
1

Context-parameterized coordination model and
semantics for behavioural programs

I. Nunes
Department of Informatics,

Faculty of Sciences, University of Lisbon
Lisbon, Portugal

Abstract. In opposition to the traditional approaches to reactive systems in which the atomicity of actions is
assumed, the behavioural paradigm deals with durative actions [9,10] in the sense that the results of a given
action can interfere with other concurrently executing ones. This paradigm is, in its essence, a coordination
model [6], which implies that the aspects of coordinationand computation are separated. This coordination is
achieved through the use of guards, among other coordination primitives, that define not only the situations in
which a given action is desired but also the ones in which its results can become obsolete. In this paper we
present a coordination model for behavioural programs in which a given action can be considered obsolete not
only at the time it finishes but also during its execution. This change in the semantics of the post-guard
prevents the time-warp effect of obsolete actions, therefore allowing to simplify programs. We use a temporal
logic where actions play a role to define an axiomatic semantics for behavioural programs.
Keywords:Durative actions, interference, coordination, contexts, temporal logic.

1. Introduction

The behavioural paradigm developed in
[9,10] for supporting multiprocessor
computing was presented in [6] as a
coordination model for controlling the
execution of durative actions, i.e. actions
which, although executed atomically on a
private local state, have a duration in the sense
that the system state in which they finish
executing is not necessarily the same in which
they started due to the interference of other
concurrently executed actions.

In the proposed framework, each action
of a behavioural program has two associated
guards. On the one hand, a pre-guard that
characterizes the states of the system in which
the action is desirable. As long as there are
free processors, all actions that should be
launched are launched regardless of any
possible future conflict. Conflicts are resolved
at acceptance time. This is achieved through a
post-guard that characterises the system states

in which an already "locally-executed" action
is acceptable (may update the system state).

The interface between the global space
of the system and the local space in which
each action executes is made through two
atomic operations of loading – reading (part
of) the global space – and discharging –
updating (part of) the global space. The parts
of the global space that are read and written,
for each action, are defined by two lists of
attributes: the loading and the discharging
lists, respectively.

Like in (more) traditional coordination
languages [1,2,3,4], the coordination model
presented in [6] is responsible for controlling
the interference between the actions and is
independent from the computation model in
which actions execute. That is to say, it does
not really matter if the computations
performed locally by the actions are
programmed in a, say, imperative or
functional style.



2

In the present paper we propose a
coordination model for behavioural programs
where the semantics of the post-guard is of a
continuation guard instead of an acceptance
one. Because actions are durative, the global
state of the system may change during the
execution of a given action due to the
completion of other concurrently executing
actions. The models we present here are based
in computations or runs in which the post-
guards of actions must hold during their
whole execution, that is, the post-guard of a
given action must hold in all system states that
are established while that action is being
executed.

This change brings a simplification for
behavioural programs because the time warp
caused by "lazy" executed actions is no
longer a problem.

When the semantics of the post-guard is
of an acceptance guard [6,7], it is evaluated
(over the system state) only when the action
finishes local execution. During action
execution the need for that kind of action can
cease and then begin once again (due to
changes in the state of the system caused by
the discharging of other concurrently
executing actions). If the post-guard is true
when the action finishes local execution then
the action is accepted, no matter what went on
in the system in the meanwhile. Programs
have to be specified in order to prevent lazy
actions from modifying the system state with
obsolete values, therefore becoming more
complicated.

The semantics we present here for the
post-guard (of a continuation guard) prevents
this, insofar as late actions would never try to
discharge their results because they would
abort execution as soon as the continuation
guard that defines their usefulness becomes
false.

The behavioural paradigm proposed in
[9,10] was presented in [6] as a coordination
model for reactive programs with durative
actions and a suitable operational semantics
was given.

We now present the models and an
axiomatic semantics for behavioural
programs with continuation guards
(abbreviated to C_behavioural programsfor
simplicity). Models are built from
computations of durative transition systems
[6,7]; a temporal logic extended with action

expressions is used to express the formulas
for the axiomatic semantics.

2. Coordination in the
behavioural paradigm
We formalize the notion of C_behavioural
program for a given signature Θ=(At, Ac)
where At defines the set of attribute symbols
and Ac defines the set of action symbols
(equipped with two mappings L,D: Ac→2

At

providing, for each action g∈ Ac, its loading
(Lg) and discharging (Dg) lists of attributes).

We denote by L(At) the propositional
language of state formulas – S  ::= p|¬ S|
S1⊃ S2 (p∈ At) – defined over At and use it to
express guards.

The behavioural paradigm is not
characterized by a specific syntax for its
programs but, instead, by a set of primitives
aiming at coordinating the interference
between durative actions. The restrictions, or
assumptions, on the nature of the languages
that can be used for programming individual
actions, constitute what we call a
programming context. Contexts allow us to
define the semantics in a parameterized way,
obtaining the independence between the
models of computation and coordination at
the formal level.

Definition 2.1: An operational context
for a signature Θ=(Ac,At) consists of a pair
To=({PLg|g∈ Ac}, {(l g,dg,→g )|g∈ Ac}) where,

•  PLg is a programming language over a
collection Atg⊆ At of (local) attributes;

•  lg and dg give semantics to the loading
and discharging operations; lg picks
part of the system state (the one
defined by the loading list) and returns
a local state; dg picks a local state and
returns part of the system state (the one
defined by the discharging list);

•  →g  is an operational semantics for
commands in language PLg; it picks a
PLg command and a local state and
returns a local state ♦

A C_behavioural program is defined with
respect to a given context:

Definition 2.2: A C_behavioural
program for a signature Θ=(Ac,At) and a
context To = ({PLg|g∈ Ac}, {(l g,dg,→g )|g∈ Ac}),
is a pair (I,BDY) where I is an initial condition
and BDY assigns, to every action symbol
g∈ Ac, a triple (Ag,Pg,Cg) – a double guarded
action – where:



3

•  Ag and Pg are state formulas; the pre-
and continuation-guards of action g,
respectively;

•  Cg is a program in the language PLg. ♦
In order to illustrate the coordination

model just described, consider the following
C_behavioural program (the "dining
philosophers"). For the sake of clarity each
action is represented as

(pre-guard,continuation-guard) →
      [loading_list | program | discharging_list]

(LOT∧ ROT∧¬ H) // defines initial states

(¬H, ¬H) → [   | think | H]

(H∧ PR∧ PL, H∧ PR∧ PL) → 

[   | eat | H, PR, ROT, PL, LOT]

(H∧ PL∧¬ PR∧¬ ROT, ¬ROT) → [   | rel_L | PL, LOT]

(H∧ PR∧¬ PL∧¬ LOT, ¬LOT) → [   | rel_R | PR, ROT]

(H∧ LOT, H∧ LOT) → [   | take_L | PL, LOT]

(H∧ ROT, H∧ ROT) → [   | take_R | PR, ROT]

where the propositional symbols are used with
the following meanings: H (the philosopher is
hungry); LOT (the left fork is on the table);
ROT (the right fork is on the table); PL (the
philosopher possesses the left fork); PR (the
philosopher possesses the right fork).

The intended semantics of the rel_L
action specification, for example, is the
following. When a philosopher is hungry (H),
possesses the left fork (PL) and does not
possess the right fork (¬PR), and the right
fork is not on the table (¬ROT), he will
release the left fork. If, while our philosopher
is in the process of releasing his left fork, the
philosopher at his right releases his left fork
(our philosopher's right fork), therefore
turning ROT to true, then our philosopher
should abort the releasing action.

We have deliberately omitted the
definition of the program executed locally by
each action to remind that the behavioural
paradigm is all about coordinating durative
actions and not about programming their
effects. This coordination is achieved through
the pre and continuation-guards and by the
loading and discharging lists. Naturally, these
local programs have to be supplied for the
C_behavioural program to be complete.

3. A Model of Coordination
The models we present for C_behavioural
programs are sets of computations or runs
that are obtained from durative transition
systems [6,7]:

Definition 3.1: A state for a signature
Θ=(At,Ac) – σ:2At – is a subset of the set At
of attributes. An initialized durative transition
system (dts) for a signature Θ=(Ac,At) is a
triple <Σ,Σ0,{ →g |g∈ Ac}> where:

•  Σ is a non-empty set (of states),
•  Σ0 is a non-empty set (of initial states),
•  →g  :(Σ×Σ)→Σ for each action g∈ Ac,

is a partial function (on both
arguments). ♦

The notation σΩ stands for the
projection of state σ in set Ω⊆ At. The
notation σ'[σΩ/Ω] stands for the state that is
equal to σ' except for the attributes in Ω⊆ At
whose values are given by σΩ.

State formulas as defined above are
evaluated over states for a signature Θ, in the
following way:
σ ï Θ  p  iff  p∈σ    
σ ï Θ ¬ S  iff  σ  /ïΘS    
σ ï Θ  S1⊃ S2   iff  σ ï Θ S1 implies σ ï Θ S2

A C_behavioural program defines a
durative transition system where the set of
transitions is composed, for each action in Ac,
of the triples of states that characterize the
double-guarded action. These transitions
relate the three most important states of
instances of action execution: the state in
which it is launched (satisfying the pre-
guard), the state in which, having finished
execution, it is considered for discharging
(satisfying the continuation-guard), and the
state resulting from the discharge of its
results.

Definition 3.2: The dts defined by
program CBP = (I,{(A g,Pg,Cg)|g∈ Ac}) for
context To = ({PLg|g∈ Ac}, {(l g,dg,→g )|g∈ Ac})
is such that

•  for all σ0∈Σ 0, σ0 ï Θ I;
•  (σ,σ',σ") ∈  →g    iff σ ï Θ Ag, σ' ï Θ Pg,

and σ"=σ'[dg(→g (Cg,lg(σLg)))/Dg] ♦
Notice that the values of the attributes

of the system – At – in the resulting state σ"
are completely determined. The values for
attributes in the discharging list (Dg) are given
through the discharging (dg) of the results of
the execution (→g ) of the local program Cg

over the values that were loaded at launching



4

time (lg(σLg)); the other attributes – in At\Dg –
depend on "what went on" in the system while
g was executing, that is, they keep the value
they had in the accepting state (σ').

The triples (launching, accepting,
resulting) of states define the effects of
actions but do not account for the truth value
of the continuation guard during action
execution, that is, in states established between
the launching and the accepting ones. The
models for our C_behavioural programs have
to account for this:

Definition 3.3: A computation of the
dts defined by program (I,{(Ag,Pg,Cg)|g∈ Ac})
is an infinite sequence of states r=σ0,σ1,σ2....
that satisfies the following requirements:

Initiation: σ0∈Σ 0 ;
Consecution: for all j>0, there are i<j and

g∈ Ac s.t. (σi,σj-1,σj) ∈→g ;
Continuation: for all i<j s.t.

r(i)= σ and
r(j-1)= σ' and
r(j)= σ" for some (σ,σ',σ") ∈→g ,

we have that for all i≤k<j, r(k)ï ΘPg.
where r(i) is the ith+1 state of a computation. ♦

The continuation requirement tells us
that in every action execution – characterized
by a triple of states (launching, accepting,
resulting) — the continuation-guard must be
verified in all states that are established
between the launching and the resulting ones.  

4. Axiomatic Semantics
The axiomatic semantics of a given
C_behavioural program CBP is given by a set
of formulas in a temporal logic; these
formulas are sound with respect to the model
composed by all computations of the dts
defined by CBP for a given context.

The logic we use is a temporal logic as
presented in [5] extended with two action
expressions. A propositional version of this
temporal logic defines temporal formulas for
a signature Θ,

T::= S | g | g— | ¬ T | T1⊃ T2 | ΟT |
T1UT2 | T1ST2

where S is a state formula and g∈ Ac.
These formulas are evaluated over pairs

(computation,index) for a dts <Σ,Σ0,{ →g

|g∈ Ac}>:
(r,i) ï Θ S iff r(i)  ï Θ S

(r,i) ï Θ g iff
there are (σ,σ',σ") ∈  →g  and j>i   s.t.

   r(i)= σ, r(j-1)= σ' and r(j)= σ"
(r,i) ï Θ g— iff

there are (σ,σ',σ") ∈  →g  and j<i   s.t.
   r(j)= σ, r(i-1)= σ' and r(i)= σ"

The temporal operators next (Ο), until
(U) and since (S) are as defined in [5]. The
usual abbreviations  for tt, ff, ∧ , ∨ , and ≡ are
used.

The semantics of the action expressions
g and g— reflect the non-atomicity of action
execution because the launching state need
not be contiguous to the accepting state in a
computation or run; an undefined number of
actions can discharge their results while the
action is executing. On the other hand, the
fact that the accepting and resulting states are
always contiguous in a computation reflects
the atomicity of the test-and-set operation,
that is, the evaluation of the continuation
guard in the accepting state and the
discharging of the local results into the
system global state are done in one single
atomic step (nothing happens in between).

Just like the definition of
C_behavioural programs requires a context
that accounts for the specificities of the
programming languages that are used for
defining the programs of actions, the
axiomatic semantics requires a context that
allows us to relate properties of the local
executions with properties of the global
system. Such an axiomatic context needs to
serve two purposes.

On the one hand, it has to provide the
ability to infer properties of local executions.
For that purpose, we consider that each
language PLg (restricted to attributes in
Atg⊆ At) has an associated modal logic LCg.
We will need the following auxiliary
definition:

Definition 4.1: Let PLg be a
programming language for a set Atg of
attributes. We define the PLg associated
context logic as the triple (LCg, ïMg, îLCg)
where:

•  LCg is a modal logic for L(Atg) that
includes the modal formulas ([c]A)
(the syntax of commands c in PLg is
irrelevant here);

•  ïMg is a semantic consequence relation
where:



5

– Mg=(Σg,Ê Ë :(PLg×Σg→Σg)) where Σg

is the set of states for Atg and Ê Ë
gives semantics to commands in
PLg;

– for all σg∈Σ g,
σgïMg[c]A iff ÊcË σgïMgA;

•  î LCg is a syntatic consequence relation
which is sound wrt the semantics. ♦
On the other hand, an axiomatic

context has to provide us with means for
relating local and global properties similar to
the way the loading and discharging
functions operate at the operational level. For
this purpose, we rely on mixed inference rules:

Definition 4.2: Let At1 and At2 be sets
(of attributes) and f:2At1→2At2. An f-mixed
inference rule is a pair <Γ,A'> where
Γ⊆ L(At1) and A'∈ L(At2), which we denote by
ΓîfA'. Such a mixed inference rule is said to
be sound iff for all σ1∈ 2At1, σ1ïΓ implies
f(σ1)ïA'. ♦

When we want to relate properties of
local executions with properties of the global
system we have to relate, for a given action g,
the local and global attributes. We have to
relate global attributes of the loading list of g
(Lg) with local attributes of g (Atg) in "pre-
execution" situations and also to relate local
attributes of g with the global attributes of the
discharging list of g (Dg) in "post-execution"
situations. The mixed inference rules that are
of interest in order to define the axiomatic
semantics of a program CBP are:
− the ones composed of a set of state

formulas ΓLg in the language of the loading
attributes (Lg), paired with a state formula
Ag in the language of the local attributes
(Atg);

− the ones composed of a set of state
formulas Γg in the language of the local
attributes (Atg), paired with a state formula
ADg in the language of the discharging
attributes (Dg).

Definition 4.3: An axiomatic context Ta

for a signature Θ=(At,Ac) is a family of
tuples {((LCg,ïMg,îLCg),lrg,drg)|g∈ Ac} where

•  (LCg,ïMg,îLCg) is a PLg associated
context logic;

•  lrg is a set of (2Lg→2Atg)-mixed
inference rules (loading rules);

•  drg is a set of (2Atg→2Dg)-mixed
inference rules (discharging rules). ♦

We now give the formulas that
constitute the axiomatic semantics of the
program dgas. These are formulas expressing
pre- and continuation-guards, frame
conditions (stating that all attributes not in the
discharging list of an action are not affected
by that action) and, finally, local effects of
actions.

Definition 4.4: Given an axiomatic
context Ta = {((LCg,ïMg,îLCg),lrg,drg)|g∈ Ac}
for a signature Θ=(At,Ac), the axiomatic
semantics of a double guarded action
(Ag,Pg,Cg) consists of the following set Γg of
formulas:

(1)(g ⊃ ( Ag ∧  PgU g—))
(2) (Ο g—⊃ PgSg)
(3)for all p∉ Dg, the formulas

((Ο g— ∧ p) ⊃ Οp)  and  
((Ο g— ∧ ¬ p) ⊃ Ο¬ p)

(4)for all
<{B 1},B 1'>∈ lrg and
<{B 2'},B2>∈ drg   s.t.   î LCg B1'⊃ [Cg]B2',

the formula (g∧ B1) ⊃  ttU( g—∧ B2)
The axiomatic semantics of a C_behavioural
program CBP is the set ∪ g∈ Ac Γg. ♦

The formulas in (1) and (2) say that if
there is a durative transition through g then
the pre-guard of g is true in the launching
state and the continuation-guard is true
during its execution. The formulas in (3)
express frame conditions, that is, that in all
states that result from the execution of g, all
attributes not belonging to the discharging list
of g keep the values they had in the
acceptance state. The formulas in (4) express
the locality conditions. More precisely, they
express that, if i) B1 holds when g is launched,
ii) B1 translates to the local property B1'
through the loading rules, iii) Cg establishes
B2' when executed in (local) states that satisfy
B1', and iv) B2' translates to B2 through the
discharging rules, then B2 holds in the state
that results from the execution of g. That is,
the effects of the execution of g over the
attributes in the discharging list of g are
determined by the execution of Cg.

Notice that when Lg and Dg are
"mirrored" directly in Atg in the sense that the
functions (2Lg→2Atg) and (2Atg→2Dg) just
copy them to and from the local state of g, we
can assume that Lg and Dg are subsets of Atg

so that the formulas for the locality
conditions simplify to {(g∧ B) ⊃  ttU( g—∧ A) |



6

îLCg B⊃ [Cg]A} where B and A are state
formulas in L(Lg) and L(Dg) respectively.

In order to prove that the formulas that
constitute the axiomatic semantics of a
C_behavioural program CBP are sound with
respect to the model composed of the
computations of CBP as described above, we
have to be sure that the axiomatic and
operational contexts used are somehow
related. Only in this way can we ensure that
we are dealing with two different "points of
view" of the same program.

Definition 4.5: An axiomatic context
Ta= {((LCg, ïMg, îLCg), lrg, drg)|g∈ Ac} and an
operational context To=({PLg|g∈ Ac},
{(l g,dg,→g )|g∈ Ac}) for a signature Θ are said to
agree iff, for all g∈ Ac:

•  Mg=(Σg,→g );
•  lrg is a set of sound lg-mixed inference

rules;
•  drg is a set of sound dg-mixed

inference rules. ♦
For an axiomatic and an operational

contexts to agree we have that the semantics
for program Cg, in logic LCg, is given by its
operational semantics – →g  – in To, and the
rules lrg and drg that allow us to account for
the local/global relations must "agree" with the
semantics given in To – lg and dg – for the
loading and discharging operations.

Therefore, the rules in lrg, <Γ,A>, must
be such that, whenever the formulas Bi∈Γ
(Bi∈ L(Lg)) hold in σLg, formula A holds in
lg(σLg), that is, A holds in the local state
obtained from applying the loading operation
lg to σLg. The rules in drg, <Γ,A>, must be
such that, whenever the formulas Bi∈Γ
(Bi∈ L(Atg)) hold in σg, formula A holds in
dg(σg), that is, A holds in σDg obtained from
applying the discharging operation dg to σg.

Proposition 4.6: Let Ta and To be an
axiomatic and an operational contexts for a
signature Θ = (At,Ac) which agree with each
other. Given CBP=(I,{(Ag,Pg,Cg)|g∈ Ac}), a
program for Θ, the axiomatic semantics for
CBP – ∪ g∈ AcΓg – as defined in 4.4, is sound
with respect to the model composed of the
computations of CBP. ♦

Proof.
We have to prove that the following

formulas are true in the set of all
computations for the dts <Σ,Σ0,{ →g |g∈ Ac}>
defined by CBP:

•  (g ⊃ ( Ag ∧  PgU g—))

•  (Ο g—⊃ PgSg)
•  for all p∉ Dg, the formulas

((Ο g— ∧ p) ⊃ Οp)  and  
((Ο g— ∧ ¬ p) ⊃ Ο¬ p)

•  for all
<{B 1},B 1'>∈ lrg and
<{B 2'},B2>∈ drg   s.t.   î LCg B1'⊃ [Cg]B2',

the formula (g∧ B1) ⊃  ttU( g—∧ B2)
We only present the proof for the last one
here.
Suppose (1) <{B1},B 1'>∈ lrg and

 (2) <{B2'},B 2>∈ drg and
(3) îLCg B1'⊃ [Cg]B2'.

Because Ta and To agree and because îLCgg
 is

sound wrt ïMg, we have that,
for all σg∈Σ g,

σgïMgB1'  implies  →g (Cg,σg)ïMgB2' (4)
We know that <{B1},B1'> is a sound lg-mixed
inference rule, that is,
for all σLg,

σLgïΘB1  implies  lg(σLg)ïMgB1' (5)
and <{B2'},B2> is a sound dg-mixed inference
rule, that is,
for all σg,

σgïMgB2'  implies  dg(σg)ïΘB2 (6)
from (5) and (4) it comes that,
for all σLg,

σLgïΘB1  implies  →g (Cg,lg(σLg))ïMgB2' (7)
from (7) and (6) it comes that,
for all σLg,

σLgïΘB1  implies dg(→g (Cg,lg(σLg)))ïΘB2 (8)
Because B1∈ L(Lg), we have
for all σ∈Σ ,

 σïΘB1  implies  dg(→g (Cg,lg(σLg)))ïΘB2 (9)
Suppose (r,a)ï Θ(g∧ B1) (10)
By definition, from (10) we have

there are (σ,σ',σ") ∈  →g  and b>a   s.t.
r(a)= σ, r(b-1)= σ', r(b)= σ" and
r(a)ï ΘB1 (11)

We have to prove that (r,a)ï ΘttU( g—∧ B2), that
is, that
there is b≥a s.t. (r,b)ï Θ( g—∧ B2),
that is, that there is b≥a s.t.

there are (σ,σ',σ") ∈  →g  and c<b   s.t.
r(c)= σ, r(b-1)= σ', r(b)= σ" and (r,b)ï ΘB2

Because we have (11), it is true that
there is b≥a s.t. r(b)= σ" (12)

and the c value can be a. We have still to
prove (r,b)ï ΘB2. Because of (9) and (10) we
have:



7

dg(→g (Cg,lg(r(a)Lg)))ïΘB2 (13)
From (12) we have r(b)= σ". By definition
3.2, σ"=σ'[dg(→g (Cg,lg(σLg)))/Dg]. Then, from
(13), r(b)ï ΘB2. Because B2∈ L(Dg), we have
(r,b)ï ΘB2.

End of proof.
Properties of C_behavioural programs

can be proven departing from these formulas
and from all the fully established knowledge
that the use of a temporal logic brings us
[5,8].

5. Further work
The composition of programs under the
behavioural paradigm is being studied
together with the issue of preservation of
properties. We are also adressing the
application of the behavioural formalisms to
the specification of real-time systems as a
means of fully covering the notion of
duration in critical systems.

References
1. J.P.Banâtre and D.Le Métayer,

"Programming by Multiset
Transformation", Communications
ACM16, 1 pp. 55-77, 1993.

2. P.Ciancarini, C.Hankin, "Coordination
Languages and Models", LNCS 1061,
Springer-Verlag, 1996.

3. D.Gelernter, "Generative Communication
in Linda", ACM Trans. Prog. Lang. Syst.
7, 1, pp. 80-112, 1985.

4. D.Gelernter, N.Carriero, "Coordination
Languages and their Significance",
Communications ACM 35, 2, pp. 97-107,
1992.

5. Z.Manna, A.Pnueli, The Temporal Logic
of Reactive and Concurrent Systems,
Springer-Verlag 1991.

6. I.Nunes, J.L.Fiadeiro and W.M.Turski,
"Coordinating Durative Actions", in Proc.
COORDINATION'97, D.Garlan and
D.Le Métayer (eds), Lecture Notes in
Computer Science 1282, pp. 115-130,
Springer-Verlag 1997.

7. I.Nunes, J.L.Fiadeiro and W.M.Turski, "A
Modal Logic of Durative Actions", in
H.Barringer et al (eds), Advances in
Temporal Logic, pp. 299-317, Kluwer
Academic Publishers, 2000.

8. C.Stirling, "Modal and Temporal Logics",
in S.Abramsky, D.Gabbay and
T.Maibaum (eds), Handbook of Logic in
Computer Science 2, pp. 477-563, 1992.

9. W.M.Turski, "On Specification of
Multiprocessor Computing", Acta
Informatica 27, pp. 685-696, 1990.

10. W.M.Turski, "Extending the Computing
Paradigm", Structured Programming 13,
pp. 1-9, 1992.


