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Abstract. There is evidence that the same neural substrate may sup-
port different dynamical regimes and hence give rise to different EEG
signals. However, the literature lacks successful attempts to systemati-
cally explain the different regimes —and the switching between them—
within a coherent setting. We explore a mathematical model of neural
tissue and call upon concepts from dynamical systems to propose a pos-
sible explanation of such processes. The model does not aim to capture
a high degree of neurophysiological detail. It rather provides an oppor-
tunity to discuss the change in the signals from a dynamical perspective.
Notwithstanding, realistic values are adopted for the model parameters,
and the resulting EEG also shows typical frequencies in a realistic range.
We identify three mechanisms accounting for change: external forcing,
bifurcation, and small perturbations of a chaotic attractor.
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1 Introduction

Laboratory experiments indicate that, for a given animal, a common neural
substrate may display different spatiotemporal electrical activities corresponding
e.g. to different behaviors or to the processing of different input patterns [1–3].
The switching between dynamical states occurs much faster than the typical
time-scales of synaptic adaptation associated with learning. These findings do
not contradict the well-known fact that the brain is organized in a modular
fashion, with each module responsible for some type of task. However, it can be
said that there continues to be a bias toward trying to identify different sub-
populations that are responsible for different behaviors, rather than identifying
a single population capable of a high degree of multitasking. For instance, in
a study of the mouse sleep-wake behavior [4], the Authors tend to emphasize
the role of the neural sub-populations that are active exclusively during either
the wake stage or the sleep stages —considering also the necessary distinction
between REM and non-REM sleep. These Authors attribute a minor role to the
sub-populations that show activity overlapping wake and any of the sleep stages.
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In the present paper we aim to unveil some of the possible dynamical mech-
anisms that might explain multitasking by a common neural population. This
exploration is done within the framework of dynamical systems and requires a
not-too-complicated model of neural tissue in order to be effective. We hope
that the evidence gathered in the following numerical simulations may provide
further arguments in support of the multitasking view. We have to emphasize
once more that this approach does not preclude a —complementary— modular
view of the brain.

A ’single-channel’ model electroencephalogram (EEG) is used as a tag to
confirm the switching between dynamical regimes, whenever it occurs. How-
ever, we will assess that the underlying neural dynamics is spatiotemporal. We
agree with other authors in that single-channel EEG provides an incomplete ac-
count of the dynamics [5]. Yet, the type of dynamical tagging that it allows is
considered sufficient for the present purposes. Furthermore, generalizing to the
multi-channel case would be trivially accomplished via minor modifications of
the model discussed below.

In summary, this paper tries to model those specific EEG transitions that
result from some neural population changing its dynamics. It does not address
the case where different neural populations are alternatingly responsible for the
observed EEG.

2 Mathematical model

We adopt a ’minimal’ model in what concerns biological realism. We wish to
retain the main properties of neurons which may influence the dynamical be-
havior both at the single cell and at the network level. At least at an abstract
level, these dynamics should be comparable to those of biological neurons. On
the other hand, we assume that the intricacies of multi-compartment neurons
and different types of real neuron connections are not necessary at this level
of abstraction, as they should not invalidate the main dynamical mechanisms
that we wish to unveil. When considering the full network, a range of diverse
spatiotemporal dynamical regimes is our target for study. Some of these regimes
may be denoted as complex, or even chaotic.

Neural oscillations in electrical activity, which are ultimately responsible for
the observed EEG, result from an interplay between neural excitation and in-
hibition. Hence we consider two different neural populations, respectively, of
excitatory and inhibitory neurons. Our model is based on an original proposal
of Kaczmarek to explain neural firing patterns during epileptic seizures [6], but
we believe it is general enough to be of use in modeling different brain states,
notably in the cases of comparing different awareness states or states support-
ing cognitive actions. See also the model developments in [7]. The model of the
individual cell can be described as a leaky integrator. Passive as well as active
membrane properties are incorporated, but neural connectivity is simplified to
the point where only first-neighbor coupling is considered. This elimination of
distant connections provides a means to study those particular dynamical pro-
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cesses where the spatial dimension plays a crucial role, such as the development
of certain complex spatiotemporal dynamics. This includes wave propagation
and related phenomena. Biological plausibility is enhanced by a highly nonlin-
ear neural coupling, as well as the consideration of delays in signal transmission
between neurons. These model features account for the nonlinear transformation
between membrane potential and firing rate, as well as for the several synaptic
and axonal processes contributing to a non-instantaneous information propaga-
tion. Realistic values are chosen for the parameters wherever possible.

2.1 A model of neural tissue

For lack of space in the present publication, we refer the reader to the detailed
derivation of our model in [8]. Here we summarize only the main features.

The instantaneous values of each neuron’s membrane potential are taken as
network state variables. Since delays are considered, the dynamical evolution
also depends on past membrane potential values; hence the latter also define
the state vector, which is thus infinite-dimensional. The neurons communicate
their state to each other trough a firing rate code. Therefore, there is no explicit
spiking in the model. In spite of this, it can be noted that a stationary state
corresponds to the firing of action potentials with a frequency constant in time.
This frequency can be close to zero, or have some finite value. An oscillatory
state, on the other hand, implies a time-modulation of the firing frequency.

The derivation starts with a resistive-capacitive equation for the electrical
equivalent of each neuron’s membrane potential, and ends up with a coupled
set of delay differential equations for the neural population. The network com-
prises Nex excitatory neurons Xi, and Nin inhibitory neurons Yj . Their dy-
namics is given by dXi/dt = −γ(Xi − VL) − (Xi − E1)

∑
k �=i ω

(1)
ik FX [Xk(t −

τik)] − (Xi − E2)
∑

l �=i ω
(2)
il FY [Yl(t − τil)] and dYj/dt = −γ(Yj − VL) − (Yj −

E1)
∑

k �=j ω
(3)
jk FX [Xk(t − τjk)], respectively, where i, k = 1, . . . , Nex and j, l =

1, . . . , Nin . The inverse of the membrane’s time-constant takes the value γ =
0.25 msec−1. The propagation delay τik between neurons k and i would generally
depend on the distance between the two neurons. Since we consider only first-
neighbor connections, a fixed value τ = 1.8 msec is adopted. Other parameter
values are VL = −60 mV, E1 = 50 mV, and E2 = −80 mV, these being the differ-
ent equilibrium potentials. The sigmoidal transfer function is defined by F (V ) =
1/(1 + e−α(V −Vc)), with parameter values Vc=−25 mV, αX = 0.09 mV−1, and
αY = 0.2 mV−1. Notice the different α slopes for excitatory and inhibitory neu-
rons, respectively. The synaptic weights ω

(1)
ik , ω

(2)
il , and ω

(3)
jk refer, respectively,

to excitatory-to-excitatory, inhibitory-to-excitatory, and excitatory-to-inhibitory
connections. No inhibitory-to-inhibitory connections are considered. We study
a spatially homogeneous network, where all synaptic weights of the same type
have the same value. Furthermore, the ω values are constant in time, thus no
adaptation or learning takes place. However, we will consider deviations from
a set of adopted nominal ω values, for instance in a bifurcation setting. The
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weights of types (1) and (3) are fixed at ω(1) = 3.15 and ω(3) = 2.5 respectively.
Parameter ω(2) can have different values; a reference value is ω(2) = 1.68.

In the isolated model neuron, the response of the membrane to some finite-
duration perturbation from the resting state would be a simple relaxation. How-
ever, through the coupling of the neurons, new dynamical regimes can be ob-
served depending on details of the coupling and on the initial conditions of the
network. One can observe multiple steady states, including global quiescence
and global saturation, as well as a variety of oscillatory regimes for the electrical
activity of the neurons. A form of spatiotemporal chaos is one of the observed
complex regimes, as discussed in more detail in [8].

Different connectivity configurations have been explored for this general neu-
ral arrangement, including the case of bi-dimensional networks with many ex-
citatory and inhibitory neurons. However, here we consider only a 1-D spatial
arrangement. The network features 16 neurons, equally divided into an excita-
tory and an inhibitory population. Hence Nex = Nin = 8. The network topology
is depicted in Fig. 1.

XiXi−1 Xi+1

iYi−1Y i+1Y

Fig. 1. Neural network where the dynamics takes place. Excitatory neurons and in-
hibitory neurons are represented as triangles and circles, respectively. Connections
Xi → Xi±1 and Xi → Yi±1 are excitatory, whereas connections Yi → Xi±1 are in-
hibitory.

The previous dynamical equations are simplified such that only first-neighbor
connections are kept. The boundary conditions are of the zero-flux type.

2.2 A model of EEG

Our model EEG measurement is best regarded as a signal denoting a field poten-
tial. We follow a few basic assumptions in defining this potential, or the resulting
EEG. We avoid the complicated practical issues that involve the actual measure-
ment of the EEG in a laboratory. The EEG results from extracellular current
flow associated with integrated synaptic potentials in activated neurons. The
intracellular potentials are not directly accessible via EEG measurements. Pyra-
midal cells, which are excitatory, are the major source of the EEG. They are
oriented parallel to one another, and most of their dendrites are oriented per-
pendicularly to the surface of the cortex [9]. Therefore, current flows are mostly
oriented in the same fashion. In contrast, other types of cells do not share any
common orientation and thus their individual contributions do not sum up.

In the context of our model, the synaptic current sources are those cor-
responding to excitatory neurons Xi at spatial locations ri and are given by
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Im(ri, t) = Cm

[
−(Xi − E1)

∑
j=i±1 ω

(1)
ji FX [Xj(t − τji)]

− (Xi − E2)
∑

j=i±1 ω
(2)
ji FY [Yj(t − τji)]

]
, where i = 1, . . . , Nex and Cm is the

membrane capacitance. The field potential at a point re of the extracellular
space incorporates the contributions from all excitatory neurons: V (re, t) =
(1/(4πσ))

∑
i (Im(ri, t)/|ri − re|) , where σ represents the electrical conductivity

of the extracellular medium. The measurement of the model EEG is performed
according to the scheme of Fig. 2.

3X 4X 5X 6X

...

200   mμ50   m μ
...

measurement site

Fig. 2. Relative positions of the current sources and of the EEG voltage measurement
site.

3 Change in the dynamics and the resulting EEG

We take, as the network’s typical dynamical state, one where spatiotemporal
oscillations of the membrane potential are observed. This is the case for the
parameter region considered [8]. Traveling waves are mathematically possible.
However, due to the relation between wavelength, system size, and boundary
conditions, the waves are in this case geometrically constrained. Details of the
full dynamics are out of the scope of this paper. We focus on the fact that the
underlying neural network may undergo specific changes in its dynamical state
through any of the mechanisms identified in the next sections. The EEG follows
these changes and may be used as a tag thereof.

3.1 Change in response to external forcing

Let us take ω(2) = 1.68 and all other parameters as indicated in Section 2.1.
The dynamics of the unperturbed network is spatiotemporal. This means that,
at any time, different neurons generally display different values of the membrane
potential. However, the dynamics of the full network is periodic as revealed by
a EEG signal which has a period T = 25.62 msec.

From this reference dynamical condition, we perturb a fraction of the neurons
with an external stimulus of finite magnitude. Namely, we perturb excitatory
neurons X1 through X4 with a simulated injected electric current. In the math-
ematical model, this is actually equivalent to momentarily shifting the value of
the resting potential VL. The external perturbation signal could also have its
own intricate dynamics, and the network’s response to such a signal might be
viewed as an analog computation performed over an input pattern. Such ideas
are discussed e.g. in [10], but they are not the focus of the present paper.

Here we use a static perturbation with a simple form. Having allowed the
network to evolve autonomously for some time, we choose a certain instant to
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activate the perturbation, and mark this instant as t = 0. The perturbation then
remains activated for the duration of the numerical experiment. The perturba-
tion consists in shifting VL by + 5 mV for neurons X1 through X4.

As a result of the perturbation, the dynamics remains periodic but the EEG
period changes to T = 50.13 msec. Figure 3 displays the EEG signal, respectively,
without and with the described perturbation activated.

200 300 400 500
time

0

   
   

   
   

   
   

   
   

   
 E

E
G

perturbed network

50 msec

0

unperturbed network

Fig. 3. Comparison between the EEG measured from a network which suffers a finite-
size perturbation, and the EEG from an unperturbed network. An arbitrary 300 msec
interval is shown. The transient dynamics right after the onset of perturbation is not
depicted since we choose to make it occur prior to the plotted interval. See text for
details of the perturbation. ω(2) = 1.68 and the remaining parameters are as indicated
in Section 2.1.

3.2 Change by following a bifurcation path

Let us now consider that no external perturbation is present. Instead, an internal
system parameter is available for change. We select the value of the synaptic
weight ω(2) to be varied.

We take the values ω(2) = 3.00 and ω(2) = 1.68, one at a time, and inspect
the dynamics that occurs for each of these values. Again, all other parameters are
as indicated in Section 2.1. Also in this case, the EEG is used as a probe of the
dynamics. Lowering ω(2) from 3.00 to 1.68 is actually just walking a small path
in the complex parameter space of the neural network. However, it is enough to
elicit a visible transition in the dynamics. This parameter variation is part of
a larger bifurcation path. A larger ω(2) range than the one shown here would
produce a full period-doubling bifurcation scenario [8]. Figure 4 displays the
EEG signal for ω(2) = 3.00 and ω(2) = 1.68, respectively. The EEG period is
T = 17.28 msec when the inhibition is higher and T = 25.62 msec when the
inhibition is lower. This numerical experiment, if taken isolatedly and resorting
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Fig. 4. Comparison of the EEG measured for two different values of synaptic inhibition
in the network. As in Fig. 3, an arbitrary 300 msec interval is shown. The vertical scale
is also the same as in Fig. 3. The higher inhibition corresponds to ω(2) = 3.00 and
the lower inhibition to ω(2) = 1.68. The remaining parameters are as indicated in
Section 2.1.

only to the EEG signal, would not suffice to suggest the occurrence of period-
doubling bifurcations.

3.3 Switching within a chaotic attractor

We now take ω(2) = 1.64 and let all other parameters have the usual values as
indicated in Section 2.1. Finite perturbation of the neural system is excluded,
be it through some external influence or through parameter change as in the bi-
furcation scenario. However, ’infinitesimal’ perturbations are allowed. The latter
can consist in occasional minute changes to system variables, or in occasional
minute shifts in a system parameter. Any of the the latter types of perturbations
are to be distinguished from the finite perturbations of sections 3.1 and 3.2, since
they correspond to different orders of magnitude.

As reported in [8], for these parameter values the system displays a form of
low-dimensional spatiotemporal chaos. The dynamics is not periodic, but mod-
erate coherence is observed in the neurons’ activities. The change in electrical
activity across the network tends to follow a wavy pattern. This is quite far
from, say, a regime of fully developed turbulence. Furthermore, the dynamics is
coherent enough that it can be switched in a controlled way via an infinitesimal
perturbation such as the ones referred above. For this to be possible, two essen-
tial properties of chaos come into play: 1) the chaotic dynamics is very flexible
and extremely sensitive to small perturbations; 2) under appropriate conditions
(verified here), the chaotic attractor contains an infinite number of unstable peri-
odic orbits (UPOs). Infinitesimal perturbations, if adequately tuned, may switch
the chaotic dynamics into one of those UPOs, or switch the dynamics between
different UPOs. These transitions can be very fast.
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In [11, 8, 10], it is argued that this mechanism may place the chaotic system
in an appropriate state for some type of information processing. This UPO selec-
tion need not last longer than the time required for a particular computational
task. We do not intend to further re-state those ideas here, but rather put forth
the EEG signal as a side-effect of, or a tag for, some of those UPOs that can
be selected in practice. Since the UPOs are unstable by nature, they cannot be
sustained in time unless some control mechanism performs occasional infinites-
imal perturbations obeying a so-called control algorithm. This too is out of the
scope of the present paper.

Figure 5 allows to compare the EEG signal, respectively, for the unperturbed
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Fig. 5. With ω(2) = 1.64 and the remaining parameters as indicated in Section 2.1,
the unperturbed network displays a chaotic regime. Its corresponding EEG is show at
the top of the figure. Via infinitesimal perturbations, the dynamics can be switched
into a number of different UPOs. In contrast to the broadband frequency spectrum of
chaos, the UPOs possess well-defined natural frequencies. Their respective values are:
(a): 39.79 Hz; (b): 18.96 Hz; (c): 9.61 Hz. Notice the different time-scale as compared
to the one in Figs. 3 and 4. In the present figure an arbitrary 400 msec interval is
shown. Also, the vertical scale is compressed by a factor of 1.875 with respect to the
one in Figs. 3 and 4.
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chaotic attractor, and for three particular UPOs that are embedded in the chaotic
attractor. Thus a multitude of possible dynamical regimes coexist within the
chaotic attractor. They are in principle accessible through tiny perturbations
of the attractor. The EEG of the dynamical regimes illustrated in Fig. 5 turns
out to possess natural frequencies in a realistic range. It should be noted that
these EEG signals are all produced by the same neural population, which is
(infinitesimally) perturbed in different manners starting from a common chaotic
regime.

4 Discussion

We identified three different mechanisms that may account for changes in the
spatiotemporal neural dynamics. These changes imply transitions in the EEG,
which is a scalar observable, or tag.

The first type of change, through external forcing, requires that a finite-size
perturbation reach the neurons. ’External’ here means external to the neural
population we are modeling, not necessarily external to the organism. As it
comes, a primary cue, eventually one with limited time-span, may be used by
some distinct neural population for it to enter a state in which it provides afferent
input to our particular neural population —the one that does the dynamical
multitasking.

The second type of change depends on an internal parameter being available
for change. If the parameter range so allows, bifurcations may be observed. In the
latter case, the transitions in the dynamics will be clearly noticeable. However, an
adequate parameter is not always available, or the time-scales for the parameter
change might be slower than required. Furthermore, such type of change might
be metabolically costly. Notwithstanding, certain neuromodulators might play
a role in these processes. Acetylcholine, for instance, has a confirmed action in
the modulation of attentional processes. Interestingly, attentional processes also
provide distinct EEG frequencies directly associated with behavior. We also note
that the variation of certain internal parameters may have an effect equivalent
to that of an external forcing.

The third type of dynamical switching is the fastest and most flexible, since
the dynamics is not constrained to some limit-cycle behavior. Rather, the spa-
tiotemporal chaotic regime allows that multiple behaviors be simultaneously
available in the form of UPOs. Yet, this generally requires that an adequate
mechanism be available to select the most favorable UPO for a given task.

Of course, a combination of more than one of the scenarios is possible. For
instance, in separate articles we discuss the consequences of perturbing a chaotic
regime with a finite-size external perturbation [10, 11], apart from the infinites-
imal perturbations that provide UPO switching. This is done from a computa-
tional standpoint, and the aim is to assess the pattern processing capabilities of
chaotic neural networks.
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The model that we discussed in this article supports all three scenarios in a
homogeneous way. The chaotic ’mode’ could be the most promising. However,
the dispute over the very existence of low-dimensional chaos in the brain has not
been settled even if more than 20 years have passed since the seminal claims [12,
13]. Here we keep an open perspective, and try to determine what actual use
chaos may have for any system —natural or artificial— where it may occur [11].

Our last comment is on the particular set of EEG frequencies that are some-
what ’hidden’ in our chaotic model, and that can be elicited trough minute
perturbations. The 9.61 Hz falls into the alpha range, whereas the 39.79 Hz
is in the gamma range. The latter range contains the famous “40 Hz” oscilla-
tions. These frequencies have been obtained without any purposeful tuning of
the system’s parameters. They can be regarded as an emergent phenomenon.
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