
Runtime Verification for Generic Classes with CONGU2

Pedro Crispim, Antónia Lopes, and Vasco T. Vasconcelos

LaSIGE and Faculty of Sciences, University of Lisbon,
Campo Grande, 1749–016 Lisboa, Portugal,

{pedro.crispim,mal,vv}@di.fc.ul.pt

Abstract. Even though generics became quite popular in mainstream object-
oriented (OO) languages, approaches for checking at runtime the conformance
of such programs against formal specifications still lack appropriate support.
In order to overcome this limitation within CONGU, a tool-based approach we
have been developing to support runtime conformance checking of Java pro-
grams against algebraic specifications, we recently proposed a notion of refine-
ment mapping that allows to define correspondences between parametric spec-
ifications and generic classes. Based on such mappings, we also put forward a
notion of conformance between the two concepts. In this paper we present how
the new notion of conformance is supported by version 2 of the CONGU tool.

1 Introduction

The formal specification of software components is an important activity in the process
of software development, insofar as specifications are useful, on the one hand, to un-
derstand and reuse software and, on the other, to automatically verify the correctness
of components implementations. Among the several approaches that can be adopted
for automatically analysing the reliability of software components one finds runtime
verification. This approach involves the monitoring and analysis of system executions.
As the system executes, the behaviour of its components is tested for correction with
respect to the specification. Runtime monitoring has the advantage that can be used to
analyse properties for which static verification fails. Moreover, it does not require the
user expertise and effort typically required of a static verification system.

Although generics became quite popular in mainstream OO languages, existent ap-
proaches for runtime checking the conformance of generic OO programs against for-
mal specifications still lack appropriate support. This was also the case of CONGU, a
tool-based approach to runtime verification of Java implementations against algebraic
specifications [10, 17]. CONGU is intensively used by our undergraduate students in the
context of a course on algorithms and data structures for checking abstract data types
(ADTs) implementations.

Given that generics became extremely useful and popular in the implementation of
ADTs in Java, in particular those that are traditionally covered in such courses, the lack
of support for generics became a major drawback. In order to overcome this limitation,
we recently proposed a notion of refinement mapping that allows to define correspon-
dences between parameterized specifications and generic classes [16]. Based on such
mappings, we also put forward a more comprehensive notion of conformance between



Java programs and algebraic specifications. This work paved the way for the extension
of runtime conformance checking to a more comprehensive range of situations. In this
paper, we present a new approach to runtime conformance checking of Java implemen-
tations against specifications (applicable to parameterized specifications) and discuss
how this solution is realized in the new version of CONGU tool.

The solution for runtime checking that was developed in order to accommodate
generics is substantially different from that used before in CONGU [17]. Therein, the
strategy was to replace the original classes by proxy classes and generate further classes
annotated with monitorable contracts, written in JML [14]. The main innovative aspects
of the solution adopted in CONGU2 are the following:

– Introduction of new mechanisms that allow to deal with generics, namely to check
whether classes used to instantiate the parameters of generic classes conform to
what was specified in the parameter specifications.

– Original classes are not replaced by generated proxy classes. Instead, the solution
now relies on the instrumentation of the bytecode of original classes, overcoming
the difficulties on the generation of appropriate proxy classes for classes making
use of, e.g., public fields or inner classes.

– JML, which does not support generics (among other features introduced in Java
1.5 [9]), is no longer used. Instead, runtime checking of the specified properties at
specific execution points is now achieved directly by the generated code, relying
only on Java assertions. The compilation with jmlc of contract annotated classes
was a bottleneck in terms of performance and, with the new solution, we were able
to substantially reduce the compile time.

The remainder of the paper is organised as follows. In Section 2 we provide an
overview of the CONGU approach, namely we introduce specifications and refinement
mappings adopted in CONGU. Then, Section 3 presents the notion of conformance be-
tween specifications and Java classes and discusses the properties induced by specifica-
tions that are monitored at runtime. The solution for the monitoring of these properties
that is realized in CONGU2 is presented in Section 4. Section 5 concludes the paper.

2 Overview of the CONGU Approach

As mentioned before, CONGU supports the runtime conformance checking of Java pro-
grams against algebraic specifications. In this section we provide an overview of the
CONGU approach, focusing on some of the aspects that are visible to users: the specifi-
cation language and the notions of specification modules and refinement mapping (see
[16] for details). This is achieved by means of an example around a simple ADT — lists
with merge.

This ADT represents lists composed of “mergeable” elements and that have an op-
eration — mergeInRange — that merges the elements of the list in a given range i . . . j
(the resulting element is placed in the position i of the list). Figure 1 shows the three
elements involved in the specification of this ADT using CONGU’s specification lan-
guage. In most aspects the language closely follows CASL [4], which is considered a
standard for algebraic specification.



Fig. 1. The three elements involved in the specification of lists with merge ADT.

The specification ListWM presented in Figure 1 is an example of a parameterized
specification. Its parameter is the specification Mergeable, also presented in the figure.
Each specification introduces a sort. In our example, Mergeable introduces a simple sort
named after it while ListWM introduces the parameterized sort ListMW[Mergeable].
The sort int, representing the domain of integer numbers, is primitive in the language.

Then, each specification declares three sets of operations and predicates. Operations
declared as constructors are those from which all values of the introduced sort can be
built. The other two sets include the operations and also predicates that provide funda-
mental information about the values of the sort, or are redundant, but useful, operations.
The sort of the first argument of these operations is required to be the introduced sort.
The difference between the two groups is only on the syntactical structure of the ax-



ioms that can be used to define their properties. Axioms for observers are required to be
expressed in terms of their application to constructors as first argument and variables
as the remaining arguments; axioms for others are less restrictive, allowing them to be
expressed in terms of their application to constructors or variables as first argument and
without restriction for the remaining arguments.

Because operations can be partial, specifications also define the domain condition
of every partial operation, i.e, the situations in which the operation is required to be
defined. For instance, in ListWM, get is declared to be partial (as indicated by the
partial arrow -->?) and its domain condition defines that get(L, I) must be defined if I
is indeed an index of list L.

As shown in Figure 1, specifications are put together using specifications modules.
Specifications identified as core define the data types that need to be implemented while
the role of parameter specifications is simply to impose constraints over their admissi-
ble instantiations. Now, suppose we have a candidate implementation for module LWM
and that we would like to check its conformance against what was specified. First we
need to establish a correspondence between each core sort s of the module LWM and
a Java type T defined by one of our classes. Moreover, we need to establish a corre-
spondence between the operations and predicates of the specification that introduces s
and the methods and constructors of T . In CONGU, this correspondence is defined by
means of a refinement mapping. In order to capture the role of parameter specifications,
these mappings also allow to link parameter specifications with the type variables of
generic classes. More concretely, a refinement mapping also defines a correspondence
between each parameter sort s and a Java type variable E and also a method signature
for each operation/predicate of the specification that introduces s.

Suppose that our candidate implementation for LWM consists of the generic class
MyListWMerge and the generic interface Mergeable presented in Figure 2. The cor-
respondence between LWM and this candidate implementation is defined in the refine-
ment mapping presented in Figure 3. It maps the compound sort ListWM[Mergeable]
(Figure 1) into the generic type MyListWMerge<E extends Mergeable<E>> (Fig-
ure 2) and the operations and predicates of the former into methods and constructors
of the latter. For instance, we can see that operation add is mapped into the method
void addFirst(E e). The first argument of an operation always correspond to ob-
ject this and, hence, an operation with n arguments is mapped into a method with arity
n− 1. Only operations declared constructors whose first argument is not the sort being
specified can be mapped into class constructors. Predicates are necessarily mapped into
boolean methods. For operations that produce elements of the sort being specified, the
corresponding method can either be void or of the corresponding type. In this way,
it is possible to deal with different implementation styles, namely immutable and mu-
table implementations. In our example, the class MyListWMerge provides a mutable
implementation of lists and, hence, all operations in this situation are mapped to void
methods.

The mapping in Figure 3 also establishes a correspondence between sort Mergeable
and thetype variable E. It is defined that the operation merge corresponds to the method
signature E merge(E e). As we will explain in the next section, this refinement map-
ping is only correct if the instantiation of E in MyListWMerge<E> is limited to classes



Fig. 2. The interface Mergeable<E> and an excerpt of the Java class MyListWMerge<E>.

C that have a method with signature C merge(C e) (which is indeed the case because
E has Mergeable<E> as an upper bound).

After defining the refinement mapping from module LWM to our candidate imple-
mentation, CONGU instruments MyListWMerge.class so that, during the execution
of any program that uses MyListWMerge, the behaviour of this class (made precise in
the next section) is checked against what was specified in ListWM[Mergeable]. More-
over, the behaviour of the classes used for instantiating E in the creation of objects
of MyListWMerge<E> is also checked against what was specified in Mergeable. Sup-
pose, for instance, that we have a program that includes a class Color that implements
Mergeable<Color> and, another class, that creates and manipulates objects of type
MyListWMerge<Color>. In this case, the behaviour of Color is checked against what
was specified in Mergeable.

3 Runtime Conformance of Programs against Modules

In this section, we present the notion of conformance of Java programs against specifi-
cation modules that is considered in CONGU2 and discuss some key aspects of CONGU
approach to the runtime checking of this notion of conformance.

3.1 Object Properties Induced By Specifications

The conformance of a Java program against a specification module can only be defined
if a direct connection between the specifications of the module and the classes of the



Fig. 3. A refinement mapping from LWM to {MyListWMerge<E>, Mergeable<E>}.

Java program is provided. As discussed before, in CONGU, the correspondence between
specifications and classes is established through the use of refinement mappings. In the
previous section we have already mentioned some conditions required by refinement
mappings, namely those concerning the matching of method signatures with operations
and predicates. The complete set of conditions that a mapping has to meet in order to
define a refinement mapping is defined below.

A refinement mapping consists of a set V (of type variables) equipped with a pre-
order < and a refinement functionR that maps:

1. each core simple specification to a non-generic type defined by a Java class;
2. each core parameterized specification to a generic class, with the same arity;
3. each core specification that defines a sort s < s′, to a subtype of R(S′), where S′

is the specification defining s′;
4. each parameter specification to a type variable in V ;
5. each operation of a core specification to a method of the corresponding Java type

with a matching signature;
6. each operation of a parameter specification to a matching method signature.

Additionally:

7. if a parameter specification S′ defines a subsort of the sort defined in another pa-
rameter specification S, then it must be the case that R(S′) < R(S) holds;

8. if S is a parameterized specification with parameter S′, it must be possible to ensure
that any type C that can be used to instantiate the parameter of the generic type
R(S) possesses all methods defined by R for type variable R(S′) after replacing
all instances of the type variable R(S′) by C.



Let us consider again the refinement mapping presented in Figure 3. In this case,
the set V is the singleton set {E} and only the satisfaction of condition 8 requires some
reasoning. According to the definition of the class MyListWMerge, type variable E

must extend Mergeable<E>, which, in turn, declares method E merge(E e). Hence,
the instantiation of E is limited to classes C that implement Mergeable<C> and, hence,
it is ensured that C possesses a method with signature C merge(C e).

In the sequel, we assume a fixed refinement mapping R between a specification
moduleM and a Java program J . Intuitively, J is in conformity withM iff:

(i) the properties specified in M and
(ii) the algebraic properties of the notion of equality

hold in every possible execution of the program J .
More concretely, the properties of a core specification S impose constraints on the

behavior of every object of type TS = R(S), whereas the properties of a parameter
specification S used in a parameterized specification, say S′[S], impose constraints on
the behavior of every object of a type TS in J that is used to instantiate the respec-
tive type variable of the generic type R(S′). Axioms and domain conditions impose
different type of constraints:

Axioms. Every axiom in a specification S defines, for the objects of type TS , a property
that must hold in all client visible-states.
Let us consider, for instance, the first axiom for get in ListWM[Mergeable]. Let
lwm be an object of type MyListWMerge<C>. This axiom defines that for every
non-null expression e of type C, after the execution of lwm.addFirst(e), the
expression lwm.get(0).equals(e) evaluates to true1.

Domains. Every domain condition φ of an operation op of a specification S defines
that, for every object of type TS , whenever φ holds, the invocation of R(op) must
return normally (i.e., does not throw an exception).

The constraints induced by axioms and domain conditions just presented define a
notion of conformance. CONGU, by default, uses a stronger notion that, in addition,
also imposes restrictions on the clients of the classes TS , namely when they invoke a
method R(op): it is required that the null value is not passed as argument and the
domain condition φ holds at the time the method R(op) is invoked.

This stronger notion of conformance is useful for checking that client code does not
call methods in situations where it is not possible assess the normal (non-exceptional)
return of a method called outside its domain condition. This is however only appro-
priate in the absence of additional information about the safe calling conditions for
such methods. For instance, if the documentation of class MyListWMerge<E> says that
void set(E e,int i) has no pre-condition and simply produces no effect on the
state of the list when i>size(), the fact that a class in our program calls this method
with an argument that violates this condition should not be identified as a problem of
conformance between the program and the specification module LWM. For this reason,
we found useful to support the two notions of conformance in CONGU2.

1 We currently assume that the interpretation of sorts does not include the null value but, we
envisage that, in the future, refinement mappings may define whether this is appropriate or not.



3.2 Checking Object Properties

In CONGU, the strategy for runtime checking the conformance of a program against a
specification module consists in checking the properties induced by the axioms at the
end of specific methods, determined by the structure of the axioms. Let us first consider
the axioms with a left-hand side expressed in terms of the application of operations or
predicates to constructors as first argument and variables as the remaining arguments.
In this case, the property induced by the axiom is checked at the end of the method that
refines the referred constructor. All method invocations that are performed in order to
check a property make use of clones, whenever cloning is possible. Otherwise, the side
effects of these methods would affect the monitored objects (if method clone() is not
available, it is assumed that the class’s objects are immutable). For instance, the property
induced by the first axiom for get is checked at the end of void addFirst(E e)

through the execution of the following code, where eOld is a copy of e obtained at the
entry of the method.
if (eOld != null) {

E e2 = this.clone().get(0);
assert(e2 != null && e2.equals(eOld));

}

Similarly, the second axiom of the get operation is checked by the below code,
where rangeOfInt, of type Collection<Integer>, is populated with integers that
cross the boundary (either as parameters or as returned values) of some method in class
MyListWMerge.
if (eOld ! = null)
for (int i: rangeOfInt)

if (i>0 && i<this.clone().size()) {
E e2 = this.clone().get(i);
assert((i-1)>=0 && (i-1)<thisOld.clone().size());
E e3 = thisOld.clone().get(i-1);
assert(e2!=null && e3!=null && e2.equals(e3));

}

On the other hand, the properties induced by axioms that feature a variable as first
argument are checked at the end of the method that refines the corresponding opera-
tion/predicate. For instance, the last axiom for isEmpty is checked at the end of method
boolean isEmpty() by:
if (result) assert(thisOld.clone().size()==0);

where result is the return value of method isEmpty().
Equality of integers and booleans is translated into comparisons with == whereas

the equality of terms of a non-primitive sort, say s, is translated into invocation of
method equals of the class TS . Therefore, it is essential that all involved classes define
a proper implementation of equals. Namely, because equality of terms is a congruence,
equals should be defined in such a way objects are considered equal only if they are
behaviourally equivalent with respect to the methods that refine some operation of s
(i.e., calling these methods over equal objects must produce equal results).

Correctness of equals is checked at runtime as follows. At the end of the method,
if the return value is true, then it is checked that by applying the method that refines
each observer to the two objects, we obtain equal results. For instance, checking the



correctness of boolean equals(Object other) in MyListWMerge includes the
below code for the get operation.
if (result)
for (int i: rangeOfInt)

if (i>=0 && i<thisOld.clone().size()
&& i<otherOld.clone().size()) {

E e1 = thisOld.clone().get(i);
E e2 = otherOld.clone().get(i);
assert(e1!=null && e2!=null && e1.equals(e2));

}

In addition, at the end of method clone(), it is checked that the returned object
is equal to the original. Additional properties such as symmetry and transitivity of
equals() can also be checked, in a similar way, at this point.

Finally, checking that client classes are well-behaved, i.e., do not invoke a method
that refines an operation when its domain condition does not hold and also do not pass
null as argument, can be easily performed at the beginning of the method. For instance,
in the case of method void set(int i,E e), this is checked by:
assert(e != null && i >= 0 && i < this.clone().size());

4 The New CONGU Tool

The new CONGU tool, which we named CONGU2, implements the runtime checking
approach conformance of Java classes against specifications described in the previous
section. As shown in Figure 4, the tool takes as input a specification module, a set
of specifications, a refinement mapping and a Java program (in bytecode form). The
program is then transformed so that, when executed under CONGU, the behavior of
each class is checked against the corresponding specification. This is achieved by inter-
cepting the calls to all methods that, according to the refinement mapping, refine some
operation, and dispatching them to property-monitoring classes generated by the tool.

As mentioned in the introduction, in the previous version of CONGU, the intercep-
tion of methods was accomplished by proxy classes that wrapped and mimicked the
original class’s interface as close as possible, capturing the client method calls and di-
verting them to classes annotated with JML contracts. These contracts were checked at
runtime with resort to JML’s Runtime Assertion Checker. In order to overcome the dif-
ficulties on the generation of appropriate proxy classes for classes making use of more
advanced features of the Java language, such as public fields or inner classes, CONGU2
intercepts client method calls through bytecode instrumentation. On the other hand,
JML is no longer used and, instead, properties to be checked are now encoded using
Java assertions. In this way, CONGU was released from several limitations imposed by
the use of JML, namely the lack of support for features introduced in Java 1.5 (generics
included), the long compilation times imposed by jmlc (namely, because of the compi-
lation of the JML models of the Java API) and the poor and unstable information about
assertion violations that hindered the connection of errors with the axioms of specifi-
cations (the CONGU solution for this problem, developed for JML 5.4 quickly became
obsolete).

As shown in Figure 4, there are two main tasks in the CONGU support of runtime
checking of Java programs against specifications: the analysis of the different input



Module 
Analyser 

Specification 
Analyser 

Refinement 
Analyser 

Bytecode 
Analyser 

Module 
.module 

Specifications 
.spc* 

Original 
Classes 
.class* 

Refinement 
.rfn 

Assertion 
Generator 

Bytecode 
Manipulator 

PM Classes 
Generator javac	  

Instrumented 
Classes 
.class* 

B
lackboard 

Key 

File Component 

Data flow 

Executes 
immediately 
before 

Fig. 4. Overview of CONGU2 architecture.

sources and the synthesis of output classes. In the analysis task, the major challenges
posed by the extension of the approach to parameterized specifications and generic
classes arise in the analysis of refinement mappings.

4.1 Analysis of Refinement Mappings

The extension of the CONGU approach to specification modules including parameter-
ized specifications introduces various challenges in what concerns the analysis of re-
finement mappings. As detailed in Section 3, refinement mappings impose restrictions
on the Java types to which they refer. Enforcement of these restrictions requires query-
ing the Java binaries of the respective classes. This achieved by taking advantage of
Java’s reflection facilities, provided by the java.lang.reflection package of the
Java API.

The process of analyzing refinement mappings comprises two phases. The first
phase focus on the Java classes that refine core specifications while the second ad-
dresses the verification of the conditions related with parameter specifications.

Verifying that a non-generic type has the methods mentioned in the refinement
is straightforward: it involves querying for the specified method and then checking
whether the return type is the expected one. Matters complicate when generic types
are at play. Generics in Java are mostly a source code artefact. Simply put, the compiler
erases the generic type information, a mechanism known as type erasure. Thus, a once
generic type becomes a simple type, i.e., a raw type, where all uses of its generic type
variables are replaced by their respective upper bounds [11]. For this reason, built-in
support for querying classes for methods is limited to signatures defined only in terms



of raw types and, hence, a new strategy for verifying that generic classes possess the
methods mentioned in the refinement is needed.

Although information about generics is not used at runtime by the JVM, this in-
formation is still retained in the bytecode, in the form of metadata and can be queried
through Java’s reflection API. The strategy to verify that a generic class has the meth-
ods mentioned in the refinement mapping involves retrieving its methods, getting the
generic parameter types and generic return type of each one and then comparing with
what was expected (a recursive process on the structure of the types).

The second phase of the refinement analysis addresses the verification of the condi-
tions concerning the parameter specifications. Recall that, in this case, specifications
are not refined into concrete Java types and what is necessary ensuring is that the
classes that can be used to instantiate the corresponding type variable have the right
methods. For instance, in our example, in this phase it is verified that every class C

that can be used to instantiate E in MyListWMerge<E> possesses a method with sig-
nature C merge(C e). This is achieved by going through the upper bounds of E in
MyListWMerge (in our case there is a single upper bound but in general types may
have more than one). Methods whose signature depends somehow on type E (in our
case, E merge(E e)) need only to be searched on the upper bounds types that are
themselves generic and dependent of E (in our case, Mergeable<E>) while the re-
mainder methods are searched on all upper bounds types. Searching for these methods
in generic types follows the strategy described before.

Additionally, the analysis of the refinement mapping also involves ensuring that
hierarchy relationships established for specification sorts are maintained when refining
to Java types. This is directly accomplished again making use of Java reflection API,
which enables us to query a type for its super class and/or implemented interfaces.

4.2 Bytecode Instrumentation

For monitoring the behaviour of Java programs, CONGU relies on the interception of
method calls by client classes. In CONGU2, this is achieved with method call inter-
ception through bytecode instrumentation of a copy of the original class (the original
bytecode remains unchanged so that the program can also be executed normally). The
objective of this instrumentation is to inject bytecode instructions in the methods to for-
ward the call to a corresponding method in a property-monitoring class. From the start,
the goal was to minimise the impact on the original bytecode, avoiding any undesir-
able side effects of its faulty manipulation as much as possible, preferring to generate
Java code and rely on the compiler for type safety. Realising this new strategy posed
interesting challenges, namely:

Inner calls. How to avoid interception of intra-class method calls? Intra-class calls can
not be monitored otherwise we obtain a non-terminating program.

Calls from within superclasses. How to prevent interception of calls from within a
superclass? Such calls cannot be monitored for the reason above.

Constructors. How to intercept calls to object constructors and redirect them?
Clone and equals. What to do when these methods are not overriden in the class?

(Recall that CONGU relies on these methods and there are properties that have to
be monitored when they are invoked.)



Answering these questions was central in overcoming the limitations of earlier ver-
sion of the CONGU tool. The chosen strategy consists in renaming to m Original each
method m that refines some operation (each method whose external calls we wish to in-
tercept), and placing in its lieu a method m with the exact same interface but dispatching
the call to a corresponding method in a property-monitoring class. Moreover, all calls
to m from within the class and inner classes are replaced by calls to m Original and all
calls to m in each superclasses are replaced also to calls by calls to m Original that are
also added to the superclasses. Although constructors are not methods, they can be for
the most part treated as such. Hence, the approach towards the interception of construc-
tor calls is identical to that employed for methods, with the safeguard that constructors
require initialisation calls, which are removed from the renamed method and inserted
in the replacement method.

More concretely, if m is a method of a class C that refines some operation, then the
bytecode instrumentation process involves the following steps:

1. Within C, rename method m to m Original;
2. Still within C, replace invocations to m by invocations to m Original;
3. In C’s superclasses, replace invocations to m by invocations to m Original and

generate a method m, with the signature of the original, which just forwards the
call to m Original;

4. Generate a replacement for method m, with signature of the original, that calls the
respective method in the property-monitoring class:

congu.properties.CPMonitoring.m(this, ...);

5. Rename and generate a replacement for method equals; if equals is not overrid-
den in C, first create a such method that delegates into the superclass;

6. Rename and generate a replacement for method clone; if C does not implement
interface Cloneable or does not override method clone by making it public, a
clone_Original method is generated that simply returns this. This method is
for the exclusive use of the monitoring process.

Implementation of this bytecode-instrumentation approach resorts to the ASM Java
bytecode engineering library [6]. ASM is a lightweight and efficient, offering a very
simple, well-documented API, full support for Java 6 and an interesting open-source
license which allows for convenient packaging within the CONGU2 tool itself.

4.3 Generation of Property-Monitoring Classes

The checking of object properties described in subsection 3.2 is performed in classes
generated by the tool, which we call property-monitoring classes (or PM-classes, for
short). For each Java type C under monitoring, there is a corresponding PM-class,
named by appending the suffix PMonitoring to the name of C. In the instrumented
bytecode, the intercepted client method calls are dispatched to methods in the respective
PM-class.

Each method under monitoring has a counterpart in its respective PM-class, in the
form of a static method with the same name, the same return type, the same argument
types. In addition it features an argument callee of type C (a reference to original



method callee) and a boolean argument monitoring (signalling whether monitoring
should be performed or not). When invoked from the instrumented bytecode, this flag
is set to true; when the invocation is realised in the context of a property monitoring it
is set to false.

These static methods are responsible for the monitoring of the relevant object prop-
erties following a general pattern:

1. At the entry of the method, store all elements that, later, are needed for checking
some property (these elements are stored in variables starting with old).

2. Verify that the client is well-behaved, namely that the domain condition holds (only
applicable in the case of strong conformance) and the values passed as arguments
are non null;

3. Call the original method upon callee and keep its return value;
4. Check the properties defined by the axioms.
5. Return the original method return value.

The execution of steps 2 and 4 for method m (which are only executed if flag
monitoring is true) rely on two separate static methods: mPre and mPos. These test
callee for the object properties induced by the specification as described in 3.2 but,
instead of calling the methods of the original class, they call the method of the corre-
sponding PM-class with monitoring set to false.

More concretely, the method mPre receives the same arguments as the original one,
plus a boolean flag signalling whether to break on a violation, and returning a boolean
value, corresponding to whether or not the respective domain condition is satisfied.
Method mPos is void and takes as arguments: (i) two references to the callee (one before
application of the original method, i.e., its old value, and another after the original
method call); (ii) the arguments of the respective method in the PM-class and (iii) a
boolean flag signalling whether to break on a violation.

Figure 5 presents a sequence diagram that illustrates the flow of execution in the
concrete case of a call to method mergeInRange(int,int).

:Client :MyListWMerge :MyListWMergePMonitoring

mergeInRange(i, j)
mergeInRange(this, i, j, true)

clone_Original()
thisOld = clone(this, false)

mergeInRangePre(this, i, j, false)
mergeInRange_Original(i, j)

mergeInRangePos(this, thisOld, i, j, false)

Fig. 5. The property-monitoring process.



The monitoring process also heavily depends on an auxiliary method generated as
part of each PM-class, named conguAssert. This method is responsible for issuing
adequate error messages whenever a violation occurs. It takes as parameters the asser-
tion to evaluate, an enumerate value flagging what kind of property was violated (either
a domain condition or an axiom-induced property) and error description elements. The
method tests the assertion and throws an exception if it is false, detailing the violation
with the descriptive elements received as arguments. The error description elements
passed to this method are the file of the specification to which the property belongs, the
domain or axiom to which it pertains as written in the specification and its line. In this
way, it is possible to pinpoint the origin of the error, in terms of the specification, which
can be invaluable when developing in a specification guided manner.

In step 3, in addition to invocation of the original method, it is also checked that
if the domain condition holds, the invocation of the method returns normally. This is
achieved by surrounding the original method call with a try-catch statement. The catch
clause is only reached when the original method fails to return normally, in which case
a violation is issued if the domain condition was true. If the domain condition was
false, no constraints apply and, hence, the caught exception is re-thrown, allowing the
program to handle it as it would had it been executing normally.

It is worth noting that the properties monitored by each of PM-class do not nec-
essarily originate from a single specification. Refinement mappings do not restrict the
number of specifications that a Java type may implement, therefore the PM-class for a
given type is responsible for monitoring the properties arising from all the specifications
that have been refined to mentioned type.

All of the above holds true for both core and parameter specifications. However,
parameter specifications require another level of indirection. Let C be a generic class
with a parameter E that refines a core parameterized specification, say S[S′]. Even
though each class that is used to instantiate E in C has a corresponding PM-class, the
code generated for monitoring the properties of S that involves to call a method over an
object e of type E, cannot commit to a specific PM-class (the actual type of e is only
known at runtime and will vary from call to call).

CONGU2’s solution is to generate a dispatcher class associated to each type variable
of the refinement mapping. This class has the exact same methods of a PM-class, but,
instead of monitoring properties, only resolve to which PM-class should the call be
forwarded to, based on the actual type of object callee. In the PM-class for class C,
whenever the testing of a property requires to invoke a method of E, the call is placed
to the respective dispatcher class.

Suppose that our program manipulates an object lc of type MyListWMerge<Color>
and another lt of type MyListWMerge<Text>. Monitoring the behaviour of these
objects is performed by the MyListWMergePMonitoring class. Whenever such op-
eration involves a call to method E merge(E), we call the respective method in the
EPMonitoring dispatcher class. While monitoring lc’s behaviour, the actual type of
the callee is Color and, hence, the dispatcher forwards the invocation of merge to
ColorPMonitoring. Similarly, while monitoring lt, the calls are forwarded to class
TextPMonitoring. Notice however that when, as a result of calling mergeInRange

over lc, method E merge(E) is called (see the body of the method in Figure 2), this



call is intercepted and forwarded to ColorPMonitoring in order for the properties of
this operation to be checked.

5 Conclusions

The importance of tools that support runtime conformance checking of implementa-
tions against formal specifications has long been recognised. In the last decade, many
approaches have been developed for monitoring the correctness of OO programs w.r.t.
formal specifications (e.g., [1, 3, 7, 8, 12, 15]). However, despite the actual popularity of
generics in mainstream OO languages [5], current approaches still lack support such a
feature. This was also a limitation CONGU that was overcome in CONGU2.

In this paper we showed how the CONGU approach and the corresponding tool were
extended in order to support the specification of parametrized data types and their im-
plementation in terms of generic classes. The extension of the specification language
in order to support the description of generic data types was relatively simple. Given
that CONGU relies on property-driven specifications, this mainly required the adoption
of parameterized specifications available in conventional algebraic specification lan-
guages. In order to bridge the gap between parameterized specifications and generic
classes we proposed a new notion of refinement mapping around which a new notion of
conformance between specifications and OO programs was defined. To the best of our
knowledge, this issue has not yet been addressed in other contexts. Other approaches
exist that deal with the problem of the implementation of architectural specifications
including parameterized specifications as, for example [2], but the target are ML pro-
grams. Relationships between algebraic specification and OO programs that we are
aware of, namely those that address runtime conformance checking or testing, exclu-
sively consider flat and non-parameterized specifications (e.g., [1, 12, 18]).

CONGU2 implements the runtime monitoring of this new notion of conformance
which, in the case of generic data types, involves checking that both the class that im-
plements the data type and the Java types used to instantiate it conform with what
was specified. With CONGU2, runtime conformance checking becomes applicable to
a range of situations in which automatic support for detection of errors becomes more
relevant. Generics are known to be difficult to grasp and, hence, with generics in action,
obtaining correct implementations becomes more challenging. For us, it is particularly
important to be able to use CONGU with the generic data types that appear in the context
of a typical Algorithms and Data Structures course: we believe this course constitutes
an excellent opportunity for exposing undergraduate students to formal methods. As
discussed by Hu [13], accurate descriptions of abstract data types, agnostic w.r.t. pro-
gramming paradigms and languages, are important for teaching these concepts. From
our experience in teaching this course for several years (initially without tool support
and, more recently, using CONGU), we are convinced that, from an educational an mo-
tivational point of view, it is quite important that students experience, in their practice,
that they can take real advantage of formal descriptions. The use of a simple tool that
allows them to gain confidence that their classes correctly implement a given data type
has shown to be a good starting point. The extension of the tool to support generics will



contribute to the success and effectiveness of the CONGU approach to the introduction
to formal methods in the computer science curriculum.

Acknowledgement

This work was partially supported by FCT through the project QUEST (PTDC/EIA-
EIA/103103/2008).

References
1. S. Antoy and R. Hamlet. Automatically checking an implementation against its formal spec-

ification. IEEE Transactions on Software Engineering, 26(1):55–69, 2000.
2. D. Aspinall and D. Sannella. From specifications to code in CASL. In Proc. Algebraic

Methodology and Software Technology (AMAST) 2002, volume 2422 of LNCS, pages 1–14.
Springer, 2002.

3. M. Barnett and W. Schulte. Runtime verification of .NET contracts. Journal of Systems and
Software, 65(3):199–208, 2003.

4. M. Bidoit and P. Mosses. CASL User Manual, volume 2900 of LNCS. Springer, 2004.
5. G. Bracha. Generics in the Java programming language, 2004. Available at

java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf.
6. E. Bruneton, R. Lenglet, and T. Coupaye. ASM: A code manipulation tool to implement

adaptable systems. In Proc. ACM SIGOPS France Journées Composants 2002: Systèmes à
composants adaptables et extensibles, 2002.

7. F. Chen and G. Rosu. Java-MOP: A monitoring oriented programming environment for Java.
In Proc. Tools and Algorithms for the Construction and Analysis of Systems (TACAS) 2005,
volume 3440 of LNCS, pages 546–550. Springer, 2005.

8. Y. Cheon and G.T. Leavens. A runtime assertion checker for the Java Modeling Language
(JML). In Proc. International Conference on Software Engineering Research and Practice
(SERP’02), pages 322–328. CSREA Press, 2002.

9. D. R. Cok. Adapting JML to generic types and Java 1.6. In Proc. Specification and Verifica-
tion of Component-Based Systems Workshop, 2008.

10. Contract Based System Development. http://gloss.di.fc.ul.pt/congu/.
11. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification, Third Edition.

Prentice Hall, 2005.
12. J. Henkel and A. Diwan. Discovering algebraic specifications from Java classes. In Proc.

ECOOP 2003, volume 2743 of LNCS, pages 431–456. Springer, 2003.
13. C. Hu. Just say ’a class defines a data type’. Communications of the ACM, 51(3):19–21,

2008. See also Forum in Communications of the ACM, 51(5):9–10, 2008.
14. G.T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D.R. Cok. How the design of JML ac-

commodates both runtime assertion checking and formal verification. Science of Computer
Programming, 55(1–3):185–208, 2005.

15. B. Meyer. Object-Oriented Software Construction. Prentice-Hall PTR, 2nd edition, 1997.
16. I. Nunes, A. Lopes, and V. Vasconcelos. Bridging the gap between algebraic specification

and object-oriented generic programming. In Runtime Verification, volume 5779 of LNCS,
pages 115–131. Springer, 2009.

17. I. Nunes, A. Lopes, V. Vasconcelos, J. Abreu, and L.S. Reis. Checking the conformance of
Java classes against algebraic specifications. In Proc. International Conference on Formal
Engineering Methods (ICFEM), volume 4260 of LNCS, pages 494–513. Springer, 2006.

18. B. Yu, L. King, H. Zhu, and B. Zhou. Testing Java components based on algebraic specifi-
cations. In Proc. International Conference on Software Testing, Verification and Validation,
pages 190–198. IEEE, 2008.


