable0
and orderablel)

we may conclude that:

— all methods, abstract and concrete, that implement observers whose result is of Orderable sort, return OrderableMock
objects;

— all these methods can only return one of orderable0 and orderablel. So, we may compare OrderableMock
abstract and concrete results by using ==.

Returning to the question of the constructor operations, we should also test their other applications in order to
be able to test the dynamics of the construction process that leads to a given object — suppose a table constructor
that, given a key k and a value v, adds the pair (k, v) to the table object if it does not contain any pair with that
same key already, and substitutes the old value by the new one, otherwise. Moreover, suppose that the constructor
is ill-implemented in such a way that it does not perform the substitution when it should. If we only pick the
shortest path objects, that fault will not arise because none of those objects will be the target of two applications of
the constructor with the same key; more generally, no constructor is used that results in the same object to which
it is applied to.

Since the other applications of the constructors do not aim at the construction of new, different, objects, we are
going to treat them as observations. In this way, we can adopt the same reasoning as the one we will apply ahead
for observers with designated sort result.

So, let us now study the case, not covered above, where the result of an observer is from a type implementing
the designated sort of the ConGu module.

Observer operations with designated sort result The Alloy model defines exactly what the objects are that
result from each operation defined in the several sorts of the specification, when applied to each object of those
sorts. Because we create a distinct variable to hold the reference for each of the abstract objects, we may consider
that the name of the variable identifies the abstract object it refers to (none of these variables and objects are ever
modified).

The references of the concrete objects that are created are kept within variables whose names can be paired
to the ones of the variables that refer to corresponding abstract objects. Then, it is enough to check whether
the concrete objects we get as a result of Java observers are equal (using Java method equals) to the concrete
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ones whose references are held by the variables whose names correspond to the ones that hold the corresponding
abstract results.

As an example, consider the case where we want to compare abstract and concrete objects whose references
are kept in variables absT1, and concT1, respectively, by applying to them the several observers, namely obsA
observer and its Java implementation mObsA. If the chosen Alloy model instance determines that obsa result, when
applied to the abstract object whose reference is kept in variable absT1, is the abstract object whose reference
is kept in variable absT2, then we will test that the result of the Java method mObsa, when applied to the object
referred to by variable concT1, is equal to the one whose reference is kept in variable concT2, that is, we will
test whether (concT1.mObsA()) .equals (concT2) is true.

We are not comparing whether the concT1.m0ObsA () result object and the one referred to by concT2 are
observationally the same, that is, we do not explicitly compare the results of applying the observers to each one of
them — we use equals instead. Observational equivalence is applied only between abstract and concrete objects
(in this case, between absT1 and concT1), and it is inquired at the first level of depth only.

Finishing the work In Java there is no way to declare a local variable whose name is not known at compile time,
not even using reflection. But we need to decide, at runtime, what the concrete object is we must inspect, based on
the name of a variable containing the reference for an abstract object. So, whenever we store the abstract object
that results from applying a given observer to a given abstract object, in cases where the given observer result is
of the designated sort, we must also store the corresponding concrete object. Instead of storing the name of the
corresponding concrete variable, we store the reference to the concrete object itself.

Suppose our SortedSet ADT defines observer operation removelLargest: SortedSet — SortedSet, that has a
result of the designated type SortedSet and has the domain condition removelargest(S) if not isEmpty(S).

As we know, an observer whose result is of the designated sort may be implemented as a method with any
return type: (i) void (tipically used in mutable implementations like the one we have been using); (ii) TreeSet
(tipically used in immutable implementations) and (iii) another different type (e.g. int in order to return some
error code, T to return the element that is removed from the set, etc). This last case should be treated as the others
since we cannot know, at the abstract level, what the result of the concrete method is supposed to be. In what
concerns case (ii), a mutable implementation can also apply — for example, method removeLargest changes
the state by removing the largest element and it returns the previous state as its result — and ConGu allows the
implementer to define which one should apply.

We only compare what is relevant for our purpose, which are the abstract object that the Alloy model deter-
mines as being the result of the operation, and the new state of the target concrete object after the concrete method
has been executed (for cases i and iii and also in mutable versions of i7) or the concrete object that is the result of
the concrete method execution (for case ii, in an immutable implementation).

For this purpose, the TreeSetMock class must declare variables and methods to store the (abstract) result that
the Alloy model establishes for this operation for each instance of SortedSet, as well as the Treeset concrete
object that corresponds to that abstract object. Whatever the case (i, ii or iii), those are the needs.

The technique that follows also applies to the observations we decided to perform over SortedSet and cor-
responding TreeSet objects using the non-creator constructor insert. So, the examples will also include this
method, showing how it can be treated as a designated sort observer.

In order to add the constructor and the new observer to our running example, we modify the TreeSetMock
class by adding an inner class Pair_TreeSetMock_TreeSet to it. Furthermore, we define two mock observer
“versions” of the new methods in order to be possible to obtain the expected abstract and concrete results of the
operations:

public class TreeSetMock(T) {

private class Pair_TreeSetMock_TreeSet (T){
TreeSetMock(T) aval;
TreeSet(T) cval;
void setAbsVvVal (TreeSetMock(T) av) { aval = av;}
void setConcVal (TreeSet(T) cv) { cVal = cv;}

}

private Pair_TreeSetMock_TreeSet removelargestResult = new Pair_ TreeSetMock_TreeSet ();
private HashMap(T,Pair_TreeSetMock_TreeSet) insertResult = new HashMap(T,Pair_TreeSetMock_TreeSet)

0);
@Override

public TreeSet(T) removelargest_C () {
return removelLargestResult.cVal;
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}

public TreeSetMock(T) removeLargest_A () {
return removelargestResult.aVval;

}

public void add_removeLargest (TreeSetMock(T) absVal, TreeSet(T) concVal) {
removelLargestResult.setAbsVal (absVal);
removelLargestResult.setConcVal (concVal) ;

}

@Override

public TreeSet(T) insert_C (T e){

return insertResult.get (e).cVal;
}
public TreeSetMock(T) insert_A (T e){
return insertResult.get (e).aVal;

}

public void add_insert (T e, TreeSetMock(T) absVal, TreeSet(T) concVal) {
Pair_TreeSetMock_TreeSet p = new Pair_ TreeSetMock_ TreeSet ();
p.setAbsVal (absval) ;
p.setConcVal (concVal);
insertResult.put (e, p);

}

} // end of class TreeSetMock

Listing 1.12. TreeSetMock class with a designated sort observer and a non-creator constructor.

Let us refactor our example in listing 1.10 to make it general enough to cope with the existence of this kind of
observers. Because we need abstract and concrete objects when we add results of operations to the mock objects,
then, unlike the way we did before, here we must first create all abstract and concrete objects, and only after
this can we add the results of abstract operations to the mock objects. As before, initial concrete objects of the
designated sort are built according to the shortest path to the Alloy model objects.

//Abstract and concrete objects TreeSet3

TreeSetMock (OrderableMock) absTree3 = new TreeSetMock (OrderableMock) ();

TreeSet (OrderableMock) concTree3 = new TreeSet (OrderableMock) ();
//Create other copies of concTree3

//Abstract and concrete objects TreeSet0
TreeSetMock (OrderableMock) absTree0= new TreeSetMock (OrderableMock) ();
TreeSet (OrderableMock) concTree0 = new TreeSet (OrderableMock) ();
concTreel.insert (orderablel);

//Create other copies of concTreel

//Abstract and concrete objects TreeSetl
TreeSetMock (OrderableMock) absTreel = new TreeSetMock (OrderableMock) ();
TreeSet (OrderableMock) concTreel = new TreeSet (OrderableMock) ();
concTreel.insert (orderable0) ;

//Create other copies of concTreel

//Abstract and concrete objects TreeSet2
TreeSetMock (OrderableMock) absTree2 = new TreeSetMock (OrderableMock) ();
TreeSet (OrderableMock) concTree2 = new TreeSet (OrderableMock) ();
concTree2.insert (orderablel);
concTree2.insert (orderable0) ;

//Create other copies of concTreel

Listing 1.13. Creating all abstract and concrete objects.

Next we must define the results of observers over the abstract objects using the add_x0Observer methods of
the mock classes. The operation removelargest was not part of the original running example due to simplification
issues. In the meanwhile, we introduced it as a way to exemplify the case of an observer with a designated
sort result type, without modifying the presented specifications. However, in order to continue with the present
explanation, we need to define the abstract behaviour of this observer; we do it by giving its expected results when
applied to the designated sort abstract objects composing the model:

— removelargest (absTree3) is not defined

— removelargest (absTree0) is equal to absTree3
— removelargest (absTreel) is equal to absTree3
— removelargest (absTree2) is equal to absTree0

According to this and the original example:

//Adding results of observers to abstract objects
absTree3.add_isEmpty (true);

//absTree3 does not satisfy domain condition of largest
absTree3.add_isIn(orderable0, false);
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absTree3.add_isIn(orderablel, false);
//absTree3 does not satisfy domain condition of removeLargest
//the two inserts were already applied; no need to further observe

absTreel.add_isEmpty (false) ;

absTree(0.add_largest (orderablel);

absTreelO.add_isIn(orderable0, false);

absTreelO.add_isIn (orderablel, true);

absTreel.add_removeLargest (absTree3, concTree3);

// insert of orderable0 was already applied; no need to further observe
absTree0.add_insert (orderablel, absTree0, concTree0);

absTreel.add_isEmpty (false);

absTreel.add_largest (orderablel);
absTreel.add_isIn(orderable0, true);
absTreel.add_isIn(orderablel, false);
absTreel.add_removeLargest (absTree3, concTree3);
absTreel.add_insert (orderable0, absTreel, concTreel);
absTreel.add_insert (orderablel, absTree2, concTreel);

absTree2.add_isEmpty (false) ;

absTree2.add_largest (orderableO);

absTree2.add_isIn (orderable(, true);
absTree2.add_isIn (orderablel, true);
absTree2.add_removelLargest (absTree0, concTreel);
absTree2.add_insert (orderable0, absTree2, concTreel);
absTree2.add_insert (orderablel, absTree2, concTreel);

Listing 1.14. Adding results of observers to abstract objects.

Finally, we compare the abstract and concrete objects using all possible observers. Remember that if a given
observer is the suspect one, we must treat it differently, that is, the way assertTrue violations are interpreted
must have this in mind.

//Comparing results of observer isEmpty()

assertTrue (concTree3_l.isEmpty () == absTree3.isEmpty());
assertTrue (concTree(0_1l.isEmpty () == absTreel.isEmpty());
assertTrue (concTreel_ 1.isEmpty () == absTreel.isEmpty());
assertTrue (concTree2_1.isEmpty () == absTree2.isEmpty());

//Comparing results of observer largest ()

assertTrue (concTree(0_2.largest () == absTreel.largest());
assertTrue (concTreel_2.largest () == absTreel.largest());
assertTrue (concTree2_2.largest () == absTree2.largest());

//Comparing results of observer isIn()

assertTrue (concTree3_2.isIn (orderablel) == absTree3.isIn(orderablel)

assertTrue (concTree3_3.isIn (orderablel = absTree3.isIn(orderablel));
assertTrue (concTreeO_3.1isIn (orderablel absTreel.isIn (orderablel));
assertTrue (concTreeO_4.isIn (orderablel absTreel.isIn (orderablel));

)
)
)
)
) absTreel.isIn (orderablel)
)
)
)

(

(

(
assertTrue (concTreel_3.isIn (orderablel

(

(

(

assertTrue (concTreel_4.isIn(orderablel absTreel.isIn (orderable0));
assertTrue (concTree2_3.isIn (orderablel absTree2.isIn (orderablel));
assertTrue (concTree2_4.isIn (orderablel absTree2.isIn (orderablel));

// to be continued..

Listing 1.15. Comparing results of some of the observers.

To verify whether a given observer whose result is of the designated sort is well implemented, we compare the
concrete object that the concrete method returns with the concrete object that it should return were the observer
operation correctly implemented. We consider here that the given observer is implemented with a void result
type, which is consistent with the mutable characteristic of the original example.

We must follow these steps:

— first we invoke the concrete method (which has void return type) using the concrete object as a target;

— then we compare (using equals) the new state of the concrete object (it has eventually been modified by
the observer method) with the concrete object that, according to the mock corresponding object, should be
the correct result (in the removeLargest example, we invoke the mock TreeSet(T)removeLargest_C ()
method to obtain this object).

//Comparing results of removeLargest
concTreeO_5.removelargest ();

assertTrue (concTree0_5.equals (absTreel.removelLargest_C ()));
concTreel_5.removelargest ();

assertTrue (concTreel_5.equals (absTreel.removelLargest_C ()));
concTree2_5.removelargest ();
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assertTrue (concTree2_5.equals (absTree2.removelLargest_C ()));
//Comparing results of insert

cconcTreeO_6.insert (orderablel);

assertTrue (concTree(l_6.equals (absTreeO.insert_C (orderablel)));
concTreel_6.insert (orderable0);

assertTrue (concTreel_6.equals (absTreel.insert_C (orderablel)));
concTreel_7.insert (orderablel);

assertTrue (concTreel_7.equals (absTreel.insert_C (orderablel)));
concTree2_6.insert (orderablel);

assertTrue (concTree2_6.equals (absTree2.insert_C (orderablel)));
concTree2_7.insert (orderablel);

assertTrue (concTree2_7.equals (absTree2.insert_C (orderablel)));

Listing 1.16. Comparing results of the designated sort observers.

As expected, although it is not shown in any of the previous listings, the exact same steps that we followed to
obtain the original concrete objects, are taken to obtain the copies of the original concrete objects we use as targets
for the application of these observers.

The algorithm To conclude, the following algorithm describes the necessary steps to build the test class that
compares concrete with abstract objects:

— Generate an instance of the Alloy model that satisfies all facts of the Alloy specification (use an empty run
command in Alloy Analyzer);
— Generate mock classes (whose instances will be the “abstract objects”) for the sorts of the specifications in
the module (the ones corresponding to parameter sorts were already built by GenT):
e mock classes must give their instances the ability to store and retrieve the results of applying all observers;
e mock classes for non-designated non-parameter sorts are built as usual; the mock class for the designated
sort is somewhat different since it must be prepared to facilitate the comparison between concrete objects:

x for all observers whose result is of the designated sort as well as for non-creator constructors, mock
objects must be able to store and retrieve not only the specific abstract result but also the correspond-
ing concrete object;

— Generate a test class to compare the abstract with the concrete objects, for a given suspect method spct:
e compose the abstract objects, as defined by the Alloy model:

* as many abstract objects are created as there are instances of the specified sorts in the Alloy model;

x they are created by instantiating the corresponding mock classes and by applying them the construc-
tors defined by the shortest path in the model;

* they are “fed” with the information about its behaviour, as defined by the Alloy model (for the desig-
nated sort, this exercise depends on concrete objects having already been created);

e create the corresponding concrete objects:

* concrete objects concX;; are created of the designated sort — at least one for each abstract object
absX; of the designated sort —, by using the concrete class constructors corresponding to the ones
used to define absX;;

* the number of concX;; concrete objects of the designated sort that must be created depends on the
number of observer applications that must be executed in order to compare this concrete instance with
the abstract one;

* there are no concrete objects of non-designated sorts, only mock ones;

e compare the abstract with the concrete objects:

* apply to the concrete objects all the observer methods (including the non-creator constructor) that
should be possible to apply, as indicated by the Alloy model, while comparing the results with the
corresponding mock methods’ results when executed over abstract objects;

* comparisons involving observers whose result is of a primitive sort, or of any of the specified sorts
which are not the designated sort, are made using == between the results of applying the observer to
the concrete and to the abstract objects;

* comparisons involving observers whose result is of the designated sort, or non-creator constructors,
are made using equals between the result of applying the method, and the concrete object stipulated
by the mock abstract object as being a correct result for that method;

* be aware of the suspect method spct: if it is an observer, the comparisons involving it must supply a
distinctive output (because it is, a priori, less reliable)

— Run the test class for a given suspect method
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Interpreting the results The interpretation of these tests’ results is based upon the following observations: (i)
whether several and varied observers fail or only one fails — this is important to decide whether the guilt lies
in the constructor or in a given, specific, observer; (ii) whether varied observers fail when applied to concrete
objects directly created by the constructor-creator or when applied to objects that were the target of non-creator
constructors — this is important to decide which constructor is the faulty one.

The modus operandi that should be used is given by the following:

— If only a given observer ob fails:
e decide ob is the faulty method
— If several and varied observers fail:
o if those failures also happen when observers are applied to a constructor-creator cc method:
* decide cc is the faulty method
o clse (observers do not fail when applied to any constructor-creator) if some of the observations made by
a non-creator constructor ncc (when used as an observer) fail:
* decide ncc is the faulty method
e else
* inconclusive

If a constructor-creator cc (TreeSet () that implements the empty creator operation in the running example)
is faulty, it is reasonable to think that the application of the other constructors over an object created by cc will
most probably result in non-conformant objects, because the initial object was ill-built.

When no problems arise when observing a freshly created object, but they do arise when observing those
objects after being affected by a non-creator constructor ncc (insert in the running example), then one may
point the finger to ncc.

This reasoning must account for the initial suspect that was input to the test; if it is an observer, its results
should be deemed as non-reliable.

An example We applied this tecnique to all our case studies with excellent results. As an example, the case
where the insert operation was ill-implemented and for which there were two suspects — methods i sEmpty and
insert.

We applied the abstract-concrete comparison presented in this section to the two suspects, independently from
each other, and got an unequivocal result that pointed to a faulty implementation of the insert operation.

None of the direct observations over concrete objects freshly created by the Java constructor TreeSet () (the
one that implements the constructor-creator empty) failed.

When applied to concrete objects that resulted from the insert constructor, all observers gave results that
were different from the ones expected, that is, from the ones obtained by the application of their corresponding
mock methods to the corresponding abstract objects.

This tells us that the concrete objects that were built by application of the insert method were wrongly built,
and that the problem does not come from some particular way we look at the objects. If the implementation of
isEmpty were wrong, one would not expect all comparisons to be false, but only the ones involving i sEmpty.

What if one cannot trust equals? The technique just presented depends on the correctness of the equals
method. If there are reasons to suspect that it is ill-implemented or that it may depend on some other suspicious
method, using it to evaluate other methods’ correctness can be misleading (see the discussion on the oracle prob-
lem in section 7). As an example, we obtained poor results when using this technique over a faulty implementation
of the MapChain case study, where a fault in method get affected the results of equals due to the fact that the
latter used the former (see section 6).

We consider here an alternative way of comparing designated sort concrete objects, that does not rely on the
correcteness of equals. The idea is to only use non-designated sort observers over concrete objects; the results
of these observers can be compared using == because we work with a finite set of immutable mock objects, as
already explained.

The difference lies essentially in the way we ensure that designated sort concrete objects resulting from con-
crete operations are the correct ones: we observe them with non-designated sort observers only. The concrete
objects we must observe are:

— initial objects obtained by following minimum paths in the model;
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— results of designated sort observers;
— objects obtained from additional applications of non-creator constructors (the ones corresponding to non-
minimum paths).

We work with a finite universe of designated sort objects — the ones defined by the Alloy model of the spec-
ification —, so the correct outcomes of all operations whose result is of the designated sort must be within this
universe. Since we apply all operations defined in the model (not just the ones corresponding to the minimum
path for each object), then if we observe all corresponding concrete operations applications against corresponding
abstract objects, we obtain the greatest coverage that is possible to obtain with the available observers.

Initial objects obtained by following minimum paths in the model are compared with corresponding abstract
ones exactly as shown in listing 1.15. The abstract correspondents of the other designated sort concrete ob-
jects are obtained by invoking the ”A” versions of the proper mock class operations. For example, if we want
to ensure that the state of concrete object concTree0_0 (one of concTree0 “clones”) after application of
insert (orderable0), is as expected, we should compare it to the corresponding abstract object, which we
obtain by applying insert_A (orderable0) to absTree0 (the abstract correspondent of concTree0).

Applying this reasoning to our running example would entail the replacement of the instructions in listing 1.16
by the ones in listing 1.17. For space reasons we simplify this example by sequentially applying several observer
operations to the same concrete object; however, that is not the real procedure — as already presented, each observer
operation is to be applied to a copy of the concrete object in question.

// Comparing results for insert

//conc0_0
concTreeO_0.insert (orderablel);
assertTrue ((concTree0_0.isIn(orderable0) == absTreel.insert_A (orderablel) .isIn (orderablel)));
assertTrue ((concTree0_0.isIn(orderablel) == absTreel.insert_A (orderablel) .isIn(orderablel)));
assertTrue ((concTree0_0.isEmpty () == absTree0O.insert_A (orderablel) .isEmpty()));
if (absTreelO.insert_A (orderablel) .largest()) != null)

assertTrue ( (concTree0_0.largest () == absTree(O.insert_A (orderablel) .largest()));
//concl_0
concTreel_0O.insert (orderable0);
assertTrue ((concTreel_0.isIn(orderable(l) == absTreel.insert_A (orderablel) .isIn(orderableQ)));
assertTrue ((concTreel_0.isIn(orderablel) == absTreel.insert_A (orderablel).isIn (orderablel)));
assertTrue ((concTreel_0.isEmpty () == absTreel.insert_A (orderablel) .isEmpty()));
if (absTreel.insert_A(orderable0l).largest()) != null)

assertTrue ((concTreel_0.largest () == absTreel.insert_A (orderablel) .largest()));
//concl_1
concTreel_1.insert (orderablel);
assertTrue ((concTreel_l.isIn(orderable0) == absTreel.insert_A (orderablel).isIn (orderablel)));
assertTrue ((concTreel_1.isIn(orderablel) == absTreel.insert_A (orderablel).isIn(orderablel)));
assertTrue ((concTreel_1.isEmpty () == absTreel.insert_A (orderablel) .isEmpty()));
if (absTreel.insert_A (orderablel) .largest()) != null)

assertTrue ( (concTreel_1.largest () == absTreel.insert_A (orderablel) .largest()));
//conc2_0
concTree2_0.insert (orderable0);
assertTrue ((concTree2_0.isIn(orderable(l) == absTree2.insert_A (orderablel) .isIn(orderablel)));
assertTrue ((concTree2_0.isIn(orderablel) == absTree2.insert_A (orderablel) .isIn (orderablel)));
assertTrue ((concTree2_0.isEmpty () == absTree2.insert_A (orderablel) .isEmpty()));
if (absTree2.insert_A(orderable0l).largest()) != null)

assertTrue ((concTree2_0.largest () == absTree2.insert_A (orderablel).largest()));
//conc2_1
concTree2_1.insert (orderablel);
assertTrue ((concTree2_1.isIn(orderable0) == absTree2.insert_A (orderablel).isIn (orderablel)));
assertTrue ((concTree2_1.isIn(orderablel) == absTree2.insert_A (orderablel) .isIn(orderablel)));
assertTrue ((concTree2_1.isEmpty () == absTree2.insert_A (orderablel) .isEmpty()));
if (absTree2.insert_A (orderablel).largest()) != null)

assertTrue ( (concTree2_1.largest () == absTree2.insert_A (orderablel) .largest()));
// Comparing results for removelargest
//conc0_2
concTree(_2.removelargest () ;
assertTrue ((concTree0_2.isIn(orderablel) == absTree(.removelargest_A().isIn(orderable0)));
assertTrue ((concTreeO_2.isIn(orderablel) == absTree(l.removelargest_A().isIn(orderablel)));
assertTrue ((concTreeO_2.isEmpty () == absTreel.removelLargest_A() .isEmpty()));
if (absTreel.removelLargest_A().largest()) != null)

assertTrue ( (concTree0_2.largest () == absTreel.removelargest_A().largest()));
//concl_2
concTreel_2.removelargest () ;
assertTrue ((concTreel_2.isIn(orderablel) == absTreel.removelargest_A().isIn(orderable0)));
assertTrue ((concTreel_2.isIn(orderablel) == absTreel.removelargest_A() .isIn(orderablel)));
assertTrue ((concTreel_2.isEmpty () == absTreel.removelLargest_A() .isEmpty()));
if (absTreel.removelLargest_A().largest()) != null)

assertTrue ((concTreel_2.largest () == absTreel.removelargest_A().largest()));
//conc2_2
concTree2_2.removelargest () ;
assertTrue ((concTree2_2.isIn(orderablel) == absTree2.removelargest_A().isIn(orderable0)));
assertTrue ((concTree2_2.isIn(orderablel) == absTree2.removelargest_A().isIn(orderablel)));
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assertTrue ((concTree2_2.isEmpty () == absTree2.removelargest_A() .isEmpty()));
if (absTree2.removelLargest_A().largest()) != null)
assertTrue ((concTree2_2.largest () == absTree2.removelargest_A().largest()));

Listing 1.17. Comparing results of the designated sort operations

As before, the insert (orderable0) operation is not applied to concTree0 because that would repeat the
process with which concTree2 was obtained in the first place (see listing 1.11) — inserting orderablel and
orderable0, in that order, to the empty sorted set. The same applies to concTree3.

Being a partial operation, the 1argest observer should never be applied to empty sorted sets as already
shown for concTree3 in listing 1.15. The same applies to removeLargest that is only applied to concTree0,
concTreel, concTree2 and their copies. This is not difficult to ensure because these objects were built according
to the model, which defines which operations apply and which do not. But in cases where we have to apply partial
operations to objects that are the result of some other operation, we should guard the application of every partial
operation with a condition that somehow verifies its domain. This is to say that the several applications of the
largest observer in listing 1.17 must be guarded by a condition that decides whether that observer may apply
(the corresponding abstract object knows the answer, and all we have to do is to ask it).

Section 6 presents results of applying both versions of this abstract VS concrete technique — the equals-based
comparison and the observer only-based comparison ones — to two case studies.

5 Flasji - integrating the 4 techniques

As already referred in section 2 (recall figure 2), the Flasji approach is the result of integrating the techniques
presented in the last sections. Now that the reader has a deeper understanding of these techniques we look back
at the steps to be taken to discover a fault in a given Java implementation of a ConGu module. We depart from a
situation where GenT tests have just been executed and some have failed, and try to reach the goal of presenting
the faulty method.

5.1 The algorithm

Given the artifacts generated by the GenT tool — a suite of JUnit tests, an Alloy specification corresponding to the
original ConGu module, and mock classes for the parameters of the module —, and the Java class implementing
the designated sort:

— Execute the test suite;

— Try to execute techniques 4.3 and 4.1 to build an initial list of suspects where all the observer suspects ranking
position is the same;

For every observer obs in the suspects list try to apply technique 4.2:

o if the guilt of obs is strengthened, increase its observer ranking position in the suspects list;
o if the result is inconclusive, maintain obs in the suspects list as is;
o if the guilt of obs is weakened, subtract obs from the suspects list;

If the suspects list is not empty:

e For each suspect spct in the list apply the test built by using the technique 4.4, giving spct as input to the
test, and taking into account the suspiciousness ranking of each spct in the list;

Else (the suspects list is empty):

e For each method m involved in the failed tests, apply the test built by using the technique 4.4, giving m
as input to the test;

Output the result, which consists of:
e “Most probable faulty method” - one only method name, which is the one these last tests agree on; if
these tests’ results are inconclusive, no faulty method can be elected here;
e “Other plausible ones” - the other method names in the suspects list, where constructors are at the same
level of plausibility than best ranked observers.
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5.2 An example

As an example, the case where the insert operation was ill-implemented and for which we began by applying
the technique in section 4.3 — there were tests failing with Nul1lPointerException —, and the technique in 4.1
— there were two tests for different axioms, involving the same constructor, that failed. The former exercise led us
to add i sEmpty and largest to the suspects list. The latter exercise led us to add insert to the list.

We then applied the technique in 4.2 to both isEmpty and largest and we were able to discard largest,
while keeping isEmpty as a suspect.

Finally we applied the abstract-concrete comparison presented in section 4.4 to the two remaining suspects,
independently from each other, and got an unequivocal result that pointed to a faulty implementation of the insert
operation.

6 Evaluation

To evaluate the effectiveness of our Flasji approach, we applied it to two preliminary case studies — this paper
SortedSet running example, and MapChain specifications and corresponding implementations; the Java classes
implementing the designated sorts of both case studies where seeded with several and diverse errors covering all
the specification operations.

We also picked two program spectrum-based tools — GZoltar [22] and EzUnit4 [5, 23] — that, alike Flasji, work
on JUnit tests and have methods as the units under test, and compared the three approaches’ results. Both tools
give a ranking of suspect fault locations as a result, where suspicioussness is measured through percentages.

The two tools were given as input the GenT generated tests for the two case studies, and were put to work
while those tests executed over several faulty versions of the designated sort implementation. Their results were
registered and used to compare with Flasji’s, for both versions of the abstract VS concrete technique — the equals-
based comparison version (see sections 4.4, 4.4 and 4.4) and the observer only-based comparison one (see
section 4.4).

The artifacts generated by the GenT tool — a suite of JUnit tests, an Alloy specification corresponding to the
original ConGu module, and mock classes for the parameters of the module — were given as input to Flasji, and
it was put to work, as described in section 5, successively for each of the same faulty classes. According to the
presented Flasji algorithm, the outcome of our tests is of two kinds: (i) the most probable suspect (if it can be
found) and (ii) other suspects (with a ranking for observers, and constructors ranked as the most well-ranked
observers).

Table 2 displays the results of the three tools over the two case studies (the two versions of our approach
are referred as “Fe” and “Fo”, for equals-based comparison and observer only-based comparison, respectively);
Twenty JUnit tests were generated by GenT for the SortedSet case, and seventeen for the MapChain one. For
each seeded fault, we show the number of failed tests and whether the faulty method was ranked, by each tool,
as most probable guilty, second most probable guilty or third or less probable. Being ranked as second probable
guilty means that the tool wrongly elected another method as the most probable one. The percentages presented
for EzUnit4 and GZoltar results are the ones that these tools calculate for the given method suspiciousness (for
a given test suite, a 100% suspicion for a method m may coexist with other, less suspicious methods m;, ranked
with varied other percentages).

This experiment is very favorable to Flasji’s both versions since they provided very accurate results in general.
The bad results (there were no suspects found whatsoever) for the equals-based comparison version (“Fe” in
the table) in the three faults for method get of the MapChain case study are due to the fact that equals uses
the get method, therefore becoming unreliable whenever method get is faulty. This case exemplifies the oracle
problem (see section 7). Applying an alternative way of observation — the one implemented by the observer only-
based comparison version (“Fo” in the table) — we obtain the right results for this case, i.e. get ranked as prime
suspect. However, the good results we had for faulty methods put iii and remove i got worse — they are
ranked second instead of first. These particular cases indicated isEmpty as prime suspect because the seeded
fault of both put iii and remove i was the absence of change in the number of elements in the map whenever
insertion/removal happens, which made i sEmpty fail.

Another critical issue w.r.t. our approach is the one concerned with private methods. The fault in private
method insert of the SortedSet case study was interpreted by the EzUnit4 tool in such a way that it ranked the
guilty private insert in 7th place with a suspiciousness percentage of 26; GZoltar ranked it in second with 58%.
Flasji ranked the public insert method as the most probable suspect, and it never identified the private method as
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Faulty method detected as:
Faulty op. |# tests 1st suspect 2nd suspect | 3rd or worse
allfail| Fe [ Fo [EzU|GZ|Fe| Fo [EzU[GZ|Fe[Fo[EzU[GZ
isEmpty i 5 |yes yes 65 50
o [iIsEmpty ii 1 |yes yes 43 28
& lisIn 1 |yes yes 100 21
B largest i 20 7 |yes yes 64 100
o |largest ii 1 |yes yes 62 32
@ private insert 2 |pub pub 58 26
\public insert 5 |yes yes 58 32
get i 4 yes 100 52
get ii 3 yes 87 58
get iii 4 yes 44 82
% isEmpty i 2 |yes yes 100 42
S isEmpty ii 17 1 |yes yes 100 39
o puti 0 |yes yes
= |putii 1 |yes yes 55 58
put iii 2 |yes 61 yes 53
remove i 1 |yes yes 44 71
remove ii 1 |yes yes 44 71

Table 2. Results of comparative experiments. “Fe” and “Fo” stand for the two variants of our Flasji approach w.r.t. the compar-
ison between concrete objects — the one using equals and the one using observers only. “EzU” and “GZ” stand for EzUnit4
and GZoltar respectively.

suspect; the public insert method is composed of one only statement — root = insert (root, e); — which
invokes the private insert method. As explained in section 4.4, private methods are not identified as suspects by
Flasji because they do not correspond to any specification operation as defined by the refinement mapping from
specifications to implementations; instead, the public, specified, methods that invoke them are identified.

There can be cases where the models chosen by the GenT approach in the process of generating the test suit
fail in exposing some fault because they simply do not cover any designated sort instance where the error could
emerge. As an example, the faulty implementation of method put i made none of the seventeen GenT tests
fail. As a consequence, Flasji integrated approach was not put to work and the fault stayed uncaught. EzUnit4
and GZoltar were also neutral because none of the tests failed. Knowing that the error existed, we applied Flasji
concrete VS abstract technique and identified the guilty method.

We intend to do mutation testing but, since we still lack a tool that thoroughly generates the new test classes
(on-going work), the experimentation of many different faults turns out to be excessively time-consuming.

7 Related work

The fault-location approach presented in this paper relies on the existence of models of the specification to supply
the objects (and their behaviour) to be used in tests. The structured nature of specifications, where functions
and axioms are defined sort by sort, and where the latter are independently implemented by given Java types, is
essential to the incremental integration style of the adopted GenT test generation, and the here presented fault-
location techniques — remember parameter sorts are implemented as mock classes in the GenT approach, and
mock objects are also used in place of all non-designated sorts implementations in the presented fault-location
approach.

Several approaches to testing implementations of algebraic specifications exist, that cover test generation, and
many compare the two sides of equations where variables have been substituted by ground terms ( [6,7, 10, 13]
to name a few) — differences exist in the way ground terms are generated, and in the way comparisons are made.
The gap between algebraic specifications and implementations makes the comparison between concrete objects
difficult, giving rise to what is known as the oracle problem, more specifically, the search for reliable decision
procedures to compare results computed by the implementation. Whenever one cannot rely on the equals method,
there should be another way to investigate equality between concrete objects. Several works have been proposed
that deal with this problem, e.g. [7, 17, 28].

In the context of the work presented in this paper, we tackle both the case where equals is reliable and the
opposite (see section 4.4). In the first case, we compare some of the designated sort objects using equals and all
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non-designated sort objects using == (the problem does not apply to these sorts because we work with a finite set
of immutable mock objects, as explained in section 4.4).

The technique we propose for the case where equals is not reliable compares the results of applying the
reliably-comparable observers over abstract and concrete objects (here again, we profit from the reliability of ==
over non-designated sort objects). In some way this complies with the notion of observable contexts in [7] — all
observers but the ones whose result is of the designated sort constitute observable contexts. Although observers
of designated sort and non-creator constructors cannot be used to observe concrete objects (unlike the case where
we can rely on equals), nevertheless they still contribute to the final comparison because we not also create all
objects that constitute a model of the specification, but apply to them all those transformer operations as defined
in the model, obtaining a very rich set of objects, both abstract and concrete, that are then observed through the
reliably-comparable observers.

Despite having an alternative way of comparing designated sort objects for cases where equals is unreliable,
this unreliability can still affect the integrated fault-location approach presented in this paper — the suspects list
that feeds the concrete VS abstract technique is built from failed GenT tests and their manipulations, and GenT
tests use equals whenever concrete objects of the same type are compared. Tipically, this may cause otherwise
unsuspected operations be accused of being suspect, although it may also happen that a defect in equals masks a
defect in other operation, therefore classifying it as non-suspect. One of the topics GenT authors point as further
work is the need to be able to test the equals method in order to make its use more reliable.

Many other fault-location approaches have been proposed over the years that are not based on specifica-
tions (in [26, 27] the authors present a very comprehensive survey where they classify fault-location approaches).
Among these, program spectrum-based methods ( [5, 12, 14, 15,21-23,25] to cite a few) from which we have
chosen two tools to be part of our evaluation experiment, as presented in section 6.

Program spectrum-based methods record information about several aspects of the execution of tests and use it
to identify most probable pieces of code that are suspect of being faulty. Differences between approaches include
the use of failed tests only or both passed and failed ones, the way they calculate the suspiciousness of each piece
of code, the unit of suspicion — basic statements, methods, etc.

The tools we used in section 6 — GZoltar [2,22] and EzUnit4 [5, 23] —, alike our approach, work on JUnit tests
and have methods as the units under test. They both compute the probability of Java methods being faulty given
their participation in a number of passing and failing test cases, differing essentially in the way they calculate the
suspiciousness of each executed method.

8 Conclusions and further work

We presented Flasji, an integrated approach to the location of Java methods that incorrectly implement algebraic
specifications of data types. The adopted testing strategy is one of incremental integration meaning that the Java
type implementing the main sort of the specification is tested on the assumption that all others on which it depends,
are correctly implemented.

We capitalyze on ConGu specifications and on the GenT tool outputs — the Alloy specification corresponding
to the ConGu original one, and the JUnit tests covering all axioms of the specification — and inspect failed tests,
eventually building new ones, in a process leading to the identification of the most probable guilty method.

Alloy models of the specification supply the material that allows us to create mock classes that represent
correctly behaved objects, with which new tests are built that allow to verify the correctness of implementations
for the covered operations applications.

Flasji integrates four different techniques, namely two that are used to find initial suspects, and two others to
restrict the suspects list. An evaluation experiment is presented where Flasji is compared with two other fault-
location tools over two case studies where faults have been seeded in the implementing Java classes.

There are some topics that we would like to further investigate, some of them essentially depending on GenT
evolution. The latter include, e.g. coping with specifications that have infinite models only, by transforming them
in order to have finite models only, amenable by Alloy. The generation of tests that allow to gain more confidence
on the equals method (as discussed in section 7), which is used in GenT tests to compare Java objects, is another
objective of the GenT team.

In the context of the approach presented in this paper, we are already working on the development of a tool that
implements the proposed fault-location process. As soon as we have a working prototype, we intend to perform
mutation testing in order to support the already carried out evaluation.
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We also intend to study the way succeeded tests could be used to best contribute to the process of fault-location.
As an example of a question worthy of being investigated, the one of whether it is relevant to know, in a passing
test, if the true clauses include the clause corresponding to the one in the run that originated the test, and, if that
happens in all run/tests from a given axiom, whether that can be seen as a strong evidence that the operations
involved are well-implemented.

Full integration of the Flasji approach with ConGu is being investigated, in order to obtain a runtime verifi-
cation framework — ConGu instrumented classes verify specification-induced contracts at runtime — with fault-
location capabilities. Presently, the information given by the ConGu tool is often insufficient to the desired goal of
finding the guilty part of the implementation.
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