When Cars Start Gossiping
MiNEMA’08

Paolo Costa¹ Daniela Gavidia¹ Boris Koldehoefe² Hugo Miranda³ Mirco Musolesi⁴ Oriana Riva⁵

¹ Vrije Universiteit Amsterdam
² IPVS - Universität Stuttgart
³ University of Lisbon
⁴ Dartmouth College
⁵ ETH Zürich

April 1st, 2008
Gossip

- A communication paradigm
 - Analogous to rumour or epidemic spreading
 - When receiving a message for the first time, each node retransmits it to a subset of his neighbours
 - With a large probability, message is delivered to every node
Gossip

- A communication paradigm
 - Analogous to rumour or epidemic spreading
 - When receiving a message for the first time, each node retransmits it to a subset of his neighbours
 - With a large probability, message is delivered to every node
Gossip

- A communication paradigm
 - Analogous to rumour or epidemic spreading
 - When receiving a message for the first time, each node retransmits it to a subset of his neighbours
 - With a large probability, message is delivered to every node
Gossip

- A communication paradigm
 - Analogous to rumour or epidemic spreading
 - When receiving a message for the first time, each node retransmits it to a subset of his neighbours
 - With a large probability, message is delivered to every node
A communication paradigm

- Analogous to rumour or epidemic spreading
- When receiving a message for the first time, each node retransmits it to a subset of his neighbours
- With a large probability, message is delivered to every node
Gossip

- Was shown to be:
 - Easy to implement
 - Scalable: nodes just need a partial view of the network
 - Highly resilient: bimodal
- Applications
 - Data replication
 - Information dissemination
 - Mobile computing
Vehicular Networks

- Data networks using computer devices embedded in cars
- Applications
 - Locating free parking spots
 - Traffic condition
 - Requests for assistance
 - Collision avoidance
 - Localised advertising
 - Looking ahead
Vehicular Ad Hoc Networks (VANETs)

- MANETs of vehicles
 - Infrastructure-less
 - Fully decentralised
 - Self managed

Advantages of ad hoc

- Handle massive amounts of:
 - Data: speed, direction, alerts, ads
 - Hosts: traffic jam, downtown

- Applications do not present a clear billing model
- Most of the information has a local scope
Lunch
 The Great Tavern
 Today’s Special: Codfish
 Menu: 12Eur
 West End: 12m
Glasgow’s Dinner
 Eat as much as you can: 15Eur
 Down Town: 20m
Gas
 Shell
 10% Discount for 20+ gallons
 Highway 8N, 10m
B&B
 …
Why Should Cars Gossip?

Why gossip?

Network dynamicity Hard to keep structure
- Hosts move at high speed

Large scale In number of hosts, in geographical extension
Related Work

- A number of projects addressed car-to-car short range communication
 - Including gossip algorithms

Gossip in VANETs poses new challenges
Gossip(Wired) ≠ Gossip(MANET) ≠ Gossip(VANET)

<table>
<thead>
<tr>
<th></th>
<th>Wired</th>
<th>MANETs</th>
<th>VANETs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>Unlimited</td>
<td>Scarce</td>
<td>Unlimited</td>
</tr>
<tr>
<td>Computing Power</td>
<td>Plenty</td>
<td>Scarce</td>
<td>Plenty</td>
</tr>
<tr>
<td>Memory</td>
<td>Plenty</td>
<td>Constrained</td>
<td>Plenty</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>Unconstrained</td>
<td>Constrained</td>
<td>Plenty</td>
</tr>
<tr>
<td>Network Delays</td>
<td>Regular</td>
<td>Irregular</td>
<td></td>
</tr>
<tr>
<td>Movement/Connectivity</td>
<td>Stable</td>
<td>Unpredictable</td>
<td>Predictable</td>
</tr>
<tr>
<td>Neighbourhood</td>
<td>Unrestricted</td>
<td>Near by hosts</td>
<td></td>
</tr>
<tr>
<td>Node’s Speed</td>
<td>n.a.</td>
<td>Low</td>
<td>High</td>
</tr>
</tbody>
</table>
How Should Cars Gossip?

Challenges to be addressed
Limited Connectivity

- Random selection of the neighbours is biased
 - You can only communicate with close by cars
- Cluster formation
 - A challenge to bimodal behaviour

How to ensure wide message propagation?

- Hybrid car-to-car + infra-structured
- Infrastructure possibly deployed at specific points (e.g. gas stations)
Mobility Patterns

- Cars do not move at random
 - Partial occupation of the region
 - Attracted to specific locations at specific times
 - downtown in the morning
 - Create dynamic but well-defined network topologies

How will a random protocol react to a predictable movement pattern?
Opportunistic Routing

- Connectivity is not always guaranteed in VANETs
 - E.g. in rural areas
- Delay-Tolerant Networks (DTNs) have been investigated for regions with low node density
 - DTNs do not scale well

Can gossip protocols improve the scalability of DTNs?
Geographical Information

- It is safe to assume that all cars will have a GPS on-board soon
 - Permits to tag some data with a location
 - E.g. cars parked on the road
 - Obstacles
 - Data can be restricted to some region of interest

Can we make a localised gossip?
Persistence

- Some data is persistent
 - At least for some amount of time
 - E.g. road blocks

How to make sure that data is persistently stored in one location?
Persistence

- Some data is persistent
 - At least for some amount of time
 - E.g. road blocks

How to make sure that data is persistently stored in one location?
Persistence

- Some data is persistent
 - At least for some amount of time
 - E.g. road blocks

How to make sure that data is persistently stored in one location?
Communication Paradigms

- Gossip may not be enough
- Pub-sub?
 - E.g. announce interest in restaurants

How to manage subscriptions and deliver data?

- Taking advantage of the known route
 - Using other cars heading to the subscriber?
 - Storing data on info-stations where it is known that subscribers will pass
Data Management

- Aggregation is fundamental for system scalability
 - Widely studied problem for sensor networks
- Examples
 - Traffic jam queries and replies
 - Registrations

How to aggregate data in a mobile environment?
Security and Privacy

- To cooperate should be inexpensive
 - Use of unlicensed spectrum
 - Cars have plenty of resources
 - Message forwarding occurs in background
- It should not compromise the user
 - E.g. snooping message sources and content to learn the location of persons you know
- Information must be validated
 - Announce a severe traffic jam in our intended route

How to penalise malicious users and enforce user anonymity?
VANETs are a challenging networking environment
- Different from MANETs and Wired Networks
- With promising applications

Gossip is a communication model
- Robust
- Scalable

We believe that gossip will play an important role in vehicular applications

Many challenges to be addressed