TO APPEAR IN IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (MARCH 2017) 1

Elastic State Machine Replication

Andre Nogueira, Antonio Casimiro, Alysson Bessani

State machine replication (SMR) is a fundamental technique for implementing stateful dependable
systems. A key limitation of this technique is that the performance of a service does not scale with
the number of replicas hosting it. Some works have shown that such scalability can be achieved
by partitioning the state of the service into shards. The few SMR-based systems that support
dynamic partitioning implement ad-hoc state transfer protocols and perform scaling operations as
background tasks to minimize the performance degradation during reconfigurations. In this work
we go one step further and propose a modular partition transfer protocol for creating and
destroying such partitions at runtime, thus providing fast elasticity for crash and Byzantine fault
tolerant replicated state machines and making them more suitable for cloud systems.

Index Terms—State machine replication, replication, elasticity, fault tolerance, Byzantine fault tolerance, partitioning, scaling.

1 INTRODUCTION

TATE Machine Replication (SMR) is a well-known approach
S to replicate a service for fault tolerance [55]]. The key idea is
to make replicas deterministically execute the same sequence of
requests in such a way that, despite the failure of a fraction of
the replicas, the remaining ones have the same state and ensure
the availability of the system. Many production systems use this
approach to tolerate crash faults [2], [3]], [13]], [12]], [15], (18], [30I,
mostly by implementing Paxos [37] or a similar algorithm [31],
[49], 150].

A critical limitation of the basic SMR approach is its lack of
scalability: (1) the services usually need to be single-threaded to
ensure replica determinism [55]], (2) there is normally a leader
replica which is the bottleneck of the SMR ordering protocol, and
(3) adding more replicas does not improve system performance.
Different techniques have been developed to deal with these
limitations. Some works propose SMR implementations that take
advantage of multiple cores to execute requests in parallel [32],
[34]], [43l], solving (1). Although effective, the improvements are
limited by the number of cores available on servers. In the same
way, some protocols spread the additional load imposed on the
leader among all the system replicas [42], [44]. These protocols
solve (2), but scalability remains limited because every replica still
needs to execute all the operations.

A recent line of work proposes partitioning of the SMR-based
systems in multiple Replicated State Machines (RSMs) [10]], [[18]],
[27], 138]], [51] for addressing (3). Although partitioning solves
the scalability of SMR, the existing solutions are quite limited in
terms of elasticity, i.e., the capacity to dynamically increase (scale-
out) and decrease (scale-in) the number of partitions at runtime.
More specifically, some scalable systems consider only static par-
titions [10], [38], [S1], with no elasticity at all, while others [18]],
[27] provide dynamic partitioning through ad-hoc protocols that
are executed in the background to avoid performance disruption,

o The authors are with LaSIGE, Faculdade de Ciéncias, Universidade de
Lisboa, Portugal.

o This work was supported by FCT through projects LaSIGE
(UID/CEC/00408/2013) and IRCoC (PTDC/EEI-SCR/6970/2014), and by
the European Commission through the H2020 programme under grant
agreement 643964 (SUPERCLOUD project).

Split state to create
more storage and
processing capacity
G L
Rebalance load
by migrating heavily
accessed partition to
another repllca group,
G L
L

Reconfigurations of a partitionable RSM.

Merge state to
better use
resources

Figure 1.

but with negative implications on the time needed to complete the
partitioning.

This paper introduces a generic partition transfer primitive
(and protocol) that enables SMR-based services to be elastic.
The proposed protocol is designed to perform partition transfers
efficiently and with minimal perturbations on the client-perceived
performance on top of any existing SMR protocol.

SMR is considered the main technique for maintaining critical
state in a distributed system [48]]. Although it was traditionally
employed for building metadata and coordination services (e.g.,
[13[], [12f], [30]]), recent works have been pushing the use of
this technique for implementing high-performance storage ser-
vices [2[], (3], 18], [LL], (L8}, [S1l, [S2], [60]. Elastic SMR gives
these services the ability to increase and decrease their capacity
in terms of storage and throughput. Figure [I] illustrates three
situations in which such elasticity might be beneficial. A group
G is used up to its maximum load capacity and, then, the state
managed by this group is split to another group L to balance
the load among the two groups and open room for the system
to handle more work. When two groups are processing requests, a
non-uniform access pattern might unbalance the load handled by
the two groups, as shown in the second case. Here, part of the state
of the overloaded group G can be transferred to the underloaded
group L to rebalance the system. Finally, if the load decreases
and one of the partitions becomes underutilized, it is possible to



TO APPEAR IN IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (MARCH 2017) 2

merge the state of the two groups in a single RSM, for freeing the
underutilized resources.

An important issue in elastic systems is to define when and
how to perform reconfigurations like the ones shown in Figure [T]
There are many works on dynamic resource configuration man-
agers (e.g., [26], [35], [46]), which decide when and how to adapt
according to specified policies. A fundamental parameter used in
these systems is the amount of time required for deploying a new
server and making it ready to process requests, i.e., the setup cost.
A high setup cost always discourages reconfigurations, leading to
over-provisioning and increased operational costs [26]]. Given that,
it is extremely important to reduce the setup cost.

In contrast to a stateless service, where servers start processing
requests as soon as they are launched, in a stateful service a par-
tition transfer must be performed before a server starts processing
requests. As a result, the setup cost increases. Therefore, tackling
the cost of performing a partition transfer is crucial when stateful
services are deployed on cloud systems in order to meet the re-
quirements defined in Service Level Agreements (SLA). Usually,
elastic stateful systems rely on distributed cache layers [47], write-
offloading [45] and, ultimately, over-provisioning [26]. These
techniques are useful to create buffers to either absorb unexpected
load spikes or buy time for the stateful backend to reconfigure.
In this work we challenge this design, at least for an important
class of systems (SMR- or Paxos-based systems), and define a
principled way for replicated stateful systems to scale in and out
efficiently, for non-negligible partition sizes and workloads.

We implement our partition transfer protocol in an exist-
ing state machine replication programming library, and build
a strongly-consistent elastic key-value store on top of it. We
evaluate this system by performing several scaling operations,
measuring the duration of partition transfers and the impact of
these reconfigurations on the latency and throughput of the system.
Our results show that the proposed solution effectively supports
fast reconfigurations, allowing the system to quickly adapt to
changes in its workload, something that is not achievable in current
elastic (stateful) systems [17]], [19], [33].

In summary, the contributions of this paper are the following:

1) It surveys how elasticity is (or can be) implemented in
existing SMR-based services and experimentally demon-
strates their inefficiencies (§2));

2) It introduces a modular partition transfer primitive and
protocol that enables SMR-based services to efficiently
split and merge their state (§3);

3) It describes an implementation of this primitive in an
open-source SMR library (@);

4) It provides an extensive evaluation of the partition trans-
fer protocol assessing its impact on key SLA-related met-
rics such as the duration of the reconfiguration process,
the service throughput, and the operation latency (.

2 ELASTICITY FOR RSMs

Dividing a RSM in multiple independent shards allows the system
to scale linearly with the number of servers (as long as most
operations affect a single partition). Most works following this
approach assume statically defined partitions. The few that do sup-
port dynamic state partitioning neither specify how the partition
is transferred to the new set of replicas nor how to make such
transference as fast as possible and with minimal performance
interference on the system. Having a partition transfer primitive

for executing the operations illustrated in Figure (1| will allow
SMR-based services to grow and shrink with the demand, thus
supporting elasticity. In this section we discuss some potential
solutions for implementing such a primitive and their limitations.

2.1 Partition transfer in existing RSMs

None of the classical SMR protocols support a primitive for
dynamically transferring partitions. However, this functionality
can be added to an existing SMR-based service with minor or
no modifications to the replication library. In the following we
describe and evaluate two simple solutions that can be easily
integrated in existing protocols. The objective is to characterize
a baseline performance, which can be obtained with such straight-
forward approaches.

2.1.1 A client-based solution

Our first candidate solution can be integrated to existing systems
by adding three new operations to the service implemented as a
RSM, but without modifying the replication library. As shown in
Figure [2(a)] the idea is to have a special client (coordinator) that
moves part of the state from a source RSM to a destination RSM,
which will host the partition. To ensure there is no violation of
the consistency of the service, the source RSM stops serving the
transferred partition right after the first step, although this data is
only deleted after it is installed in the destination RSM.

Unfortunately, this straightforward design does not work well
for large partitions. To show that, we implemented this protocol
for a simple and consistent key-value store built on top of BFT-
SMaRtE] [9] and conducted some experiments. We used the YCSB
benchmark read-heavy workload (95% reads and 5% writes) [[17]
to measure the performance of the system during a 4GB-partition
transfer. Figures [2(b)] and show the throughput and the 99-
percentile latency, calculated at 2-second intervals (see details
about our experimental environment and methodology in &),
when the protocol described above is used for transferring 1024
blocks of 4MB and 256 blocks of 16MB, respectively.

The figures show that transferring a 4GB-partition takes 16.3
minutes, almost 22x more than a 4GB-transfer between two
machines using rsync (see . More importantly, client oper-
ations accessing the block being transferred are blocked until the
operation completes, causing spikes on the latency. This effect
is more prominent when larger key-value blocks are transferred
(Figure[2(c)), as the throughput decreases and latency spikes occur.
When we transfer the whole 4GB-partition at once (not shown),
the system stops serving client operations for 10 minutes.

In conclusion, despite its modularity, this protocol is clearly
too disruptive and slow to be used in a practical elastic system.

2.1.2 A reconfiguration-based solution

Another solution to dynamically manage partitions with no signifi-
cant modifications on the replication library is to make use of SMR
group reconfiguration, present in many practical protocols [9],
1370, [400, [44], [50], [S7]. This solution is being implemented
for splitting groups in CockroachDB [2], an open-source version
of Google Spanner [18] (which is described in §6).

SMR reconfiguration protocols allow the addition, removal
and replacement of replicas within a single group. Adding a

1. Despite its name, BFT-SMaRt can be configured to tolerate only crash
faults, using a protocol similar to Paxos [37]. This is the configuration used in
this paper.



TO APPEAR IN IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (MARCH 2017) 3

1. Get Partition 2. Write Partition

~ i

(a) Client-based partition transfer.

100 Split (981s) | — 100 100 Split (1220s) 100
! Throu?hput ! ! '

80! {80 80! 80
260! ‘160 Leol! M 60E
g L .2 &l 2
940 WWM"MMf 403\: 9S40 403\:

20y iy 202 20 | e st amn {{ 20°

0 0 0

0 200 400 ?bo)sbo 1000

06200 400 600 800 10001200
Time (sec Time (sec)

Ime (sec

(b) Blocks of 4MB. (c) Blocks of 16MB.

Figure 2. A client-based protocol for partition transfer between
RSMs with throughput and operation latency observed by clients
during a 4GB-partition transfer operation (in multiple blocks of
4MB and 16MB).

replica to a group means that the replica starts participating in
the SMR ordering protocol, thus being able to process client
requests. However, before processing such requests, new replicas
must also be brought up to date by retrieving the state from the
other members of the group. In contrast, removing a replica means
that it stops participating in the ordering protocol.

Figure 3(a)] illustrates the three main steps required for exe-
cuting a split on a group of three replicas. First, three replicas are
added to the source group using SMR reconfiguration. Second,
and still within the reconfiguration, new replicas receive a copy
of the RSM state. The experiments use BFT-SMaRt’s “classical”
state transfer protocol [9], [14], in which the new replica fetches
the service state from one of the old configuration replicas and
validates it using hashes obtained from other f replicas from the
same configuration. Apart from the hash validation, this protocol
is similar to what is employed in popular protocols and systems
like Paxos [37], RAFT [50] and Zookeeper [30]. When the state
transfer completes, a message is sent to all replicas to update their
state metadata in a way that each half of the state is served by half
of the replicas In the end, each replica changes its replication
layer to consider as its group only the replicas responsible for the
same part of the state.

To understand the limitations of this protocol, we executed
an experiment similar to the one described before, i.e., a 4GB-
partition transfer. However, in this case it is important to mention
that the replica group hosts an 8GB state, and that this state is
transferred in the second step of the protocol (see Figure B(a)).
In this experiment, we were only concerned with the effect on
the performance during the first two steps of the protocol, as the
third one implies no substantial data transfer (see Figure B(a)).
Figures[B(b)|and[3(c)|show the effect on the throughput and latency
during the reconfiguration of the replica group.

2. In BFT-SMaRt, reconfigurations are initiated by a special client with
administrative privileges, as explained in [9]]. In the experiments, this client
commands the group to add the new replicas and, when the reconfiguration
is complete, informs all the replicas about which half of the state it should
discard (with another special command).

3 Partition state
(new operation)

2. Synchronize state
(reconfiguration)

1. Add replicas
(reconfiguration)

G N - R -

(a) Reconfiguration-based partition transfer.

Reconf (2385) Reconf (599s)

100 100 100 — 100
Throu?hput —_ ! ¢ !
80 4 80 80+ ! 480
< +3R . 2 —+R —+R —+R , g
260 4160E 260} | 1 60<
(7] [0} [ (0]
S 40 ) 1402 S 40 myipment 4 403
= ‘ S-S s
200 ﬁ q 20 20+ H 20
0 X .y 0 MENDEN IR I
0 50 100 150 200 250 0 100 200 300 400 500 600
Time (sec) Time (sec)

(b) Adding 3 replicas at once. (¢) Adding 1 replica at a time.

Figure 3. A reconfiguration-based protocol for partition transfer
between RSMs with throughput and operation latency observed
by clients during a 4GB-partition transfer operation.

When three replicas are added in a single reconfiguration
(represented by +3R in Figure [3(b)), the complete reconfiguration
operation, including adding the new replicas and transferring
the entire state to them, takes nearly 4 minutes, and has huge
negative effects on the system performance. In particular, the
system stops processing requests for more than 60 seconds. This
happens because as the source group size suddenly increases to
six replicas, the required quorum (simple majority) for ordering
requests increases to four replicas, of which one is necessarily
new. Given that a newly added replica is only able to process
requests after it recovers the group state, the system will stop until
the 4GB-state transfer is completed. These side effects of state
transfer in RSMs were also studied in previous works [8]].

A natural idea to avoid such an undesirable effect is to add
replicas one at a time, allowing a newly added replica to complete
the reconfiguration procedure before adding another one. More
precisely, we start another reconfiguration only after the joining
replica finishes installing the checkpoint, replaying the log and
is ready for processing requests to group. Figure shows an
execution of this setup, with each replica addition represented by a
+R. The figure shows that, instead of having a long period in which
the system stops, there are three short spikes/drops on the system
latency/throughput. However, the drawback of this approach is
that the full reconfiguration takes 10 minutes to complete (more
than three minutes per reconfiguration), 2.4 X more than with the
previous strategy.

Overall, the key problem of the reconfiguration-based partition
transfer is that the new replicas first have to receive the whole state,
and only then split the group in two (discarding the unnecessary
portion of the state).

2.2 Partition transfer in Non-SMR Databases

Given the impressive amount of work on elastic/cloud-enabled
databases (see discussion in §6), an interesting question would be
if the techniques employed in these services could be a solution
for transferring partitions in RSMs. Systems like Cassandra [36],
PNUTS [16] and Dynamo [22] support split and merge operations



TO APPEAR IN IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (MARCH 2017) 4

100 Split (342s) - 100
Throughput — !
g0l Latency '] 80
1 1 n
L0l | 1 60E
[ [0
Saof . \] 40%
~ ! X
(2]
20 Mmm-wwn,ﬂm AN W 20
06400 200 300 400°
Time (sec)

Figure 4. Throughput and operation latency observed by clients
during an 8GB state redistribution in Cassandra.

to handle changing workloads. However, even though the weakly-
consistent replication protocols employed in these systems favor a
scalable and elastic design, some recent works show that both
their latency and throughput are significantly affected during
reconfigurations of the replica set [17], [19], [23], [59].

We investigated how Cassandra [36] behaves when a three-
replica group hosting an 8GB database (in each replica) is scaled
out to six replicas (with 4GB each). The experiment considers the
same read-heavy workload used before, with 200 clients accessing
the database. This number of clients was enough to make the
system reach peak throughput (without substantially increasing
the latency) in our setup. After an initial warm up phase, we
added three more servers, one at every 2 minutes, respecting
the recommendations for the system [1]]. To ensure consistency
guarantees close to an SMR system, we configured the system to
use a replication factor of 3 and quorums of 2 servers for both
reads and writes.

Figure {4 shows the 99-percentile of the operation latency and
the throughput during this experiment using disks. The results
show that the whole process took nearly 6 minutes to complete.
This happens because Cassandra employs a conservative design
in which data transfers are judiciously done in the background
to minimize performance disruptions, which nonetheless occur, as
can be seen by the latency spikes.

Other popular elastic databases implement such conservative
design, and thus suffer from similar problems [17], [23]. In fact,
the idea of performing state transfers in the background has
been used in other production systems for implementing replica
recovery or reconfigurations (e.g., Zookeeper [30]), following the
same rationale.

In conclusion, despite these elastic databases being able to
adapt their size to address changes in demand, such conservative
design will always lead to a high setup cost for such systems.

3 PARTITION TRANSFER FOR RSMs

A key contribution of this paper is the introduction of a partition
transfer primitive and protocol in the SMR programming model.
This primitive allows a replicated state machine G to transfer part
of its state to another replicated state machine L, respecting the
following requirements:

1)  Protocol agnosticism: RSMs require protocols that order
requests for implementing coordinated state updates and
ensuring strong consistency. These protocols are complex
to understand and far from trivial to implement [15]. A
requirement of our solution is to not change the SMR
protocols and use them as black-boxes for supporting
ordered request dissemination in RSMs.

Group G

Clients

Service

Client App.

execute T get/setState execute T get/setState

invoke

SMR Client
Side

Partition Transfer <= === === Partition Transfer

execute | get/setState execute | get/setState
Durability

Durability
L \ [S— [ —
SMR Server Side || 50 ‘ SMR Server Side || SEE
4 Storage ) Storage

Figure 5. A partitionable and durable replicated state machine.

2) Preserve linearizability: A fundamental property of a
RSMs is that it implements strong consistency. We want
to maximize parallelism between operation execution and
partition transfer without sacrificing the consistency of
the service (i.e., linearizability [29]).

3)  Performance: In the same way, we want to minimize
the performance perturbations on the system during a
partition transfer, while we minimize the time required
for transferring a partition in modern datacenter setups.

In the following we first describe our assumptions about the
environment and the elastic service ( and then present the
partition transfer protocol (§3.2) and its correctness proof (§3.3).
We conclude the section with a discussion of how to integrate
our protocol with two existing approaches for executing multi-

partition operations (§3.4).

3.1 System Model
3.1.1  Environment

We consider a system with an unlimited number of processes,
which can be either clients accessing a service or servers im-
plementing the service, that can be subject to Byzantine faults.
Therefore, the proposed protocol can tolerate state corruptions
and thus be used in BFT systems [9], [14] as long as the total
order multicast primitive employed tolerates Byzantine faults. Al-
ternatively, if applied to a crash-tolerant replicated state machine,
our protocol only tolerates crashes but still preserving some state
corruption validation due to its BFT designﬂ

Additionally, we require the standard assumptions for ensuring
liveness of RSM protocols [14], [37], [SO]. Processes communi-
cate through fair channels that can drop messages for arbitrary
periods but, as long as the message keeps being retransmitted, it
will be received in the destination [41]. In terms of synchrony,
we assume a partially synchronous distributed system model [24]
in which the system can behave asynchronously for an unknown
period of time, not respecting any time bound on communication
or processing, but eventually will become synchronous.

Last but not least, we assume the existence of an external
trusted component that can trigger the partition transfers on the
system, as is the case for other group reconfiguration operations
(e.g., join, leave) [9]].



TO APPEAR IN IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (MARCH 2017) 5

RSM Partition Transfer Protocol

(M
@

ptransf(PS,L) is TO-received by group G

spec. PSto its pair R’; in L, and H(S) to the other members of L

- From now on, every update on state S will be logged in A
3
and TO-multicast an ACK to group G

- If f+1 replicas send the same hash %, not matching H(S), R’; fetches the state

S’ matching 4 from some replica from G or L (natural candidates being the
replicas that sent /).

“4)
A to its pair replica R’; in L and H(A) to the other replicas of L

- From now on, replicas of G stop serving requests related to PS and redirect
such requests to L

- Requests related to PS received by replicas of L are put on hold
®)
an ACK to the replicas of G

- Iff+1 matching hashes (different from H(A)) are received, R’; fetches a
matching update list from some replica from G or L

- Thereplicas of L start processing the PS-related requests that were on hold

(6)  When areplica R, of G receives n-f ACKs from L, it sends an

ACK to the invoker of ptransf(PS,L)

Figure 6. The partition transfer (prransf) protocol.

3.1.2 Service

Figure |§] illustrates the elastic SMR service. Clients invoke op-
erations on a service by sending messages to the set of servers
hosting it. We assume the existence of some application-specific
mechanism to allow clients to find the appropriate servers to
which direct the request. Servers are organized in groups providing
a stateful service as a replicated state machine. Each group of
servers has n replicas and tolerates up to f faults. We refer to
group G as replicated state machine G. A RSM is accessed through
a replica coordination protocol that provides strong consistency.
In practice, this means a consensus protocol will be used to
ensure that requests are delivered to the replicas in total order
(TO) [55]. We use TO-multicast and TO-receive to denote the
transmission and reception, respectively, of messages in total
order. TO-multicast, in particular, can be used by replicas in a
group to send specific partition transfer protocol messages to the
replicas in another group.

We assume that the service state Sg of group G can be
partitioned in a number of closed partitions sy, ...,s), in the sense
that operations (and in particular, updates) submitted to the service
affect only one of these partitions. For example, a key-value store
can be partitioned in several key ranges such that each put/get will
be executed on only one of them.

In the next section we describe the partition transfer protocol
considering only operations performed on a single partition. Later
on we explain how the protocol can be slightly modified to

3. In the evaluation of the protocol we considered its application to repli-
cated systems tolerating only crash failures, since this allows reaching higher
levels of system throughput and hence creates more stressful scenarios for the
purpose of evaluating the reconfiguration performance.

Each replica R; of G sends the state S corresponding to partition

Replica R’; in L accepts S when it is fully received together with
f matching hashes from other replicas of G. R’; sets its state to .S

When R, of G TO-receives n-f ACKs from replicas in L, it sends

Areplica R’; in L accepts A only if it receives f* matching hashes
from other replicas of G. R’; then applies A to its state and sends

A
requestsl Ereplies

A
requests | i i
l | replies

Group G

(1)

requests

requests l
iredirect to L

A
requests | 4
i replies !

TOM
Group G Group L Group G Group L
(3) 4)
requests | 4 A A A
. requests| requests | % requests | %
i redirectto L i replies  replies : replies

be integrated with multi-partition operations, thus relaxing the
assumption on operations in closed partitions.

3.2 Partition Transfer Protocol

The partition transfer protocol is encapsulated in a primitive
ptransf (PS, L) that can be invoked in a replicated state machine G
to make its replicas transfer the partition specified in PS (e.g., a
key-range in a key-value store [27], a directory in a file system [/7]],
a subtree of a hierarchical data structure [30], a set of tables in a
distributed database [[18])) to a replicated state machine L.

Figure [6] presents and illustrates the six-step protocol for im-
plementing ptransf. As mentioned before, we consider that ptransf
requests (Step 1) are issued by an application-specific and trusted
external component, in the same way as other reconfiguration
requests [9]. When a group receives a ptransf request, each
replica verifies whether the request was issued by such authorized
component and only initiates the partition transfer protocol after
this validation. The core idea of the protocol is to leverage the fact
that all correct replicas (of both groups involved in the partition
transfer) execute their operations in total order, mimicking a
centralized server. In this way, it is possible to ensure that all
correct replicas of G execute operations in PS until a certain point
in the totally ordered history of executed operations, and then start
redirecting further requests for this partition to the new group L
(Step 4). Since partitions can be arbitrarily large, we use copy-
on-write to make G store all executed updates in the partition
specified in PS during its transfer to L (Step 2). Such updates are
transferred after the state is received by a quorum of replicas in
L (Step 5) and ptransf concludes (Step 6). The objective is to
minimize interruptions to request serving in PS — these will occur



TO APPEAR IN IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (MARCH 2017) 6

only during the transfer of the updates A that were executed during
the state transfer. Note that the size of A is expected to be much
smaller than the partition size itself, which means that both the
time taken to complete Step 4 and the extra memory space needed
to store A are typically small.

Several considerations can be made about the partition transfer
protocol. First, our solution is completely modular with respect to
the SMR protocol [37], [[14], [9] or even the durability strategy [8]
implemented in the system. This is quite important for reusing the
already available protocols.

Second, we opted to perform full partition transfers between
pairs of replicas, having one single replica in the source group
transmit to one single replica in the destination group. This design
option makes our system bandwidth-efficient in multi-rack and
virtualized environments. This pairwise transfer is executed after
replicas of G connect with their corresponding paired replica in L
(Step 2), which is done through a deterministic bijective function
mapping every replica from G to one replica from L. We envision
scenarios in which the replicas of a group will be deployed in
different racks (or physical machines) to avoid correlated faults
and will have to transfer a partition to another set of replicas
deployed in the same racks (or physical machines), ensuring such
transfer will be done within the rack network boundaries, without
using the (usually) oversubscribed network core.

Third, even if only crash faults are considered, we opted to
provide a more general Byzantine-resilient protocol in which data
corruptions are detected and recovered (through hash comparisons
and state fetching, in Steps 3 and 5). This is important to
ensure that even under the most uncommon failure modes [28]]
the destination group will still start accepting operations for the
transferred partition with all its correct replicas in the same state.
More specifically, at the end of the protocol at least n — f replicas
of L have the correct state for the partition. Note that the protocol
does not preclude the case in which some correct replica of group
L finishes the protocol with an invalid state. However, there will be
a sufficient number of correct replicas in L with the correct state
(independently of the pairings with replicas, as faulty transfers
are recovered by correct replicas of G — see sub-bullet of Step
3), and thus normal state transfer protocols for durable state
machine replication can be applied, both in the crash [37], [S0]
and Byzantine fault models [8]], [14]. This implies that all replicas
in the group can start processing requests in the same state [55]].

Fourth, consensus is employed only in two steps of the
protocol (but encapsulated in the total order request delivery of
the RSM): Step 1, when the ptransf primitive is invoked, and
Step 3, when all replicas of L invoke RSM G to inform about the
hash of the received state. Regarding Step 3, when the replicas
of G receive n — f matching ACKs from different replicas in total
order, they send the same set of updates to the replicas in L. Notice
that the (n — f)-th matching ACKs will be received in the same
point of the execution history of all correct replicas of G, ensuring
they will stop executing requests for PS in a coordinated way.

3.3 Correctness Argument

The ptransf operation must satisfy the following properties:

o Safety 1: When ptransf completes, the transferred parti-
tion will not be part of the source group state and will be
part of the destination group state;

o Safety 2: Linearizability of the service is preserved by the
partition transfer;

o Liveness: prransf eventually completes.

Safety 1 is satisfied due to the fact that both the state (Step 2)
and the updates (Step 4) are transferred. Moreover, after sending
the updates (Step 4), the original group will not execute any other
operation for the partition.

Safety 2 is a bit more tricky to show, since we need to take
into consideration the definition of linearizability [29]. A service
execution is linearizable if every execution history (containing
requests and replies for client operations) is linearizable. We say
that an operation is linearizable if the extension of a linearizable
history with its request and reply still makes the history lineariz-
able.

Linearizability is ensured in RSMs due to the fact that all
requests are executed in total order by correct replicas. Conse-
quently, every executed operation needs to produce a reply that
considers all previously executed operations.

Let G be an initial group of replicas with state S part USrem and
L a group of replicas that will receive a partition S, Recall that
the system is partitionable, i.e., every operation either accesses
Spare (the partition to be transferred) or Sy, (the remaining
partition), as defined in This means that the system is
linearizable as long as the sub-histories containing operations for
Sparr and S, are linearizable [29].

Since the service provided by the RSM G ensures lineariz-
ability, the operations for S, are linearizable. Due to the same
reason, the operations for S, executed before ptransf(part,L)
are linearizable. When ptransf(part,L) is received, the state S,q
resulting from all previously executed operation for the partition
is transferred to L (Step 2). Every operation for part executed
between Steps 2 and 3 is executed in G, and linearizability is
maintained. These operations are stored in A and transferred to L
in Step 4. After this point, G stops executing operations for part.
As specified in Step 5, these operations are only executed by L
after this step, when this group already received S, and applied
the updates in A. Consequently, after this point, these operations
will reflect all previously executed operations for part, ensuring
the linearizability of the partition.

Liveness is satisfied due to the fact that all six steps of
the protocol terminate. This happens because (1) the total order
multicast primitive employed in the protocol terminates in our
system model (Steps 1 and 3); (2) the fair link assumption implies
that both the state (Step 2) and the update list (Step 4) can be
transferred in finite time; (3) if a replica does not receive the state
or update list that matches f hashes, there will be f + 1 hashes
matching some other state and list, and this state can be fetched
(Steps 3 and 5); and (4) all correct replicas will send ACKs to
the original replicas, and thus these replicas will receive n — f
messages to make progress (Step 6).

3.4 Multi-partition Operations

In the following we describe how ptransf can be integrated with
two existing approaches for supporting multi-partition operations,
namely, the S-SMR protocol [10] and Spanner multi-partition
transactions [[18]].

34.1 S-SMR

S-SMR [[10] considers a linearizable service with its state stat-
ically partitioned among several groups (partitions). Each group
is composed of a set of replicas that implement a replicated
state machine. Single-partition operations are executed only on



TO APPEAR IN IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (MARCH 2017) 7

individual groups, but the system also supports multi-partition
operations, which require coordination of multiple groups.

More specifically, a multi-partition operation works as follows.
First, the client determines which groups must participate in the
operation and sends the operation to each of these groups using
TO-multicast. Second, after ordering the requests (individually,
on each group) the groups exchange all the necessary data to
execute the operation in both groups. Next, each group executes
the operation and signals its completion to the other groups.
After all groups involved in the operation were signalled, the
result is returned to the client. The basic trick here is to block
conflicting operations and execute them in sequence, preserving
linearizability [10]].

To integrate ptransf with S-SMR, we need to make two modi-
fications on the original protocol. First, after a reconfiguration, the
system needs to update the partition metadata to allow clients to
find the new partitions. Second, multi-partition operations cannot
be processed while Steps 4 and 5 of ptransf are being performed
in the source group G. Operation execution can only be resumed
after this group receives n — f totally-ordered ACKs from the
destination group L. This guarantees that the partition state and its
differences were received by L, ensuring the service consistency.

When the partition transfer finishes, source group G may still
hold multi-partition operations that cannot be executed since it is
no longer responsible for the data required by them. In this case,
G signals the other groups involved in the operation, and the client
receives a redirect message, restarting the multi-partition operation
in the updated groups.

3.4.2 Spanner

Similarly to S-SMR, in Spanner [18] the application state is
partitioned in tablets hosted on several groups. Each group is
composed of a set of replicas that implement Paxos state machines
to maintain shards of a database.

The steps to process a multi-partition transaction are the
following. First, a client communicates with a proxy location
to determine which groups maintain the data touched by the
transaction. Second, the client retrieves this data from the groups,
acquiring locks for them. Next, the client executes its transaction
locally, chooses one of the groups involved in the transaction as
a coordinator group C, and sends the result and the id of C to all
groups involved in the transaction. Finally, group C coordinates
a two-phase commit with the other groups for committing the
transaction.

To integrate Spanner transactions with ptransf we need to
slightly modify Steps 4 and 5 of our protocol to account for
the way locks are managed in Spanner. More specifically, while
the partition is being transferred, its associated data must be
locked. The source group only releases the locks after receiving
n — f totally-ordered ACKs from the destination group. This
guarantees the consistency of the service as the partition state and
its differences are received by the other group. When a client tries
to access the data in the transferred partition, it receives a redirect
message and aborts the multi-partition transaction. Eventually, the
proxy location server is updated and the client can re-execute the
transaction in the updated groups.

4 IMPLEMENTATION

We implemented our partition transfer protocol in an elastic stor-
age infrastructure called CREST, whose architecture is depicted in

Figure

[ Clients l][ Clients ]J[ Clients U
v ¥ ¥

Lookup
server

updates

Manager

Figure 7. CREST architecture.

In CREST, clients send requests to stateless Front-ends ex-
posing a key-value interface including operations such as GET
and PUT. The Front-ends use the Lookup server to discover
which group serves a certain key. All data is sharded across the
groups. The Manager triggers reconfigurations by sending ptransf
commands to the groups.

We implemented the ptransf protocol on top of the BFT-
SMaRt [9] replication library. Our implementation follows the
model described in Figure [5} with the partition transfer layer
implemented between the durability management [8] and the
service (in this case, a key-value store). The pairwise transfer of
the partition state and update list (see Steps 2 and 4 in Figure [6)
is implemented over dedicated sockets, to minimize interference
with the normal processing of client operations. To transfer the
key-value store partitions we used a serialization library called
Kryo [4]. All updates and partition transfers are written to the
replicas log, in durable storage. We parallelize the writing of state
to the storage device (including buffer flushing) with other steps
of the protocol, leveraging the fact that (1) the original group will
only delete the transferred state after Step 5, and (2) the receiving
group disk is idle during a state split since it only starts executing
and logging requests after Step 5.

The Lookup server and the Front-ends were implemented
as Java servers, and the Manager as a Java client. As already
mentioned, a Front-end is just a soft-state proxy. The Lookup
server holds a map between intervals of keys and groups. For
each Front-end request, the Lookup server returns a key interval
and a group. In this way, the number of lookup operations can be
minimized as the Front-end caches key locations. The Manager is
responsible to send ptransf commands to the groups in order to
perform reconfigurations. After every reconfiguration process, the
Manager updates the Lookup server map.

Our current implementation of the Manager and Lookup server
are not fault-tolerant, as centralized servers were sufficient for
evaluating the ptransf protocol. However, this is not a fundamental
limitation. The Lookup server can be made fault-tolerant by
implementing it as a key-value store on top of an SMR library.
The Manager, on the other hand, requires a bit more work as it
interacts with the other components as a client and not as a server.
Therefore, a fault-tolerant solution requires a set of Managers, one
being active and the others serving as backups, keeping the service
state replicated using a RSM protocol. Notice that implementing
a BFT manager will require a more complex approach, which is
out of the scope of this paper.



TO APPEAR IN IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (MARCH 2017) 8

5 EVALUATION

We evaluate our partition transfer algorithm within CREST by
assessing the duration of a partition transfer and how it affects
the service throughput and operation latency observed by clients
generating different workloads on the system.

5.1 Setup

All experiments were conducted in a cluster of 18 machines in-
terconnected by a Gigabit Ethernet switch. Each machine has two
quad-core 2.27 GHz Intel Xeon E5520 CPUs with 32 GB of RAM,
a 146GB 15k-RPM SCSI disk and a 120GB SATA Flash SSD. The
machines run Linux Ubuntu Trusty with kernel version 3.13.0-32-
generic for x86_64 architectures with Oracle Java 1.7.0_80-b15.
In these experiments we avoided using VMs and dynamic resource
configuration managers to capture the performance of the partition
transfer protocol without the VM setup overhead.

Unless stated otherwise, the experiments were executed with
BFT-SMaRt configured for crash fault tolerance, with groups of
three replicas (tolerating a single fault).

5.2 Methodology

The experiments were conducted with a database with 8GB where
small-string keys were associated with 4kB values. We used two
YCSB workloads [17]: the read-heavy workload, with 95% of
get and 5% of put operations (95/5), since it is similar to what is
reported in several production systems [[12], [16], [18] and in some
related works (e.g., [39]); and the write-heavy workload, with an
equal distribution of puts and gets (50/50) to exercise our protocol
under a heavy update load. Clients access keys following a Zipfian
distribution. This setup and workload creates a reasonable but
demanding scenario for an SMR-based storage system [9]], [8],
[IL1].

Our experiments consider partition transfers of 4GB (half of
the state in the key-value store), either in a single ptransf execution
or in multiple executions of ptransf, each transferring blocks
of 4MB, 16MB, and 256MB (approximately 1024, 256, and 16
protocol executions, respectively).

5.3 Partition Transfer on an Idle System

Our first experiment measures the time our protocol takes to
transfer 4GB of state between two RSMs without any client-
imposed workload. The results are presented in Table [T} which
also contains the duration of the same transfer using the client-
and reconfiguration-based solutions described in considering
the state maintained in both SSDs and disks. We also present,
as a reference, the duration of a 4GB-file transfer between two
machines using rsync [Sl], a widely-used tool for synchronizing
files between machines. Although the size of the partition was the
same in all cases (4GB), we presented results for different block
sizes for each solution.

The results show that ptransf is 8x-16x and 2x-6x faster
than the client- and the reconfiguration-based solutions, respec-
tively. Our protocol is much more efficient than the client-based
protocol as it does not have a single process (the client) as a
bottleneck. Furthermore, it is also significantly more efficient
than the reconfiguration-based protocol due to two factors: (1)
the transference is done in a pairwise way, and (2) only the data
specified by the partition (4GB) is transferred, not the whole state
(8GB). On the other hand, ptransf is 20% and 23% slower (for

System Disks SSDs
client (4MB) 802.3£3 823.3+1.1
client (16MB) 855.0+£3.78 873.0+5.0
reconfig (+3R) 201.0+£8.1 209.6+11.5
reconfig (+R+R+R) 294.0+4 307.3+2.3
ptransf (4MB) 100.6 +0.89 114.44+1.34
ptransf (16MB) 85.84+0.84 97.6+£2.07
ptransf (4GB) 54.0+1 64.44+2.97
rsync 44.8+£1.30 52.2+0.84

Table 1

Duration of a 4GB partition transfer (in seconds) using ptransf
and alternative solutions (see §2.1) in an idle system.

disks and SSDs, respectively) than a two-machine synchronization
using rsync.

Notice that the reported performance using disks was better
than using SSDs. This happens because our disks have a better
throughput than our SSDs for sequential writes: 130 vs 120 MB/s.

5.4 Partition Transfer on a Saturated System

The next set of experiments aims to shed light on the impact that
a partition transfer can have on the performance of a saturated
system. The objective is to understand how triggering a partition
transfer (e.g., for scaling-out) under critical conditions affects the
latency and throughput of the system.

In order to define the conditions for system saturation, we
progressively launch a number of clients until the system reaches
its peak throughput for a single replica group. Adding more clients
after this point only increases the latency. We identified that the
system achieves the peak throughput for read-heavy and write-
heavy workloads with 140 (=40000 4kB-oper/s) and 70 (=9000
4kB-oper/s) clients, respectively. The observed peak throughputs
are similar with disks and SSDs.

In all experiments, when the system reaches its peak through-
put we start a partition transfer to split the state of the system to
another group. One hundred seconds after the split completes, we
invoke another partition transfer to merge the state of the second
group back with the first.

5.4.1 Read-heavy workload

Figure [8| shows the throughput and the 99-percentile operation
latency (obtained from 2-second intervals) observed by clients
running the 95/5 workload using disks and SSDs.

Three aspects are worthy of consideration from these execu-
tions. First, the state split tends to be faster than the state merge
(the second transfer) using both disks and SSDs. This happens
because the split transfers the partition to an idle group (not
yet receiving client operations), while the merge transfers the
state to a busy group. Second, as in idle setups, the partition
transfers are faster with disks. Third, there are fewer spikes in
the throughput and in the operation latency when the partition
is transferred in small blocks. For instance, with a 16MB block
size, the throughput starts to increase a few seconds after the split
initiates, as clients start sending commands to the second group,
decreasing the load on the first. In contrast, with a 4GB block
size (a single ptransf execution), the throughput starts to increase
only a few seconds after the split completes, while the operation
latency increases significantly during the partition transfer. This
happens because the group is fully loaded with client operations



TO APPEAR IN IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (MARCH 2017) 9

Throughput —
Latency
)

200 300 400 0 100 _200 300 400
Time (sec) Time (sec)

(a) 16MB (disks). (b) 16MB (SSDs).

0 100

Split (98s)

T T
Throughput —

Latency

300 0 100_ 200 300
Time (sec)

(d) 256MB (SSDs).

0 100_ 2
Time (sec)

(¢) 256MB (disks).

Throughput —
Latency
)

200 300
Time (sec)

(f) 4GB (SSDs).

200 300 0 100
Time (sec)

(e) 4GB (disks).

0 100

Figure 8. CREST throughput and operation latency in saturated
conditions with reconfigurations using disks and SSDs. Read-
heavy (95/5) workload.

while transferring the whole partition and keeping track of the
updates being executed.

5.4.2 Write-heavy workload

Figure [9] shows similar executions but now considering the 50/50
workload.

The behavior observed in these experiments is similar to
that discussed for the read-heavy workload, with two noticeable
differences. First, the latency is slightly higher and the throughput
is substantially lower than in a read-heavy workload. Second, there
are more latency spikes during splits and merges, both for disks
and SSDs. This happens because now there are more updates,
which imply more operations being written to the write-ahead log
of the replicas [8] and increased I/O contention with the partition
write at the receiving group. These spikes tend to be more common
during merges than during splits. The explanation comes from
the different nature of splits and merges. During a split, the state
is transferred to an initially empty RSM, which is progressively
being loaded, as blocks of the partition are transferred. During a
merge, on the other hand, the state is transferred to a group already
loaded, which causes higher I/O contention. This should not be a
problem in practice since splits are executed under high loads,
while merges are triggered for consolidating resources, when the
system is mostly idle.

Notice that when using 4GB blocks (Figures and P(D),
the throughput of the system goes to zero by the end of the ptransf
operations. This happens because in this write-heavy experiment
with a single big-block transfer, the size of A transferred in Step 4
of the protocol is around 300MB, blocking the system for almost
3 seconds. This size of A also represents the amount of additional
memory needed for using copy-on-write on this experiment. It is

100 Split (108s’ Merge (107s 100 100 §plit ‘(1203)‘ i Merge (118§ 100
Throughput — ! ! ! ! ! !

80| Latency - X ' 80 80| ! X ' 4 80
2 >
260} ! ] ] {60 Leof ! ] ] ' 60E
o [0} [ [0}
2 . . . . 2 2 . . . ; 2
Q40 . . . | 40% Q40+ . . . H 40%
[ ' ' ' g ' ' ' ) g

2 I e o L 20 2 L e AT g 2

O H00_ =200 300  ° 06400 200 300  400°
Time (sec) Time (sec)

(a) 16MB (disks).

(b) 16MB (SSDs).

100 100 Split (95s' Merge 196‘5 100

Throughput — ! ! !
80  Latency - 80 . 80| ! X ' {80
[2] [%]
260} ! ! {e0E 2eof ! ‘ ‘ '] e0E
o [0} [ [0}
13 . . 2 13 i . . 2
S40 . . 140k gaop | . . 40
20 , 4 20° 20+ ! : i 20
O 100 200 300 ° 06100200 300 °
Time (sec) Time (sec)
(c) 256MB (disks). (d) 256MB (SSDs).
100 100 100 100
Throughput ~—
80 Latency 80 80 80
(2] (%]
260l 60E 260 60E
(7] [0} [ (0]
Q ' _T Q _T
S40 . 4%  S40 40%
1 (o2} (o2}
20 ¢ 20 20 20
0100 =200 300 ° 0 H00_ 200 300 °
Time (sec) Time (sec)

(e) 4GB (disks). (f) 4GB (SSDs).

Figure 9. CREST throughput and operation latency in saturated
conditions with reconfigurations using disks and SSDs. Write-
heavy (50/50) workload.

worth to remark that this is a worst-case scenario — with smaller
block sizes there are several significantly smaller A transfers and
no noticeable blocking in the system.

5.4.3 Consolidated results

We now show consolidated results for 10 executions of splits
and merges using each configuration, comprising almost 4 hours
of partition transfers. As in previous experiments, these results
(presented in Figure [I0) consider different workloads and block
sizes. However, from here on we only show results for setups
using disks as the results using SSDs lead to the same insights.

Figure reports the 90th and 99th latency percentiles for
periods with and without partition transfers (noted in the figures
as “Split” and “Merge” operations for different block sizes and
“No PT”, respectively) for 95/5 and 50/50 workloads. The 90-
percentile latency represents the behavior that most clients observe
during a split or a merge, while the 99-percentile captures the
effect of spikes on the service level metric. Notice that the 99-
percentile latency values for 4GB blocks are very high and hence
we represent them numerically, over the corresponding bars (both
in Figure [T0(a)| and Figure [T1(a)).

The results confirm the trends observed in the previous section.
In particular, splits and merges have no significant effect (when
compared to the “No PT” situation) on the 90-percentile latencies,
under the 95/5 workload. This is not true for write-heavy work-
loads, as the latency of merges are consistently higher (due to I/O
contention).

As expected, the 99-percentile latencies are affected during
splits and merges for all block sizes and workloads. However, the
values during splits are still under 60 ms, which is way below
real-world SLAs defining the 99-percentile under 100 ms [16],



TO APPEAR IN IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (MARCH 2017) 10

— 500 S - Split M - Merge ~2. ~3.2s ~
(%2}
£ 90%-ile ——2
5 400 ' 999%-ile vesssmm
& 300
=
£ 200
€ 100
Q.
© 0
No PT S M S M S M No PT S M S M S M
16MB  256MB 4GB 16MB 256MB 4GB
95/5 workload 50/50 workload

(a) Operation latency during partition transfers (groups of three replicas).

o 160 éplit j— Merge Jr——
= 120
o
i 80 r
a 40 r
0
16MB 256MB 16MB 256MB 4GB
95/5 workload 50/50 workload

(b) Duration of partition transfers (groups of three replicas).

Figure 10. Latency during 4GB-partition transfers and the dura-
tion of such transfers using disks and groups of three replicas
(f = 1) and considering different block sizes and workloads.

[22]). The effect is much more dramatic for merges, for the
reasons discussed before. However, such effects have few practical
implications as merges are usually executed in idle systems (as
also discussed before).

The only exception to the general trends discussed before
is observed when using 4GB blocks. In this case, the 99%-ile
latency increases 100x or even more, as clients block during the
transference of the A in Step 4 of ptransf. This is illustrated in
Figures [8(e)] (gaps at seconds 150 and 350) and [9(e)| (gaps at
seconds 120 and 290).

Figure @ presents the average duration of split and merge
operations (together with standard deviation) during the previous
experiments. The results show that when considering a specific
configuration, the amount of time required for executing the
partition transfer is stable across different executions, as attested
by the negligible standard deviation. Additionally, the results show
that transferring 16MB blocks lead to higher partition transfer
durations than when using other block sizes in all configurations.
This happens mostly because the ptransf protocol runs more
times, leading to more protocol messages being exchanged and
more synchronization points (Steps 4 and 6 in Figure[6). However,
the duration of splits and merges are similar for blocks of 256MB
or 4GB (whole partition in a single transfer). This indicates that
increasing the block size after a certain value does not lead to
faster partition transfers, instead, it only makes the latency worse
(as shown in Figure [10(a)).

5.4.4 Comparison with alternative solutions

Table [2] compares the duration of a split using the best config-
uration of ptransf (256MB blocks) and the alternative solutions
discussed in for a saturated system. By comparing this table
with the Disks column in Table m it is possible to see that all
protocols have a noticeable increase on the duration of split.

The results show that a split using ptransf is 9.5x and 11.7x
faster than the client-based solution (Figure, and 2.3x and 5.4
faster than the reconfiguration-based solution (see Figure E[) for a

S - Split M - Merge
90%-ile —
| 99%-ile \nowmmmm

)
o
S
1S3

N
o
o

(%2}
£
3
& 300
©
£ 200
§ 100
c 0
No PT S M S M S M No PT S M S M S M
16MB  256MB 4GB 16MB 256MB 4GB
95/5 workload 50/50 workload

(a) Operation latency during partition transfers (groups of five replicas).

o 160 éplit i Merge Jr——
= 120
o
i 80 r
a 40 r

0

16MB 256MB 16MB 256MB
95/5 workload 50/50 workload

(b) Duration of partition transfers (groups of five replicas).

Figure 11. Latency during 4GB-partition transfers and the dura-
tion of such transfers using disks and groups of five replicas
(f = 2) and considering different block sizes and workloads.

System read-heavy write-heavy
client (4MB) 999.0+15.9 871.3+11.7
client (16MB) 1236.0£ 16 1198.0+9
reconfig (+3R) 243.5+6.6 270.4+2.3
reconfig (+R+R+R) 575.0+21 623.0+10.4
ptransf 104.8+6.3 78.4+0.9

Table 2

Duration of a 4GB partition transfer (in seconds) using ptransf
and alternative solutions (see in a saturated system using
disks for read- and write-heavy workloads.

read-heavy workload. The difference is even bigger with a write-
heavy workload.

Even more importantly than these results is the fact that our
protocol causes less perturbations on the latency and throughput
observed by clients, as can be seen by comparing the executions
of Figures [2] and [3] with sphts presented in Figures [8] and [0] The
only exception is in Figure [3(c), for the three single-replica re-
configurations, in which the effects are negligible, but the transfer
latency is 5x higher than with our protocol.

5.5 Partition Transfer in Bigger Groups

The results presented up to this point consider groups with three
replicas, that tolerate a single server failure (f = 1). In this section
we present similar experiments, but now considering groups of
five replicas (f = 2), to understand the behaviour of our protocol
with bigger replica groups. In this setup, we identified the system
achieves the peak throughput for read-heavy and write-heavy
workloads when 120 (=37 koper/s) and 50 (=7 koper/s) clients
are used, respectively. Figure [TT] presents the results.

When compared to the results for groups of 3 replicas (Fig-
ure [T0), the results in Figure [TT] show exactly the same trends,
despite some small variations in the latency.

Regarding the duration of the partition transfers, the results are
also similar to the three replica setups. This happens because our
protocol transfers state of replicas in parallel, pairing each replica



TO APPEAR IN IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (MARCH 2017) 11

100 Pt (121s), 100 100 Split(141s) 100
Throughput — ' ' '

80 Latency ' 80__. 80 ' ' replica ' 4 80

” . , E ” , ;i crash E
= 60 \ __replica 60= = 60 i 60=
2 1 crash 2 2 v 2
S 40 M 40% 40 ‘ 1 40%
D L (o2}

201 ' 4 207 201 ' {20%

00 50 100 150 2000 0 0 50 100 150 200 0
Time (sec) Time (sec)

(a) Crash, non-leader, source. (b) Crash, non-leader, destination.

100 - Split (116s) ; 100 100 — Split (135s) — 100
80 r leader | ! ' 480 80 1 leader ! ! 1180
, E crash , é’
| = 2601 <

@ (7] Qo

2 8 =

* 240k ' N

(o2} (2]

(] 20 L ; o

06 750 200" ST 750 200"

100
Time (sec)

0 _ 100
Time (sec)

(¢) Crash, leader, source. (d) Crash, leader, destination.

Figure 12. Four failure scenarios during a split using a 256MB
block size and disks.

on the source group with another replica on the receiving group.
This design makes the data transfer phases of the protocol (Steps
2 and 4 in Figure[6) — which dominate the duration of a transfer —
mostly independent from the group size.

5.6 Faults during the Partition Transfer

In this section we discuss how replica failure scenarios affect the
ptransf protocol. We consider four failure scenarios: (a) a non-
leader replica of the source group crashes, (b) a non-leader replica
of the destination group crashes, (c) the leader replica of the source
group crashes, and (d) the leader replica of the destination group
crashes.

In this experiment, we considered a group of three replicas,
a read-heavy (95/5) workload and blocks of 256MB. The experi-
ment focuses on the split operation since it is normally executed
when the system is under stress and needs to scale out as fast
as possible. In all failure scenarios we crash the target replica
10 seconds after the split begins and use a timeout of 2 seconds
for suspecting a leader and starting the leader election protocol.
Figure|12|presents representative executions for the four scenarios.

When comparing the executions with a non-faulty execution
(left half of Figure B(c)), it is clear that failures have a noticeable
effect on the partition transfer.

Comparing the scenarios where a non-leader replica crashes
(Figure [12(a)] and [I2(b)), the negative effects on the system
performance are more prominent when the replica belongs to
the destination group. This happens due to a combination of
two factors. First, during a split the operations targeting the
partition being transferred are progressively being redirected to
the destination group, with each block transferred. Second, a high
percentage of the reads performed by clients on the two surviving
replicas of the destination group are not completed using the
consensus-free optimized read, and need to be retried using the
total-order protocol [9], [14].

Crashing the leader replica of both source and destination
groups (Figures and [I2(d)) leads to the same effect in the
system: the group with the faulty replica stops processing requests
for 2 seconds (the timeout value), until a new leader is elected and
normal processing is resumed.

In summary, the results show that the performance of the
partition transfer protocol is robust against failures, and the most

100 _Hotspot _ Split(131s) ¢ 100 Hotspot _Split (108s) 100
Throughput — ‘ ‘ ‘ ‘
go| Latency - "4 80 80f ! ] b1 80
% m
260 ] ] 60E  2eo ] ] 605
o [0} [ [0}
2 ‘ ‘ 2 g ‘ ‘ 2
S40 ‘ 0% G40} 402
' [ g ' g
20 w 20 200 20
0 P o=, L, 0
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time (sec) Time (sec)

(a) 16MB block size. (b) 256MB block size.

Figure 13. Scale-out in a hotspot group using disks.

visible negative effects are due to performance degradation caused
to the ordering protocol of the RSMs.

5.7 Partition Transfer in a Hotspot

In previous experiments we performed splits and merges on
saturated RSMs to evaluate how our protocol works in a system on
its limits. In this final experiment we discuss the effects of doing a
partition transfer on a hotspot group, i.e., a group of replicas that
experiences a sudden and large increase in its workload. We create
such hotspot by uniformly increasing the number of clients, from
20 to 200, over a hundred seconds interval, which also results in
a tenfold latency increase (from 2.5 ms to 25 ms). This hotspot
scenario is similar to the one used in [59], and was inspired on the
statistics of the “9/11 spike” experienced by CNN.com [39], where
the workload increased by an order of magnitude in 15 minutes.
For this experiment, we consider groups of three replicas and a
read-heavy workload.

Figure [I3] shows the throughput and the latency when a split
is performed on the hotspot group using two block sizes. As can
be observed, the split causes a similar effect on the throughput
and the latency as when the group is saturated (Figure and
Figure [8(e)). Using 16MB blocks to transfer the partition makes
the split 20% slower than using 256MB blocks, but the overall
effect on latency and throughput is the same.

In conclusion, the results show that our ptransf implementa-
tion allows a 8GB storage system to double its capacity when
subject to an unusual high demand without any significant perfor-
mance disruption, taking less than two minutes to scale out.

6 RELATED WORK
6.1 SMR Scalability

Several SMR protocols support the addition and removal of
replicas at runtime [9], [37], [40], [44], [SOl, [57]. Other works
exploit virtualization technology for starting or replacing replicas
very efficiently by employing techniques such as copy-on-write
to bring the new replica up to date with minor disruptions on the
service [53[], [61]. However, these reconfigurations only change
the set of replicas in a single group, and do not improve the
performance of the system since the protocols used for ordering
requests are inherently non-scalable. To the best of our knowledge,
we are the first to propose a well-defined primitive and protocol
for sharding RSMs at runtime.

Different techniques have been proposed to improve the
scalability of SMR-based services. Some works try to remove
bottlenecks both from the ordering protocol [42], [44], its im-
plementation [54]f), (6] and the execution of requests [32], [34],
[43]]. For example, protocols like Mencius [42] and Egalitarian



TO APPEAR IN IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (MARCH 2017) 12

Paxos [44] try to spread the additional load of the primary replica
among all the system replicas. In a complementary way, Santos
and Schiper [54] and Behl et al. [6] show that it is possible to
substantially improve the performance of an SMR implementation
by architecting these systems using multiple threads. Similarly,
several works try to parallelize the execution of requests for
taking advantage of multi-core servers and improve the RSM
performance. The techniques range from identifying independent
RSM commands that can run in parallel without endangering
determinism [34]], [43]], to executing the requests (using multiple
threads) before ordering them [32]. Ultimately, these approaches
help addressing the request ordering and execution bottlenecks
(and thus can be combined with CREST to improve the perfor-
mance of a single group), but the fundamental limitation of every
replica executing every operation still remains.

A third group of works aims to scale SMR-based services
by dividing their state among several partitions, implemented by
(mostly) independent RSMs [[10]], [18], [27], [38], [S1]. Bezerra
et al. [[10] propose a technique for executing atomic operations
spanning multiple partitions still ensuring linearizability. This
work was later extended for optimizing data placement in the par-
tition for decreasing the amount of multi-partition operations [38]].
Padilha and Pedone propose Augustus [51]], a storage architecture
that follows a partition approach and tolerates Byzantine faults.
This architecture enables transactions across partitions. Although
the previously mentioned works ([10], [38], [S1]]) use partitioning
to address the scalability of SMR-based services, there is no
support for creating such partitions dynamically.

6.2 Elasticity in SMR-based Systems

Scatter [27] is a consistent distributed key-value store where key
ranges are served by groups of replicas. Split and merge recon-
figurations are available, but the paper does not mention how the
state transfer between partitions is realized, neither measures the
impact of such data transfers (the reported values suggest that only
a trivially-small state is used in the experiments). Additionally, the
Scatter partitioning algorithm works only for adjacent groups in
its Chord-like architecture, requiring substantial modifications to
the Paxos protocol to implement a multi-group 2PC commit. Our
solution, on the other hand, aims for fast and predictable elasticity
with multi-gigabyte partitions, targeting thus a general limitation
of SMR systems. Moreover, it can be implemented on top of any
SMR protocol.

Spanner [18]] is a globally-distributed database that shards
data across many sets of Paxos-based state machines in Google
datacenters. Although not detailed in the paper, Spanner allows
shards to be transferred in order to balance load or in response
to failures. During these transfers, clients can still execute transac-
tions (including updates) on the database. Similarly to most elastic
database systems [16], [22], [36]], Spanner transfers partition data
slowly to minimize the impact of such reconfigurations on the
system performance. When the remaining data to be transferred is
sufficiently small, the system uses a multi-partition transaction to
move the metadata of the shard between the two groups. Although
the protocol appears to protect the safety of the database, the
liveness is not guaranteed since moving data in Spanner may
take an unbounded amount of time if the update rate is higher
than the transfer rate. In this paper we proposed a specialized
abstraction and a (safe and live) protocol for transferring partitions
as efficiently as possible, and explained how it could be integrated
with the multi-partition transactions of Spanner.

6.3 Elastic Databases

There is a large set of works from the database community for
implementing elasticity in existing systems [20], [21], [25], [56l,
[I58]. These works propose solutions to split and merge state of
sharded databases without violating the ACID properties, and
can be broadly divided in terms of the database architecture they
consider. Some systems employ shared storage architectures [20]],
[21], where the database nodes persist data on some shared
“always available” infrastructure. In such architectures, when a
server is added there is no need to perform a partition transfer,
being sufficient to copy only the database cache and active trans-
actions. Other works focus on shared nothing architectures [25],
[56l, [58], where each partition is kept on different nodes. In
this case, reconfigurations require a partition transfer. However,
existing works only consider transferences between two servers,
not between two groups of servers, as is required for RSMs.

7 CONCLUSION

This paper introduced a partition transfer protocol for implement-
ing elasticity in replicated state machines. Our protocol minimizes
(1) the time required to transfer the partition between two replica
groups and, (2) the negative effects of this data transfer on the
operation latency observed by clients. The proposed protocol can
be integrated in any SMR consensus algorithm (e.g., Paxos [37],
PBFT [14], RAFT [50]), since it operates on top of the ordering
protocols. Furthermore, it allows the dynamic creation of par-
titions in different replica groups, complementing some recent
works on scalable state machine replication [[10], [27], [51].

The proposed protocol was implemented and evaluated in a
key-value store. In our experiments, a prototype system using our
protocol was able to double its capacity with minimal performance
degradation, showing that it is possible to have elastic reconfigu-
rations even for non-trivial partition sizes (e.g., 4GB).

ACKNOWLEDGEMENTS

The authors would like to thank Jodo Sousa for the support in BFT-
SMaRt and the IEEE TPDS reviewers for the excellent comments
that helped improving this paper.

REFERENCES

[1] Cassandra documentation. http://www.datastax.com/documentation/
cassandra/2.0/cassandra/gettingStartedCassandralntro.html.

[2] CockroachDB Design Document. https://github.com/cockroachdb/
cockroach/blob/master/docs/design.md.

[3] HydraBase - The evolution of
https://code.facebook.com/posts/321111638043166/
hydrabase- the-evolution-of-hbase-facebook/.

[4] Kryo - Java serialization and cloning: fast, efficient, automatic. https:
//github.com/EsotericSoftware/kryo.

[5] The rsync algorithm. |http://rsync.samba.org/tech_report/tech_report.
htmll

[6] Johannes Behl, Tobias Distler, and Riidiger Kapitza. Consensus-oriented
parallelization: How to earn your first million. In Proceedings of the 16th
ACM/IFIP/USENIX Middleware Conference — Middleware’l5, 2015.

[7]1 Alysson Bessani, Ricardo Mendes, Tiago Oliveira, Nuno Neves, Miguel
Correia, Marcelo Pasin, and Paulo Verissimo. Scfs: A shared cloud-
backed file system. In Proc. of the USENIX Annual Technical Conference
—ATC’ 2014, 2014.

[8] Alysson Bessani, Marcel Santos, Joao Felix, Nuno Neves, and Miguel
Correia. On the efficiency of durable state machine replication. In Proc.
of the USENIX Annual Technical Conference — ATC’13, 2013.

HBaseFacebook.


http://www.datastax.com/documentation/cassandra/2.0/cassandra/gettingStartedCassandraIntro.html
http://www.datastax.com/documentation/cassandra/2.0/cassandra/gettingStartedCassandraIntro.html
https://github.com/cockroachdb/cockroach/blob/master/docs/design.md
https://github.com/cockroachdb/cockroach/blob/master/docs/design.md
https://code.facebook.com/posts/321111638043166/hydrabase-the-evolution-of-hbase-facebook/
https://code.facebook.com/posts/321111638043166/hydrabase-the-evolution-of-hbase-facebook/
https://github.com/EsotericSoftware/kryo
https://github.com/EsotericSoftware/kryo
http://rsync.samba.org/tech_report/tech_report.html
http://rsync.samba.org/tech_report/tech_report.html

TO APPEAR IN IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (MARCH 2017) 13

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(7]

[18]

[19]

[20]

[21]

[22]

[23

—

[24]

[25]

[26]

[27]

(28]

Alysson Bessani, Joao Sousa, and Eduardo Alchieri. State machine
replication for the masses with BFT-SMaRt. In Proc. of the IEEE/IFIP
International Conference on Dependable Systems and Networks — DSN
2014, June 2014.

C. E. Bezerra, F. Pedone, and R. van Renesse. Scalable state-machine
replication. In Proc. of the 44th IEEE/IFIP International Conference on
Dependable Systems and Networks — DSN’14, 2014.

W. Bolosky, D. Bradshaw, R. Haagens, N. Kusters, and P. Li. Paxos
replicated state machines as the basis of a high-performance data store.
In NSDI, April 2011.

M. Burrows. The Chubby lock service for loosely-coupled distributed
systems. In OSDI, November 2006.

Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild
Skjolsvold, Sam McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng
Wu, Huseyin Simitci, Jaidev Haridas, Chakravarthy Uddaraju, Hemal
Khatri, Andrew Edwards, Vaman Bedekar, Shane Mainali, Rafay Abbasi,
Arpit Agarwal, Mian Fahim ul Haq, Muhammad Ikram ul Haq, Deepali
Bhardwaj, Sowmya Dayanand, Anitha Adusumilli, Marvin McNett, Sri-
ram Sankaran, Kavitha Manivannan, and Leonidas Rigas. Windows azure
storage: A highly available cloud storage service with strong consistency.
In Proc. of the 23rd ACM Symposium on Operating Systems Principles —
SOSP’11, 2011.

Miguel Castro and Barbara Liskov. Practical Byzantine fault-tolerance
and proactive recovery. ACM Transactions Computer Systems, 20(4),
November 2002.

T. Chandra, R. Griesemer, and J. Redstone. Paxos made live - An
engineering perspective. In PODC, August 2007.

Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silber-
stein, Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver,
and Ramana Yerneni. Pnuts: Yahoo!’s hosted data serving platform.
VLDB, 1(2), August 2008.

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking cloud serving systems with YCSB. In
Proceedings of the 1st ACM Symposium on Cloud Computing — SoCC
’10, 2010.

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christo-
pher Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher
Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene
Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura,
David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito,
Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford.
Spanner: Google’s globally distributed database. ACM Transactions on
Computer Systems, 31(3), August 2013.

Francisco Cruz, Francisco Maia, Miguel Matos, Rui Oliveira, Joao Paulo,
José Pereira, and Ricardo Vilaga. MeT: Workload aware elasticity for
NoSQL. In Proc. of the 8th ACM European Conference on Computer
Systems — EuroSys 13, 2013.

Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. Elastras: An
elastic, scalable, and self-managing transactional database for the cloud.
ACM Transactions on Database Systems, 38(1), April 2013.

Sudipto Das, Shoji Nishimura, Divyakant Agrawal, and Amr El Abbadi.
Albatross: Lightweight elasticity in shared storage databases for the cloud
using live data migration. Proc. VLDB Endow., 4(8):494-505, May 2011.
Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s highly
available key-value store. In Proc. of the ACM Symposium on Operating
Systems Principles — SOSP’07, October 2007.

Thibault Dory, Boris Mejas, Peter Van Roy, and Nam-Luc Tran. Mea-
suring elasticity for cloud databases. In Proceedings of the The Second
International Conference on Cloud Computing, GRIDs, and Virtualiza-
tion, 2011.

Cyntia Dwork, Nancy A. Lynch, and Larry Stockmeyer. Consensus in
the presence of partial synchrony. Journal of the ACM, 35(2), April 1988.
Aaron J. Elmore, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi.
Zephyr: Live migration in shared nothing databases for elastic cloud
platforms. In Proc. of the 2011 ACM SIGMOD International Conference
on Management of Data — SIGMOD’11, 2011.

Anshul Gandhi, Mor Harchol-Balter, Ram Raghunathan, and Michael A.
Kozuch. Autoscale: Dynamic, robust capacity management for multi-tier
data centers. ACM Transactions on Computer Systems, 30(4), November
2012.

Lisa Glendenning, Ivan Beschastnikh, Arvind Krishnamurthy, and
Thomas Anderson. Scalable consistency in scatter. In Proc. of the 23rd
ACM Symposium on Operating Systems Principles — SOSP’11, 2011.

J. Hamilton. Observations on errors, corrections, and trust of dependent
systems. http://goo.gl/LPTJoO, 2012.

[29]

(30]

(31]

[32]

[33]

(34]

[35]

(36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

(511

[52]

Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness
condition for concurrent objects. ACM Transactions on Programming
Languages and Systems, 12(3), July 1990.

Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.
Zookeeper: Wait-free coordination for internet-scale systems. In Proc.
of the 2010 USENIX Annual Technical Conference — USENIX ATC’10,
2010.

F. Junqueira, B. Reed, and M. Serafini. Zab: High-performance broadcast
for primary-backup systems. In DSN, June 2011.

Manos Kapritsos, Yang Wang, Vivien Quema, Allen Clement, Lorenzo
Alvisi, and Mike Dahlin. All about EVE: Execute-verify replication
for multi-core servers. In Proc. of the 10th USENIX Conference on
Operating Systems Design and Implementation — OSDI’12, 2012.
Toannis Konstantinou, Evangelos Angelou, Christina Boumpouka, Dim-
itrios Tsoumakos, and Nectarios Koziris. On the elasticity of NoSQL
databases over cloud management platforms. In Proc. of the 20th ACM
international conference on Information and knowledge management —
CIKM 11, 2011.

Ramakrishna Kotla and Mike Dahlin. High throughput byzantine fault
tolerance. In Proc. of the 2004 International Conference on Dependable
Systems and Networks — DSN’04, 2004.

Andrew Krioukov, Prashanth Mohan, Sara Alspaugh, Laura Keys, David
Culler, and Randy Katz. Napsac: Design and implementation of a power-
proportional web cluster. In Proc. of the 1st ACM Workshop on Green
Networking, 2010.

Avinash Lakshman and Prashant Malik. Cassandra: A decentralized
structured storage system. SIGOPS Operating Systems Review, 44(2),
April 2010.

Leslie Lamport. The part-time parliament. ACM Transactions Computer
Systems, 16(2):133-169, May 1998.

L. H. Le, C. E. Bezerra, and F. Pedone. Dynamic scalable state machine
replication. In Proc. of the 46th IEEE/IFIP International Conference on
Dependable Systems and Networks — DSN’16, June 2016.

William LeFebvre. Cnn. com: Facing a world crisis. In LISA, 2001.
Jacob Lorch, Atul Adya, William Bolosky, Ronnie Chaiken, John
Douceur, and Jon Howell. The SMART way to migrate replicated stateful
services. In EuroSys, October 2006.

Nancy A. Lynch. Distributed Algorithms. Morgan Kauffman, 1996.
Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. Mencius: Build-
ing efficient replicated state machines for wans. In Proc. of the 8th
USENIX Conference on Operating Systems Design and Implementation
— OSDI’08, October 2008.

Parisa Jalili Marandi, Carlos Eduardo Bezerra, and Fernando Pedone.
Rethinking state-machine replication for parallelism. In Proc. of the
34th IEEE International Conference on Distributed Computing Systems
—ICDCS’14, 2014.

Tulian Moraru, David G. Andersen, and Michael Kaminsky. There is
more consensus in egalitarian parliaments. In Proc. of the 24th ACM
Symposium on Operating Systems Principles — SOSP ’13, October 2013.
Dushyanth Narayanan, Austin Donnelly, Eno Thereska, Sameh Elnikety,
and Antony Rowstron. Everest: Scaling down peak loads through i/o off-
loading. In Proc. of the 8th USENIX Conference on Operating Systems
Design and Implementation — OSDI’08, 2008.

Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. Q-clouds:
Managing performance interference effects for QoS-aware clouds. In
Proc. of the 5th European Conference on Computer Systems — EuroSys
’10, 2010.

Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Her-
man Lee, Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul
Saab, David Stafford, Tony Tung, and Venkateshwaran Venkataramani.
Scaling memcache at Facebook. In NSDI, April 2013.

Laura Nolan. Managing critical state: Distributed consensus for reliabil-
ity. In Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall R. Murphy,
editors, Site reliability Engineering, chapter 23. O’Reilly, 2016.

Brian M. Oki and Barbara Liskov. Viewstamped replication: A new
primary copy method to support highly-available distributed systems. In
Proc. of the 7th Annual ACM Symposium on Principles of Distributed
Computing — PODC’88, 1988.

Diego Ongaro and John Ousterhout. In search for an understandable con-
sensus algorithm. In Proc. of the USENIX Annual Technical Conference
— ATC’14, June 2014.

Ricardo Padilha and Fernando Pedone. Augustus: Scalable and robust
storage for cloud applications. In Proc. of the 8th ACM European
Conference on Computer Systems — EuroSys ’13, April 2013.

Jun Rao, Eugene J. Shenkita, and Sandeep Tata. Using Paxos to build a
scalable, consistent, and highly available datastore. VLDB, 4(4), 2011.


http://goo.gl/LPTJoO

TO APPEAR IN IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (MARCH 2017)

[53]

[54]

[55]

[56]

[571

[58]

[59]

[60]

[61]

Hans P. Reiser and Riidiger Kapitza. Hypervisor-based efficient proactive
recovery. In SRDS, 2007.

N. Santos and A. Schiper. Achieving high-throughput state machine
replication in multi-core systems. In Proc. of the 33rd IEEE International
Conference on Distributed Computing Systems — ICDCS’13, July 2013.
Fred B. Schneider. Implementing fault-tolerant service using the state
machine aproach: A tutorial. ACM Computing Surveys, 22(4):299-319,
December 1990.

Marco Serafini, Essam Mansour, Ashraf Aboulnaga, Kenneth Salem,
Taha Rafiq, and Umar Farooq Minhas. Accordion: Elastic scalability
for database systems supporting distributed transactions. Proc. VLDB
Endow., 7(12):1035-1046, August 2014.

Alexander Shraer, Benjamin Reed, Dahlia Malkhi, and Flavio P. Jun-
queira. Dynamic reconfiguration of primary/backup clusters. In Proc. of
the USENIX Annual Technical Conference — ATC’12, 2012.

Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J.
Elmore, Ashraf Aboulnaga, Andrew Pavlo, and Michael Stonebraker.
E-store: Fine-grained elastic partitioning for distributed transaction pro-
cessing systems. Proc. VLDB Endow., 8(3), November 2014.

Beth Trushkowsky, Peter Bodik, Armando Fox, Michael J. Franklin,
Michael I. Jordan, and David A. Patterson. The SCADS Director: Scaling
a distributed storage system under stringent performance requirements.
In Proc. of the 9th USENIX Conference on File and Stroage Technologies
— FAST’11,2011.

Yang Wang, Lorenzo Alvisi, and Mike Dahlin. Gnothi: Separating data
and metadata for efficient and available storage replication. In Proc. of
USENIX Annual Technical Conference — ATC’12, June 2012.

Timothy Wood, Rahul Singh, Arun Venkataramani, Prashant Shenoy, and
Emmanuel Cecchet. ZZ and the art of practical BFT execution. In Proc.
of the Sixth Conference on Computer Systems — EuroSys’11, April 2011.

Andre Nogueira is a researcher of the De-
partment of Computer Science of the Faculty
of Sciences of the University of Lisboa, Por-
tugal, and a member of LaSIGE research unit
) and the Navigators research team. He received
4 his M.Sc in 2008 by the University of Lisbon.
His main research interests are dependable and
intrusion-tolerant systems. More information at
https://sites.google.com/site/andrenogueirasite.

Antonio Casimiro is an Associate Professor at
the Department of Informatics of the University
of Lisboa Faculty of Sciences (since 1996), and
a member of the LaSIGE research unit, where
he leads the research line on Timeliness and
Adaptation in Dependable Systems. He was ad-
junct Professor of the Carnegie Mellon Infor-
mation Networking Institute (2008-2011) and a
lecturer at Instituto Superior Técnico of the Tech-
nical University of Lisboa (1993-1996). He has
a PhD in Informatics (2003) by the University of

Lisboa. His research focuses on architectures, fault tolerance and adap-
tation in distributed and real-time embedded systems, with applications
on autonomous and cooperative vehicles and on critical infrastructures
monitoring. More information at http://www.di.fc.ul.pt/~casiml

14

Alysson Bessani is an Associate Professor of
the Department of Computer Science of the Fac-
ulty of Sciences of the University of Lisboa, Por-
tugal, and a member of LaSIGE research unit
and the Navigators research team. He holds a
PhD in Electrical Engineering from Santa Cata-
rina Federal University, Brazil (2006), and was a
visiting professor at Carnegie Mellow University
(2010), and a visiting researcher at Microsoft
Research Cambridge (2014). His main inter-
ests are distributed algorithms, Byzantine fault

tolerance, coordination, and security monitoring. More information at
http://www.di.fc.ul.pt/~bessani


https://sites.google.com/site/andrenogueirasite
http://www.di.fc.ul.pt/~casim
http://www.di.fc.ul.pt/~bessani

	Introduction
	Elasticity for RSMs
	Partition transfer in existing RSMs
	A client-based solution
	A reconfiguration-based solution

	Partition transfer in Non-SMR Databases

	Partition Transfer for RSMs
	System Model
	Environment
	Service

	Partition Transfer Protocol
	Correctness Argument
	Multi-partition Operations
	S-SMR
	Spanner


	Implementation
	Evaluation
	Setup
	Methodology
	Partition Transfer on an Idle System
	Partition Transfer on a Saturated System
	Read-heavy workload
	Write-heavy workload
	Consolidated results
	Comparison with alternative solutions

	Partition Transfer in Bigger Groups
	Faults during the Partition Transfer
	Partition Transfer in a Hotspot

	Related work
	SMR Scalability
	Elasticity in SMR-based Systems
	Elastic Databases

	Conclusion
	References
	Biographies
	Andre Nogueira
	Antonio Casimiro
	Alysson Bessani


