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Abstract. It has been proposed that chaos can serve as a reservoir
providing an infinite number of dynamical states [1, 2, 3, 4, 5]. These
can be interpreted as different behaviors, search actions or computational
states which are selectively adequate for different tasks. The high flexi-
bility of chaotic regimes has been noted, as well as other advantages over
regular regimes. However, the model neurons used to demonstrate these
ideas could be criticized as lacking physical or biological realism. In the
present paper we show that the same kind of rich behavior displayed by
the toy models can be found with a more realistic neural model [6]. Fur-
thermore, much of the complex behavior arises from network properties
often overlooked in the literature.

1 Spatiotemporal neural chaos and its use

Following the discovery of putative chaotic regimes in electrical signals from the
brain, and much scientific speculation as to the possible roles of chaos in cogni-
tion, actual computational models were proposed [1, 2, 3, 4, 5]. These models
arguably explain some of what could be going on in the brain, but they also
point to possible artificial devices taking advantage of the dynamical richness
of chaos. To this end, a continuous-time setting is adopted and nonlinear net-
work properties are investigated. Knowledge of general properties of nonlinear
oscillators, as well as of generic networks, turns out to be very useful and can
prompt a first approach to dynamical neural network modeling. This is the case
of the references above, where e.g. Ginzburg-Landau and Rossler oscillators are
meant to capture the essential oscillatory features of neurons. Particularly in
Refs. [1, 2, 4], a full network setting is presented mimicking cortical architecture.
Thus an actual spatiotemporal dynamics is unveiled, overcoming the limitations
and criticism that result from working with single-unit or otherwise very small
networks [4]. Unstable Periodic Orbits (UPOs) can be stabilized from within
chaos, very fast and with minimum perturbation of the original system. The
original chaotic attractor contains an infinite number of such dynamical modes,
which could be stabilized at will according to the requirements of computational
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tasks. In Ref. [4], this is applied to the processing of spatiotemporal visual input
patterns with different symmetries. The units (or “neurons”) are topologically
arranged in a network, and the simultaneous monitoring of their state variables
reveals such spatiotemporal regimes as standing and rotating waves of different
symmetries, or a complex mixture thereof.

2 Nonlinear oscillators: from out-of-the-box units
to more realistic neurons

The mathematical models mentioned above face some criticism when compar-
isons are made with actual neurons. Neurons are not oscillators, even if certain
cells can display autonomous rhythmic firing (a behavior we are not addressing
here, but certainly nothing like an actual oscillator, especially if the membrane
potential is the monitored variable). However, groups of neurons can show oscil-
lating electrical activity, sustained by the exchange of excitation and inhibition.
Neural coupling is far from the simple linear connectivity of diffusive type con-
sidered in Refs. [1, 2, 4] and other studies of networks of the reaction-diffusion
type. Rather, neurons are connected via highly nonlinear transfer functions such
as sigmoids. Finally, in real life there is an unavoidable delay in signal transmis-
sion between all neurons, which is usually not considered as an intrinsic property
of the model networks. This includes the networks mentioned above.

Hence a more realistic model is sought. The purpose is to attain just the
“right” level of biological or physical plausibility, while still having a manage-
able model for dynamical exploration. Although proposed in a different context,
the model in Ref. [6] provides a good compromise. The individual unit is a
slightly more complex version of the leaky integrator, and is also called the
single-compartment neuron. Passive as well as active membrane properties are
considered, along with highly nonlinear coupling and delays in signal transmis-
sion between neurons.

2.1 Deriving the neuron model

For lack of space, only an abbreviated account can be given here. Figure 1
illustrates the starting point: the electrical equivalent of the neural membrane.
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Fig. 1: Electrical equivalent of the neural membrane. See text for the details.

The state of the neuron is characterized by the membrane potential V . Cm

is the membrane capacitance. En represents the ionic potential associated with



ion species n. The membrane conductance associated with species n is denoted
gn. A Resistive-Capacitive (RC) equation can be derived for the potential V :

Cm
dV

dt
= −gL(V − VL) − gc

1(V − E1) − gc
2(V − E2) .

gL is the resting conductance of the membrane, and VL is its resting potential.
The active part of the conductances, gc

n for each species n, takes into account the
opening or closing of ionic channels, depending on the level of synaptic excitation
which arises through the coupling of neurons. Thus gc

n is a sum of contributions
from several terms g

(k→i)
n denoting the local conductance of ion species n at the

synapse between neurons k and i. The different equilibrium potentials have the
values VL = −60 mV, E1 = 50 mV, and E2 = −80 mV. As with other parameters
of the model, these values are suggested by electrophysiological experiments. The
activation of channel gc

1 contributes to the increase of the membrane potential
toward E1, whereas the activation of gc

2 tends to decrease the membrane potential
toward E2. gc

1 and gc
2 are activated by excitatory and inhibitory presynaptic

neurons, respectively. The synaptic conductances depend on the firing rate of
the presynaptic neuron:

g(k→i)
n (t) ∼ fk(t − τ) ,

where τ is the time-delay due to the finite speed of signal propagation. The firing
frequency of the presynaptic neuron k saturates at a value fmax, say, 100 Hz.
We consider a sigmoidal transfer function between the membrane potential Vk

and the firing frequency fk:

fk = fmax F (Vk) F (V ) =
1

1 + e−α(V −Vc)
.

By choosing particular parameter values α and Vc, a certain activation threshold
is obtained such that the neuron is silent for lower values of the potential V . Past
some higher value of V , the firing rate saturates. Vc is fixed at −25 mV. The α
values are indicated in Section 2.2.

2.2 Connecting the neurons

In the isolated model neuron, the response of the membrane to perturbations
from the resting state can be characterized by γ = gL/Cm, which is the inverse of
the membrane’s time-constant. The dynamics in this simple case is relaxatory.
However, as several neurons are coupled together, new dynamical regimes may
settle in, depending on details of the coupling and on the initial conditions of the
population. One can observe multiple steady states, including global quiescence
and global saturation, as well as a variety of oscillatory regimes for the electrical
activity of the neurons. Although a single neuron, under the present model, does
not oscillate, a coupled population may present oscillations due to the interplay
of excitatory and inhibitory feedback through synaptic connections.

The variables of the dynamics are the instantaneous membrane potential of
each neuron. A stationary state corresponds to the firing of action potentials



with a frequency constant in time. This frequency can be zero, or have some
finite value. An oscillatory state, on the other hand, implies a time-modulation
of the firing frequency.

Although there are many types of neurons, for the purpose of the modeling
we divide them into two populations: one of excitatory neurons, with membrane
potentials Xi, and another of inhibitory neurons, with membrane potentials Yj .
The dynamics of the coupled neuronal populations is described by

dXi

dt
= −γ(Xi − VL) − (Xi − E1)

∑

k �=i

ω
(1)
ki FX [Xk(t − τki)]

− (Xi − E2)
∑

l �=i

ω
(2)
li FY [Yl(t − τli)]

dYj

dt
= −γ(Yj − VL) − (Yj − E1)

∑

k �=j

ω
(3)
kj FX [Xk(t − τkj)]

i, k = 1, . . . , Nex , j, l = 1, . . . , Nin .

The network comprises Nex excitatory neurons Xi, and Nin inhibitory neu-
rons Yj . The inverse of the membrane’s time-constant takes the value γ =
0.25 msec−1. τki is the propagation delay between neurons k and i. This delay
depends on the distance between the two neurons. Contrarily to previous ver-
sions of the model, here we consider different values of the slope α of the transfer
function F , depending on whether the firing neuron is excitatory or inhibitory.
We adopt the values αX = 0.09 mV−1 and αY = 0.2 mV−1. The synaptic
weights ω characterize the efficiency of channel activation by the presynaptic
neuron. They correspond to the coupling constants of the network. The weights
ω

(1)
ki , ω

(2)
li , and ω

(3)
kj refer, respectively, to excitatory-to-excitatory, inhibitory-

to-excitatory, and excitatory-to-inhibitory connections. We take these values as
constant in time. Notice that there are no inhibitory-to-inhibitory connections.

The connectivity that we consider is of a local nature. For simplicity, only
first-neighbor connections are implemented. Furthermore, we study networks
that are invariant under translations in space, where the neurons are equally
spaced. Therefore, in the Xi and Yj equations one can drop the subscripts in
the time-delays and synaptic weights: τki = τ and ω

(I)
ki = ω(I), where I = 1, 2, 3

designates the different types of interactions. The summations in the Xi and Yj

equations are to be performed with contributions only from presynaptic neurons
in the immediate spatial vicinity of the postsynaptic neuron. This local pattern
of connectivity may be more relevant for certain parts of the cortex than for
others, but this discussion is out of the scope of the present paper.

2.3 Network topology

We have investigated the dynamical behavior of the above equations in different
configurations, including the case of bi-dimensional networks with many excita-
tory and inhibitory neurons. However, for the purpose of this paper, we consider



only a 1-D spatial arrangement of a moderate number of neurons. Spatiotem-
poral chaotic solutions are sought, as well as the possibility of stabilizing these
chaotic regimes into time-periodic orbits with diverse symmetries. Figure 2
shows the network topology.
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Fig. 2: Dynamical neural network. Excitatory neurons and inhibitory neurons
are represented as triangles and circles, respectively. Connections Xi → Xi±1

and Xi → Yi±1 are excitatory, whereas connections Yi → Xi±1 are inhibitory.

Here Nex = Nin = N . Hence the total population size is 2N . For the
numerical simulations described below we take N = 8. The network has first-
neighbor connectivity and the boundary conditions are of the zero-flux type.
According to Section 2.2, we consider a spatially homogeneous network, thus
ω

(I)
ji = ω(I) and τji = τ . The weights of types (1) and (3) are fixed at ω(1) = 3.15

and ω(3) = 2.5 respectively. Parameters τ and ω(2) can each have different values.

2.4 Dynamics: routes to spatiotemporal chaos

The network properties of connection topology and delay in signal transmission
turn out to be crucial for the unfolding of a rich dynamics. It has been noted by
several authors that the delay value can serve as a Hopf bifurcation parameter
from stationary states into periodic oscillations. Moreover, it provides a route to
chaos and a further increase in the chaotic attractor’s dimension as its value is
incremented. Both mechanisms were identified in our study of neural networks,
thus confirming the importance of the delay. Here, we propose a somewhat
different, albeit related, route. We fix τ = 1.8 msec and vary the value of ω(2),
which weighs the amount of inhibitory feedback to the network.

Starting from ω(2) = 17 and taking successively lower values of ω(2), while
keeping all other parameters fixed as indicated above, we observe a sequence
of bifurcations that occur for the neural system. For 16.05 < ω(2) < 17 a sta-
tionary state is observed in which the excitatory (resp., the inhibitory) neurons
share a common low membrane potential corresponding to a very low firing rate.
At ω(2) = 16.05, a primary Hopf bifurcation occurs which destabilizes this sta-
tionary state giving rise to uniform oscillations of the network with a critical
period of 13.76 msec. For lower values of ω(2), the structure of these oscilla-
tions becomes increasingly complex. From ω(2) = 1.69 downwards, two new
dynamical processes take place in conjugation: the network no longer oscillates
homogeneously, and a cascade of period-doubling bifurcations is seen for the
time-variation of any given neuron’s membrane potential. The cascade accumu-
lates for a value of ω(2) close to 1.641. Past that point, spatiotemporal chaos is
observed in a narrow but finite parameter range.



3 Chaos in the neural model

By fixing ω(2) = 1.64, we can investigate the resulting chaotic regime. Both the
network average value of X and a profile of local deviations from this average
have aperiodic temporal variation. The system shows an exponential divergence
of initially nearby trajectories, which is characteristic of chaotic dynamics. The
obtained behavior is conditioned by the moderate size of the network. The
spatial correlation length is of the order of the system size. In a larger system, the
observed regime would correspond to traveling waves of activity going rightward
or leftward in a random fashion, and “riding” on a uniform profile that has itself
an irregular temporal variation. In the present network, the waves are not fully
developed. Chaos is associated with the destabilization of entire spatial modes.
A partial spatial coherence is kept throughout the chaotic regime. This denotes
the correlations that exist between neurons, caused by their coupling pattern.
Temporally, the bulk part of the chaotic oscillations has a bimodal character,
with a spindle-like higher frequency superimposed on the basic cycle. This is one
example of rich dynamical behavior not found in networks of simple oscillators.

Further characterization of the spatiotemporal dynamics is not possible here
due to space limitations, and is postponed to a later article. However, we note
the important fact that the “reservoir” property is indeed found in the chaotic
neural attractor. Moreover, several different behaviors in the form of UPOs can
be identified and selectively stabilized via processes that are analogous to those
employed with the toy models mentioned above.

It is demonstrated that a network of model neurons akin to leaky integra-
tors, with physically plausible nonlinear connectivity and intrinsic delays in sig-
nal transmission, is capable of displaying a rich set of behaviors without the
need of any significant parameter distortion from reference values. The model,
which is amenable to electronic implementation, takes advantage of a fully time-
continuous dynamics together with spatial distribution, thus providing an ade-
quate framework for the dynamical computation paradigm that motivated this
work.
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