Satisfiability with Exponential Families

Dominik Scheder, Philipp Zumstein

ETH Zürich

SAT 2007
Problem Description (informal)

\[F = x_1 \land (x_2 \lor x_3) \land (\neg x_2 \lor \neg(x_5 \lor \neg x_4)) \]

<table>
<thead>
<tr>
<th></th>
<th>00001</th>
<th>00010</th>
<th>00011</th>
<th></th>
<th></th>
<th>00110</th>
<th>00111</th>
</tr>
</thead>
<tbody>
<tr>
<td>01000</td>
<td>01001</td>
<td></td>
<td></td>
<td>01011</td>
<td>01100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10001</td>
<td>10011</td>
<td>10100</td>
<td>10101</td>
<td>10110</td>
<td>10111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11000</td>
<td>11010</td>
<td>11011</td>
<td>11100</td>
<td>11101</td>
<td></td>
<td>11111</td>
<td></td>
</tr>
</tbody>
</table>

Assume: some of the assignments are **forbidden**

Question: Does there exists a satisfying assignment in \(S_5 \)?
Problem Description (formal)

Satisfiability with the exponential family S

Fix: $S \subseteq \{0,1\}^*$ of exponential size

Given: $V = \{x_1, \ldots, x_n\}$ ordered variable set
F formula over V

Question: $\exists x \in S \cap \{0,1\}^n : x$ satisfies F?
(we say that F is S-satisfiable)

complexity of the problem? NP-hard? polynomial?
Exponential Size

$S_n := S \cap \{0,1\}^n$ (levels of S)

Fact: If $|S_n|$ is polynomial in n, and S_n can be enumerated in polynomial time, then S-SAT is in P.

exponential size

$|S_n| = \Omega(\alpha^n)$ for some $\alpha > 1$
i.e. $|S_n| \geq \alpha^n$ for n large enough

weaker assumption allow also to have “holes”
e.g. $|S_{2k}|=2^{2k}$, $|S_{2k+1}|=0$
Examples

• $S = \{0,1\}^*$.
 Then the S-SAT problem is the normal SAT problem.

• $S = \{ x \in \{0,1\}^* : x_1 = 0 \}$.

Claim: S-SAT with this family is NP-hard.
Proof: We can reduce the SAT problem to S-SAT.
 F formula over n variables
 construct $F' = \text{switch}(F,x_1)$
 x satisfy $F \iff \text{switch}(x,x_1)$ satisfy $\text{switch}(F,x_1)$
 F is satisfiable $\iff F \lor F'$ is S-satisfiable.

• $S = \{ x \in \{0,1\}^* : |x|_1 \text{ is even} \}$.

• $S = \{ ww : w \in \{0,1\}^* \}$.
Theorem 1: Suppose $S \subseteq \{0,1\}^*$ is exponential and context-free. Then S-SAT is NP-complete.

Theorem 2: If S-SAT is in P for some exponential S then SAT has polynomial circuits.

Theorem 3: There is an exponential S such that S-SAT is not NP-hard (provided $P \neq NP$).
VC-dimension

$J \subseteq \{1, \ldots, n\}$ is **shattered** by S_n if the projection $S_n|_J = \{0,1\}^{|J|}$. This means that the projection in these dimensions is surjective, i.e. for each $x \in \{0,1\}^{|J|}$ there is a $y \in S_n$ with $x_i = y_i$ for $i \in J$.

Definition: $\dim_{\text{VC}}(S_n) = \max \{ |J| ; J \text{ is shattered by } S_n \}$

[Vapnik, Chervonenkis, 1971]

Lemma [Sauer, 1973]: Suppose $\dim_{\text{VC}}(S_n) \leq d$. Then

$$|S_n| \leq \sum_{i=0}^{d} \text{binom}(n,i) \leq 2^{H(d/n)n}.$$

Corollary: If $|S_n| \geq \alpha^n$ for some $\alpha>1$, then $\dim_{\text{VC}}(S_n) \geq \delta n + 1$ for some $\delta>0$.
VC-dimension: Example

\{1,2,3\} is a shattered set
Theorem: $S \subseteq \{0,1\}^*$ exponential family and suppose we can compute in polynomial time a linear size shattered index set J. Then S-SAT is NP-hard.

Proof:

$F = \neg a \lor (b \land \neg c) \lor c$

shattered set of size 3

VC-dimension

$S \subseteq \{0,1\}^*$
Theorem: $S \subseteq \{0,1\}^*$ exponential family and suppose we can compute in polynomial time a linear size shattered index set J. Then S-SAT is NP-hard.

Proof:

SAT \rightarrow S-SAT

$F = \neg a \lor (b \land \neg c) \lor c$ \rightarrow ?

$F' = \neg x_1 \lor (x_2 \land \neg x_3) \lor x_3$

$V = \{x_1, x_2, x_3, x_4, x_5\}$

\{1,2,3\} is shattered set

F is satisfiable \iff F' is S-satisfiable

polynomial reduction
Theorem 1: Suppose $S \subseteq \{0,1\}^*$ is exponential and context-free. Then S-SAT is NP-complete.

Sketch of a Proof: There exists a non-terminal A with derivations...
S-SAT which is not NP-hard

Construction:

let $\varphi_1, \varphi_2, \varphi_3, \ldots$ be a sequence of all possible polynomial reductions (countable many)

(i) there are arbitrarily big formulas with satisfiable preimages
(ii) „destroy a level“ for each reduction and „let the next one be full“ and continue then on the next level \rightarrow definition of S

$\varphi_1 \rightarrow \varphi_2 \rightarrow \varphi_3 \rightarrow \varphi_4 \rightarrow \varphi_5 \rightarrow \ldots$

SAT \rightarrow sat. formulas \rightarrow S-SAT

S = $\{0,1\}^* - \{0,1\}^{n_1}$

- $\{0,1\}^{n_2}$

- \ldots
So we have seen the following

Theorem 3: There exists an exponential S (with some holes) for which S-SAT is not NP-hard (provided $\text{NP} \neq \text{P}$).

With some more work we can also delete the holes.
Circuit family $C = (C_1, C_2, \ldots)$

C_n: n input gates

\lor \neg \lor \neg \lor \neg \lor \neg

1 output gate

C decides a language $L \subseteq \{0,1\}^*$.

If the size of C_n grows polynomially in n then C is called to be a polynomial circuit family. Furthermore if we have an algorithm which computes C_n and runs in polynomial time then we say that L has uniform polynomial circuits.
Theorem 2: If S-SAT is in P for some exponential S, then SAT has polynomial circuits.

Sketch of Proof: there are shattered index sets of linear size with these sets we can reduce SAT to S-SAT this give us the (not necessarily uniform) polynomial circuits for SAT.

Karp, Lipton: If SAT has polynomial circuits, then the polynomial hierarchy would collapse to its second level!
Summary and Questions

S-SAT for exponential families is NP-hard if we know some structure about S, namely if we can compute a shattered set of linear size in each dimension in polynomial time.

For context-free languages S we have enough structure to prove that it is NP-hard.

There are constructions which show that S-SAT can also be not NP-hard for exponential S.

• What about other classes of assignments?
• What about other hardness results?

Thank you!