
Structured reservoir computing
with spatiotemporal chaotic attractors

Carlos Lourenço1,2 ∗

1- Faculty of Sciences of the University of Lisbon - Informatics Department
Campo Grande, 1749-016 Lisboa - Portugal

2- Instituto de Telecomunicações - Security and Quantum Information Group
Av. Rovisco Pais, 1, 1049-001 Lisboa - Portugal

Abstract. We approach the themes “computing with chaos” and “reser-
voir computing” in a unified setting. Different neural architectures are
mentioned which display chaotic as well as reservoir properties. The ar-
chitectures share a common topology of close-neighbor connections which
supports different types of spatiotemporal dynamics in continuous time.
We bring up the role of spatiotemporal structure and associated symme-
tries in reservoir-mediated pattern processing. Such type of computing is
somewhat different from most other examples of reservoir computing.

1 Spatiotemporal chaotic reservoirs

Previously we have described the reservoir property in the context of chaotic
dynamical systems and pointed out that it is a useful manifestation of chaos’
flexibility in view of computation [1, 2, 3, 4]. The recent developments in reser-
voir computing research [5, 6, 7] prompted us to recall some of the previous
ideas concerning computing with dynamical networks, as well as to provide new
results and suggest research directions. Our work aims at classifying arbitrarily
complex time-varying patterns, where time is continuous. We depart from the
mainstream of reservoir computing systems in that our neural network is topolog-
ically organized through close-neighbor connections. In the literature the latter
arrangement is sometimes called a cellular neural network. The connection topol-
ogy makes the network particularly suitable for processing spatiotemporal input
patterns. We emphasize that the resulting input-output relation (or “filter”) can
in certain cases be understood in terms of spatiotemporal symmetries inherent
to the chaotic attractor and the Unstable Periodic Orbits (UPOs) therein. Such
symmetries can be tuned to the particular needs of input classification tasks.

Our earlier description of the spatiotemporal regimes involved in this so-
called structured reservoir computing shows that computation happens at the
edge of chaos, specifically on the chaotic side [2, 4]. Chaos is not fully devel-
oped, and indeed it appears to display just the right balance between dynamical
structure and flexibility. Hence, the adjective “structured” when applied to the

∗The author acknowledges the partial support of Fundação para a Ciência e a Tecnolo-
gia and EU FEDER via the Center for Logic and Computation and the project ConTComp
(POCTI/MAT/45978/2002), and also via the project PDCT/MAT/57976/2004. Research
performed under the scope of project RealNComp (PTDC/MAT/76287/2006).

reservoir can refer both to the structure of the chaotic attractor and to the
structure of connections between the neurons supporting the attractor.

The emphasis on the adequacy for spatiotemporal input patterns might be
confused for a dismissal of the general-purpose nature of reservoir computing.
However, nothing prevents the usage of the proposed reservoir in the processing
of time-varying patterns without noticeable spatial structure, including e.g. the
extreme cases of a scalar time-series or an array of values constant in time.

We take advantage of the chaotic attractors’ property of possessing an infinite
number of embedded UPOs [2, 4], to be used as computational modes suitable
for particular tasks. This usage of the attractor’s structure may be associated
with a control mechanism able to stabilize particular UPOs very fast and with
minimum perturbation of the original system. The stabilization places the sys-
tem in a state appropriate for the processing of a certain type of input patterns,
and need only last the minimum amount of time required for computation to oc-
cur. Such control may also be absent, but nevertheless the attractor’s structure
may be revealed in the way the system responds to particular input patterns.
In [4] the ensemble of UPOs was itself called a “reservoir”, following previous
nomenclature [1]. On the other hand, the range of dynamical input-output rela-
tions made possible by chaos’ flexibility could also be viewed as a reservoir [4],
in the sense of a functional reservoir.

An obvious common point of our approach with mainstream reservoir com-
puting is that the dynamics of a pool of neurons in a recurrent network is per-
turbed by some input stimulus (the “pattern”) and the resulting transient dy-
namics is assessed by a separate readout mechanism as a process which can
provide meaning to the observed dynamics. The system is perturbed differ-
ently according to specific characteristics of each input, and features a fading
memory. We allow the chaotic attractor to be perturbed either in a permanent
or in a transient fashion, depending on the task’s needs. So far we have not
implemented a learning procedure for an explicit readout layer of neurons, but
were nonetheless able to obtain sets of dynamical response functions adequate
for pattern classification, that is, easily separable.

2 Leaky-integrator reservoir

2.1 Setting up the network

In the present paper we consider mainly the biologically inspired model described
in detail in [3, 4]. Let us briefly recall the model, while at the same time extending
it to support an instance of reservoir computing. After having investigated many
different variations of network architectures with one and two spatial dimensions,
featuring different network sizes and intrinsic parameter values leading to chaos,
we focused on a 1-D spatial neural arrangement that allows the system to be
situated in an appropriate edge of chaos regime in the spirit of the previous
section. A population of N excitatory neurons Xi and N inhibitory neurons Yi

is coupled as shown in Fig. 1. The evolution of the membrane potentials Xi and

Xi−1 Xi Xi+1

i−1p ip pi+1

ii−1Y i+1YY

Fig. 1: Neural network with excitatory neurons Xi (triangles) and inhibitory
neurons Yi (large circles) connected via Xi → Xi±1 and Xi → Yi±1 excitatory
connections, and via Yi → Xi±1 inhibitory connections. Shown also are the
external inputs pi, in a one-to-one correspondence with the excitatory neurons.

Yi in the absence of any perturbation is described by the following equations:

dXi

dt
= −γ(Xi − VL) − (Xi − E1)

∑

j=i±1

ω
(1)
ij FX [Xj(t − τij)]

− (Xi − E2)
∑

j=i±1

ω
(2)
ij FY [Yj(t − τij)]

dYi

dt
= −γ(Yi − VL) − (Yi − E1)

∑

j=i±1

ω
(3)
ij FX [Xj(t − τij)]

i = 1, . . . , N .

The resting potential VL has the value −60 mV, whereas the ionic potentials have
the respective values E1 = 50 mV and E2 = −80 mV. The inverse of the mem-
brane’s time-constant takes the value γ = 0.25 msec−1. The neurons are non-
linearly coupled through sigmoidal functions F (V) = 1/ (1 + exp [−α(V −Vc)])
where V stands for X or Y . α takes different values depending on whether
an excitatory or an inhibitory neuron is implied: αX = 0.09 mV−1 and αY =
0.2 mV−1. The activation threshold is dependent upon Vc which is fixed at
−25 mV. We consider a homogeneous time-delay τij = τ = 1.8 msec due to the
finite speed of signal propagation between neurons. The synaptic weights ω are
also homogeneously chosen within each type of connection, and they are con-
stant in time. The excitatory-to-excitatory weights ω

(1)
ij = ω(1) have the value

3.15; the inhibitory-to-excitatory weights ω
(2)
ij = ω(2) have the value 1.64; the

excitatory-to-inhibitory weights ω
(3)
ij = ω(3) have the value 2.5; no inhibitory-to-

inhibitory connections are considered. In accordance with Fig. 1, the network
has first-neighbor connectivity. The boundary conditions are of the zero-flux
type. For the present numerical simulations we take N = 8.

An account of the unperturbed chaotic regime and UPO reservoir properties
of this model was given in [4], where several UPOs were identified. The latter
display diverse spatiotemporal symmetries. Here we extend the model by con-
sidering an N -dimensional array of external perturbations pi(t), where each pi

perturbs at most one neuron at the corresponding position, namely Xi. Each pi

may vary continuously over time t. Depending on correlations that may exist
between the pi for different i, the collective evolution of the set of pi during
some time-interval may be viewed as a true spatiotemporal pattern. However,
positive correlations between, say, adjacent pi are not mandatory for reservoir
computing to take place. In any occurrence, the underlying spatiotemporal sym-
metries of the attractor being perturbed are bound to play an important role in
the generation of output signals.

As described in [4], the neurons display individual differences in their oscil-
latory activity, with a partial temporal and spatial correlation kept throughout
the unperturbed chaotic regime. Monitoring the evolution of, say, the profile of
simultaneous membrane potentials of excitatory neurons, allows us to gather all
these neurons into a single spatiotemporal evolution. The latter is chaotic, but
to some degree it displays traces of the UPOs embedded in the attractor. Each
of these UPOs is strictly periodic and is itself a spatiotemporal object with a
defined symmetry. Some of the UPOs may present e.g. a left-to-right symmetry
with respect to spatial position, whereas others do not display such symmetry.
In the absence of a control mechanism, none of these UPOs can be spontaneously
sustained. However, by waiting long enough, an arbitrarily small vicinity of each
of the UPOs may be attained.

2.2 Pattern processing

We propose three variations of reservoir computing with chaotic neural networks
where the networks are generically of the above type, namely featuring a regular
spatial arrangement and close-neighbor connectivity. Note that the networks in
question need not be exactly as described in Section 2.1. For lack of space, we
briefly refer the reader to an application of these ideas with an alternative neural
network [2] for which the chosen examples of input patterns happen to be more
complex (and dynamical) than the ones shown in the present paper.

1. In a network with two identical chaotic layers of neurons, the first layer
is stabilized into a certain UPO which is task-dependent, for the duration
of input processing. The second layer is perturbed by a spatiotemporal
input pattern, modulated by the activity of the first layer. A response is
measured in the form of some observable of the second layer’s dynamics,
and is dependent on the interplay between the input, the stabilized orbit,
and the attractor itself. The application in [2] follows this design. As with
versions 2. and 3. below, the spatiotemporal symmetries of the attractor,
the input pattern, and/or the stabilized UPO, play an important role.

2. The dynamics of a single-layer network is driven into an UPO, by control
or targeting methods. As soon as an external pattern starts to perturb
the system, control is switched off. An output value or signal is measured
from the transient dynamics of the system in response to the input pattern.
This response depends on the initial dynamical condition resulting from
momentarily having stabilized an adequate UPO in view of the task. This
is the design we choose for the example below in this paper.

3. The dynamics of a single-layer network is not driven into any UPO, but a
response to each input pattern is measured as in 2.

We have tested design 2. with the initial purpose (for this biologically inspired
model) of assessing basic features such as a fading memory, the separation prop-
erty [6], and the ability of at least performing standard digital computation. Such
exploratory tests gave evidence of the mentioned properties, but they would be
overly detailed to mention here. For brevity, we focus on the example of com-
puting Boolean functions. The AND, OR and NOT functions could be easily
computed, but here we illustrate only the computation of the XOR. The case of
more complex (dynamical) input patterns is not addressed at present.

The system receives external input in the form of direct perturbations pi of
excitatory neurons Xi. Even if only one excitatory neuron is perturbed, the
perturbation will spread through the entire network. An external perturbation
of neuron Xi is numerically encoded by changing the resting potential VL of Xi

by some positive or negative amount. Such perturbations pi can have any type
of variation in the course of time and also across different spatial positions in
the network. Here, however, we choose the pi to either be zero or some small
positive constant. To compute the function XOR (z1, z2) the following encoding
is used: pi = 0.0 for i = 1, 3..6, 8; p2 = 0.5 if z1 = 1 (or True), p2 = 0.0 if z1 = 0
(or False); z2 is similarly encoded by p7.

For this computational task, a totally symmetric orbit is initially targeted or
stabilized. This is the period-one UPO corresponding to bulk oscillations of the
network as described in [4]. An external perturbation, or pattern, is introduced
at time 0.0. At this moment, the UPO stabilization procedure is turned off. The
transient dynamical response of the network is then monitored.

A readout function is chosen in the form of the running standard deviation
of the B1 time-series, where B1 is the coefficient of the first sine mode from a
Fourier spatial projection of the network activity as defined in [4]. The sliding
window for computing the standard deviation measures 46 msec. This output
signal should be able to separate the four possible input patterns (0, 0), (0, 1),
(1, 0) and (1, 1) into two different classes according to the well-known XOR truth
table.

The network’s response to each input pattern is shown in Fig. 2. The output
signal clearly separates the two classes as desired already at time t = 23 msec,
and this separation lasts until t = 110 msec. By t = 200 msec the time-series
become harder to disentangle. The high symmetry of the orbit chosen for initial
stabilization, along with the symmetry of the input encoding, are the cause
for the responses to (0, 1) and to (1, 0) to practically overlap initially. With a
moderate amount of noise, these two time-series would be decoupled, but the
qualitative separation in response would be kept for the four input patterns (not
shown in this experiment).

Assuming that some process is available for capturing the output signal of
Fig. 2, no special consideration needs to be given to further readout neurons or
the learning thereof. Class separation can be achieved trivially in a linear fashion,
for the XOR as well as for the other Boolean functions mentioned above.

0.0 100.0 200.0
t

0.0

5.0

10.0

st
. d

ev
. o

f

(0,0)

(1,1)

(1,0)
(0,1)

B
(msec)

1
Fig. 2: Network spatial response signal as a function of the input pattern (see
text for details of the output signal). This response allows to separate the four
input patterns into two classes: [(0, 0) → dashed line] and [(1, 1) → dash-dotted
line] in one class; [(0, 1) → dotted line] and [(1, 0) → solid line] in the other class.

3 Perspectives

Exploring a chaotic attractor’s structure through its Unstable Periodic Orbits
allows us to use a structured reservoir without sacrificing flexibility. The inter-
play between the spatiotemporal symmetries of dynamical input patterns and
of internal states of the neural network plays an important role in this type
of computing. A simple example was provided in this paper. The possibility
of processing more complex patterns with these biologically inspired networks
should be investigated. More elaborate input patterns, as well as different types
and shapes of output signals, may justify including an additional set of simple
neurons capable of learning. An investigation of truly dynamical patterns might
start with the elementary pattern approach of [2], which already includes non-
static input. A most relevant research topic is the purposeful design of chaotic
attractors and respective UPOs, which may be instrumental in tailoring the
neural network in regard to the required computational tasks.

References

[1] A. Babloyantz and C. Lourenço, Computation with chaos: A paradigm for cortical activ-
ity, Proceedings of the National Academy of Sciences USA, 91: 9027-9031, 1994.

[2] C. Lourenço, Attention-locked computation with chaotic neural nets, International Jour-
nal of Bifurcation and Chaos, 14:737-760, 2004.

[3] C. Lourenço, Dynamical reservoir properties as network effects. In M. Verleysen, editor,
proceedings of the 14th European Symposium on Artificial Neural Networks (ESANN
2006), d-side pub., pages 503-508, April 26-28, Bruges (Belgium), 2006.

[4] C. Lourenço, Dynamical computation reservoir emerging within a biological model net-
work. To appear in Neurocomputing, 2007, doi:10.1016/j.neucom.2006.11.008

[5] H. Jaeger, The “echo state” approach to analyzing and training recurrent neural networks,
GMD Report 148, German National Research Center for Information Technology, 2001.

[6] W. Maass, T. Natschläger and H. Markram, Real-time computing without stable states:
A new framework for neural computation based on perturbations, Neural Computation,
14:2531-2560, 2002.

[7] D. Verstraeten, B. Schrauwen, M. D’Haene and D. Stroobandt, The unified Reservoir
Computing concept and its digital hardware implementations. In Proceedings of the 2006
EPFL LATSIS Symposium, pages 139-140, 2006.

