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Abstract—Embedded systems are present in many devices,
such as the Internet of Things, drones, and cyber-physical
systems. The software security of these devices can be critical,
depending on the context they are integrated and the role they
play (e.g., water plants, vehicles). C is the core language used to
develop the software for these devices and is known for missing
the bounds of its data types, which leads to vulnerabilities such
as buffer overflows. These vulnerabilities, when exploited, can
cause severe damage and put human life in danger. One of the
concerns with vulnerable C programs is to correct the code
automatically and adequately, employing secure code that can
remove the existing vulnerabilities and avoid attacks. However,
such a task faces some challenges, namely determining what
code is needed to remove them and, at the same time, ensuring
the correct behaviour of the program, where to insert it, and
verifying that the correction applied is secure and effectively
removes the vulnerabilities. Another challenge is to accomplish
all these elements in an automated manner. This paper presents
an approach that automatically, after discovering and confirming
potential vulnerabilities of an application, applies code correction
to fix the vulnerable code of those confirmed vulnerabilities and
validates the new code. We implemented the approach, resulting
in the CorCA [1] tool, and evaluated it with a set of tests and real
applications. The experimental results showed that the tool was
capable of detecting vulnerabilities and fixing them correctly.

Index Terms—Code Repair, Buffer Overflow Vulnerabilities,
Static Analysis, Fuzzing, Software Security

I. INTRODUCTION

The advancement of technologies and the growth in the use
of software systems daily and globally have raised several
questions related to the security of the software used. In
our everyday life, we use several devices (e.g., smartphones,
computers, vehicles) whose operation depends on the software
they use. These devices are in constant development and
evolution, always searching for bringing new features and a
better user experience, and their software has become more
robust and complex to provide such features. The increase in
complexity and size favours the appearance of bugs in code
since it becomes harder to analyze and ensure its correctness.
Under certain conditions to which systems are submitted, these
bugs can cause the appearance of exploitable vulnerabilities
leading to the corruption of the systems.

The existence of bugs in systems occurs due to the usage
of unsafe languages and unintentional errors introduced by
programmers. Although today there is a concern with software
security, unsafe languages are still widely used, and errors
continue to be made and are one of the main problems in
building secure systems. C is one of the unsafe and most

used languages in the development of software products in
several areas. Even with the appearance of new languages,
it remains one of the most used [2]. At the same time, C
lacks checking mechanisms, such as buffer limits, leaving the
developer entirely responsible for the correct memory and
resource management. These weaknesses are at the root of
buffer overflows (BO) vulnerabilities, which range the first
place in the CWE’s top 25 of the most dangerous weaknesses
[3]. The exploitation of BO when existing in critical safety
systems, such as railways and autonomous cars, can have
catastrophic effects on manufacturers or endanger human lives.
However, C contains safe functions that can be used to
avoid introducing vulnerabilities and invalidating attacks. But,
developers may not be aware of these functions or even know
how to use them properly.

Currently, there is a great demand for tools that help the de-
velopment of secure software to overcome the aforementioned
difficulties. However, such tools can be hard to use and can
report vulnerabilities that are not real, i.e., false positives. For
this reason, many tools require developers to manually analyze
the reported results, which consumes a significant amount of
developers’ time. Moreover, this time is ineffective when they
look for inexistent vulnerabilities in the source code. These
tools can use different techniques to detect vulnerabilities,
being fuzzing the most used for its ability to exploit them
[4] [5] [6]. But, fuzzing does not give information about
them on the code, putting this task on the programmers’ side,
which can be challenging for those who do not know about
security programming. Static analysis [7] [8], the combination
of it with fuzzing [9] [10], and recently machine learning
approaches [11] [12] have been proposed to identify bugs in
the code, but they suffer from imprecision, putting once again
the effort of checking their output veracity on developer’s side.

Hence, it is necessary to find ways to automatically detect
flaws and remove them by employing more security program-
ming to be helpful for developers. The existence of tools
capable of automatically detecting and fixing vulnerabilities
would make developers’ tasks easier and decrease the time
needed to write secure code. For automatic program repair
(APR) for C there are few tools available with these capabili-
ties [13][14][15][16][17] [18], and they have some limitations,
such as producing syntactically incorrect code or not verifying
the effectiveness of the inserted fixes [15][16]. Moreover, most
of them are not for security and the existing ones do not verify
the correctness of the fixed code, which can leave the programs



syntactically incorrect. Hence, it is a must to carry out tools to
remove vulnerabilities in C programs by correcting their code,
making it safe. Furthermore, it is necessary, on the one hand,
to confirm the existence of the vulnerabilities found for the
reduction of false positives and, on the other hand, to verify
the correctness and effectiveness of the corrections made.

This paper proposes an approach for automatically detecting
and correcting BO vulnerabilities in C programs. The idea
behind the approach is to combine techniques of static anal-
ysis, fuzzing and APR to discover BOs statically, confirm
their presence by fuzzing and remove the vulnerabilities by
repairing the code and testing the corrections’ effectiveness.

The paper also presents the Correction C Automatically
(CorCA) tool that implements the approach. CorCA first hits
all sensitive sinks associated with BO (e.g., strcpy) existing
in the program under testing (PUT), next extracts the code slice
(a single data flow that starts at a buffer declaration and ends
at a sensitive sink) for each function hinted and composes its
slice program syntactically correct and executable. Afterwards,
it fuzzes the slice programs to confirm which ones are really
vulnerable and then corrects them by applying fixes (small
pieces of code). Fixes are generated and inserted automatically
and contain the right code needed to remove the vulnerabili-
ties. Next, the fixed slice programs are compiled and submitted
to a validation process, where they are fuzzed with the test
cases that exploited the vulnerabilities contained therein and
with new test cases driven from the former. Lastly, a new
release of the PUT is produced with the validated fixes. The
tool was validated with 1075 programs from SARD [19] and
assessed over 7 real applications, where discovered 6 zero-days
vulnerabilities (i.e., 6 previously unknown vulnerabilities) and
correctly fixed the vulnerable applications.

The main contributions of the paper are: (1) an approach
for searching for potential BO vulnerabilities based on static
analysis and their confirmation through the generation of test
cases derived from fuzzing, and the automatic creation of fixes
to remove the vulnerabilities, their application, and assessment
of their effectiveness; (2) a tool capable of flagging and con-
firming BO vulnerabilities in programs written in C, correcting
them, and verifying the effectiveness of the corrections in an
automated way; (3) an experimental evaluation that shows the
ability of this tool to detect known and zero-day vulnerabilities
and remove them effectively.

II. BACKGROUND AND RELATED WORK

This section presents the background on BO vulnerabilities,
the techniques of vulnerability detection, focusing on those
related to our work, and a review of techniques for APR.

A. Vulnerabilities

A vulnerability can be described as a flaw or weakness in a
system, which can be exploited or triggered by a threat source
resulting in a security breach or a violation of the system’s se-
curity policy [20][21][22]. Vulnerabilities usually result from
introduced flaws in the software during its development. C is
a very flexible language that facilitates access to memory in

an invalid and unchecked manner. These characteristics lead
to many security flaws because programmers assume that the
language handles certain aspects when, in fact, it does not.

Buffer overflows, in C programs, are the root of a large
percentage of severe security problems that have emerged
over the years [23][24][25][26]. They can be expressed in
code and exploited in several manners [27], although there are
various countermeasures that can be implemented to prevent
them [28]. A BO occurs when a program performs operations
outside of the boundaries of the memory allocated to a
particular buffer (a contiguous chunk of memory space of
the same data type). The root cause of most BOs is the
combination of memory manipulation and wrong assumptions
about the size or composition of data. They usually involve
violating the assumptions made by the programmers when
using memory manipulation functions (e.g., gets, strcpy)
that do not perform bounds checking of the buffers on which
they operate. Even bounded functions, the well-known safe
functions such as strncpy, can cause BOs when used
incorrectly. Depending on the size of the overflow and the
memory location, a BO can go unnoticed but can corrupt data,
cause erratic behaviour, cause the execution of malicious code,
or terminate the program abnormally.

The code in Listing 1 illustrates a simple BO. The code
uses the gets function to read an arbitrary amount of data
into a buffer. The safety of the code depends on the user to
always enter fewer characters than BUFSIZE because there is
no way to limit the amount of data read by this function.

1 #include <stdio.h>
2 #define BUFSIZE 20
3 int main(int argc, char **argv[]) {
4 char buffer[BUFSIZE];
5 gets(buffer);
6 return(0);
7 }

Listing 1: Buffer overflow example.

B. Vulnerability Detection

The correct vulnerability identification is a hard task that
requires a considerable amount of time. The creation of
automatic methods to obtain tools that accomplish this task
easier and faster has emerged in the last years. These tools
have employed various techniques, such as static and dynamic
analysis, fuzzing, and recently machine learning (ML).

Static analysis tools aim to find bugs in the code of an appli-
cation through the analysis of its code and without executing
it [29][30][31][32]. Opposingly dynamic code analysis tools
inspect programs while running to identify potential issues that
arise during the actual execution of the program and impact its
reliability. [33][34][35]. Fuzzing is a popular software testing
method, mainly used for security testing, that injects random
inputs into a system to reveal software defects and vulnerabil-
ities by monitoring the system for exceptions such as crashes
or information leakage [36][37]. There is a great diversity of
work related to fuzzers and the different types of fuzzers, from
mathematical models, solving constraints, white- and grey-



box, and combinations of different techniques, e.g., static and
dynamic analysis [38][39][40][41][42][43][44][45][46][47]. In
addition, some research seeks to use machine learning tech-
niques to find vulnerabilities in the code, taking advantage
of models to predict where vulnerabilities may exist and thus
make the detection process faster [48][49][50][51][52].

C. Automatic Program Repair

The repair techniques follow two main approaches: software
healing (or state repair) and software repair (or behavioural
repair) [53]. The former consists of changing the state (e.g.,
stack, heap) of the program under repair (PUT) through a
healing process composed of two steps that might be executed
iteratively: (1) the healing step executes a healing operation
that can prevent or mitigate a failure detected; (2) the ver-
ification step checks if the program runs as expected after
the healing operation has finished [54]. The second approach
changes the program’s behaviour by altering the code, which
can be done offline or at runtime. This process comprises three
steps that might be executed iteratively: (1) the localization
step identifies the locations in the code where a fix could be
applied; (2) the fix step generates the fixes that will modify
the code in the locations returned by (1); (3) the verification
step checks if the fixes have really repaired the program.

Most existing works in the literature follow the second
approach with the additional step of code instrumentalization
to discover BOs and the places into the code to insert the fixes
[14][13]. Some others do not apply the fix verification step of
this approach [16][55][56]. Yet others only suggest how the
vulnerabilities found can be repaired [15][57]. The approach
we propose follows the three steps of the software repair
approach without requiring instrumentalising the code as it
resorts to static analysis to identify potential vulnerabilities
and gather the code involved in these to produce executable
slice programs containing the data flow paths of each potential
vulnerability. Also, the approach uses fuzzing to exercise the
resulting slice programs.

Recently, advancements in machine learning brought a wave
of progress within the field of software repair. This trend
leads to the appearance of different repair techniques named
data-driven approaches that make decisions based on analysis
and interpretation of hard data rather than on observation
[58][59][60][61][62][63].

III. CHALLENGES

We aim to create an automated BO vulnerability discovery
and fixing, and code correction validation tool. We present
next the challenges it should address and the key ideas that
emerged to cope with them and their reasoning.

A. How to find vulnerabilities and ensure they are exploitable?

One of the problems related to the identification of vulner-
abilities in code through static analysis tools is the production
of false positives (FP), which it turns difficult to locate real
vulnerabilities in the source code. Hence, it is necessary to

ensure that the vulnerabilities found statically are exploitable,
giving evidence of such by providing exploits (test cases).

Our idea to overcome this challenge is to analyze the code
of a program through static analysis to discover candidate
vulnerabilities, whose results can contain FPs. Next, we will
use fuzzing to filter these results, checking when it exploits
the candidate vulnerabilities, producing their exploits.

B. How to generate compilable and executable programs from
code slices of vulnerabilities found statically?

Fuzzing to exercise the PUT demands that the program
is running, so an executable file of it is required. On the
other hand, static analysis tools neither provide executable nor
compilable code for the flaws they report. Most of them only
output the line of code of the sensitive sink and, some others,
which entry point supposedly hit it. Very few tools return the
complete slice of the vulnerable code, i.e., the lines of the
vulnerable execution path that starts at an entry point and ends
at a sink, but this code is neither compilable nor executable.
Thus, the challenge here is how to capture all the code needed
for each vulnerability reported by static analysis and make it
executable to be exercised by fuzzing.

The main idea is to generate a slice program for each
potential vulnerability found, composed of the slice of the
vulnerable code and all the other code necessary to make it
compilable and executable (e.g., the main function). For that,
we will employ code parsing techniques over the static analysis
output and the PUT files to capture all needed code.

C. Where and how to correct the code?

One of the main challenges of automatic code correction
is to decide where the code for removing the vulnerability –
fix – should be inserted. This decision is difficult because a
slight change in the code may alter the program’s logic, and its
effect needs to be avoided to maintain the correct program’s
behaviour. As we want to fix vulnerabilities associated with
BOs, which are usually related to sensitive sinks, our focus
will be on fixing the lines of these sinks. Hence, we propose
the inclusion of fixes in these lines or close to them.

Another challenge associated with code correction is to
decide what type of correction to apply in each case, since
a given vulnerability class can be expressed in the code in
different forms, even for the same sensitive sink. Moreover,
as there is no universal fix for all cases and each sensitive
sink is used differently with distinct arguments, it makes
the process of correction more difficult. Our idea is to fix
the issues associated with specific sensitive sinks. For some
sensitive sinks, the fix may be to replace them with their
secure version (e.g., strncpy for strcpy), but some may
have no possibility of doing this because they do not have a
safe version (e.g., scanf). But in both cases, our approach
will capture the sinks’ arguments and whether they need some
validation before using them in the sinks, and determine the
correct amount of bytes that must be used by the fixes.

In sum, our conception to solve these two challenges is to
construct a set of fix templates that will be used dynamically
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(a) Overview of the proposed approach.

1 #include <stdio.h>
2 #include <string.h>
3 void main(int argc, char **argv[]){
4 char buf_s[15];
5 char buf_d[10];
6 char buf_d1[10];
7 char *str = "Buffer Overflow"
8 printf(“Enter a string\n”);
9 scanf(“%14s”, buf_s);

10 strncpy(buf_d, buf_s, sizeof(buf_d)-1);
11 buf_d[sizeof(buf_d)-1] = ‘\0’;
12 printf(“buf_d: %s\n”, buf_d);
13 snprintf(bud_d1, sizeof(buf_d1), “%s”, str);
14 }

1 #include <stdio.h>
2 #include <string.h>
3 void main(int argc, char **argv[]){
4 char buf_s[15];
5 char buf_d[10];
6 char buf_d1[10];
7 char *str = "Buffer Overflow"
8 printf(“Enter a string\n”);
9 scanf(“%s”, buf_s);

10 strcpy(buf_d, buf_s);
11 printf(“buf_d: %s\n”, buf_d);
12 sprintf(bud_d1, “%s”, str);
13 }

4 char buf_s[15];
5 char buf_d[10];
9 scanf(“%s”, buf_s);

10 strcpy(buf_d, buf_s);

4 char buf_s[15];
9 scanf(“%s”, buf_s);

6 char buf_d1[10];
7 char *str = "Buffer Overflow"

12 sprintf(bud_d1, “%s”, str);

1

1 #include <stdio.h>
2 #include <string.h>
3 void main(int argc, char **argv[]){
4 char buf_s[15];
5 scanf(“%s”, buf_s);
6 }

2

1 #include <stdio.h>
2 #include <string.h>
3 void main(int argc, char **argv[]){
4 char buf_s[15];
5 scanf(“%14s”, buf_s);
6 }
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(b) Example of execution of the approach.
Fig. 1: Approach architecture overview and execution example.

when the vulnerable code is being inspected to determine what
is necessary to fix and where the fix will be inserted. Based
on these inspections, the fix template is selected and generated
the final fix. Some fixes will replace sensitive sinks with their
safer version if they exist. Otherwise, fixes will modify the
sink statement or insert code instructions close to it to ensure
that the sensitive sink is used correctly and safely.

D. How to determine that the fix applied is effective?

We propose to automate this validation process by using the
exploits generated in the fuzzing task during the vulnerability
confirmation step (i.e., the exploits that break the functioning
of the PUT) to verify that the fix works. If the exploits cannot
crash the program’s operation, the applied fix effectively
removed the vulnerability and corrected the code. Also, if
they cannot hang the program’s behaviour and logic, the fix
was correctly generated syntactically and inserted in the right
places in the code. In addition, our validation process will
generate new test cases to try to circumvent the fix and spoil
the program’s behaviour.

IV. DESIGN INSIGHTS AND APPROACH

A. Approach Overview

We present an approach that identifies and fixes BO vul-
nerabilities in the source code of C programs and verifies the
effectiveness and correctness of the corrected (fixed) code in
an automated manner. To pursue this goal and cope with the
challenges of Section III, the approach employs static analysis
to find possible BO vulnerabilities, fuzzing to confirm the BO

found and validate the effectiveness of the code fixed, and code
repair to correct the code automatically with fixes generated
dynamically based on fix templates.

Fig. 1(a) shows an overview of the approach architecture
with their five modules, divided into the three phases of
the approach: detection, fixing and validation. The first two
phases correspond to the blue and green boxes in the figure
and employ source code static analysis to detect and remove
vulnerabilities and generate a new version of the PUT. The
validation phase (the orange box) operates in runtime to
confirm the existence of the previously flagged vulnerabilities
and validate the code correction made and its effectiveness.

B. Vulnerability Finder

The first fundamental task of our approach is to locate
the potential vulnerabilities, and the Vulnerability Finder is
the module that performs that action. Through static analysis
techniques, it analysis the code of the program for searching
for potential vulnerabilities related to sensitive sinks associated
with BO, collects information about the vulnerabilities and
their location in the program, and extracts their code slices.

Considering that BOs are associated with missing input vali-
dation or bound checking before data/memory manipulation or
with calling functions that may overwrite the allocated bounds
of buffers, a slice is a single data flow that starts at an entry
point and ends at a sensitive sink. Between the entry point
and the sensitive sink, the slice contains all instructions and
variables dependent on them. However, an entry point can be
an input-sensitive sink (e.g., scanf and gets) since the data



TABLE I: Functions associated with buffer overflows stratified by categories, and their safe versions.
Category Vulnerable Safe version How the function handles the null character (\0) Example
Input gets fgets indicates N, reads N-1 bytes, adds \0 to N byte char buf[8]; fgets(buf, stdin, 8);

scanf – indicates N-1 bytes, reads N-1 bytes, adds \0 to N byte char buf[8]; scanf(”%7s”, buf);
sscanf –
fscanf –
vscanf –
vsscanf –
vfscanf –

Output sprintf snprintf indicates N, writes N-1 bytes, adds \0 to N byte char buf[8]; char *str=”Buffer overflow”;
snprinf(buf, sizeof(buf), ”%s”, str);

vsprintf vsnprintf indicates N, writes N-1 bytes, adds \0 to N byte
Data strcpy strncpy indicates N-1, writes N-1 bytes, we must add \0 to N byte char buf[8]; char *str=”Buffer overflow”;
manipulation strncpy(buf, str, sizeof(buf)-1); buf[sizeof(buf)-1]=’\0’;

strcat strncat indicates N-1, writes N-1 bytes, adds \0 to N byte char buf[10]; char *str1=”Buffer”; char *str2=” overflow”;
strncpy(buf, str1, strlen(str1));
strncat(buf, str2, sizeof(buf)-strlen(str1)-1);

Memory memcpy – indicates N, writes N bytes, adds \0 if the N byte is \0 char buf[8]; char *str=”Buffer”;
manipulation OR memcpy(buf, src, strlen(str)+1);

memmove – indicates N-1, writes N-1 bytes, we must add \0 to N byte
memset – if the N byte is not \0

read through that sink can overflow the buffer destination.
Table I, column 2, presents the functions we considered
and their stratification by four categories. Input and output
categories allocate the functions regarding read and print
data to a buffer, respectively. Data and memory manipulation
categories contain the functions that allow copying, moving,
or concatenating data/memory to a buffer or between buffers.

The vulnerability finder employs two steps – sinks finder
and slice extractor. First, it scans the source code of the PUT,
looking for sensitive sinks and outputting a list of hits that
contain the potential vulnerabilities and their location in the
code, i.e., the line of the code where the sinks’ instructions are.
In the second step, for each hit, it extracts the slice containing
all instructions associated with it. It starts by analyzing the
sink instruction and collects information about the variables
used in the sink. Next, it parses the PUT’s code to gather the
code lines associated with these variables. To do so, after the
source code is parsed, the slice extractor performs a bottom-
up approach for tracking the variables and the ones dependent
on them to where they are declared and initialized, and then
extracts all lines associated with them. The resulting lines of
code are combined with the sensitive sinks’ line, generating a
slice, which will be forwarded to the next module.

Fig. 1(b) shows an example of the execution of the ap-
proach. At its top-left, it is illustrated the code of a hypothetical
program to be analyzed (PUT) that contains three sensitive
sinks discovered by the sinks finder (lines 9, 10, and 12). For
instance, when this code is analyzed, the sink finder outputs
line 9 as being a potential BO. Next, the slice extractor obtains
the buf_s variable argument from the scanf sink and then
goes up along the code until finding line 4, where the variable
is declared. At the end of this process, these two lines are
combined, generating thus the slice S1. The top-right of the
figure presents the three slices (S1 to S3) extracted.

Alongside the slice extraction, the data collected about each
slice is stored in a data structure constituted by three parts, as
illustrated in Fig. 2. The first part contains general information
about the slice itself: if it is included and/or contains another
one, it is vulnerable, and its fix will be applied in the fixed
and new version of the PUT. The second part is filled with the

[S3, 0, 0, 1, 1]
[S3, [put.c, 6, 7, 12], [SENS, 12, 6, [6]]]
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file #line_Sx …
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- S1 - S1 1

- - - - 1

Fig. 2: Data structure for representing slices.

locations (file and code lines) from where it was extracted from
PUT. Lastly, for each sink, the lines of code where it appears
along the approach’s pipeline are kept in the structure (explain
next). This data structure is filled throughout the approach
execution by the modules. For example, the left side of Fig. 3
shows the beginning of filling this structure for S1 to S3 slices,
after they are extracted, and considering the code of Fig. 1(b)
is in the file put.c. For S1, it is visible that it is included in
S2, the lines extracted from PUT were 4 and 9, and the sink
scanf is in line 9. For S2, it is stored that it contains S1
and has two sinks in lines 9 and 10.

The first part of the data structure when filled, the slice
extractor module also records the relationships between the
slices. After all the slices are composed, this slices’ connection
information is used to define the order that slices will be
processed along the pipeline. Slices without dependencies
(e.g., S3) and slices that are part of others, but do not contain

[S3, 0, 0, 1, 1]
[S3, [put.c, 6, 7, 12], [SENS, 12, 6, [6]]]

S1

S2 -

put.c 4, 9

SINK 9

S1

put.c 4, 9

SINK 9 5

S1

put.c 4, 9

SINK 9 5 5

S2

- S1

put.c 4, 5, 9, 10

SINK 9

SINK 10

S2

put.c 4, 5, 9, 10

SINK 9 5

SINK 10 7

S2

put.c 4, 5, 9, 10

SINK 9 5 5

SINK 10 7 7, 8

S3

- -

put.c 6, 7, 12

SINK 12

S3

put.c 6, 7, 12

SINK 12 6

S3

put.c 6, 7, 12

SINK 12 6 6

1 2 4

S2 - S2 - 1

- S1 - S1 1

- - - - 1

S1

put.c 4, 9

SINK 9 5 5

S2

put.c 4, 5, 9, 10

SINK 9 5 5

SINK 10 7 7, 8

S3

put.c 6, 7, 12

SINK 12 6 6

6

S2 - 1 0

- S1 1 1

- - 1 1

Fig. 3: Data structure filled along the approach’s pipeline.



others (e.g., S1), should be processed first and in parallel. The
remaining slices (those that include the former) are processed
next. An example of this order for Fig. 1(b) could be S1,
S3 and S2. This order is important because we ensure that
exploits of slices with subsequent connections are available to
the correction validation phase of slices with precedence.

C. Executable Generator

The extracted slices that potentially contain a vulnerability
and which we intend to correct, their code is neither compil-
able nor executable. On the other hand, fuzzing requires that
the programs to be fuzzed must be executable. To satisfy this
requirement, the goal of the executable generator module is to
create for each slice a complete program syntactically correct
and compilable, that we denominate by slice programs. The
module comprises two submodules – slice program producer
and compiler – to cope with this goal.

1) Slice Program Producer: Produces the slice programs
of the slices it receives from the vulnerability finder. It parses
the code slices to collect information about the sensitive sinks
and variables used. Next, it statically analyzes the code of the
original program to extract other necessary code instructions
related to constants, directives, and functions, intending to get
a functional program file. Once this data is obtained, it is
added to the slices containing, thus, the lines required to turn
them accordingly to the language’s syntax. After this task,
the resulting file contains a main function to be executed,
the necessary libraries, and the slices with all the required
information for the file to be compiled. For libraries, we chose
to include all those that the parser found throughout the PUT
code, as the goal is to produce compilable programs regardless
of including more libraries than they need. In addition, it
is registered the sink’s line numbers of the resulting slice
program, which later will be used by the Program Release
Generator (see Section IV-G).

The left-middle of Fig. 1(b) illustrates the slice program
(SP1) generated for the slice S1, where the main function
and the libraries were included in S1 to produce a compilable
program. The second column of Fig. 3 shows the data structure
of each slice updated with the sink line on SP. For instance,
for S1, line 5 of SP1 was added to the S1’ data structure,
meaning that the sink scanf in SP1 is located in line 5.

2) Compiler: The compiler submodule generates the ex-
ecutable of each slice program, for then be used by the
Vulnerability & Fix Validator module. It works in two distinct
phases in our approach, since that module performs two
distinct validation tasks with two versions of the slice program
under test at different moments. The next section details these
validation phases. Although the Compiler works in distinct
phases, the tasks it performs are the same. It compiles the
produced programs according to the requirements for using
the fuzzing technique in the validation process. However, in
the first phase, the program it compiles contains the potential
vulnerability we want to test and fix, whereas in the second
phase, the file it receives is the one that fixes the vulnerability,
which we intend to validate in runtime.

D. Vulnerability & Fix Validator

This module operates in two distinct phases, respectively,
for validating the existence of vulnerabilities and the effective-
ness of the code correction. The first is to check whether the
potential vulnerabilities found by the Vulnerability Finder are
real or not. The second is to check whether the fixes applied
by the Code Corrector are effective or not. It uses the fuzzing
technique to pursue both validations, following the processing
order of slices previously established in the slice extraction
step (see Section II-B), and comprises three submodules: Vul-
nerability Checker, Classifier and Fix Validator. For a better
understanding of the approach’s pipeline, the last submodule
is described after the Code Corrector module.

Fuzzing is a well-known technique that can take a long
time (hours or even days) to discover software flaws, as it
generates inputs to simultaneously try to uncover code that
has not yet been discovered and exploit any flaws in that
code. However, both discoveries depend on various aspects,
such as the complexity and control flow of the PUT, and the
generated inputs. Keeping these issues in mind, the rationale
behind extracting slices for each sink found statically, each
containing a single data flow (i.e., a single execution path), is
to cope with such issues. Hence, we propose an approach that
exercises slices with fuzzing, rather than all the PUT code, for
a faster and easier way to attempt to exploit vulnerabilities.

1) Vulnerability Checker: Performs the first validation
phase, i.e., the exploitation of the potential vulnerabilities.
To proceed with this task, it fuzzes the executable slice
program with inputs produced by mutation, namely by bit
flips (sequential bit flips of varying lengths and step-overs)
and arithmetic (addition and subtraction of small integers)
operations. The fuzzing starts with a standard and benign input
(e.g., a string) to trigger the loop of input mutation, which will
generate inputs, by mutating the previous, and test them with
the slice program. As a slice only contains a single data flow,
it is expected that its exploitation does not take much time.
Hence, the fuzzing process is active for a given short period of
time (e.g., one minute) for trying to produce an input capable
of exploiting the possible vulnerability under test in a fast way.
The successful inputs we call exploits and they are stored to
be used later, in the second validation phase.

2) Classifier: The potential vulnerabilities not exploited
during the fuzzing period are marked as possible false positives
(PFP), meaning that the vulnerability finder probably flagged
a sink that does not empower a vulnerability or the fuzzer
during the fuzzing period might not generate an input capable
of exploiting the potential vulnerability. On the other hand,
the potential vulnerabilities exploited are marked as such.

E. Code Corrector

This module performs the correction of vulnerabilities, and
is divided into two submodules: False Positive Checker and
Fix Generator & Applier.

1) False Positive Checker: This process starts by parsing
the slice program received from the Validator (first phase) to
locate the sensitive sinks associated with the vulnerabilities



to be fixed, identify the variables used and register the sizes
associated with them. Based on this information, it checks that
the size of variables is in accordance with their use in sensitive
sinks (e.g., the size of the buffer is correctly used in a sink)
and determines whether the slices previously classified as PFP
are real FP or vulnerabilities. Therefore, for slices marked
as PFP that variable sizes are in concordance, they will be
marked as real FP and reported as such, and no correction
is made. Otherwise (i.e. the variable sizes do not agree), they
proceed to correction, as it may happen that the time given for
fuzzing may not have been enough to generate an exploit, and
we want to invalidate the possibility of false negatives. On
the other hand, slices flagged as exploitable will have their
code fixed, regardless of the concordance between the sizes
of the variables. Exploitable slices without concordance are
real vulnerabilities. For the others, although they have at least
an exploit, they will be fixed for prevention reasons, even if it
is not necessary. After this decision is made, the field isVuln
of the slice’s data structure is filled with 1 (is vulnerable) or 0
(is not vulnerable or is a true FP). Fig. 3, third column, shows
this field filled with 1, denoting that S1 to S3 are vulnerable.

2) Fix Generator and Applier: For the slices program
market to suffer code correction, this submodule analyzes the
information received from the previous module to understand
what type of correction should be applied in each case.

Corrections are made in the sensitive sink instruction or
close to it. For sinks that have a safe version (e.g., strcpy),
your safe version (e.g., strncpy) will replace it. For those
cases that do not have safe functions (e.g., scanf), their
variables will be adjusted to the correct sizes. However, it
may not be simple to use the safety functions, or even to make
adjustments, autonomously. As BOs are linked to the number
of bytes that will be written in a buffer, we must calculate the
correct amount, taking into account how each safe function
works and handles the null character (\0). In other words,
when we specify N bytes in a function, we have to know
whether this N in that function comprises the null character or
not. For instance, in function fgets the specified N means
that N-1 bytes will be read and then the N byte is set to \0.
But, in function strncat we have to specify N-1 bytes to
be concatenated, and the function sets \0 to the N byte. A
particular function is the strncpy that does not handle the
null character, i.e., we must specify N-1 bytes to be copied,
and next add manually the \0 to the byte N. Table I, columns
2 to 4, show the safe functions, how they handle the null
character, and an example of how they can be used.

For generating the fixes, we defined a set of templates
containing the instructions that correspond to the safe uses
of the sensitive sinks with generic parameters. For each case,
these generic parameters are modified by those specific to that
case. For that, we resort to the information collected about the
sink and the variable sizes to calculate the correct amount of
bytes. For example, for SP1 of Fig. 1(b), it would be collected
the scanf sink, its parameter "%s" and 15 as size of buf_s.
Next, the scanf template is parameterized with 14; resulting
the fix scanf("%14s", buf_s);. The "%s" argument

was corrected to "%14s" to only be read 14 characters to the
buf_s variable since this last can only store 15 bytes. The
fifteen position of buf_s is reserved for "\0", and hence we
can only occupy the first 14 positions with data.

After fixes are generated, it is got the line number of the
sink in the slice program (SP), replaces it with the fix and
inserts new instructions if it is the case, producing thus slice
programs fixed (SPF). In addition, the slice’s data structure is
updated with the line numbers of SPF that correspond to the
ones on SP that were fixed and/or added. The middle-right of
Fig. 1(b) illustrates the SPF1 resulting from the correction of
SP1, by fixing the function scanf at line 5. The third column
of Fig. 3 shows the SINK updated with the line from SPF1.
Also, we can observe for S2 that line 7 of the SP2 was fixed
with lines 7 and 8 on SPF2, which correspond to the use of
the strncpy function.

Finally, the resulting fixed slice programs are transmitted to
the Compiler to be compiled and generate a new executable
file and then forwarded to the Fix Validator.

F. Fix Validator

The second validation phase performed by the Vulnerability
& Fix Validator module is to check whether the fix applied by
the Code Corrector is effective. As in the first phase, it fuzzes
the fixed slice program to try to break the code corrected, but
this time it uses the previously stored exploits that exploited
the vulnerability under processing. Furthermore, during the
fuzzing process, these exploits are mutated in an attempt to
discover new exploits that may break the applied fix. In this
step, the validator uses the slice processing order list to also
use the exploits of the slices preceding the one being analyzed
and that their fixed slices were flagged to be applied for the
fixed version of PUT (explained next). If all inputs (the stored
exploits and the new ones) fail to break the fixed code, the
applied fix is validated and considered effective. Otherwise,
an alert is generated about the vulnerability found and that its
correction needs the programmer’s attention.

In addition, this submodule sets the toApply field to a
value between 0 to 2, on the slice’s data structure under
analysis. It sets to 1 when the fix is considered effective and
to 2 when the fix is broken. However, value 1 can change to
0 when the slice Sy under analysis is considered validated,
but it contains a slice Sx where this field was set to 1 (we
recall that precedent slices are tested first). In this way, for
the generation of the new version of PUT, we only need to
use Sy because it contains both valid corrections. In this case,
the included slice Sx changes this field to 0 and the slice Sy

keeps the value 1. The last column of Fig. 3 shows an example
of this situation: S1 is included in S2 and both slices were
correctly validated; the toApply field of S1 is changed to 0,
whereas S2 keeps the 1 value; so, S2 will be used in the PUT
fixed version. Besides this case, another one can happen: the
correction of slice Sy was broken. In such a case, Sy takes
the value 2 and Sx keeps its value 1. Hence, just Sx will be
used for the final correction.



G. Program Release Generator

When the second phase of the validation process (Section
IV-F) ends without any exploit breaking the fixes, and it
is found that the applied fix does not spoil the program’s
functioning, it means that the fix is effective and can be used
to correct the original program. The Program Release Gen-
erator module is responsible for performing this correction,
outputting a new release of the PUT with its files containing
the corrected code, i.e., with the vulnerabilities fixed.

To perform the final correction, the module only uses the
slices that their toApply field was set to 1. To do so, it first
filters the slices’ data structures to obtain these slices. Next,
it orders them by the number of lines that will be inserted
from fixes (e.g., 1 for scanf, and 2 for strncpy), and for
each resulting set, it sorts the slices by the line number of the
sink in the original program, indicated in their data structure.
For example, based on Fig. 3 it would obtain the sequence
S3:12 and S2:9,10. Afterwards, it deploys the correction
and produces a new and fixed release of the PUT. Fig. 1 (b),
at its bottom, shows the initial and vulnerable PUT fixed.

V. CORCA IMPLEMENTATION

The CorCA tool [1] was implemented in Python and has
five main modules – vulnerability finder, executable generator,
vulnerability & fix validator, code corrector, and program
release generator –, where each one can work independently
of the others. It integrates the Flawfinder [64] and AFL [65]
tools to facilitate the realization of some specific steps of the
tool pipeline, and resorts of the Pycparser [66] parser.

Flawfinder is a static analysis tool that scans C/C++ source
code and reports potential security flaws. It is used by the
vulnerability finder in the sinks finder step to signalize sinks
associated with BOs. AFL is a fuzzer for C/C++ programs
to exploit vulnerabilities they have, producing the test cases
that exploit them by mutating the initial input and the ones
produced from it. It is used in the vulnerability & fix validator
module to confirm the existence of the potential vulnerabilities
(vulnerability checker step) and to validate the fixes (fix
validator step) generated by our approach. Pycparser [66] is a
parser for the C language, written in Python, that parses the
C code into an AST. It is used in different modules where
is necessary to parse the code under analysis, namely in the
vulnerability finder (slices extractor step), executable generator
(slice program producer), vulnerability corrector (all steps),
and program release generator (identify the right places step).

VI. EXPERIMENTAL EVALUATION

The objective of this section is to evaluate the tool, but first,
it is necessary to reason about the challenges stated in Section
III and the solutions we proposed to solve them. Based on that
information, we should evaluate four main abilities of the tool:
find vulnerabilities, build compilable and executable files, cor-
rect vulnerabilities, and the effectiveness of the generated fixes.
Considering these aspects, we defined the following questions:
Q1. Is CorCA capable of detecting potential vulnerabilities
associated with buffer overflows? Q2. Can CorCA extract

correct code slices for the potential vulnerabilities found? Q3.
Is the tool capable of generating compilable and executable
files for the slices created? Q4. Can CorCA distinguish which
potential vulnerabilities are real? Q5. Is the tool capable of
correcting the vulnerabilities? Q6. Are the fixes generated by
CorCA effective? Q7. Is CorCA capable of processing real
applications and fixing vulnerabilities?

A. Evaluation Setup and Metrics

To evaluate the CorCA’s capabilities more thoroughly, we
divided the evaluation into two parts. Firstly, we used a
synthetic dataset of small C programs, taken from SARD [67],
to evaluate the tool’s performance and validate its abilities.

All programs of the dataset were previously classified
manually as vulnerable (V uln) or not vulnerable (NotV uln),
serving as the ground truth for comparison with the results
obtained by the tool. With this data, we created the confusion
matrix, as the one presented in Table II, to calculate the next
evaluation metrics to assess the tool’s performance.
• Accuracy, acc: measures the percentage of correct deci-

sions made by the tool. acc = (TP + TN)/(P +N)
• False negative rate, fnr: gets the percentage of vulnerable

cases missed by the tool. fnr = FN/(FN + TP )
• false positive rate, fpr: measures the percentage of not

vulnerable programs incorrectly identified as vulnerable
by the tool. fpr = FP/(FP + TN)

• Precision, pr: gets the percentage of vulnerable programs
correctly identified by the tool. pr = TP/(TP + FP )

• Recall, rec: measures the percentage of vulnerable cases
the tool identified as such. rec = TP/(TP + FN)

• Specificity, spc: gets the percentage of not vulnerable
cases that the tool identified. spc = TN/(TN + FP )

• F-Score: it is the harmonic mean of precision and recall.
F-Score = 2 ∗ (pr ∗ rec)/(pr + rec)

Finally, in the second phase, we used real applications
written in C taken from the SourceForge repository and from
a project partner to test the tool’s capabilities to process real
programs. At this stage, the metrics presented above were not
calculated because there is no classification of the applications
to compare with the results obtained by the tool.

B. Evaluation with SARD dataset

SARD is a dataset that contains several small programs for
types of vulnerabilities in C programs. From it, we gathered
1075 cases regarding with BOs and having each one 100
lines of code (LoC). The cases contain the functions CorCA
addresses and were manually classified as vulnerable or not

TABLE II: General confusion matrix.
Tool classification

Vuln Not Vuln

Ground Truth Vuln TP FN
Not Vuln FP TN

Total P N
TP : True Positives; TN : True Negatives; FP : False Positives
FN : False Negatives; P : Total Positives; N : Total Negatives



TABLE III: Summary of test cases collected from SARD.
Function Cases Function Cases

Input

gets 33 Output sprintf 56
scanf 120 vsprintf 30
sscanf 120 Data strcpy 115
fscanf 120 manipulation strcat 115
vscanf 30 Multiple 276
vsscanf 30 Functions
vfscanf 30 Total 1075

vulnerable to build the ground truth dataset. In total, we have
560 vulnerable cases and 515 not vulnerable cases. Table III
summarizes the dataset by each function type.

The tool processed all instances and generated all slices and
their executable correctly. Based on the knowledge from the
ground truth dataset and the results obtained by the CorCA
tool, Table IV was populated and represents the confusion ma-
trix of the Vulnerability Finder, Vulnerability & Fix Validator
(VF Validator), and Code Corrector modules. From this table,
we calculated for each module the metrics defined in Section
VI-A. Table V shows these metrics, from which it is possible
to visualize the evolution throughout the tool’s pipeline. Note
that the VF Validator values shown in the table are relative to
the first execution of this module in the tool’s pipeline, i.e.,
the confirmation of vulnerability existence.

Based on results in Table IV, we verified, as expected, that
the Vulnerability Finder module identified all programs as
vulnerable. Since all programs have at least one sink we want
to address, then this shows the module can identify these sinks.
Furthermore, by analyzing the recall value of this module
stated in Table V, we can observe that all the vulnerable
programs were identified as such. Therefore, through these two
verifications, we can infer that the tool is capable of finding
potential BO vulnerabilities, answering affirmatively to Q1.

Regarding the Executable Generator module, we conclude
that it fulfilled its role, i.e., it was able to produce compilable
and executable slice programs correctly. An indicator of this
result is that all CorCA modules were able to process all pro-
grams. In addition, we observed that VF Validator detected and
exploited correctly all 560 vulnerable cases, which indicates
that the executable files were correctly built and contained
the slices with vulnerabilities. Furthermore, the module can
invalidate the FP produced by the Vulnerability Finder, which
is something we want this module to do. Hence, even though
the finder has the highest fpr, the validator achieves both
fnr and fpr null, i.e., a precision, recall, and F-Score equal
to 100%. These results allow us to give a positive answer to
questions Q2 and Q3 since these two are related.

TABLE IV: Confusion matrix of the modules evaluated.
CorCA Classification

Vulnerability VF Code
Finder Validator Corrector

Vuln Not Vuln Vuln Not Vuln Vuln Not Vuln

Ground Vuln 560 0 560 0 560 0
Truth Not Vuln 515 0 0 515 30 485

Total 1075 0 560 515 590 485

TABLE V: Summary of the calculated evaluation metrics.

Metric Vulnerability Vulnerability Code
Finder Validator Corrector

Accuracy (acc) 0.52 1.00 0.97
False Negative Rate (fnr) 0.00 0.00 0.00
False Positive Rate (fpr) 1.00 0.00 0.06
Precision (pr) 0.52 1.00 0.95
Recall (rec) 1.00 1.00 1.00
Specificity (spc) 0.00 1.00 0.94
F-Score 0.69 1.00 0.97

1 #include <stdio.h>
2 #include <string.h>
3 #include <stdlib.h>
4 #define MAXSIZE 40
5
6 int main(int argc, char **argv) {
7 char userstr[MAXSIZE];
8 fgets(userstr, MAXSIZE, stdin);
9 int size = strlen(userstr) + 1;

10 char *userstr_copy = malloc(sizeof(char) * size);
11 strcpy(userstr_copy, userstr);
12 puts(userstr_copy);
13 free(userstr_copy);
14 return(0);
15 }

Listing 2: Example of the first reason for false positives.

The results obtained by the VF Validator depicted in both
tables show that this module was able to correctly identify all
vulnerable and not vulnerable cases, which serve to answer
Q4 since this module detected all the real vulnerabilities.

As mentioned before, the results showed to VF Validator are
relative to its first execution in the tool’s pipeline. In its second
execution (the fix validator), all cases were classified as not
vulnerable since the module did not find any problems during
the fix validation. This result indicates that the Code Corrector
module was able to generate correct syntactically and effective
corrections as they removed the existing vulnerabilities. There-
fore, we can answer questions Q5 and Q6, meaning that the
CorCA was able to generate the right corrections and insert
them in the right places into the code. After all, the generated
corrections proved to be effective.

From the results of both tables, we also verified that the
Code Corrector had 30 FP, i.e., it corrected some programs
that are not vulnerable, that are due to two major reasons: (i)
the limitation of static analysis to deal with values calculated
at runtime, and (ii) a string is truncated before being used in
data manipulation sensitive sinks (e.g., strcpy or strcat).
In both situations, a correction would always be performed,
for prevention, to avoid possible FNs. Overall, the Code
Corrector had a recall of 100 % and a precision of 95 %. An
example of the first situation is depicted in Listing 2, which
is observed in some SARD cases that contain allocation of
dynamic buffers, whose size is calculated based on the result
returned by executing some function. In that cases, it is not
possible to statically determine the size of the buffer. The
function fgets reads some text provided by the user and
writes it into the buffer userstr (line 8). Next, the length
of this text is determined and stored in size and added a
byte to it (line 9). Using this value, the program allocates
memory to the char pointer userstr_copy, to which the



content of the buffer userstr is copied (lines 10 and 11).
There is no buffer overflow because the userstr_copy was
created with enough size to store the contents of userstr.
However, through static analysis, it is not possible to determine
the size value because it is calculated at runtime. Therefore,
it is not possible to compare the strcpy function parameters
to check whether there is a buffer overflow, which leads the
Code Corrector module to fix this code.

C. Evaluation with Real Applications

SARD dataset allowed the evaluation of the CorCA capabil-
ity to deal with all the functions addressed and to measure its
performance. However, SARD’s cases might not represent real
applications accurately. Therefore, to test our tool with real
code, we obtained 6 applications from SourceForge of different
contexts (e.g., network, MAC generator) and a railway driver
software from a propulsion control system (PCS) from a
partner of the project in which this work is inserted. Table VI
presents a summary of the applications we tested (columns
2 and 3), namely their number of files and LoC, and the
results of the evaluation (last two columns). In total, the tool
analyzed 209 files, corresponding to 132,209 LoC, flagged 59
potential vulnerabilities and fixed 6, which correspond to zero-
day vulnerabilities. The symbol (-) in the table means that
the tool could not finish its entire process. Note that some of
these applications are early-stage development versions and
sometimes present some problems or even are incomplete.
In this case, it was necessary to modify some files manually
because some include libraries were incorrect.

For the Zervit and Tiny HTTPd applications, and the PCS’s
driver, the tool signalized 6, 38 and 4 potential vulnerabilities,
respectively. For the 6, it generated 4 fixes, for the 38,
it generated 2 fixes, and for the 4, it generated no fixes.
These 6 fixes were manually verified, and we concluded that
they were necessary and correctly removed the vulnerabilities
found. This result shows that it was possible to discover 6
vulnerabilities that were not yet reported for these versions
of the applications, i.e., the tool discovered 6 zero-day vul-
nerabilities. The remaining 42 potential vulnerabilities found
were in fact not vulnerable, which the Vulnerability & Fix
Validator confirmed, thus invalidating the 42 FPs provided
by the Vulnerability Finder. For the sSocks application, the
tool was able to detect 10 potential vulnerabilities but was
unable to proceed with the process because some include
libraries were not provided with the program, making the
parser incapable of parsing some files. The same problem
occurred with Intel Ethernet Drivers, although the tool had

TABLE VI: Real applications evaluation of CorCA.

Application Files LoC Potential Fixes
Vulnerabilities Generated

Zervit 0.4 17 1014 6 4
Macgen 1.1 1 15 0 0
sSocks 0.0.14 30 3477 10 (-)
Tiny HTTPd 0.1 3 765 38 2
LIBPNG 1.6.37 88 57075 0 0
Intel Ether Drs 2.17.4 50 64380 1 (-)
PCS’s Driver 20 5483 4 0

detected 1 potential vulnerability. In the case of the LIBPNG
and Macgen applications, the tool did not find any potential
vulnerabilities associated with the addressed sensitive sinks.
Therefore, it did not generate any fixes.

Given these results, we can positively answer Q7, meaning
that CorCA is capable of processing real applications and
fixing vulnerabilities in them.

VII. THREATS TO VALIDITY

Following Cook and Campbell [68] we assessed the results
and conclusion for the threats to validity. The process con-
ducted in the experiments to validate and evaluate CorCA was,
respectively, based on a set of small C programs containing
BOs and some real applications that we did not have any
knowledge of their security. We desired to find out the ability
of the tool to find vulnerabilities, even previously unknown
vulnerabilities (zero-days), process more complex programs,
and correct the code effectively. In the validation phase,
the tool achieved a high level of confidence, with accuracy,
precision, and an F-score equal or close to 1. Such metrics
reside in a ground truth dataset of 1075 SARD programs that
we manually characterized and labeled as vulnerable and non-
vulnerable. Based on these metrics, we concluded that the
tool has achieved the purpose for which it was designed. For
the evaluation of real applications, the tool presented some
limitations in parsing the PUT’s code, some due to missing
PUT files and others related to its parsing process, denoting
thus that it needs improvements. However, the tool was able
to detect and fix vulnerabilities correctly on real programs.

VIII. CONCLUSIONS

The paper explores a new form to protect C programs from
buffer overflows (BO) vulnerabilities. We proposed a fully
automated solution to detect BOs, confirm their existence,
fix these, and verify that the fixes generated are effective.
It presents the idea to find candidate vulnerabilities through
static analysis, then gather the code instructions associated
with them and create executable slice programs containing
the data flow path of each potential vulnerability. Later on,
these programs are fuzzed to determine which vulnerabilities
are real and that will be submitted to the process of code
repairing and fix verification. We developed the CorCA tool to
the proposed approach, and we validated it with a dataset from
SARD and evaluated it with real applications, where it found 6
zero-day vulnerabilities. The experimental results showed that
CorCA was able to detect BOs vulnerabilities and correct them
effectively. Furthermore, it is beneficial in having a pipeline
for finding BOs, confirming and correcting them, and testing
the new code, which can be helpful for developers and improve
the code quality and software security.
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