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Abstract

Chaos in dynamical systems potentially provides many different dynamical states
arising from a single attractor. We call this the reservoir property and give here a
precise meaning to two aspects of such property. In both cases, the high flexibility
of chaos comes into play, as compared to more regular regimes. In this article,
we especially focus on the fact that chaotic attractors are known to possess an
infinite number of embedded Unstable Periodic Orbits. In brain modeling, or for
the purpose of suggesting computational devices that could take advantage of chaos,
the different embedded dynamical states can be interpreted as different behaviors
or computational modes suitable for particular tasks. Previously we proposed a
rather abstract neural network model that mimicked cortex to some extent but
where biological realism was not the major concern. In the present paper we show
that the same potential for computation can be displayed by a more realistic neural
model. The latter features spatiotemporal chaos of a type thus far only found in more
“artificial” models. We also note that certain network-related properties, previously
overlooked, turn out to be essential for the generation of complex behavior.
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1 Spatiotemporal neural chaos and computation

From the mid-1980s onward, different groups reported the discovery of chaotic
electrical signals in the brain, namely human [1] and simian [2]. This started a
long-lasting dispute concerning the true chaotic nature of such signals, as well
as much speculation regarding the possible roles of chaos in cognition [3-6].
Our standpoint in previous work and in the present paper is as follows. We
take chaos for a fact and assume that natural systems may display it, includ-
ing in the biological case. We then ask what computational purposes it may
serve, and which of those might be relevant for biologically inspired computa-
tional devices. In this vein, actual computational models were proposed [6-10].
These particular models adopt a continuous-time setting and feature nonlinear
network properties. The investigation of the neurons’ dynamics is assisted by
general knowledge of properties of nonlinear oscillators, as well as of generic
networks. In the references above, rather abstract models such as Ginzburg-
Landau and Rossler oscillators are meant to capture the essential oscillatory
features of neurons. Particularly in [6,7,9], a full network setting is presented
mimicking cortical architecture. Thus an actual spatiotemporal dynamics is
unveiled, overcoming the limitations and criticism that result from working
with single-unit or otherwise very small networks [9]. Unstable Periodic Or-
bits (UPOs) can be stabilized from within chaos, very fast and with minimum
perturbation of the original system. The original chaotic attractor contains
an infinite number of such dynamical modes, some of which can be stabilized
at will according to the requirements of computational tasks. In [9], this is
applied to the processing of spatiotemporal visual input patterns with dif-
ferent symmetries. The units (or “neurons”) are topologically arranged in a
network, and the simultaneous monitoring of their state variables reveals such
spatiotemporal regimes as standing and rotating waves of different symme-
tries, or a complex mixture thereof. The name “reservoir” in the context of a
chaotic computational device has been adopted in [6] and later references by
the same authors, where it refers explicitly to the fact that chaos can contain
an infinite number of UPOs and these can be used as coding devices or compu-
tational modes. Interestingly, the concrete application of chaotic computing
featured in [6,7,9] is also an early, albeit partial, demonstration of what is
modernly called reservoir computing. The latter is featured namely in Echo
State Networks [11] and Liquid State Machines [12], where the dynamics of a
large pool of neurons in a recurrent network is perturbed by some input and
the resulting transient dynamics is assessed by separate readout neurons as a
process which can provide meaning to the observed dynamics. However, and
apart from other differences, the readout mechanism in [6,7,9] is at a more
basic level and in particular it lacks the learning capabilities of [11,12]. The
fact that in [6,7,9] a chaotic attractor is perturbed, either in a permanent or
a transient fashion, allows the use of a large range of resulting system re-
sponses. This also suggests the term “reservoir” as referring to the availability



of a rich collection of dynamical input-output transformations, thus in closer
agreement with the spirit of [11,12]. This somehow conflicts with the use of
the word in the sense of a reservoir of UPOs, and is not exactly the meaning
inherent to the so-called reservoir computing if in the latter case the reservoir
is understood as the pool of neurons itself. Notwithstanding, this explanation
should clarify the term usage in each context. In the two senses of reservoir of
UPOs and reservoir of responses, the flexibility of chaos is stressed out. Note
that the major theme of the present paper is the reservoir of UPOs itself.
This constitutes an important module of a system demonstrating computa-
tion with perturbations under our model, but a complete application is out of
the scope of the present publication. The reader interested in previewing what
the final system will look like, should presently be referred to the device in [9].
Although it uses a more abstract model, it does display a number of features
which will look familiar to those acquainted with Liquid Sate Machines and
similar devices. Namely, a fading memory is present, and the system is per-
turbed differently according to specific characteristics of each input, for both
cases of static and dynamic input.

2 Nonlinear oscillators: from abstract units to more realistic neu-
rons

The mathematical models mentioned above face some criticism when compar-
isons are made with actual neurons. This is the case with the models in [6-10],
but also, in varying degree, with other models in the literature. Neurons are
not oscillators, even if certain cells can display autonomous rhythmic firing
(a behavior we are not addressing here, but certainly nothing like an actual
oscillator, especially if the membrane potential is the monitored variable).
However, groups of neurons can show oscillating electrical activity, sustained
by the exchange of excitation and inhibition. Neural coupling is far from the
simple linear connectivity of diffusive type considered in [6,7,9] and other stud-
ies of networks of the reaction-diffusion type. Rather, neurons are connected
via highly nonlinear transfer functions such as sigmoids. Finally, in real life
there is an unavoidable delay in signal transmission between all neurons, which
is usually not considered as an intrinsic property of the model networks. This
includes the networks mentioned above.

Hence a more realistic model is sought. Our purpose is to attain just the
“right” level of biological or physical plausibility, while still having a man-
ageable model for dynamical exploration. Although proposed in a different
context, the model appearing in [13] and further developed in [14] provides a
good compromise. The individual unit is a slightly more complex version of
the leaky integrator, and is also called the single-compartment neuron. Pas-
sive as well as active membrane properties are considered, along with highly



nonlinear coupling and delays in signal transmission between neurons. While
aiming at biological realism, the model that we adopt also turns out to fit in
the general framework of the Kleinfeld model [15], which has been proposed
as a standard model for delayed recurrent neural networks [16]. The model
is amenable to synaptic learning, namely by backpropagation [16], but we
have not considered that possibility in our own work thus far. An abbreviated
account of the UPO reservoir properties of this model was given in [17].

2.1 Deriving the neuron model

The detailed morphology of the neuron need not be taken into account as it
would be the case with more complex models with multiple compartments.
The emphasis of the modeling is on the overall electrical state of each neuron,
and not on the spatial distribution of charge within a neuron. We start with
the electrical equivalent of the neural membrane as illustrated by Fig. 1. The
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Fig. 1. Electrical equivalent of the neural membrane. See text for the details.

state of the neuron is characterized by the membrane potential V. C, is the
membrane capacitance. E, represents the ionic potential associated with ion
species n. The membrane conductance associated with species n is denoted
gn- A Resistive-Capacitive (RC) equation can be written for the potential V:

dV
Cm% = —gl(V — El) — gQ(V — EQ) .

Actually E; and E5 can be taken as linear combinations of different ionic po-
tentials [13], but we need not detail them here as the setting is general enough.
The ionic conductances are decomposed into a “passive” and an “activated”
part,

Gn = g + g5 -

The resting conductance g¢°, specific to species n, is constant in time. The
activated part, g¢ for each species n, takes into account the opening or closing
of ionic channels, depending on the level of synaptic excitation which arises
through the coupling of neurons. We may write
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where g7, is the resting conductance of the membrane and V, is its resting
potential. The previous RC equation can thus be transformed into

dVv
(%E?:—ﬂﬂV—Vﬁ—ﬂﬂV—Eﬂ—gﬁV—Eﬁ-

Let g%*~% denote the local conductance of ion species n, at the synapse between
neurons k and 7. Then, we have

g’fl,’i = nglk"l) )
k

integrating the contributions from several presynaptic neurons, indexed by k.
While g~ depends on the stimulation provided by neuron k, we neglect its
dependence on the voltage V' of cell 7 itself. The different equilibrium potentials
have the values V;, = —60 mV, F; = 50 mV, and Fy, = —80 mV. As with other
parameters of the model, these values are suggested by electrophysiological
experiments. The activation of channel g{ contributes to the increase of the
membrane potential toward E;, whereas the activation of g tends to decrease
the membrane potential toward FEs. gf and g5 are activated by excitatory
and inhibitory presynaptic neurons, respectively. The synaptic conductances
depend on the firing rate of the presynaptic neuron:

g (t) o fiolt — Tir)

where 7; is the time-delay due to the finite speed of signal propagation. The
firing frequency of the presynaptic neuron k saturates at a value fi.., say,
100 Hz. We consider a sigmoidal transfer function between the membrane
potential V; and the firing frequency fy:

fk:fmax F(Vk)

1
FV)= 1+ eoV-Ve)”

The transfer function f is illustrated in Fig. 2. By choosing particular param-
eter values o and V,, a certain activation threshold is obtained such that the
neuron is silent for lower values of the potential V. Past some higher value of
V, the firing rate saturates. V, is fixed at —25 mV. Two different o values are
considered as indicated in Section 2.2.
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Fig. 2. Dependence of a neuron’s instantaneous firing rate on its own membrane po-
tential. Parameters of the sigmoid f in this figure are « = 0.2 mV~—!, V. = —25 mV,
fmax = 100 Hz.

2.2 Connecting the neurons

In the isolated model neuron, the response of the membrane to perturbations
from the resting state can be characterized by v = g1, /Cy,, which is the in-
verse of the membrane’s time-constant. The dynamics in this simple case is
relaxatory. However, as several neurons are coupled together, new dynamical
regimes may settle in, depending on details of the coupling and on the initial
conditions of the population. One can observe multiple steady states, includ-
ing global quiescence and global saturation, as well as a variety of oscillatory
regimes for the electrical activity of the neurons. Although a single neuron,
under the present model, does not oscillate, a coupled population may present
oscillations due to the interplay of excitatory and inhibitory feedback through
synaptic connections.

The variables of the dynamics are the instantaneous membrane potential of
each neuron. A stationary state corresponds to the firing of action potentials
with a frequency constant in time. This frequency can be close to zero, or
have some finite value. An oscillatory state, on the other hand, implies a time-
modulation of the firing frequency.

Although there are many types of neurons, for the purpose of the modeling we
divide them into two populations: one of excitatory neurons, with membrane
potentials X;, and another of inhibitory neurons, with membrane potentials
Y;. The dynamics of the coupled neuronal populations is described by
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The network comprises N, excitatory neurons X;, and NV;, inhibitory neu-
rons Y;. The inverse of the membrane’s time-constant takes the value v =
0.25 msec™!. The propagation delay 7;; between neurons k and ¢ depends on
the distance between the two neurons. Contrarily to previous versions of the
model, here we consider different values of the slope a of the transfer func-
tion F', depending on whether the firing neuron is excitatory or inhibitory. We
adopt the values ax = 0.09 mV~! and ay = 0.2 mV~!. The synaptic weights
w characterize the efficiency of channel activation by the presynaptic neu-
ron. They corres%jond to the coupling constants of the network. The weights
wi(,?, wll , and wj)’ refer, respectively, to excitatory-to-excitatory, inhibitory-
to-excitatory;, and excitatory-to-inhibitory connections. We take these values
as constant in time. No inhibitory-to-inhibitory connections are considered.

The connectivity in the model is of a local nature. For simplicity, only first-
neighbor connections are implemented. Furthermore, we study networks that
are invariant under translations in space, where the neurons are equally spaced.
Therefore, in the X; and Y, equations one can drop the subscripts in the
time-delays and synaptic weights: 7;, = 7 and wi(,? = wD, where I = 1,2,3
designates the different types of interactions. The summations in the X; and
Y; equations are to be performed with contributions only from presynaptic
neurons in the immediate spatial vicinity of the postsynaptic neuron. This
local pattern of connectivity may be more relevant for certain parts of the
cortex than for others, but this discussion is out of the scope of the present

paper.
2.3  Network topology

We have investigated the dynamical behavior of the above equations in differ-
ent configurations, including the case of bi-dimensional networks with many
excitatory and inhibitory neurons. However, for the purpose of this paper,
we consider only a 1-D spatial arrangement of a moderate number of neu-
rons. Spatiotemporal chaotic solutions are sought, as well as embedded UPOs
therein. These UPOs are expected to display diverse spatiotemporal symme-
tries and could eventually be stabilized via suitable control methods. Figure 3



shows the network topology. Here N, = N;, = N. Hence the total population
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Fig. 3. Dynamical neural network. Excitatory neurons and inhibitory neurons are
represented as triangles and circles, respectively. Connections X; — X;1; and
X; — Y41 are excitatory, whereas connections Y; — X;41 are inhibitory.

size is 2N. For the numerical simulations described below we take N = 8.
In accordance with Section 2.2, the network has first-neighbor connectivity.
The boundary conditions are of the zero-flux type. For this configuration the
dynamical equations of the network become

dj? ==X = Vi) = (X; — E) j§1w§;> Fy[X;(t — 7))
—(Xi— By) 3 Wi FlY(t — )]
j=i+l
dd? =Y =Vo) = (Yi - En) j%wg? Fx[X;(t — ;)]
i=1,...,N.

Recall also that we consider a spatially homogeneous network, thus wz(j ) = D

and 7;; = 7. The weights of types (1) and (3) are fixed at w® = 3.15 and
w® = 2.5 respectively. Parameters 7 and w® can each have different values.

2.4  Dynamics: routes to spatiotemporal chaos

The network properties of connection topology and delay in signal transmis-
sion turn out crucial for the unfolding of a rich dynamics. It has been noted
by several authors that the delay value can serve as a Hopf bifurcation pa-
rameter from stationary states into periodic oscillations. Moreover, it provides
a route to chaos and a further increase in the chaotic attractor’s dimension
as its value is incremented. Both mechanisms were identified in our study of
neural networks with other configurations and parameters, thus confirming
the importance of the delay. Here, we propose a somewhat different, albeit
related, route. We fix 7 = 1.8 msec and vary the value of w®, which weighs
the amount of inhibitory feedback to the network.

Starting from w® = 17 and taking successively lower values of w®, while
keeping all other parameters fixed as indicated above, we observe a sequence



of bifurcations that occur for the neural system. For 16.05 < w® < 17 a sta-
tionary state is observed in which the excitatory (resp., the inhibitory) neurons
share a common low membrane potential corresponding to a very low firing
rate. At w® = 16.05, a primary Hopf bifurcation occurs which destabilizes
this stationary state giving rise to uniform oscillations of the network with a
critical period of 13.76 msec. For lower values of w®, the structure of these
oscillations becomes increasingly complex. From w® = 1.69 downwards, two
new dynamical processes take place in conjugation: the network no longer os-
cillates homogeneously, and a cascade of period-doubling bifurcations is seen
for the time-variation of any given neuron’s membrane potential. The cascade
accumulates for a value of w® close to 1.641. Past that point, spatiotemporal
chaos is observed in a narrow but finite parameter range.

3 Chaos in the neural model

By fixing w® = 1.64, we can investigate the resulting chaotic regime.

3.1 Looking at neurons

The time-variation of each neuron’s membrane potential has a bimodal char-
acter, with higher frequency oscillations superimposed on the basic cycle (see
Fig. 4 — Top). This evolution is aperiodic, and it is one example of rich dy-
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Fig. 4. Top: Chaotic time-series of Xy, a typical excitatory neuron. Bottom: The
corresponding time-series of uy. The latter is a low-pass filtered version of X, as
explained in the text.

namical behavior not found in networks of simple oscillators.

For the convenience of visualization, we consider “low-pass filters” that elim-
inate most of the high-frequency behavior. The implementation of the filters



consists in defining the array of time-averaged variables

ui@):l/j X.(0)d .

T —T

This does not alter the dimension of the dynamics. It just modifies slightly
the way we look at the system. We choose 7 = 1.8 msec, coinciding with the
intrinsic delay in the network as indicated in Section 2.4. This value is approx-
imately 7% of the average pseudo-period of the cycles in the chaotic regime.
Figure 4 — Bottom displays the filtered time-series of a typical excitatory neu-
ron.

3.2 Looking at spatial modes

Most of the interesting dynamical behavior that arises through neuron cou-
pling is best evaluated by following entire spatial modes as they evolve in
time. Early dynamical exploration could already show that both the network
average value of X (or u) and a profile of local deviations from this average
have aperiodic temporal variation. We can make this monitoring more precise
and separate the dynamics of the profile of local deviations from that of the
spatially averaged network activity. Yet, we remark that the two dynamics
are closely coupled in the evolution of the neural network. The deviation pro-
file measures the degree of instantaneous local inhomogeneity, hence spatial
structure. The network (spatial) average gives important information about
the background activity that the neurons feel, either excitatory or inhibitory.
Since we are dealing with spatiotemporal phenomena, we must note that the
obtained behavior is conditioned by the moderate size of the network. The
spatial correlation length is of the order of the system size. In a larger system,
the observed regime would correspond to traveling waves of activity going
rightward or leftward in a random fashion, and “riding” on a uniform profile
that has itself an irregular temporal variation. In the present network, the
waves are not fully developed. Chaos is associated with the destabilization of
entire spatial modes. A partial spatial coherence is kept throughout the chaotic
regime. This denotes the correlations that exist between neurons, caused by
their coupling pattern.

In view of the spatially correlated activity of the neurons, we adopt a spatial
mode analysis that had already been useful with other extended systems such
as physical systems described by partial differential equations [18]. However,
here we are dealing with a spatially discrete system and hence we replace the
integrals of [18] with finite sums. As in [18], Fourier spatial modes are chosen
for their convenience. The modes are monitored by computing their respective
coefficients:

10
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Notice that each w; is the instantaneous time-filtered value of an excitatory
neuron’s membrane potential. The scaling factor 2/(IN — 1) is arbitrary, since
we do not aim at recovering the original function w;(t) = u(i,t) via a sum of
the Fourier modes weighted by the A; and B; coefficients. Rather, the A; and
Bj are taken as the variables spanning a phase-space where the dynamics can
be followed. For example, if all A; and B; were constant (i.e., a fixed point
in Fourier space), this would correspond to a stationary spatial structure. A
limit-cycle in Fourier space, on the other hand, corresponds to a time-periodic
spatiotemporal orbit followed by the profile u;(¢), i =1,..., N.

One may ask what is the minimum number of coefficients required for the
dynamics to be adequately monitored. With the present system, a truncation
at j = 1 is enough to characterize the chaotic regime. Figure 5 illustrates
the chaotic regime via a projection of the dynamics in Fourier space. The
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Fig. 5. Chaotic time-series of the Fourier coefficients Ay and Bj, as defined in the
main text.

coefficients Ay and B; are monitored during an arbitrary period of time. A
is simply the spatially averaged activity of the network. B; is the coefficient
of the first sine mode, and already indicates a deviation of the instantaneous
activity profile from a homogeneous state. Both coefficients show aperiodic
behavior. The coefficients of higher Fourier modes, not shown in the figure,
also display irregular variation.
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3.3  Dynamical reservoir

Finding an ensemble of UPOs embedded in the chaotic attractor has been
one of the objectives of this work. For this system it has been possible to
gather evidence that such an ensemble exists, most likely being infinite and
countable. However, only the first few UPOs of lowest periods are numerically
accessible with moderate effort. If an UPO has a period close to the average
pseudo-period of the chaotic attractor, we will say that it is period-one. If
the UPQO’s period is approximately twice the chaotic pseudo-period, then it is
period-two, and so on. We could identify with adequate precision, from within
the chaotic attractor: 1 period-one UPQO, 3 different period-two UPOs, and
at least 2 different period-four UPOs. Figure 6 shows one of the period-two
UPOs.
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Fig. 6. Period-two unstable periodic orbit embedded in the chaotic attractor. The
top of the figure shows the evolution of the Fourier coefficient B; during two com-
plete periods of oscillation. The down-most plots feature the simultaneous variation
of the membrane potentials X; and Xg. The period of the orbit is T' = 50.26 msec.
The spatiotemporal orbit has a reflection symmetry around the central position of
the network.

It should be emphasized that UPOs such as the one in Fig. 6 are not sponta-
neously sustained within the chaotic regime, unless a short timespan is consid-
ered during which the system visits the vicinity of the UPO. These UPOs can
be found, for instance, using the method outlined in Section 3.4. The latter
implies scanning the system’s evolution for a very long time, by which it can
be detected that an arbitrarily small vicinity of a given UPO is temporarily
entered. Instability inevitably leads to the amplification of small differences

12



between the system’s state and the exact periodic orbit. However, for the
purpose of plotting time series such as the ones in Fig. 6, the unperturbed
evolution of the system for a limited number of consecutive cycles can provide
a sufficiently good approximation for the respective UPO.

Due to the system being spatially extended, the UPOs can display different
spatiotemporal symmetries. For example, the orbit in Fig. 6 has the follow-
ing reflection symmetry: each half of the network has instantaneous activity
different from that of the other half, but the neurons are paired such that X;
imitates Xg from half a period before, X5 imitates X, also with a half-period
time-lag, and so on. Recall that the total number of excitatory neurons is
N = 8. Other UPOs found within the same attractor do not necessarily obey
the left-to-right symmetry as the one of Fig. 6.

3.4 Tracking the Unstable Periodic Orbits

The method for tracking UPOs such as the one of Fig. 6, and other UPOs
also mentioned in the text, can appear in different variations. In the following
we briefly describe a particular procedure which takes advantage of the low
dimensionality of the attractor, albeit in the context of an infinite-dimensional
system.

Let us consider a Poincaré section at Ay = AY = —60, Ay > 0. The time of the
nth crossing of the Poincaré plane is denoted as t(n). A time-interval variable
is defined as T'(n) = t(n) — t(n—1). We can look for period-one orbits of the
system in the form of fixed points of the map T'(n + 1) = F [T'(n)], if such a
map can be defined. In this case, the period of the orbit and the fixed point
have the same numerical value. A period-k orbit with period T™ appears as a
discrete-time orbit T} — T3 — ... T} obeying Y% | T = T*. However, if the
underlying spatiotemporal orbit has the type of reflection symmetry displayed
by the UPO of Fig. 6, it will appear as a period-k/2 orbit of T'(n). In the case
of Fig. 6, the featured period-two UPO will appear as a period-one orbit of
T'(n). This can be explained as follows. The homogeneous mode corresponding
to Ay, as well as all the cosine modes corresponding to A;, j > 1, are invariant
with respect to reflection around the central position of the network. The map
F happens to be built upon Aj, and thus it will treat two halves of a same
orbit as being the same if the second half is a spatial reflection of the first.
As it comes, it is the durations of each half of such a symmetric orbit that
are equal, but via the map F each of these half-periods of length 7%/2 could
be interpreted as being the true period of some orbit. Further inspection is
required to distinguish between, say, a true period-one UPO and a period-two
UPO with reflection symmetry. The first-return map F is shown in Fig. 7, as
well as the second-, third-, and fourth-return maps, respectively, F?), F@©)
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Fig. 7. Return maps of orders 1, 2, 3, and 4, for the time-interval variable T'(n) on
the Poincaré section Ag = Ag) = —60, Ao > (0. These maps are obtained with the
neural network in a chaotic, uncontrolled regime. Shown are the locations of fixed
points corresponding to orbits of, respectively, period 1 (X symbol), period 2 (circle
and square symbols —these corresponding to different orbits), and period 4 (ellipse
symbol). To avoid clutter, no more than one fixed point for any given UPO is shown
in each of the four maps. Otherwise, for the period-four orbit, say, we could also
plot three other fixed points of the map F@, apart from the one signaled by the
ellipse. See text for further explanation and Table 1 for numerical values of the fixed
points and respective UPOs.

and F®. Note that any period-four UPO, say, is a fixed point of the map
T(n+4) = FO[T(n)]. If, in addition, such UPO displayed spatial reflection
symmetry, then it would also be a fixed point of the map T'(n+2) = F [T'(n)].
It should also be noted that the term “map” is used here in the sense of a
multivalued map of a single argument.

It may seem surprising that an infinite-dimensional dynamical system featur-
ing spatiotemporal chaos be described by such low-dimensional maps. Yet,
that was already the case with the Kuramoto-Sivashinsky partial differential
equation investigated in [18]. In the present paper, the high dimensionality
comes also from a spatial distribution, but especially from the presence of de-
lay terms in the evolution equations. Notwithstanding, a few dimensions suffice
to describe the attractor, and indeed the maps are low-dimensional projections
of the dynamics. However, any perturbation of the system immediately pushes
it back into higher dimension. Thus, the apparent simplicity of the maps can
be misleading. Nevertheless, a very low-dimensional treatment is possible in
this case. Each map features a large number of candidate fixed-points at the
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Discrete-time Continuous-time Fixed point Spatial Multiplicity

period of the period of the marked in reflection  of the
UPO UPO (msec) Fig. 7 (msec) symmetry? orbit
1 29.98 29.98 (x) yes 1
2 50.26 25.13 (0) yes 1
2 52.74 21.96 (O) no 2
4 104.42 23.63 (0) no 2
Table 1

Numerical values associated with the UPOs featured in Fig. 7. The discrete-time
period of an UPO is the number of times that the respective trajectory has to
recur on the Poincaré plane, after some initial crossing, until all the variables of the
dynamics repeat exactly. In general, a period-k orbit gives rise to k fixed points of
map F*) and also of all maps F(™*) where m is a positive integer. The exception
here is the fixed point 25.13 msec of the second UPO, which is doubly degenerate.

respective period. The majority of them turn out to be false fixed points. A
systematic procedure is needed to rule out all of these false candidates: not
only do we require that T'(n + k) = T(n) for a particular F*) but also that
a true kth-return is observed in the sense that all monitored variables come
back within an arbitrarily small vicinity of their values at ¢(n). The monitored
variables for this purpose can be e.g. the coefficients of the spatial modes up to
some adequate order, or the actual values of the neurons’ membrane potentials
at time t as well as the values at time ¢t — 7. Thus, as mentioned in Section 3.3,
six different UPOs could be found. Referring to Fig. 7, Table 1 provides nu-
merical data associated with the six UPOs. The first UPO in the list is a
period-one orbit. Inspection of the full dynamics of the network in continu-
ous time reveals that this orbit consists in spatially homogeneous oscillations
of the membrane potentials. Trivially, the activity is symmetric with respect
to reflection around the central position of the network. The continuous-time
period is 29.98 msec which coincides with the numerical value of the respec-
tive fixed point of map F. This orbit being period-one, any of its observables
will repeatedly assume the same value at successive crossings of the Poincaré
plane. In particular, its period of 29.98 msec is itself a fixed point of maps
F, F@ FO and FW. It is signaled with a cross (x) in Fig. 7. Recalling
previous remarks, such periodic behavior cannot be spontaneously sustained
in the chaotic regime, as is the case with the other UPOs also mentioned. The
second UPO in the list is a period-two orbit with continuous-time period of
50.26 msec. It is precisely the UPO depicted in Fig. 6. It features a spatial
reflection symmetry which was discussed in Section 3.3 and also above in the
present section. Hence it appears as a period-one orbit from the viewpoint
of map F, implying that it will also give rise to fixed points of maps F*)
for all k. In each case the numerical value of the fixed point thus obtained is
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50.26/2 = 25.13 (msec). It is signaled with a circle (0). The third UPO is also
period-two, but it does not have the spatial reflection symmetry mentioned
above. Its continuous-time period is 52.74 msec. This orbit does not give rise
to any fixed point of maps F and F®), but it originates two fixed points at
map F?); since 4 is a multiple of 2, these two fixed points also appear in map
F® as fixed points. Of the two, only the one with numerical value 21.96 msec
is explicitly marked, with a square (O), in maps F® and F® in Fig. 7. It is
not hard to see that an UPO which is not symmetric with respect to reflection,
such as this one, indeed corresponds to two analogous orbits with exactly the
same period and where the activity of each neuron mirrors the activity of the
opposite neuron in the related orbit. If we denote the two related UPOs as O
and Opior, Tespectively, then the activity of, say, excitatory neuron number 1
during one complete period of O will imitate the activity of excitatory neuron
number 8 during one complete period of Oyirror- The same is true for neurons
number 2 and 7, respectively, when compared across the two related UPOs.
This imitation is also observed with all other related pairs in our 8-neuron
long spatial network arrangement. This is to be expected from symmetry con-
siderations, since a spatially homogeneous network that provides the substrate
for some spatially asymmetric UPO, must also display a related UPO which
is a spatial reflection of the former UPO. Hence the multiplicity of the repre-
sentative UPO of period 52.74 msec is taken as 2. The last orbit in Table 1 is
period-four and has a continuous-time period of 104.42 msec. Like the previous
orbit, it does not have spatial reflection symmetry. Hence it only originates
fixed points of map F*, and not of map F®. Of the four fixed points of this
orbit’s discrete dynamics on the Poincaré section, only the one with numerical
value 23.63 msec is marked over map F in Fig. 7, with an ellipse (0). For
the same reasons that apply to the previous UPO, the representative orbit of
period 104.42 msec has multiplicity 2. This raises the total number of UPOs
found in this numerical study to six, while not excluding the possibility of
finding new UPOs through further exploration.

4 Discussion

First we note that the UPO “reservoir” property is indeed found in the chaotic
neural attractor. Several different behaviors in the form of UPOs can be iden-
tified and described as having different spatiotemporal symmetries. Such a
range of behaviors can be useful to perform the kind of dynamical computa-
tion referred in Section 1. For instance, neurons at certain parts of the network
may provide specialized modulation of input signals, in the spirit of [9]. The
orbits that violate the left-to-right spatial symmetry are especially interest-
ing, since they can be used to ensure that the neurons in different parts of the
network are consistently doing different things.
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For this procedure to be effective, we need to be able to selectively stabilize the
desired UPOs according to the task. If left unperturbed, the chaotic attractor
will not spontaneously display such individual orbits in a persistent manner.
Hence control methods are required to capture and hold these UPOs, and
they should be applied at least for the duration of a computational task. As it
comes, stabilization processes that are analogous to those employed with the
toy models mentioned in Section 1 can be applied to the present system, which
is much more biologically inspired. They share the common feature that the
chaotic system is only minimally perturbed, thus no large forcing is required.
The control procedure itself is out of the scope of this paper, and will be
described in a future publication.

Although we have tried several different network configurations, only an 8+8
neuron arrangement was chosen to illustrate our ideas in the present paper.
The system’s spatial extension can be considered as proportional to the num-
ber of neurons. In analogy with other spatially extended systems [18], the
dimension of the chaotic attractor is expected to grow in monotone fashion
with spatial extension. The architecture adopted in the present paper should
provide the right balance between small networks, where the dynamics is not
complex enough and spatial effects are barely visible, and very large networks,
where chaos can be too much developed and numerically difficult to assess in
a first approach in view of computation.

It is demonstrated that a network of model neurons akin to leaky integra-
tors, with physically plausible nonlinear connectivity and intrinsic delays in
signal transmission, is capable of displaying a rich set of behaviors without
the need of any significant parameter deviation from reference values. The
model, which is amenable to electronic implementation, takes advantage of a
fully time-continuous dynamics together with spatial distribution, thus pro-
viding an adequate framework for the dynamical computation paradigm that
motivated this work. A reservoir of behaviors exists in chaos, which could be
explored for the sake of computation. Here the reservoir is spatiotemporal, and
the worthiest candidates for practical applications would be the ones taking
advantage of this.
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