A Power-Aware Broadcasting Algorithm

Hugo Miranda¹ Simone Leggio² Luís Rodrigues¹
Kimmo Raatikainen²

¹ University of Lisbon - Portugal
LaSIGE

² University of Helsinki - Department of Computer Science - Finland
MiNEMA

September 14, 2006
Motivation

Many protocols for Mobile Ad Hoc Networks (MANETs) require message broadcast because:

- Membership changes
- Nodes move
- Location of some data is unknown

Examples:

- Routing protocols (e.g. DSR, AODV)
 - For route discovery
- Reputation systems
 - For learning the reputation of an unknown node
Flooding

- The most common approach for broadcast in MANETs.
- Implementation:
 - Every node listening for a message for the first time retransmit it.
- Redundant
 - Only some of the nodes should retransmit
- Expensive
 - Power consumption
 - Bandwidth
Questions

- A retransmission adds from 0 to 61% to the coverage of a previous transmission [Tseng 02]
- Which of S’s neighbours should retransmit?
 - The more distant the retransmission is from the source, the better
- How to determine best candidates in run-time?
 - The optimal set of nodes for retransmitting changes with every message:
 - Nodes move
 - Don’t have GPS or other location awareness mechanism
 - The source of the broadcast changes
 - Different node densities require different number of retransmissions
Probabilistic Approaches

- A node retransmits a message with some probability $0 < p \leq 1$
 - Flooding is a particular case with $p = 1$
 - Doesn’t adapt well to different network densities
 - Less neighbours require more retransmissions (higher p)
 - Mitigation: If a node does not listen to enough retransmissions, due to independently of p [Haas 02]
Probabilistic Approaches

- A node retransmits a message with some probability $0 < p \leq 1$
 - Flooding is a particular case with $p = 1$
 - Doesn’t adapt well to different network densities
 - Less neighbours require more retransmissions (higher p)
 - Mitigation: If a node does not listen to enough retransmissions, due it independently of p [Haas 02]

G S B D E F

A node retransmits a message with some probability $0 < p \leq 1$.
Counter-based approaches [Haas 02, Tseng 02]

- Nodes wait a bounded random time t and listen
- Retransmit if, at the end of t
 - the number of retransmissions listened is below a threshold n
- Adapts well to different densities
- Random selection of the nodes
 - No attempt to select those providing better additional coverage
Power-based approaches [Tseng 02]

- Nodes wait a bounded random time t and listen
- Retransmit if, at the end of t
 - The maximum power of the reception did not exceed a threshold p
- The higher the power of the reception, the lower the distance to the source
 - Discards transmissions with a negligible additional coverage
- Random selection of the nodes
 - No attempt to select those that improve more the coverage
Improving Node Selection

PAMPA Power-Aware Message Propagation Algorithm

Rationale Rank nodes for retransmission according to their distance to the source

- Nodes wait a time \(t \) proportional to the power of the reception and listen
- Retransmit if, at the end of \(t \)
 - the number of retransmissions listened is below a threshold \(n \)
PAMPA

- Listens to the number of retransmissions
 - Adapts well to different densities
- Higher distance to the source ⇒ lower power at the reception ⇒ smaller wait time
 - Nodes to retransmit will be those that provide higher contribution to coverage
Evaluation

- Simulations in ns–2, Two Ray Ground, 100 nodes
- Pampa vs Power and Counter-based (for the same thresholds)
 - Doesn’t matter which if nodes are close
 - Pampa increases delivery ratio
 - More evident in sparser networks
Number of hops travelled by a message before being delivered to each node

Smaller in Pampa
 Each retransmission covers more nodes
Conclusions

- Broadcasting appears to be unavoidable in MANETs
 - But flooding is an undesirable implementation
- Existing alternatives to flooding either
 - Don’t adapt well to different densities
 - Don’t take full advantage of the location of the nodes
- PAMPA
 - Nodes more distant to the source retransmit first
 - Prevent other nodes from retransmitting
 - Improves coverage in sparse networks
 - Reduces the number of hops required to deliver the message
 - Requires the same number of retransmissions than previous approaches