SIPCache: A Distributed SIP Location Service for Mobile Ad-Hoc Networks

Simone Leggio¹, Hugo Miranda², Kimmo Raatikainen¹ and Luís Rodrigues²

¹ University of Helsinki
² University of Lisbon
MiNEMA

July 20, 2006
Introduction

► Many wired Internet Services assign special roles to some participants
 ▶ Routing
 ▶ Domain Name Service (DNS)
 ▶ Session Initiation Protocol (SIP)
► Hard to do in ad-hoc networks because:
 ▶ The list of participants change
 ▶ Nodes move away
 ▶ New nodes arrive
 ▶ Nodes fail
 ▶ Nodes have limited battery power
Session Initiation Protocol (SIP)

- Composed of different services
 - **Location Service** Defines bindings between Address of Records (AOR) and contact address(es)
 - AOR User ID
 - Contact Addresses IP, phone number,...
 - Bindings stored in Domain Registrars
 - **Other services** Availability, Negotiation of communication parameters...

- Many applications
 - e.g. advertises users interests
 - Wants to play chess on-line
 - Wants to chat about FIFA World Cup
Using the Location Service

Motivation
Previous Work
SIPCache
Evaluation
Conclusions
SIP in MANETs

- Where to store the mapping between an user and an address (binding)?

 Push When connecting, the user stores the binding in every device
 - Requires periodic updates to push the binding to devices joining later

 Pull Users flood to learn the binding for some ID
 - Requires one flood per query

 Hybrid Stores replicas in a small number of devices
 - Expected to reduce the number of nodes forwarding each query
Distributed SIP (dSIP)

- SIP for MANETs
- Replicates server components on every node
- Uses the same API as SIP
 - Compatible with legacy SIP applications
- Uses the *Pull* model
- No message forwarding
 - All nodes must be in range of each other
PCache

- An algorithm to replicate data in ad-hoc networks
- Replicas are stored only at some of the participants
 - Considering the geographical distribution of the nodes
 - Number of replicas adapts to the network density
- Uses a smart algorithm for broadcasting (Pampa)
- Only generates messages by request of the participants
- Three operations
 Dissemination Replicates data
 Query Queries for the value associated with a key
 Gathering Queries for data satisfying some condition
dSIP + PCache = SIPCache

- SIPCache: a distributed SIP location service for MANETs
- Bindings are replicated using PCache dissemination
 - Stored in a limited number of nodes, depending on network density
- Retrieved using PCache queries
 - Simulation shows that many of the bindings can be found in the 1-hop neighborhood of any node
 - Bounds the number of nodes forwarding a message
- Users see “who’s around” with the gathering operation
 - A limited flood of the gathering message retrieves a large proportion of the bindings
Distance of the replies

- When each node stores 10% of the advertised items
 - Replies between 1 and 1.4 hops away
 - Most of the queries just need to be propagated to 1-2 hops away
- When nodes are able to store all bindings
 - Average below 1
- PCache adapts the diameter of the search
Completeness of data gathering

- Condition is satisfied by 10% of the bindings
- Query propagated 2 hops away from the source
- When each node stores 10% of the advertised items
 - Results depend on the number of nodes
 - Influences the number of bindings available in the neighborhood
SIPCache: A Distributed SIP Location Service for Mobile Ad-Hoc Networks

Simone Leggio, Hugo Miranda, Kimmo Raatikainen, and Luís Rodrigues

Motivation

Previous Work

SIPCache

Evaluation

Conclusions

Traffic

- Compares the gains of SIPCache against naïve pull
- \(x \) is the number of queries for one item
- In general, PCache performs better
- Losses in some gathering operations are due to an excessive number of replies
 - Are attenuated with the gains in other operations
Conclusions

- Centralized implementations of Internet services are inadequate for MANETs
 - Distribution and replication are fundamental to achieve scalability and reliability
- PCache has shown to efficiently replicate data
 - Accounts with node density
 - Requires a low number of messages
- SIPCache provides an implementation of SIP for MANETs compatible with legacy applications