
296

Non-intrusive Runtime Verification within a
System-on-Chip∗

José Rufino, António Casimiro
LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal; email: jmrufino@ciencias.ulisboa.pt

Felix Dino Lange, Martin Leucker, Torben Scheffel, Malte Schmitz, Daniel Thoma
Institute for Software Engineering and Programming Languages, Universität zu Lübeck, Lübeck,
Germany; email: lange,leucker,scheffel,schmitz,thoma@isp.uni-luebeck.de

Abstract

This paper describes how to enrich a System-on-Chip
(SoC) design by flexible monitoring capabilities allow-
ing to analyze the system’s execution for ensuring safety
requirements. To this end, a general SoC architecture
is described enriched by observation means. Moreover,
it is described how verification properties expressed in
a temporal stream-based specification language can be
translated into a monitor expressed in a hardware de-
scription language (Verilog) checking the underlying
property. Finally, the link between the SoC and the
monitoring unit is explained. Overall, a self-observing
system is obtained that works coherently with the SoC.

Keywords: SoC runtime verification

1 Introduction and Motivation
Autonomous vehicles are paving their way into application
domains as diverse as: terrestrial, aerospace, maritime and
submarine. They include a System-on-Chip (SoC), hosting an
on-board computing system, to control the vehicle and ensure
the fulfillment of its mission.

In general, those control functions are extremely complex,
with strict real-time requirements. Interaction with the en-
vironment and operation in harsh or uncertain contexts are
potential sources for lack of determinism. In any case, the
correctness of the overall system is paramount, and safety
should be ensured at all times.

Runtime Verification (RV) [1, 2] assumes herein great rele-
vance, since it adds an extra layer of protection, assessing the
system against a previously defined specification, checking
whether timing and safety properties are satisfied or violated.

∗This work was partially supported by FCT, through funding of LASIGE
Research Unit, ref. UID/CEC/00408/2013, and by FCT/CAMPUS FRANCE
(PHC PESSOA programme), through the transnational cooperation project
3732 (PT) / 37932TF (FR), Non-intrusive Observation and RunTime verifica-
tion of cyber-pHysical systems (NORTH). This work integrates the activities
of COST Action IC1402 - Runtime Verification beyond Monitoring (ARVI),
supported by COST (European Cooperation in Science and Technology).
This work was partially supported by the BMBF project ARAMIS II with
funding ID 01 IS 16025 and EU H2020, through project 732016, COEMS
(Continuous Observation of Embedded Multicore Elements).

Most of the current RV techniques require the modification of
the application source code. Although software-based instru-
mentation is reasonable for larger systems, the requirements
that characterise these vehicular systems may pose an un-
surpassed challenge for runtime verification in such kind of
systems. Other techniques, such as system and/or function
call interception, are also not free from intrusiveness.

In this context, the concept of Hardware-based Observability,
a non-intrusive observation and runtime verification tech-
nique, assume particular relevance. More precisely, the under-
lying idea is that a safety-critical system should be enriched
by observation and analysis/monitoring techniques directly
on the core system itself. Thus, they should become a part of
the SoC. The direct combination allows perfect observability
of the functional system. The allocation of hardware resource
for the analysis further ensures that the monitoring does not
affect the execution of the functional system.

While SoC are traditionally specified in hardware description
languages like VHDL [3] or Verilog [4], the specification of
verification properties should ideally be performed in some
high-level domain specific language. Recently, the authors
hosted at Lübeck introduced the temporal stream-based spec-
ification language TeSSLa [5] which is especially designed
for specifying correct program executions. In this paper, we
describe how TeSSLa specification can be translated into a
hardware description language and integrated into a SoC for
performing basic verification tasks. Overall, we obtain a
self-observing system that works coherently with the SoC.

The paper is organized as follows. Section 2 presents
hardware-based observability monitors. Section 3 focuses
on an introduction to TeSSLa while Section 4 discusses its
translation into a Verilog format. Section 5 evaluates the
work done. Section 6 describes the related work and Sec-
tion 7 presents some concluding remarks and future research
directions.

2 Non-Intrusive Observation and Run-
time Verification

The classical approach to runtime verification implies the in-
strumentation of the functional system software components:
small pieces of software, acting as observers, are added to

Volume 39, Number 4, December 2018 Ada User Jour na l



J. Ruf ino, A. Cas imi ro, F. Dino Lange, M. Leucker, T. Schef fe l , M. Schmi tz , D. Thoma 297

assess their state in runtime. Software-based instrumentation
inherently disturbs the system, namely with respect to timing
properties, which are crucial to system design.

2.1 Hardware-based Observability
The demand for non-intrusive observability justifies, per se,
the interest in hardware-based methods, powered by: the
usage of reconfigurable logic, supported on FPGA special
purpose observers [6, 7, 8]; the raw availability of integrated
observation resources [9, 10]. By nature, hardware-based
system observation is completely non-intrusive and can be
made, by design, extremely effective.

The architecture described in Figure 1 describes the functional
system platform, implemented as a SoC architecture and how
runtime observation and monitoring features can be integrated
non-intrusively, meaning execution of runtime verification
actions does not disturb the execution of the functional system
software components. Probing the processor-cache interfaces
should allow an higher accuracy in the observation of software
components execution.

2.2 Observer Entity
The Observer Entity defined by the architecture of Figure 2
aims to support the non-intrusive observation and runtime
verification of an associated functional system, therefore en-
abling the verification in runtime that its properties are being
fulfilled and that no design assumption is being violated.

The Observer Entity is plugged to the platform where the func-
tional system software components execute, and comprises
the hardware modules of Figure 2: Bus Interfaces, capturing
all physical bus activity, such as bus transfers or interrupt
vectors; Management Interface, enabling observer entity con-
figuration; Configuration, storing the dynamic set of events;
the System Observer itself, detecting events of interest; Moni-
tor, which detects possible violations of the specified system
behaviour; Time Base, which allows to time stamp the events
of interest.

2.3 System Observing Mechanisms
The System Observer collects, in runtime, from the functional
system bus interfaces, all the addressing/data information to
detect events of interest set by configuration, performed stati-
cally (offline) or dynamically, while the system is executing.

When an event of interest (e.g., the fetch of a specific instruc-
tion or a read/write access to a given variable in the memory)
is detected, it is timestamped with the instant of occurrence,
as obtained from the Time Base module, and supplied to every
downstream block awaiting for that event. A unique identifier
(obsID) is assigned to each observed event, being an event
composed by the tuple:

evtobsID =< aobs, vobs, tobs >

where: aobs is the address observed from the functional sys-
tem bus interface that matches a given event specification;
vobs, the corresponding observed value (e.g., instruction cod-
ing or data value); tobs, is the attached timestamp.

Figure 1: Generic SoC architecture and Observer Entity

Figure 2: Observer Entity architecture

2.4 Monitoring Mechanisms

A divide and conquer strategy is used in the definition and
design of a minimal set of hardware-based essential blocks
for the synthesis of runtime verification mechanisms. A set of
basic monitors, encompassing essential runtime verification
actions, in both value and time domains, is detailed in [11].
These monitors can be instantiated as required. Additional
blocks (selectors, transformers and past-time event registers)
complement and enlarge the functionality provided by the ba-
sic monitors. The right combination of these building blocks
should be able to provide the necessary and sufficient mecha-
nisms for the runtime verification of any functional system.

3 An introduction to TeSSLa
TeSSLa [5] is a temporal stream-based specification language
that is designed for monitoring real-time signals and has al-
ready been used to build monitors for Runtime Verification
[12]. TeSSLa reasons over asynchronous input streams and
provides a rich data domain (Boolean, integer, real). Monitors
specified in TeSSLa can observe events, that were emitted
with different speeds and with different delays. TeSSLa sup-
ports signals and event streams. An event stream is only
allowed to be defined for a finite number of timestamps in a
finite interval, while a signal stream defines a value for every
point in time.

The basic concept of TeSSLa is deriving internal or output
streams by applying functions to already existing streams.
A stream can be defined declaratively as can be seen in the
following example of a TeSSLa specification:

def maximum := max(x1, x2)
def max(a,b) := if a > b then a else b

Ada User Jour na l Vo lume 39, Number 4, December 2018



298 Non- in t rus ive Runt ime Ver i f i ca t ion

The specification contains two input streams x1 and x2 and
creates a new stream maximum which always contains the
larger value of x1 and x2. Note that it is possible to define
macros (i.e. max(a, b)) that can be used to define more
sophisticated properties.

A complete list of all functions can be found in [5]. For
example can basic arithmetic function (like the comparison of
two numbers) be lifted. The lifted function is able to reason
over streams instead of i.e. integers. For timing properties it
is possible to generate a stream of timestamps corresponding
to the current value of another stream:

def timeOfx := time(x)

TeSSLa is useful for the approach of hardware-based monitor-
ing because it is especially designed for monitoring streams
and can be directly translated into hardware descriptions as is
explained in the following.

4 Translation into Verilog
Figure 3 shows the approach of Non-intrusive Runtime Ver-
ification within a System-on-Chip. The TeSSLa compiler
translates the TeSSLa specification into a dependency graph.
The dependency graph contains the necessary information to
generate Verilog code, which is used to synthesize the moni-
tor in FPGA hardware. There are five different operators that
have to be considered for the translation. Every operator can
directly be implemented as a node in the dependency graph
of a TeSSLa specification and the nodes can be connected
via message parsing. To show that this direct translation is
generally possible, two cases have to be considered.

Without recursion: If there are no recursions in a TeSSLa
specification, its dependency graph is known to be a directed,
acyclic graph [12]. To make sure that there is always at least
one node that is able to write, extra events, called progress
events, are introduced. Their purpose is to inform nodes
downstream about the absence of events. From that follows a
constant event throughput at all times. A formal proof can be
found in [13].

With recursion: There are two operators in TeSSLa that have
recursive behaviour. The last() operator returns a stream
with the last value of another stream based on a trigger signal.
The delay() operator delays a stream by a given amount of
time and can be reset by a signal stream. Because both the
trigger signal stream and the reset signal stream cannot be
recursive, it is guaranteed that a progress exists at all times.

This shows that every TeSSLa specification produces the same
output independently of timed reordering and it is therefore
possible to translate into evaluation engines implemented in
Verilog.

5 Use Case Integration
A use case in the domain of aerospace is the observation
of a navigation system of a satellite. The execution time of
different tasks with different priorities has to be observed,
because sometimes the execution takes longer than expected.
If a task exceeds the expected execution time, it has to be

canceled so other task can be executed in time. However, if the
same task is failing three times in a row, this is considered an
error, because the calculation of the trajectory of the satellite
needs the result of this task at least every third execution.

In order to monitor this behavior, we need to check the run-
time of the task, compare the timestamps and count the num-
ber of failed task executions. The runtime of the task can be
gathered by instrumenting the hardware of the Leon proces-
sor as described in Section 2 and can be passed as streams of
events to a monitor on the FPGA. The two streams contain
the events of starting (call) and finishing (return) the task.
The runtime of the tasks can be calculated and compared with
TeSSLa:

def runtime := on(return,
time(return) - time(call))

def count_violations :=
if runtime > threshold
then resetcount(runtime, false)
else
resetcount(runtime, true)

Note that the macro on(x, y) assures that the stream
runtime is only updated, if a new return event was sent.
resetcount(trigger, reset) returns the counted number and
is reset every time the second argument is true. The full code
for the macros is not shown in this paper due to paper size
limitations. An error is declared, if the threshold is violated
three times in a row:

def error :=
if count_violations > 3 then true
else false

This specification is then translated into a dependency graph
by the TeSSLa compiler. The dependency graph can be used
to generate a hardware specification as described in section 4.
With this setup it is possible to observe the activity of the satel-
lite for an unlimited amount of time and gather information
about the runtime violations of certain tasks.

6 Related Work
The application of non-intrusive runtime monitoring to em-
bedded systems has been discussed in [6,14] and, more specif-
ically, in safety critical environments [15]. Configurable mini-
mally intrusive event-based frameworks for dynamic runtime
monitoring have been developed [16]. Additionally, the RV
concept has been applied to autonomous systems [17] and to
diagnose multi-processor SoC [18]. However, to the extent of
our knowledge, no previous work has exploited how a TeSSLa
specification can be translated into a hardware description
language and integrated into a SoC.

7 Conclusion
We propose an approach on how to combine hardware-based
non-intrusive observation of a System on Chip with the high-
level temporal stream-based specification language TeSSLa.
With its easy to read C-style TeSSLa can be used to describe
properties much more intuitively than directly in hardware

Volume 39, Number 4, December 2018 Ada User Jour na l



J. Ruf ino, A. Cas imi ro, F. Dino Lange, M. Leucker, T. Schef fe l , M. Schmi tz , D. Thoma 299

Figure 3: An overview over our approach

description languages. It can be shown that TeSSLa specifi-
cations are directly translatable into a hardware description
language like Verilog.

Hardware-based observation is especially useful in domains
with long observation times. Therefore we introduce the
use case of task runtime observation of a satellite navigation
system to show a possible application of this approach.

This paper is the first step towards integrating TeSSLa into
a SoC. The use case prototype, showing the feasibility of
hardware-based observation within a SoC, needs further work,
namely with regard to: the exploitation of the monitoring
infrastructure [11]; the translation from TeSSLa to a hardware
description language; the definition of an effective algorithm
for the direct translation from the TeSSLa specification.

References
[1] M. Leucker and C. Schallhart (2009), A brief account of

runtime verification, The Journal of Logic and Algebric
Programming, vol. 78, pp. 293–303.

[2] Y. Falcone, K. Havelund, and G. Reger (2013), A Tuto-
rial on Runtime VerificationEngineering, in Dependable
Software Systems, vol. 34, pp. 141–175. Marktoberdorf,
Germany: IOS Press Ebooks.

[3] IEEE (2018), 1076.1-2017 - IEEE Standard VHDL Ana-
log and Mixed-Signal Extensions.

[4] IEEE (2018), 1800-2017 - IEEE Standard for SystemVer-
ilog– Unified Hardware Design, Specification, and Veri-
fication Language.

[5] L. Convent, S. Hungerecker, M. Leucker, T. Scheffel,
M. Schmitz, and D. Thoma (2018), TeSSLa: a temporal
stream-based specification language, in International
Colloquium on Theoretical Aspects of Computing (IC-
TAC). Submitted for publication.

[6] C. Watterson and D. Heffernan (2007), Runtime verifi-
cation and monitoring of embedded systems, Software,
IET, vol. 1, Oct. 2007.

[7] J. C. Lee, A. S. Gardner, and R. Lysecky (2011), Hard-
ware observability framework for minimally intrusive
online monitoring of embedded systems, in Proc. 18th
Int. Conf. on Engineering of Computer Based Systems,
(Las Vegas, USA), pp. 52–60, IEEE.

[8] R. C. Pinto and J. Rufino (2014), Towards non-invasive
runtime verification of real-time systems, in 26th Eu-
romicro Conf. on Real-Time Systems - WIP Session,
(Madrid, Spain), pp. 25–28.

[9] ARM (2013), ARM CoreSight Architecture Specification,
Cambridge, England, 2.0 ed.

[10] R. Backasch, C. Hochberger, A. Weiss, M. Leucker, and
R. Lasslop (2013), Runtime verification for multicore
SoC with high-quality trace data, ACM Transactions on
Design Automation of Electronic Systems (TODAES),
vol. 18, p. 18.

[11] J. Rufino (2018), Runtime verification monitors, tech.
rep., Faculdade de Ciências da Universidade de Lisboa,
Portugal.

[12] N. Decker, P. Gottschling, C. Hochberger, M. Leucker,
T. Scheffel, M. Schmitz, and A. Weiss (2017), Rapidly
adjustable non-intrusive online monitoring for multi-
core systems, Brazilian Symposium on Formal Methods,
pp. 179–196, Springer.

[13] M. Leucker, C. Sánchez, T. Scheffel, M. Schmitz, and A.
Schram (2018), TeSSLa: Runtime verification of nonsyn-
chronized real-time streams, in ACM Symp. on Applied
Computing (SAC), (Pau, France), ACM.

[14] T. Reinbacher, M. Fugger, and J. Brauer (2014), Run-
time verification of embedded real-time systems, Formal
Methods in System Design, vol. 24, no. 3, pp. 203–239.

[15] A. Kane, O. Chowdhury, A. Datta, and P. Koopman
(2015), A case study on runtime monitoring of an au-
tonomous research vehicle (ARV) system, in Proc. 15th
Int. Conf. on Runtime Verification, (Vienna, Austria).

[16] J. C. Lee and R. Lysecky (2015), System-level observa-
tion framework for non-intrusive runtime monitoring of
embedded systems, ACM Transactions on Design Au-
tomation of Electronic Systems, vol. 20, no. 42.

[17] G. Callow, G. Watson, and R. Kalawsky (2010), System
modelling for run-time verification and validation of
autonomous systems, in Proc. 5th Int. Conf. on System
of Systems Engineering, (Loughborough, UK).

[18] P. Wagner, T. Wild, and A. Herkersdorf (2017), DiaSys:
Improving SoC insight through on-chip diagnosis, Jour-
nal of Systems Architecture, vol. 75.

Ada User Jour na l Vo lume 39, Number 4, December 2018


	CfP_AE2019.pdf
	Proceedings
	Call for Industrial Presentations
	Awards
	Call for Educational Tutorials
	Call for Workshops
	Call for Exhibitors
	Venue




