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The increasing popularity of cloud storage services has lead companies that handle critical data to think about using these
services for their storage needs. Medical record databases, large biomedical datasets, historical information about power
systems and financial data are some examples of critical data that could be moved to the cloud. However, the reliability and
security of data stored in the cloud still remain major concerns. In this work we present DEPSKY, a system that improves the
availability, integrity and confidentiality of information stored in the cloud through the encryption, encoding and replication
of the data on diverse clouds that form a cloud-of-clouds. We deployed our system using four commercial clouds and
used PlanetLab to run clients accessing the service from different countries. We observed that our protocols improved the
perceived availability and, in most cases, the access latency when compared with cloud providers individually. Moreover,
the monetary costs of using DEPSKY on this scenario is at most twice the cost of using a single cloud, which is optimal and
seems to be a reasonable cost, given the benefits.
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1. INTRODUCTION
The increasing maturity of cloud computing technology is leading many organizations to migrate
their IT infrastructure and/or adapt their IT solutions to operate completely or partially in the cloud.
Even governments and companies that maintain critical infrastructures (e.g., healthcare, telcos) are
adopting cloud computing as a way of reducing costs [Greer 2010]. Nevertheless, cloud computing
has limitations related to security and privacy, which should be accounted for, especially in the
context of critical applications.

This paper presents DEPSKY, a dependable and secure storage system that leverages the benefits
of cloud computing by using a combination of diverse commercial clouds to build a cloud-of-clouds.
In other words, DEPSKY is a virtual storage cloud, which is accessed by its users to manage updat-
able data items by invoking equivalent operations in a group of individual clouds. More specifically,
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DEPSKY addresses four important limitations of cloud computing for data storage in the following
way:

— Loss of availability: When data is moved from the company’s network to an external datacenter, it
is inevitable that service availability is affected by problems in the Internet. Unavailability can also
be caused by cloud outages, from which there are many reports [Raphael 2011], or by denial-of-
service attacks like the one that allegedly affected a service hosted in Amazon EC2 in 2009 [Metz
2009]. DEPSKY deals with this problem exploiting replication and diversity by storing the data on
several clouds, thus allowing access to the data as long as a subset of them is reachable.

— Loss and corruption of data: there are several cases of cloud services losing or corrupting cus-
tomer data. For example, in October 2009 a subsidiary of Microsoft, Danger Inc., lost the contacts,
notes, photos, etc. of a large number of users of the Sidekick service [Sarno 2009]. The data was
recovered several days later, but the users of Ma.gnolia were not so lucky in February of the same
year, when the company lost half a terabyte of data that it never managed to recover [Naone 2009].
DEPSKY deals with this problem using Byzantine fault-tolerant replication to store data on several
cloud services, allowing data to be retrieved correctly even if some of the clouds corrupt or lose it.

— Loss of privacy: the cloud provider has access to both the stored data and how it is accessed. The
provider may be trustworthy, but malicious insiders are a wide-spread security problem [Hanley
et al. 2011]. This is an especial concern in applications that involve keeping private data like health
records. An obvious solution is the customer encrypting the data before storing it, but if the data is
accessed by distributed applications this involves running protocols for key distribution (processes
in different machines need access to the cryptographic keys). DEPSKY employs a secret sharing
scheme and erasure codes to avoid storing clear data in the clouds and to improve the storage
efficiency, amortizing the replication factor on the cost of the solution.

— Vendor lock-in: When a customer hosts its data or services in a cloud, it has to comply with
the cloud service provider’s billing policy, service characteristics and APIs. In this scenario, there
is always the concern that the coupling between the customer and the provider become so high
to a point that it becomes economically inviable to move from one provider to another, the so
called vendor lock-in problem [Abu-Libdeh et al. 2010]. This concern is specially prevalent in
Europe, as the most conspicuous providers are not in the region. Even moving from one provider
to another one may be expensive because the cost of cloud usage has a component proportional
to the amount of data that is read and written. DEPSKY addresses this issue in two ways. First, it
does not depend on a single cloud provider, but on a few, so data access can be balanced among
the providers considering their practices (e.g., what they charge). Second, DEPSKY uses erasure
codes to store only a fraction (typically half) of the total amount of data in each cloud. In case the
need of exchanging one provider by another arises, the cost of migrating the data will be at most
a fraction of what it would be otherwise.

The way in which DEPSKY solves these limitations does not come for free. At first sight, using,
say, four clouds instead of one involves costs roughly four times higher. One of the key objectives
of DEPSKY is to reduce this cost, which in fact it does to about 1.2 to 2 times the cost of using a
single cloud. This seems to be a reasonable cost, given the benefits.

The key insight of the paper is that the limitations of individual clouds can be overcome by
using a cloud-of-clouds in which the operations (read, write, etc.) are implemented using a set of
Byzantine quorum systems protocols. The protocols require diversity of location, administration,
design and implementation, which in this case comes directly from the use of different commercial
clouds [Vukolic 2010]. There are protocols of this kind in the literature, but they either require that
the servers execute some protocol-specific code [Cachin and Tessaro 2006; Goodson et al. 2004;
Malkhi and Reiter 1998a; Malkhi and Reiter 1998b; Martin et al. 2002], not possible in storage
clouds, or are sensible to contention (e.g., [Abraham et al. 2006]), which makes them difficult to use
for geographically dispersed systems with high and variable access latencies. DEPSKY overcomes
these limitations by not requiring specific code execution in the servers (i.e., storage clouds), but still
being efficient by requiring only two communication round-trips for each operation. Furthermore, it
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leverages the above mentioned mechanisms to deal with data confidentiality and reduce the amount
of data stored in each cloud.

Although DEPSKY is designed for data replication on cloud storage systems, the weak assump-
tions required by its protocols make it usable to replicate data on arbitrary storage systems such as
FTP servers and key-value databases. This extended applicability is only possible because, as al-
ready mentioned, the DEPSKY protocols have no server-side specific code to be executed, requiring
only basic storage operations to write, read and list objects.

In summary, the main contributions of the paper are:

(1) The DEPSKY system, a storage cloud-of-clouds that overcomes the limitations of individual
clouds by using a set of efficient Byzantine quorum system protocols, cryptography, secret
sharing, erasure codes and the diversity that comes from using several clouds. The DEPSKY
protocols require at most two communication round-trips for each operation and store only
approximately half of the data in each cloud for the typical case.

(2) The notion of consistency proportional storage, in which the replicated storage system provides
the same consistency semantics as its base objects (i.e., the nodes where the data is stored).
DEPSKY satisfies this property for a large spectrum of consistency models, encompassing most
of the semantics provided by storage clouds and popular storage systems.

(3) A set of experiments showing the costs and benefits (both monetary and in terms of perfor-
mance) of storing updatable data blocks in more than one cloud. The experiments were made
during one month, using four commercial cloud storage services (Amazon S3, Windows Azure
Blob Service, Nirvanix CDN and Rackspace Files) and PlanetLab to run clients that access the
service from several places worldwide.

The paper is organized as follows. Section 2 describes some applications that can make use of
DEPSKY. Section 3 presents the core protocols employed in our system and Section 4 presents addi-
tional protocols for locking and management operations. Sections 5 and 6 show how storage clouds
access control can be employed to setup a DEPSKY cloud-of-clouds storage and how the system
works with weakly consistent clouds, respectively. The description of the DEPSKY implementation
and its experimental evaluation are presented in Sections 7 and 8. Finally, Section 9 discusses related
work and Section 10 concludes the paper. The paper also contains a series of appendixes describ-
ing some auxiliary functions used in our algorithms (Appendix A), the correctness proofs for the
storage (Appendix B) and locking protocols (Appendix C), and a proof of the DEPSKY consistency
proportionality (Appendix D).

2. CLOUD STORAGE APPLICATIONS
In this section we briefly discuss some examples of applications that can benefit from a cloud-of-
clouds storage system like DEPSKY.

Critical data storage. Given the overall advantages of using clouds for running large scale sys-
tems, many governments around the globe are considering the use of this model. The US govern-
ment already announced its interest in moving some of its computational infrastructure to the cloud
and started some efforts in understanding the risks involved in doing these changes [Greer 2010].
The same kind of concerns are also being discussed in Europe [Dekker 2012].

In the same line of these efforts, there are many critical applications managed by companies
that have no interest in maintaining a computational infrastructure (i.e., a datacenter). For these
companies, the cloud computing pay-per-use model is specially appealing. An example would be
power system operators. Considering only the case of storage, power systems have operational
historian databases that store events collected from the power grid and other subsystems. In such
a system, the data should be always available for queries (although the workload is mostly write-
dominated) and access control is mandatory.

Another critical application that could benefit from moving to the cloud is a unified medical
records database, also known as electronic health record (EHR). In such an application, several
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hospitals, clinics, laboratories and public offices share patient records in order to offer a better
service without the complexities of transferring patient information between them. A system like
this was deployed in the UK for some years [Ehs ]. Similarly to our previous example, availability
of data is a fundamental requirement of a cloud-based EHR system, and privacy concerns are even
more important.

A somewhat related example comes from the observation that some biomedical companies that
generate high-value data would not put it on a third party cloud without ensuring confidentiality.
In fact, some of these companies are actively stripping biomedical data stored on several clouds to
avoid complete confidentiality loss in case of cloud compromise [May 2010].

All these applications can benefit from a system like DEPSKY. First, the fact that the information
is replicated on several clouds would improve the data availability and integrity. Moreover, the
DEPSKY-CA protocol (see Section 3.5) ensures the confidentiality of stored data and therefore
addresses some of the privacy issues so important for these applications. Finally, these applications
are prime examples of cases in which the extra costs due to replication are affordable for the added
quality of service since the amount of data stored is not large when compared with Internet-scale
services.

Content distribution. One of the most surprising uses of Amazon S3 is content distribution [Henry
2009]. In this scenario, users use the storage system as distribution points for their data in such a
way that one or more producers store the content on their account and a set of consumers read
this content. A system like DEPSKY that supports dependable updatable information storage can
help this kind of application when the content being distributed is dynamic and there are security
concerns associated. For example, a company can use the system to give detailed information about
its business (price, available stock, etc.) to its affiliates with improved availability and security.

Future applications. Many applications are moving to the cloud, so, it is possible to think
of new applications that would use the storage cloud as a back-end storage layer. Relational
databases [Brantner et al. 2008], file systems [Vrable et al. 2012], objects stores and key-value
databases are examples of systems that can use the cloud as storage layer as long as caching and
weak consistency models [Terry et al. 1994; Vogels 2009] are used to avoid paying the price of
cloud access in terms of latency and monetary costs per operation.

3. THE DEPSKY SYSTEM
As mentioned before, the clouds are storage clouds without the capacity of executing users’ code, so
they are accessed using their standard interface without modifications. The DEPSKY algorithms are
implemented as a software library in the clients. This library offers an object store interface [Gibson
et al. 1998], similar to what is used by parallel file systems (e.g., [Ghemawat et al. 2003; Weil
et al. 2006]), allowing reads and writes in the back-end (in this case, the untrusted clouds). Figure 1
presents the architecture of DEPSKY.

In the remaining of this section we present our data and system models, the protocol design
rationale, the two main protocols (DEPSKY-A and DEPSKY-CA), and some optimizations.

3.1. Data Model
The use of diverse clouds requires the DEPSKY library to deal with the heterogeneity of the inter-
faces of different cloud providers. An aspect that is specially important is the format of the data
accepted by each cloud. The data model allows us to ignore these details when presenting the algo-
rithms.

Figure 2 presents the DEPSKY data model with its three abstraction levels. In the first (left), there
is the conceptual data unit, which corresponds to the basic storage object with which the algorithms
work (a register in distributed computing parlance [Lamport 1986; Malkhi and Reiter 1998a]). A
data unit has a unique name (X in the figure), a version number (to support updates on the object),
verification data (usually a cryptographic hash of the data) and the data stored on the data unit object.
In the second level (middle), the conceptual data unit is implemented as a generic data unit in an
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Fig. 1. Architecture of DEPSKY (with 4 clouds and 2 clients).

abstract storage cloud. Each generic data unit, or container, contains two types of files: a signed
metadata file and the files that store the data. Metadata files contain the version number and the
verification data, together with other information that applications may demand. Notice that a data
unit (conceptual or generic) can store several versions of the data, i.e., the container can contain
several data files. The name of the metadata file is simply metadata, while the data files are called
value-〈Version〉, where 〈Version〉 is the version number of the data (e.g., value-1, value-2, etc.).
Finally, in the third level (right) there is the data unit implementation, i.e., the container translated
into the specific constructions supported by each cloud provider (Bucket, Folder, etc.). Notice that
the one-container-per-data-unit policy may be difficult to implement in some clouds (e.g., Amazon
S3 has a limit of 100 buckets per account, limiting the system to 100 data units). However, it is
possible to store several data units on the same container as long as the data unit name is used as a
prefix of their files names.

 

 

Conceptual Data Unit                    Generic Data Unit                                             Data Unit 

             X                                         Container X 
Version 
Number 

Verification 
Data 

Metadata 
Version Number 
Verification Data 

Other info 

 
Data 

    Amazon S3               Windows 

      Bucket X             BlobContainer 

Metadata                 Metadata 

Data                        Data 

   Nirvanix SDN           Rackspace 

       Folder X               Container X 
Metadata                Metadata 

Data                        Data 

Fig. 2. DEPSKY data unit and the 3 abstraction levels.

The data stored on a data unit can have arbitrary size, and this size can be different for different
versions. Each data unit object supports the usual object store operations: creation (create the con-
tainer and the metadata file with version 0), destruction (delete or remove access to the data unit),
write and read.
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3.2. System Model
We consider an asynchronous distributed system composed of three types of parties: writers, readers
and cloud storage providers. The latter are the clouds 1-4 in Figure 1, while writers and readers are
roles of the clients, not necessarily different processes.

Readers and writers. Readers can fail arbitrarily, i.e., they can crash, fail intermittently and
present any behavior. Writers, on the other hand, are assumed to fail only by crashing. We do not
consider that writers can fail arbitrarily because, even if the protocol tolerated inconsistent writes in
the replicas, faulty writers would still be able to write wrong values in data units, effectively corrupt-
ing the state of the application that uses DEPSKY. Moreover, the protocols that tolerate malicious
writers are much more complex (e.g., [Cachin and Tessaro 2006; Liskov and Rodrigues 2006]),
with active servers verifying the consistency of writer messages, which cannot be implemented on
general storage clouds (Section 3.3).

All writers of a data unit du share a common private key Kdu
rw used to sign some of the data

written on the data unit (function sign(DATA,Kdu
rw )), while readers of du have access to the corre-

sponding public key Kdu
uw to verify these signatures (function verify(DATA,Kdu

uw )). This public key
can be made available to the readers through the storage clouds themselves. Moreover, we assume
also the existence of a collision-resistant cryptographic hash function H.

Cloud storage providers. Each cloud is modeled as a passive storage entity that supports five op-
erations: list (lists the files of a container in the cloud), get (reads a file), create (creates a container),
put (writes or modifies a file in a container) and remove (deletes a file). By passive storage entity,
we mean that no protocol code other than what is needed to support the aforementioned operations
is executed. We assume that access control is provided by the clouds in order to ensure that readers
are only allowed to invoke the list and get operations (more about it in Section 5).

Since we do not trust clouds individually, we assume they can fail in a Byzantine way [Lamport
et al. 1982]: stored data can be deleted, corrupted, created or leaked to unauthorized parties. This is
the most general fault model and encompasses both malicious attacks/intrusions on a cloud provider
and arbitrary data corruption (e.g., due to accidental events like the Ma.gnolia case). The protocols
require a set of n = 3 f + 1 storage clouds, at most f of which can be faulty. Additionally, the
quorums used in the protocols are composed of any subset of n− f storage clouds. It is worth to
notice that this is the minimum number of replicas to tolerate Byzantine servers in asynchronous
storage systems [Martin et al. 2002].

Readers, writers and clouds are said to be correct if they do not fail.
The register abstraction provided by DEPSKY satisfies a semantics that depends on the semantics

provided by the underlying clouds. For instance, if the n clouds provide regular semantics, then
DEPSKY also satisfies regular semantics: a read operation that happens concurrently with a write
can return the value being written or the object’s value before the write [Lamport 1986]. We discuss
the semantics of DEPSKY in detail in Section 6.

Notice that our model hides most of the complexity of the distributed storage system employed
by the cloud provider: it just assumes that this system is an object storage prone to Byzantine fail-
ures that supports very simple operations. These operations are accessed through RPCs (Remote
Procedure Calls) with the following failure semantics: the operation keeps being invoked until a
reply is received or the operation is canceled (possibly by another thread, using the cancel pending
operation to stop request retransmissions). This means that we have at most once semantics for the
operations being invoked. Repeating the operation is not a problem because all storage cloud oper-
ations are idempotent, i.e., the state of the cloud becomes the same irrespectively of the operation
being executed only once or more times.

3.3. Protocol Design Rationale
Quorum protocols can serve as the backbone of highly available storage systems [Chockler et al.
2009]. There are many quorum protocols for implementing Byzantine fault-tolerant (BFT) storage
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[Cachin and Tessaro 2006; Goodson et al. 2004; Hendricks et al. 2007; Liskov and Rodrigues 2006;
Malkhi and Reiter 1998a; Malkhi and Reiter 1998b; Martin et al. 2002], but most of them require
that the servers execute protocol-specific code, a functionality not available on storage clouds. In
consequence, cloud-specific protocols need to assume passive storage replicas, supporting only
(blind) reads and writes. This leads to a key difference between the DEPSKY protocols and these
classical BFT quorum protocols: metadata and data are written and read in separate quorum ac-
cesses. Moreover, these two accesses occur in different orders on read and write protocols, as de-
picted in Figure 3. This feature is crucial for the protocol correctness and efficiency.
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Fig. 3. DEPSKY read and write protocols.

Supporting multiple writers for a register (a data unit in DEPSKY parlance) can be problematic
due to the lack of server code able to verify the version number of the data being written. To over-
come this limitation we implement a single-writer multi-reader register, which is sufficient for many
applications, and we provide a lock/lease protocol to support several concurrent writers for the data
unit.

There are also some quorum protocols that consider individual storage nodes as passive shared
memory objects (or disks) instead of servers [Abraham et al. 2006; Attiya and Bar-Or 2003; Chock-
ler and Malkhi 2002; Gafni and Lamport 2003; Jayanti et al. 1998]. Unfortunately, most of these
protocols require many steps to access the shared memory, or are heavily influenced by contention,
which makes them impractical for geographically dispersed distributed systems such as DEPSKY
due to the highly variable latencies involved. As show in Figure 3, DEPSKY protocols require two
communication round-trips to read or write the metadata and the data files that are part of the data
unit, independently of the existence of faults and contention.

Furthermore, as will be discussed later, many clouds do not provide the expected consistency
guarantees of a disk, something that can affect the correctness of these protocols. The DEPSKY
protocols provide consistency-proportional semantics, i.e., the semantics of a data unit is as strong
as the underling clouds allow, from eventual to regular consistency semantics. We do not try to
provide atomic (linearizable) semantics [Lamport 1986; Herlihy and Wing 1990] due to the fact that
all known techniques require server-to-server communication [Cachin and Tessaro 2006], servers
sending update notifications to clients [Martin et al. 2002] or write-backs [Goodson et al. 2004;
Malkhi and Reiter 1998b; Basescu et al. 2012]. The first two mechanisms are not implementable
using general purpose storage clouds (i.e., passive storage), while the last requires giving readers
permission to write, nullifying our access control model.

To ensure the confidentiality of the data stored in the clouds we encrypt it using symmetric cryp-
tography. To avoid the need of a key distribution service, which would have to be implement outside
of the clouds, we employ a secret sharing scheme [Shamir 1979]. In this scheme, a dealer (the writer
in the case of DEPSKY) distributes a secret (the encryption key) to n players (clouds in our case),
but each player gets only a share of this secret. The main properties of the scheme is that at least
f +1 ≤ n− f different shares of the secret are needed to recover it and that no information about the
secret is disclosed with f or less shares. The scheme is integrated on the basic replication protocol
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in such way that each cloud stores just a share of the key used to encrypt the data being written.
This ensures that no individual cloud will have access to the encryption key. On the contrary, clients
that have authorization to access the data will be granted access to the key shares of (at least) f +1
different clouds, so they will be able to rebuild the encryption key and decrypt the data.

The use of a secret sharing scheme allows us to integrate confidentiality guarantees to the stored
data without using a key distribution mechanism to make writers and readers of a data unit share a
secret key. In fact, our mechanism reuses the access control of the cloud provider to control which
readers are able to access the data stored on a data unit.

Although it may seem questionable if avoiding key distribution methods is useful for a large
spectrum of applications, our previous experience with secret sharing schemes [Bessani et al. 2008]
suggests that the overhead of using them is not deterrent, specially if one considers the communica-
tion latency of accessing a cloud storage provider. Nevertheless, the protocol can be easily modified
to use a shared key for confidentiality if an external key distribution method is available.

If we simply replicate the data on n clouds, the monetary costs of storing data using DEPSKY
would increase by a factor of n. In order to avoid this, we compose the secret sharing scheme used
on the protocol with an information-optimal erasure code algorithm, reducing the size of each share
by a factor of n

f+1 of the original data [Rabin 1989]. This composition follows the original proposal
of [Krawczyk 1993], where the data is encrypted with a random secret key, the encrypted data is
encoded, the key is divided using secret sharing and each server receives a block of the encrypted
data and a share of the key.

Common sense says that for critical data it is always a good practice not erasing all old versions
of the data, unless we can be certain that we will not need them anymore [Hamilton 2007]. An
additional feature of our protocols is that old versions of the data are kept in the clouds unless they
are explicitly deleted.

3.4. DEPSKY-A – Available DepSky
The first DEPSKY protocol is called DEPSKY-A. It improves the availability and integrity of cloud-
stored data by replicating it on several clouds using quorum techniques. Algorithm 1 presents this
protocol. We encapsulate some of the protocol steps in the functions described in Table I. We use
the ‘.’ operator to denote access to metadata fields, e.g., given a metadata file m, m.ver and m.digest
denote the version number and digest(s) stored in m. We use the ‘+’ operator to concatenate two
items into a string, e.g., “value-”+new ver produces a string that starts with the string “value-”
and ends with the value of variable new ver in string format. Finally, the max function returns the
maximum among a set of numbers.

Table I. Functions used in the DEPSKY-A protocols (implementation in Appendix A).
Function Description

queryMetadata(du) Obtains the correctly signed file metadata stored in the container du of n− f
clouds used to store the data unit and returns it in an array.

writeQuorum(du, name,value) For every cloud i ∈ {0, ...,n−1}, writes the value[i] on a file named name on the
container du in that cloud and waits for write confirmations from n− f clouds.

The key idea of the write algorithm (lines 1-13) is to first write the value in a quorum of clouds
(line 8), then write the corresponding metadata (line 12), as illustrated in Figure 3(a). This order of
operations ensures that a reader will only be able to read metadata for a value already stored in the
clouds. Additionally, when a writer first writes a data unit du (lines 3-5, max verdu initialized with
0), it first contacts the clouds to obtain the metadata with the greatest version number, then updates
the max verdu variable with the current version of the data unit.

The read algorithm starts by fetching the metadata files from a quorum of clouds (line 16) and
choosing the one with greatest version number (line 17). After that, the algorithm enters in a loop
where it keeps looking at the clouds until it finds the data unit version corresponding to this version
number and the cryptographic hash found in the chosen metadata (lines 18-26). Inside of this loop,
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ALGORITHM 1: DEPSKY-A read and write protocols.
1 procedure DepSkyAWrite(du,value)
2 begin
3 if max verdu = 0 then
4 m ←− queryMetadata(du)
5 max verdu ←− max({m[i].ver : 0 ≤ i ≤ n−1})
6 new ver ←− max verdu +1
7 v[0 .. n−1]←− value
8 writeQuorum(du,“value-”+new ver,v)
9 new meta ←− 〈new ver,H(value)〉

10 sign(new meta,Kdu
rw
)

11 v[0 .. n−1]←− new meta
12 writeQuorum(du,“metadata”,v)
13 max verdu ←− new ver

14 function DepSkyARead(du)
15 begin
16 m ←− queryMetadata(du)
17 max id ←− i : m[i].ver = max({m[i].ver : 0 ≤ i ≤ n−1})
18 repeat
19 v[0 .. n−1]←−⊥
20 parallel for 0 ≤ i < n−1 do
21 tmpi ←− cloudi.get(du,“value-” +m[max id].ver)
22 if H(tmpi) = m[max id].digest then v[i]←− tmpi
23 else v[i]←− ERROR
24 wait until (∃i : v[i] )=⊥ ∧v[i] )= ERROR)∨ (|{i : v[i] )=⊥}|≥ n− f )
25 for 0 ≤ i ≤ n−1 do cloudi.cancel pending()
26 until ∃i : v[i] )=⊥ ∧v[i] )= ERROR
27 return v[i]

the process fetches the file from the clouds until either it finds one value file containing the value
matching the digest on the metadata or the value is not found on at least n− f clouds1 (lines 20-24).
Finally, when a valid value is read, the reader cancels the pending RPCs, exits the loop and returns
the value (lines 25-27). The normal case execution (with some optimizations discussed in Section
3.6) is illustrated in Figure 3(b).

The rationale of why this protocol provides the desired properties is the following (proofs in the
Appendix B). Availability is guaranteed because the data is stored in a quorum of at least n− f
clouds and it is assumed that at most f clouds can be faulty. The read operation has to retrieve the
value from only one of the clouds (line 22), which is always available because (n− f )− f > 1 .
Together with the data, signed metadata containing its cryptographic hash is also stored. Therefore,
if a cloud is faulty and corrupts the data, this is detected when the metadata is retrieved. Moreover,
the fact that metadata files are self-verifiable (i.e., signed) and quorums overlap in at least f + 1
clouds (one correct) ensures the last written metadata file will be read. Finally, the outer loop of
the read ensures that the read of a value described on a read metadata will be repeated until it
is available, which will eventually hold since a metadata file is written only after the data file is
written.

3.5. DEPSKY-CA – Confidential & Available DepSky
The DEPSKY-A protocol has two main limitations. First, a data unit of size S consumes n × S
storage capacity of the system and costs on average n times more than if it was stored in a single

1This is required to avoid the process to block forever waiting replies from f faulty clouds.
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cloud. Second, it stores the data in cleartext, so it does not give confidentiality guarantees. To cope
with these limitations we employ an information-efficient secret sharing scheme [Krawczyk 1993]
that combines symmetric encryption with a classical secret sharing scheme and an optimal erasure
code to partition the data in a set of blocks in such a way that (i.) f + 1 blocks are necessary to
recover the original data and (ii.) f or less blocks do not give any information about the stored
data2. The overall process is illustrated in Figure 4.

Cloud A Cloud B Cloud C Cloud D 

S1 S2 S3 S4 

share 

K 

generated 
key Data 

disperse 

F1 F2 F3 F4 

F1 S1 F2 S2 F3 S3 F4 S4 

encrypt 

Fig. 4. The combination of symmetric encryption, secret sharing and erasure codes in DEPSKY-CA.

The DEPSKY-CA protocol integrates these techniques with the DEPSKY-A protocol (Algorithm
2). The additional cryptographic and coding functions needed are in Table II. The differences of the
DEPSKY-CA protocol in relation to DEPSKY-A are the following: (1.) the encryption of the data,
the generation of the key shares and the encoding of the encrypted data on DepSkyCAWrite (lines
7-10) and the reverse process on DepSkyCARead (lines 33-35), as shown in Figure 4; (2.) the data
stored in cloudi is composed of the share of the key s[i] and the encoded block v[i] (line 12); and (3.)
f +1 replies are necessary to read the data unit’s current value instead of one on DEPSKY-A (lines
30 and 32). Additionally, instead of storing a single digest on the metadata file, the writer generates
and stores n digests, one for each cloud. These digests are accessed as different positions of a vector
stored in the digest field of a metadata. If a key distribution infrastructure is available, or if readers
and writers share a common key k for each data unit, the secret sharing scheme can be removed
(lines 7, 9 and 34 are not necessary).

The rationale of the correctness of the protocol is similar to the one for DEPSKY-A (proofs
also in the Appendix B). The main differences are those already pointed out: encryption prevents
individual clouds from disclosing the data; secret sharing allows storing the encryption key in the
cloud without f faulty clouds being able to reconstruct it; the erasure code scheme reduces the size
of the data stored in each cloud.

3.6. Optimizations
This section introduces two optimizations that can make the protocols more efficient and cost-
effective. In Section 8 we evaluate the impact of these optimizations on the protocols.

Write. In the DEPSKY-A and DEPSKY-CA write algorithms, a value file is written using the
function writeQuorum (see Table I). This function tries to write the file on all clouds and waits
for confirmation from a quorum. A more cost-effective solution would be to try to store the value
only on a preferred quorum, resorting on extra clouds only if the reception of write confirmations
from the quorum of clouds is not received until a timeout. This optimization can be applied both
to DEPSKY-A and DEPSKY-CA to make the data be stored only in n− f out-of n clouds, which

2Erasure codes alone cannot satisfy this confidentiality guarantee.
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ALGORITHM 2: DEPSKY-CA read and write protocols.
1 procedure DepSkyCAWrite(du,value)
2 begin
3 if max verdu = 0 then
4 m ←− queryMetadata(du)
5 max verdu ←− max({m[i].version : 0 ≤ i ≤ n−1})
6 new ver ←− max verdu +1
7 k ←− generateSecretKey()
8 e ←− E(value,k)
9 s[0 .. n−1]←− share(k,n, f +1)

10 v[0 .. n−1]←− encode(e,n, f +1)
11 for 0 ≤ i < n−1 do
12 d[i]←− 〈s[i],v[i]〉
13 h[i]←− H(d[i])
14 writeQuorum(du,“value-”+new ver,d)
15 new meta ←− 〈new ver,h〉
16 sign(new meta,Kdu

rw
)

17 v[0 .. n−1]←− new meta
18 writeQuorum(du,“metadata”,v)
19 max verdu ←− new ver

20 function DepSkyCARead(du)
21 begin
22 m ←− queryMetadata(du)
23 max id ←− i : m[i].ver = max({m[i].ver : 0 ≤ i ≤ n−1})
24 repeat
25 d[0 .. n−1]←−⊥
26 parallel for 0 ≤ i ≤ n−1 do
27 tmpi ←− cloudi.get(du, “value-” +m[max id].ver)
28 if H(tmpi) = m[max id].digest[i] then d[i]←− tmpi
29 else d[i]←− ERROR
30 wait until (|{i : d[i] )=⊥ ∧d[i] )= ERROR}|> f )∨ (|{i : d[i] )=⊥}|> n− f )
31 for 0 ≤ i ≤ n−1 do cloudi.cancel pending()
32 until |{i : d[i] )=⊥ ∧d[i] )= ERROR}|> f
33 e ←− decode(d.e,n, f +1)
34 k ←− combine(d.s,n, f +1)
35 return D(e,k)

Table II. Functions used in the DEPSKY-CA protocols.
Function Description
generateSecretKey() Generates a random secret key.
E(v,k)/D(e,k) Encrypts v and decrypts e with key k.
encode(d,n, t) Encodes d on n blocks in such a way that t are required to recover it.
decode(db,n, t) Decodes array db of n blocks, with at least t valid, to recover d.

share(s,n, t) Generates n shares of s in such a way that at least t of them are required
to obtain any information about s.

combine(ss,n, t) Combines shares on array ss of size n containing at least t correct shares
to obtain the secret s.

can decrease the DEPSKY storage cost by a factor of n− f
n , possibly with some loss in terms of

availability and durability of the data.
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Read. The DEPSKY-A algorithm described in Section 3.4 tries to read the most recent version
of the data unit from all clouds and waits for the first valid reply to return it. In the pay-per-use
model this is far from ideal because the user will pay for n data accesses. A lower-cost solution is to
use some criteria to sort the clouds and try to access them sequentially, one at time, until the value
is obtained. The sorting criteria can be based on access monetary cost (cost-optimal), the latency
of queryMetadata on the protocol (latency-optimal), a mix of the two or any other more complex
criteria (e.g., a history of the latency and faults of the clouds).

This optimization can also be used to decrease the monetary cost of the DEPSKY-CA read oper-
ation. The main difference is that instead of choosing one of the clouds at a time to read the data,
f +1 of them are chosen.

4. DEPSKY EXTENSIONS
In this section we present a set of additional protocols that may be useful for implementing real
systems using DEPSKY.

4.1. Supporting Multiple Writers – Locking with Storage Clouds
The DEPSKY protocols presented do not support concurrent writes, which is sufficient for many
applications where each process writes on its own data units. However, there are applications in
which this is not the case. An example is a fault-tolerant storage system that uses DEPSKY as its
back-end object store. This system could have more than one node with the writer role writing in
the same data unit(s) for fault tolerance reasons. If the writers are in the same network, coordination
services like ZooKeeper [Hunt et al. 2010] or DepSpace [Bessani et al. 2008] can be used to elect
a leader and coordinate the writes. However, if the writers are scattered through the Internet this
solution is not practical without trusting the site in which the coordination service is deployed (and
even in this case, the coordination service may be unavailable due to network issues). Open coordi-
nation services such as WSDS [Alchieri et al. 2008] can still be used, but they require an Internet
deployment.

The solution we advocate is a low contention lock mechanism that uses the cloud-of-clouds itself
to maintain lock files on a data unit. These files specify which is the writer and for how much time
it has write access to the data unit. However, for this solution to work, two additional assumptions
must hold. The first one is related with the use of leases. The algorithm requires every contending
writer to have synchronized clocks with a precision of ∆. This can be ensured in practice by making
all writers that want to lock a data unit synchronize their clocks with a common NTP (Network
Time Protocol [Mills 1992]) server with a precision of ∆

2 . The second assumption is related with the
consistency of the clouds. We assume regular semantics [Lamport 1986] for the creation and listing
of files on a container. Although this assumption appears to be too strong, object storage services
like Amazon S3 already ensure this kind of consistency for object creation, sometimes called read-
after-write [Amazon Web Services 2011]. Anyway, in Section 6 we discuss the effects of weakly
consistent clouds on this protocol.

The lock protocol is described in Algorithm 3, and it works as follows. A process c that wants to
be a writer (and has permission to be), first lists files on the data unit container on a quorum of clouds
and tries to find a valid file called lock-c’-T’ with c′ )= c and local time on the process smaller than
T ′+∆ (lines 5-10). If such file is found in some cloud, it means that some other process c′ holds the
lock for this data unit and c will sleep for a random amount of time before trying to acquire the lock
again (line 21). If the file is not found, c can write a lock file named lock-c-T containing a digital
signature of the file name on all clouds (lines 11 and 12), being T = local clock+LEASE TIME. In
the last step, c lists again all files in the data unit container searching for valid and not expired lock
files from other processes (lines 13-17). If a file like that is found, c removes the lock file it wrote
from the clouds and sleeps for a small random amount of time before trying to run the protocol
again (lines 18-21). Otherwise, c becomes the single-writer for the data unit until T .
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The protocol also uses a predicate valid that verifies if the lock file was not created by a faulty
cloud. The predicate is true if the lock file is either returned by f + 1 clouds or its contents is
correctly signed by its owner (line 28).

ALGORITHM 3: DEPSKY data unit locking by writer c.
1 function DepSkyLock(du)
2 begin
3 lock id ←⊥
4 repeat

// list lock files on all clouds to see if the du is locked
5 L[0 .. n−1]←−⊥
6 parallel for 0 ≤ i ≤ n−1 do
7 L[i]←− cloudi.list(du)
8 wait until (|{i : L[i] )=⊥}|> n− f )
9 for 0 ≤ i ≤ n−1 do cloudi.cancel pending()

10 if ) ∃i : ∃lock-c’-T’∈ L[i] : c′ )= c∧ valid(L,lock-c’-T’,du)∧ (T ′+∆ > local clock) then
// create a lock file for the du and write it in the clouds

11 lock id ←“lock-”+c+“-”+(local clock+LEASE TIME)
12 writeQuorum(du, lock id,sign(lock id,Kdu

rc
))

// list the lock files again to detect contention
13 L[0 .. n−1]←−⊥
14 parallel for 0 ≤ i ≤ n−1 do
15 L[i]←− cloudi.list(du)
16 wait until (|{i : L[i] )=⊥}|> n− f )
17 parallel for 0 ≤ i ≤ n−1 do cloudi.cancel pending()
18 if ∃i : ∃lock-c’-T’∈ L[i] : c′ )= c∧ valid(L,lock-c’-T’,du)∧ (T ′+∆ > local clock) then
19 DepSkyUnlock(lock id)
20 lock id ←⊥

21 if lock id =⊥ then sleep for some time
22 until lock id )=⊥
23 return lock id

24 procedure DepSkyUnlock(lock id)
25 begin
26 parallel for 0 ≤ i < n−1 do
27 cloudi.delete(du,lock id)

28 predicate valid(L,lock-c’-T’,du)≡ (|{i : lock-c’-T’∈ L[i]}|> f ∨ verify(lock-c’-T’,Kdu
uc
))

Several remarks can be made about this protocol. First, the backoff strategy is necessary to ensure
that two processes trying to become writers at the same time never succeed. Second, locks can
be renewed periodically to ensure existence of a single writer at every moment of the execution.
Unlocking can be easily done through the removal of the lock files (lines 24-27). Third, this lock
protocol is only obstruction-free [Herlihy et al. 2003]: if several process try to become writers at
the same time, it is possible that none of them is successful. However, due to the backoff strategy
used, this situation should be very rare on the envisioned deployments. Finally, it is important to
notice that the unlock procedure is not fault-tolerant: in order to release a lock, the lock file has to
be deleted from all clouds; a malicious cloud can still show the removed lock file disallowing lock
acquisition by other writers. However, given the finite validity of a lock, this problem can only affect
the system for a limited period of time, after which the problematic lock expires.
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The proof that this protocol satisfies mutual exclusion and obstruction-freedom is presented in
Appendix C.

4.2. Management Operations
Besides read, write and lock, DEPSKY provides other operations to manage data units. These oper-
ations and underlying protocols are briefly described in this section.

Creation and destruction. Creating a data unit can be easily accomplished by invoking the create
operation in each individual cloud. In contention-prone applications, the creator should execute the
locking protocol of the previous section before executing the first write to ensure it is the single
writer of the data unit.

The destruction of a data unit is done in a similar way: the writer simply removes all files and the
container that stores the data unit by calling remove in each individual cloud.

Garbage collection. As already discussed in Section 3.3, we choose to keep old versions of the
value of the data unit on the clouds to improve the dependability of the storage system. However,
after many writes the amount of storage used by a data unit can become very high and thus some
garbage collection is necessary. The protocol for doing that is very simple: a writer just lists all files
named “value-version” in the data unit container and removes all those with version smaller than
the oldest version it wants to keep in the system.

Cloud reconfiguration. Sometimes one cloud can become too expensive or too unreliable to be
used for storing DEPSKY data units. For such cases DEPSKY provides a reconfiguration protocol
that substitutes one cloud by another. The protocol is the following: (1.) the writer reads the data
(probably from the other clouds and not from the one being removed); (2.) creates the data unit
container on the new cloud; (3.) executes the write protocol on the clouds not removed and the
new cloud; (4.) deletes the data unit from the cloud being removed. After that, the writer needs to
inform the readers that the data unit location was changed. This can be done writing a special file
on the data unit container of the remaining clouds informing the new configuration of the system.
A process will accept the reconfiguration if this file is read from at least f + 1 clouds. Notice that
this protocol only works if there are no writes being executed during the reconfiguration, which
might implies the use of the locking protocol described in the previous subsection if the data unit
has multiple writers.

5. CLOUD-OF-CLOUDS ACCESS CONTROL
In this section we briefly discuss how cloud storage access control can be used to set up the access
control for management, writers and readers of DEPSKY data units.

Management. The management operations described in Section 4.2 can only be executed by writ-
ers of a data unit, with the exception of the creation and destruction of a data unit, that needs to be
carried on by the data unit’s owner, that has write rights on the data unit container parent directory.

Writers. If a data unit has more than one possible writer, all of them should have the write rights
on the data unit container. Moreover, all writers first write their public keys on the DU container
before trying to acquire the lock for writing on the data unit. Notice that it is possible to have a
single writer account, with a single shared writer private and public key pair, being used by several
writer processes (e.g., for fault tolerance reasons). Finally, when a writer does not need to write in a
data unit anymore, it removes its public key from the data unit container on all clouds.

Readers. The readers of a data unit are defined by the set of accounts that have read access to the
data unit container. It is worth to mention that some clouds such as Rackspace Files and Nirvanix
CDN do not provide this kind of rich access control. These clouds only allow a file to be confidential
(accessed only by its writer) or public (accessed by everyone that knows its URL). However, other
popular storage clouds like Amazon S3, Windows Azure Blob Service and Google Drive support
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ACLs for giving read (and write) access to the files stored in a single account. We expect this kind
of functionality to be available in most storage clouds in the near future.

Finally, all readers of a data unit consider that a metadata or lock file is correctly signed if the
signature was produced with any of the writer keys available on the data unit container of f + 1
clouds.

6. CONSISTENCY PROPORTIONALITY
Both DEPSKY-A and DEPSKY-CA protocols implement single-writer multi-reader regular reg-
isters if the clouds being accessed provide regular semantics [Lamport 1986]. However, several
clouds do not guarantee this semantics, but instead provide read-after-write (which is similar to
the safe semantics [Lamport 1986]) or eventual consistency [Vogels 2009] for the data stored (e.g.,
Amazon S3 [Ama ]).

In fact, the DEPSKY read and write protocols are consistency-proportional in the following sense:
if the underlying clouds support a consistency model C , the DEPSKY protocols provide consistency
model C . This holds for any C among the following: eventual [Vogels 2009], read-your-writes,
monotonic reads, writes-follow-reads, monotonic writes [Terry et al. 1994] and read-after-write
[Lamport 1986]. These models are briefly described in Table III. A proof that DEPSKY provides
consistency proportionality can be found in Appendix D.

Table III. Consistency models supported by DEPSKY.
Consistency Model Brief Description
Eventual [Vogels 2009] Written values will be eventually reflected in read operations.
Read-your-writes [Terry et al. 1994] Read operations reflect previous writes.
Monotonic reads [Terry et al. 1994] Successive reads reflect a nondecreasing set of writes.
Writes-follow-reads [Terry et al. 1994] Writes are propagated after reads on which they depend.
Monotonic writes [Terry et al. 1994] Writes are propagated after writes that logically precede them.
Read-after-write [Lamport 1986] After a write completes, it will be reflected in any posterior read.

Notice that if the underlying clouds are heterogeneous in terms of consistency guarantees, DEP-
SKY provides the weakest consistency among those provided. This comes from the fact that the
consistency of a read directly depends of the reading of the last written metadata file. Since we use
read and write quorums with at least f +1 clouds in their intersections, and since at most f clouds
may be faulty, the read of the most recently written metadata file may happen in the single correct
cloud in such intersection. If this cloud does not provide strong consistency, the whole operation
will be weakly consistent, following the consistency model of this cloud.

A problem with not having regular consistent clouds is that the lock protocol may not work
correctly. After listing the contents of a container and not seeing a file, a process cannot conclude
that it is the only writer. This problem can be minimized if the process waits a while between lines
12 and 13 of Algorithm 3. However, the mutual exclusion guarantee will only be satisfied if the
wait time is greater than the time for a data written to be seen by every other reader. Unfortunately,
no eventually consistent cloud of our knowledge provides this kind of timeliness guarantee, but we
can experimentally discover the amount of time needed for a read to propagate on a cloud with the
desired coverage and use this value in the aforementioned wait. Moreover, to ensure some safety
even when two writes happen in parallel, we can include a unique id of the writer (e.g., the hash of
part of its private key) as the decimal part of its timestamps, just like it is done in most Byzantine
quorum protocols (e.g., [Malkhi and Reiter 1998a]). This simple measure allows the durability of
data written by concurrent writers (the name of the data files will be different), even if the metadata
file may point to different versions on different clouds.

7. DEPSKY IMPLEMENTATION
We have implemented a DEPSKY prototype in Java as an application library that supports the read
and write operations. The code is divided in three main parts: (1) data unit manager, that stores the
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definition and information of the data units that can be accessed; (2) system core, that implements
the DEPSKY-A and DEPSKY-CA read and write protocols; and (3) cloud drivers, which implements
the logic for accessing the different clouds. The current implementation has 5 drivers available (the
four clouds used in the evaluation - see next section - and one for storing data locally), but new
drivers can be easily added. The overall implementation comprises about 2900 lines of code, being
1100 lines for the drivers. The most recent version of the code is available at http://code.
google.com/p/depsky/.

The DEPSKY code follows a model of one thread per cloud per data unit in such a way that the
cloud accesses can be executed in parallel (as described in the algorithms). All communications
between clients and cloud providers are made over HTTPS (secure and private channels) using the
REST APIs supplied by the storage cloud providers. Some of the clouds are accessed using the
libraries available from the providers. To avoid problems due to the differences in implementation,
in particular with different retransmission timeouts and retry policies, we disabled this feature from
the drivers and implemented it on our code. The result is that all clouds are accessed using the same
timeout and number of retries in case of failure.

The prototype employs speculation to execute the two phases of the read protocols in parallel.
More precisely, as soon as a metadata file is read from a cloud i, the system starts fetching the
data file from i, without waiting for n− f metadata to find the one with greatest version number.
The idea is to minimize access latency (which varies significantly in the different clouds) under the
assumption that contention between reads and writes is rare and Byzantine faults seldom happen.

Our implementation makes use of several building blocks: RSA with 1024 bit keys for signatures,
SHA-1 for cryptographic hashes, AES for symmetric cryptography, Shoenmakers’ PVSS scheme
[Schoenmakers 1999] for secret sharing with 192 bits secrets and the classic Reed-Solomon for
erasure codes [Plank 2007]. Most of the implementations used come from the Java 6 API, while
Java Secret Sharing [Bessani et al. 2008] and Jerasure [Plank 2007] were used for secret sharing
and erasure codes, respectively.

8. EVALUATION
In this section we present an evaluation of DEPSKY which tries to answer three main questions:
What is the additional cost in using replication on storage clouds? What are the advantages and
drawbacks in terms of performance and availability of using multiple clouds to store data? What
are the relative costs and benefits of the two DEPSKY protocols?

The evaluation focus on the case of n = 4 and f = 1, which we expect to be the common deploy-
ment setup of our system for two reasons: (1.) f is the maximum number of faulty cloud storage
providers, which are very resilient and so faults should be rare; (2.) there is additional complexity
in setting up a great number of accounts in different clouds to be used in DEPSKY. Our evaluation
uses the following cloud storage services with their default configurations: Amazon S3, Windows
Azure Blob Store, Nirvanix CDN and Rackspace Files.

8.1. Monetary cost evaluation
Storage cloud providers usually charge their users based on the number of operations executed
and the amount of data uploaded, downloaded and stored on them. Table IV presents the cost in
US Dollars of executing 10000 reads and writes using the DEPSKY data model (with metadata
and supporting many versions of a data unit) considering three data unit sizes: 100kB, 1MB and
10MB. This table includes only the costs of the operations being executed (invocations, upload and
download), not the data storage, which will be discussed later. All estimations presented in this
section were calculated based on the values charged by the four clouds at September 25th, 2010.

In the table, the columns “DS-A”, “DS-A opt”, “DS-CA” e “DS-CA opt” present the costs of
using the DEPSKY protocols with the optimizations discussed in Section 3.6 disabled and enabled,
respectively. The other columns present the costs for storing the data unit (DU) in a single cloud.

The table shows that the cost of DEPSKY-A with n = 4 and without optimizations is roughly
the sum of the costs of using the four clouds, as expected. However, if the read optimization is
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Table IV. Estimated costs per 10000 operations (in US Dollars). DEPSKY-A (DS-A) and DEPSKY-CA (DS-CA)
costs are computed for the realistic case of 4 clouds ( f = 1). The “DS-A opt” and “DS-CA opt” setups consider the
cost-optimal version of the protocols with no failures.

Operation DU DS-A DS-A opt DS-CA DS-CA opt Amazon Rackspace Azure Nirvanix

10000
Reads

100kB 0.64 0.14 0.32 0.14 0.14 0.21 0.14 0.14
1MB 6.55 1.47 3.26 1.47 1.46 2.15 1.46 1.46
10MB 65.5 14.6 32.0 14.6 14.6 21.5 14.6 14.6

10000
Writes

100kB 0.60 0.32 0.30 0.17 0.14 0.08 0.09 0.29
1MB 6.16 3.22 3.08 1.66 1.46 0.78 0.98 2.93
10MB 61.5 32.2 30.8 16.6 14.6 7.81 9.77 29.3

employed, the less expensive cloud cost dominates the cost of executing reads (only one out-of four
clouds is accessed in fault-free executions). If the optimized write is employed, the data file will
be written only on a preferred quorum excluding the most expensive cloud (Nirvanix), and thus
the costs will be substantially smaller. For DEPSKY-CA, the cost of reading and writing without
optimizations is approximately 50% of DEPSKY-A’s due to the use of information-optimal erasure
codes that make the data stored on each cloud roughly 50% of the size of the original data. The
optimized version of DEPSKY-CA also reduces the read cost to half of the sum of the two less
costly clouds due to its access to only f +1 clouds in the best case, while the write cost is reduced
since Nirvanix is not used. Recall that the costs for the optimized versions of the protocol account
only for the best case in terms of monetary costs: reads and writes are executed on the required less
expensive clouds. In the worst case, the more expensive clouds will also be used.

The storage costs of a 1MB data unit for different numbers of stored versions is presented in
Figure 5. We present the curves only for one data unit size because other size costs are directly
proportional.
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Fig. 5. Storage costs of a 1MB data unit for different numbers of stored versions in different DEPSKY setups and clouds.

The results depicted in the Figure 5(a) show that the cost of DEPSKY-CA storage without em-
ploying preferred quorums is roughly half the cost of using DEPSKY-A and twice the cost of using
a single cloud. This is no surprise since the storage costs are directly proportional to the amount of
data stored on the cloud, and DEPSKY-A stores 4 times the data size, while DEPSKY-CA stores 2
times the data size and an individual cloud just stores a single copy of the data.

Figure 5(b) shows some results considering the case in which the data stored using DEPSKY-CA
is stored only on a preferred quorum of clouds (see Section 3.6). The figure contains values for
the less expensive preferred quorum (Amazon S3, Windows Azure and Rackspace) and the most
expensive preferred quorum (Nirvanix, Windows Azure and Rackspace) together with Amazon S3

ACM Transactions on Storage, Vol. 00, No. 00, Article 00, Publication date: March 2013.



00:18 Bessani et al.

and DEPSKY-CA writing on all clouds for comparison. The results show that the use of preferred
quorums decreases the storage costs between 15% (most expensive quorum) to 38% (less expensive
quorum) when compared to the full replicated DEPSKY-CA. Moreover, in the best case, DEPSKY-
CA can store data with an additional cost of only 23% more than the average cost to store data on a
single cloud and twice the cost of the least expensive cloud (Amazon S3).

Notice that the metadata costs are almost irrelevant when compared with the data size since its
size is less than 500 bytes.

8.2. Performance and availability evaluation
In order to understand the performance of DEPSKY in a real deployment, we used PlanetLab to run
several clients accessing a cloud-of-clouds composed of popular storage cloud providers. This sec-
tion explains our methodology and presents the obtained results in terms of read and write latency,
throughput and availability.

Methodology. The latency measurements were obtained using a logger application that tries to
read a data unit from six different clouds: the four storage clouds individually and the two clouds-
of-clouds implemented with DEPSKY-A and DEPSKY-CA.

The logger application executes periodically a measurement epoch, which comprises: read the
data unit (DU) from each of the clouds individually, one after another; read the DU using DEPSKY-
A; read the DU using DEPSKY-CA; sleep until the next epoch. The goal is to read the data through
different setups within a time period as small as possible in order to minimize the impact of Internet
performance variations.

We deployed the logger on eight PlanetLab machines across the Internet, on five continents. In
each of these machines three instances of the logger were started for different DU sizes: 100kB (a
measurement every 5 minutes), 1MB (a measurement every 10 minutes) and 10MB (a measure-
ment every 30 minutes). These experiments took place during two months, but the values reported
correspond to measurements done between September 10, 2010 and October 7, 2010.

In the experiments, the local costs, which the protocols incur due to the use of cryptography and
erasure codes, are negligible for DEPSKY-A and account for at most 5% of the read and 10% of the
write latencies on DEPSKY-CA.

Reads. Figure 6 presents the 50% and 90% percentile of all observed latencies of the reads ex-
ecuted (i.e., the values in which 50% and 90% of the observations fell below). These experiments
were executed without the (monetary) read optimization described in Section 3.6. The number of
reads executed on each site is presented on the second column of Table VII.

Based on the results presented in the figure, several points can be highlighted. First, DEPSKY-A
presents the best latency in all cases but one. This is explained by the fact that it waits for 3 out-of 4
copies of the metadata but only one of the data, and it usually obtains it from the best cloud available
during the execution. Second, DEPSKY-CA’s latency is closely related with the second best cloud
storage provider, since it waits for at least 2 out-of 4 data blocks. Finally, there is a huge variance
between the performance of the cloud providers when accessed from different parts of the world.
This means that no provider covers all areas in the same way, and highlights another advantage of
the cloud-of-clouds: we can adapt our accesses to use the best cloud for a certain location.

The effect of optimizations. An interesting observation of our DEPSKY-A (resp. DEPSKY-CA)
read experiments is that in a significant percentage of the reads the cloud that replied metadata
faster (resp. the two faster in replying metadata) is not the first to reply the data (resp. the two
first in replying the data). More precisely, in 17% of the 60768 DEPSKY-A reads and 32% of the
60444 DEPSKY-CA reads we observed this behavior. A possible explanation for this could be that
some clouds are better serving small files (DEPSKY metadata is around 500 bytes) and not so good
on serving large files (like the 10MB data unit of some experiments). This means that the read
optimizations of Section 3.6 will make the protocol latency worse in these cases. Nonetheless we
think this optimization is valuable since the rationale behind it worked for more than 4/5 (DEPSKY-
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Fig. 6. 50th/90th-percentile latency (in seconds) for 100kB, 1MB and 10MB DU read operations with PlanetLab clients
located on different parts of the globe. The bar names are S3 for Amazon S3, WA for Windows Azure, NX for Nirvanix, RS
for Rackspace, A for DEPSKY-A and CA for DEPSKY-CA. DEPSKY-CA and DEPSKY-A are configured with n = 4 and
f = 1.

A) and 2/3 (DEPSKY-CA) of the reads in our experiments, and its use can decrease the monetary
costs of executing a read by a quarter and half of the cost of the non-optimized protocol, respectively.

Table V shows, for each cloud (DEPSKY-A) or pair of clouds (DEPSKY-CA), the percentage
of read operations that fetched data files from these clouds (i.e., these clouds answered first) for
different client locations.

The first four lines of the table show that Rackspace was the cloud that provided the data file faster
for most DEPSKY-A clients, while Amazon S3 provided the data more frequently for European
clients. Interestingly, although these two clouds are consistently among the most used in operations
coming from different parts of the world, it is difficult to decide between Windows Azure and
Nirvanix to compose the preferred quorum to be used. Nirvanix showed to be fast for Asian clients
(e.g., 45% of reads in Japan), while Windows Azure provided excellent performance for the UK
(e.g., 40% of reads fetched data from it). This tie can be broken considering the expected client
location, the performance of writes and the economical costs.

Considering DEPSKY-CA, where two data files are required to rebuild the original data, one can
see that there are three possible preferred quorums for different locations: S3-RS-NX (Brazil, US-
PA, New Zealand, Japan and Spain), NX-RS-WA (US-CA and China) and S3-WA-RS (UK). Again,
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Table V. Percentage of reads in which the required data blocks were fetched from
a specific cloud (or pair of clouds) for different locations. The clouds names are S3
for Amazon S3, WA for Windows Azure, NX for Nirvanix and RS for Rackspace.
Results for single clouds stand for DEPSKY-A reads while results for a pair of clouds
correspond to the 2 blocks read in DEPSKY-CA to rebuild the data.

Cloud(s) Brazil US-PA US-CA New Z. Japan China Spain UK
S3 4 3 0 1 0 1 65 59
NX 0 2 0 14 45 2 2 0
RS 94 94 99 84 55 97 31 0
WA 1 1 0 0 - 0 2 40

S3-RS 53 61 2 3 1 3 67 2
S3-NX 0 1 0 0 0 1 3 0
S3-WA 0 1 - 0 - 0 2 81
NX-WA 0 1 0 0 0 1 1 6
NX-RS 30 20 87 97 99 81 15 0
RS-WA 17 16 11 0 0 14 12 10

the choice of the quorum used initially needs to be based on the other factors already mentioned.
If one considers only the cost factor, the choice would be S3-RS-WA for both DEPSKY-A and
DEPSKY-CA, since Windows Azure is much less expensive than Nirvanix (see Figure 5(b) in Sec-
tion 8.1). On the other hand, as will be seen in the following, the perceived availability of Windows
Azure was worse than Nirvanix in our experiments.

Writes. We modified our logger application to execute writes instead of reads and deployed it on
the same machines we executed the reads. We ran it for two days in October 2010 and collected
the logs, with at least 500 measurements for each location and data size. These experiments were
executed without the (monetary) read optimization described in Section 3.6. For the sake of brevity,
we do not present all these results, but illustrate the costs of write operations for different data sizes
and locations discussing only the observed results for UK and US-CA clients. The other locations
present similar trends. These experiments were executed without the preferred quorum optimization
described in Section 3.6. The 50% and 90% percentile of the latencies observed are presented in
Figure 7.
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Fig. 7. 50th/90th-percentile latency (in seconds) for 100kB, 1MB and 10MB DU write operation for a PlanetLab client at
the UK (a) and US-CA (b). The bar names are the same as in Figure 6. DEPSKY-A and DEPSKY-CA are configured with
n = 4 and f = 1.

The latencies in the figure consider the time of writing the data on all four clouds (file sent to 4
clouds, wait for only 3 confirmations) and the time of writing the new metadata. As can be observed
in the figure, the latency of a write is of the same order of magnitude of a read of a DU of the
same size (this was observed on all locations). It is interesting to observe that, while DEPSKY’s
read latency is close to the cloud with best latency, the write latency is close to the worst cloud.
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This comes from the fact that in a write DEPSKY needs to upload data blocks to all clouds, which
consumes more bandwidth at the client side and requires replies from at least three clouds.

The figure also illustrates the big differences between the performance of the system depending
on the client location. This difference is specially relevant when looking at the 90% values reported.

Secret sharing overhead. As discussed in Section 3.5, if a key distribution mechanism is avail-
able, secret sharing could be removed from DEPSKY-CA. However, the effect of this on read and
write latencies would be negligible since share and combine (lines 9 and 34 of Algorithm 2) account
for less than 3 and 0.5 ms, respectively. It means that secret sharing is responsible for less than 0.1%
of the protocol’s latency in the worst case3.

Throughput. Table VI shows the throughput in the experiments for two locations: UK and US-
CA. The values are of the throughput observed by a single client, not by multiple clients as done
in some throughput experiments. The table shows read and write throughput for both DEPSKY-A
and DEPSKY-CA, together with the values observed from Amazon S3, just to give a baseline. The
results from other locations and clouds follow the same trends discussed here.

Table VI. Throughput observed in kB/s on all reads and writes executed for the case of 4 clouds ( f = 1).

Operation DU Size UK US-CA
DEPSKY-A DEPSKY-CA Amazon S3 DEPSKY-A DEPSKY-CA Amazon S3

100kB 189 135 59.3 129 64.9 31.5
Read 1MB 808 568 321 544 306 104

10MB 1479 756 559 780 320 147
100kB 3.53 4.26 5.43 2.91 3.55 5.06

Write 1MB 14.9 26.2 53.1 13.6 19.9 25.5
10MB 64.9 107 84.1 96.6 108 34.4

By the table it is possible to observe that the read throughput decreases from DEPSKY-A to
DEPSKY-CA and then to Amazon S3, at the same time that write throughput increases for the same
sequence. The higher read throughput of DEPSKY when compared with Amazon S3 is due to the
fact that it fetches the data from all clouds at the same time, trying to obtain the data from the fastest
cloud available. The price to pay for this benefit is the lower write throughput since data should be
written at least on a quorum of clouds in order to complete a write. This trade off appears to be a
good compromise since reads tend to dominate most workloads of storage systems.

The table also shows that increasing the size of the data unit improves throughput. Increasing
the data unit size from 100kB to 1MB improves the throughput by an average factor of 5 in both
reads and writes. By the other hand, increasing the size from 1MB to 10MB shows less benefits:
read throughput is increased only by an average factor of 1.5 while write throughput increases by
an average factor of 3.3. These results show that cloud storage services should be used for storing
large chunks of data. However, increasing the size of these chunks brings less benefit after a certain
size (1MB).

Notice that the observed throughputs are at least an order of magnitude lower than the throughput
of disk access or replicated storage in a LAN [Hendricks et al. 2007], but the elasticity of the
cloud allows the throughput to grow indefinitely with the number of clients accessing the system
(according to the cloud providers). This is actually the main reason that lead us to not trying to
measure the peak throughput of services built on top of clouds. Another reason is that the Internet
bandwidth would probably be the bottleneck of the throughput, not the clouds.

Faults and availability. During our experiments we observed a significant number of read oper-
ations on individual clouds that could not be completed due to some error. Table VII presents the
perceived availability of all setups calculated as reads completed

reads tried from different locations.

3For a more comprehensive discussion about the overhead imposed by Java secret sharing see [Bessani et al. 2008].
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Table VII. The perceived availability of all setups evaluated from different points of the Internet. The values were
calculated as reads completed

reads tried .

Location Reads Tried DEPSKY-A DEPSKY-CA Amazon S3 Rackspace Azure Nirvanix
Brazil 8428 1.0000 0.9998 1.0000 0.9997 0.9793 0.9986
US-PA 5113 1.0000 1.0000 0.9998 1.0000 1.0000 0.9880
US-CA 8084 1.0000 1.0000 0.9998 1.0000 1.0000 0.9996

New Zealand 8545 1.0000 1.0000 0.9998 1.0000 0.9542 0.9996
Japan 8392 1.0000 1.0000 0.9997 0.9998 0.9996 0.9997
China 8594 1.0000 1.0000 0.9997 1.0000 0.9994 1.0000
Spain 6550 1.0000 1.0000 1.0000 1.0000 0.9796 0.9995
UK 7069 1.0000 1.0000 0.9998 1.0000 1.0000 1.0000

The first thing that can be observed from the table is that the number of measurements taken from
each location is not the same. This happens due to the natural unreliability of PlanetLab nodes, that
crash and restart with some regularity.

There are two key observations that can be taken from Table VII. First, DEPSKY-A and DEPSKY-
CA are the two single setups that presented an availability of 1.0000 in almost all locations4. Sec-
ond, despite the fact that most cloud providers advertise providing 5 or 6 nines of availability, the
perceived availability in our experiments was lower. The main problem is that outsourcing storage
makes a company not only dependent on the provider’s availability, but also on the network avail-
ability, which some studies show to have no more than two nines of availability [Dahlin et al. 2003].
This is a fact that companies moving critical applications to the cloud have to be fully aware of.

9. RELATED WORK
Byzantine quorum systems. DEPSKY provides a single-writer multi-reader read/write register ab-

straction built on a set of untrusted storage clouds that can fail in an arbitrary way. This type of
abstraction supports an updatable data model, requiring protocols that can handle multiple versions
of stored data. This is substantially different from providing write-once, read-maybe archival storage
such as the one described in [Storer et al. 2007].

There are many protocols for Byzantine quorums systems for register implementation (e.g.,
[Goodson et al. 2004; Hendricks et al. 2007; Malkhi and Reiter 1998a; Martin et al. 2002]), however,
few of them address the model in which servers are passive entities that do not run protocol code
[Abraham et al. 2006; Attiya and Bar-Or 2003; Jayanti et al. 1998]. DEPSKY differentiates from
them in the following aspects: (1.) it decouples the write of timestamp and verification data from
the write of the new value; (2.) it has optimal resiliency (3 f + 1 servers [Martin et al. 2002]) and
employs read and write protocols requiring two communication round-trips independently of the
existence of contention, faults and weakly consistent clouds; finally, (3.) it is the first single-writer
multi-reader register implementation supporting efficient encoding and confidentiality. Regarding
(2.), our protocols are similar to others for fail-prone shared memory (or “disk quorums”), where
servers are passive disks that may crash or corrupt stored data. In particular, Byzantine disk Paxos
[Abraham et al. 2006] also presents a single-writer multi-reader regular register construction that re-
quires two communication round-trips both for reading and writing in absence of contention. How-
ever, there is a fundamental difference between this construction and DEPSKY: it provides a weak
liveness condition for the read protocol (termination only when there is a finite number of contend-
ing writes) while our protocol satisfies wait-freedom. An important consequence of this limitation
is that reads may require several communication steps when contending writes are being executed.
This same limitation appears on [Attiya and Bar-Or 2003] that, additionally, does not tolerate writer
faults. Regarding point (3.), it is worth to notice that several Byzantine storage protocols support
efficient storage using erasure codes [Cachin and Tessaro 2006; Goodson et al. 2004; Hendricks
et al. 2007], but none of them mention the use of secret sharing or the provision of confidentiality.

4This is somewhat surprising since we were expecting to have at least some faults on the client network that would disallow
it to access any cloud.
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However, it is not clear if information-efficient secret sharing [Krawczyk 1993] or some variant of
this technique could substitute the erasure codes employed on these protocols.

Perhaps the closest work to DEPSKY is the recent register emulation protocol suite presented
in [Basescu et al. 2012]. This work uses a set of fail-prone key-value stores supporting put, get,
delete and list operations (which are equivalent to the untrusted passive storage clouds we consider)
in the crash fault model to implement multi-writer multi-reader regular and atomic storage. Albeit
with similar objectives, there are many differences between this work and DEPSKY. Although it
goes one step beyond DEPSKY to provide genuine multi-writer storage, it assumes a simpler fault
model (crash), requires strong consistency from the key-value stores (linearizability) and does not
address privacy and cost-efficiency (does not integrate the register emulation with secret sharing or
erasure codes). Moreover, this work is also more theoretical-oriented and does not provide a rich
experimental evaluation as we do in DEPSKY.

Cloud storage availability. Cloud storage is a hot topic with several papers appearing recently.
However, most of these papers deal with the intricacies of implementing a storage infrastructure
inside a cloud provider (e.g., [McCullough et al. 2010]). Our work is closer to others that explore
the use of existing cloud storage services to implement enriched storage applications. There are
papers showing how to efficiently use storage clouds for file system backup [Vrable et al. 2009],
implement a database [Brantner et al. 2008], implement a log-based file system [Vrable et al. 2012]
or add provenance to the stored data [Muniswamy-Reddy et al. 2010]. However none of these works
provide guarantees like confidentiality and availability or considers a cloud-of-clouds.

Some works on this trend deal with the high-availability of stored data through the replication
of this data on several cloud providers, and thus are closely related to DEPSKY. The SafeStore
system [Kotla et al. 2007] provides an accountability layer for using a set of untrusted third-party
storage systems in an efficient way. There are at least two features that make SafeStore very different
from DEPSKY. First, it requires specific server-code on the storage cloud provider (both in the
service interface and in the internal storage nodes). Second, SafeStore does not support data sharing
among clients (called SafeStore local servers) accessing the same storage services. The HAIL (High-
Availability Integrity Layer) protocol set [Bowers et al. 2009] combines cryptographic protocols
for proof of recoveries with erasure codes to provide a software layer to protect the integrity and
availability of the stored data, even if the individual clouds are compromised by a malicious and
mobile adversary. HAIL has at least three limitations when compared with DEPSKY: it only deals
with static data (i.e., it is not possible to manage multiple versions of data), it requires that the
servers run some code, and does not provide confidentiality guarantees for the stored data.

HAIL and SafeStore are examples of replicated storage systems that use auditing protocols, usu-
ally based on algebraic signatures and erasure codes [Schwarz and Miller 2006], to verify that the
storage server (or cloud) still has the data and that it is not corrupted. DEPSKY could be extended to
support such remote auditing operations if the clouds could run a small portion of code to participate
in the challenge-response protocol involved in such auditing.

The RACS (Redundant Array of Cloud Storage) system [Abu-Libdeh et al. 2010] employs RAID-
like techniques (mainly erasure codes) [Patterson et al. 1988] to implement high-available and
storage-efficient data replication on diverse clouds. Differently from DEPSKY, RACS does not try
to solve security problems of cloud storage, but instead deals with “economic failures” and vendor
lock-in. In consequence, the system does not provide any mechanism to detect and recover from data
corruption or confidentiality violations. Moreover, it does not provide updates of the stored data. Fi-
nally, it is worth to mention that none of these works on cloud replication present an experimental
evaluation with diverse clouds as it is presented in this paper.

Cloud security. There are several works about obtaining trustworthiness from untrusted clouds.
Depot improves the resilience of cloud storage making similar assumptions to DEPSKY, namely that
storage clouds are fault-prone black boxes [Mahajan et al. 2011]. However, it uses a single cloud,
so it provides a solution that is cheaper but does not tolerate total data losses and the availability is
constrained by the availability of the cloud on top of which it is implemented. Works like SPORC
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[Feldman et al. 2010] and Venus [Shraer et al. 2010] make similar assumptions to implement ser-
vices on top of untrusted clouds. All these works consider a single cloud (not a cloud-of-clouds),
require a cloud with the ability to run code, and have limited support for cloud unavailability, which
makes them different from DEPSKY.

10. CONCLUSION
This paper presents the design, implementation and evaluation of DEPSKY, a storage service that
improves the availability and confidentiality provided by commercial storage clouds. The system
achieves these objectives by building a cloud-of-clouds on top of a set of storage clouds, combining
Byzantine quorum system protocols, cryptographic secret sharing, erasure codes and the diversity
provided by the use of several clouds. Moreover, the notion of consistency proportionality intro-
duced by DEPSKY allows the system to provide the same level of consistency of the underlying
clouds it uses for storage.

We believe DEPSKY protocols are in an unexplored region of the quorum systems design space
and can enable applications sharing critical data (e.g., financial, medical) to benefit from storage
clouds. Moreover, the few and weak assumptions required by the protocols allow them to be used to
replicate data efficiently not only on cloud storage services, but with any storage service available
(e.g., NAS disks, NFS servers, FTP servers, key-value databases).

The paper also presents an extensive evaluation of the system. The key conclusion is that it pro-
vides confidentiality and improved availability with an added cost as low as 23% of the cost of
storing data on a single cloud for a practical scenario, which seems to be a good compromise for
critical applications.
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A. AUXILIARY FUNCTIONS
Algorithm 4 presents the two auxiliary functions described in Table I and used in Algorithms 1 and
2. These two functions are similar and equally simple: the process just accesses all the n clouds in
parallel to get or put data and waits for replies from a quorum of clouds, canceling non-answered
RPCs.

B. STORAGE PROTOCOLS CORRECTNESS
This section presents correctness proofs of the DEPSKY-A and DEPSKY-CA protocols. The first
lemma states that the auxiliary functions presented in Appendix A are wait-free.

LEMMA B.1. A correct process will not block executing writeQuorum or queryMetadata.

PROOF. Both operations require n− f clouds to answer the put and get requests. For write-
Quorum, these replies are just acks and they will always be received since at most f clouds can be
faulty. For the queryMetadata, the operation is finished only if one metadata file is available. Since
we are considering only non-malicious writers, a metadata written in a cloud is always valid and
thus correctly signed using Kdu

rw . It means that a valid metadata file will be read from at least n− f
clouds and the process will choose one of these files and finish the algorithm.

The next two lemmas state that if a correctly signed metadata is obtained from the cloud providers
(using queryMetadata) the corresponding data can also be retrieved and that the metadata stored on
DEPSKY-A and DEPSKY-CA satisfy the properties of a regular register [Lamport 1986] (if the
clouds provide this consistency semantics).
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ALGORITHM 4: DEPSKY-A and DEPSKY-CA auxiliary functions.
1 function queryMetadata(du)
2 begin
3 m[0 .. n−1] ←− ⊥
4 parallel for 0 ≤ i ≤ n−1 do
5 tmpi ←− cloudi.get(du, “metadata” )

6 if verify(tmpi,Kdu
uw
) then m[i]←− tmpi

7 wait until |{i : m[i] )=⊥}|≥ n− f
8 for 0 ≤ i ≤ n−1 do cloudi.cancel pending()
9 return m

10 procedure writeQuorum(du,name,value)
11 begin
12 ok[0 .. n−1] ←− false
13 parallel for 0 ≤ i ≤ n−1 do
14 ok[i]←− cloudi.put(du,name[i],value[i])
15 wait until |{i : ok[i] = true}|≥ n− f
16 for 0 ≤ i ≤ n−1 do cloudi.cancel pending()

LEMMA B.2. The value associated with the metadata with greatest version number returned by
queryMetadata, from now on called outstanding metadata, is available on at least f +1 non-faulty
clouds.

PROOF. Recall that only valid metadata files will be returned by queryMetadata. These meta-
data will be written only by a non-malicious writer that follows the DepSkyAWrite (resp. DepSky-
CAWrite) protocol. In this protocol, the data value is written on a quorum of clouds on line 8 (resp.
line 14) of Algorithm 1 (resp. Algorithm 2), and then the metadata is generated and written on a
quorum of clouds on lines 9-12 (resp. lines 15-18). Consequently, a metadata is only put on a cloud
if its associated value was already put on a quorum of clouds. It implies that if a metadata is read,
its associated value was already written on n− f clouds, from which at least n− f − f ≥ f +1 are
correct.

LEMMA B.3. The outstanding metadata obtained on a DepSkyARead (resp. DepSkyCARead)
concurrent with zero or more DepSkyAWrites (resp. DepSkyCAWrites) is the metadata written on
the last complete write or being written by one of the concurrent writes.

PROOF. Assuming that a client reads an outstanding metadata m, we have to show that m was
written on the last complete write or is being written concurrently with the read. This proof can
easily be obtained by contradiction. Suppose m was written before the start of the last complete
write preceding the read and that it was the metadata with greatest version number returned from
queryMetadata. This is clearly impossible because m was overwritten by the last complete write
(which has a greater version number) and thus will never be selected as the outstanding metadata.
It means that m can only correspond to the last complete write or to a write being executed concur-
rently with the read.

With the previous lemmas we can prove the wait-freedom of the DEPSKY-A and DEPSKY-CA
registers, showing that their operations will never block.

THEOREM B.4. All DEPSKY read and write operations are wait-free operations.

PROOF. Both Algorithms 1 and 2 use functions queryMetadata and writeQuorum. As shown in
Lemma B.1, these operations can not block. Besides that, read operations make processes wait for
the value associated with the outstanding metadata. Lemma B.2 states that there are at least f + 1
correct clouds with this data, and thus at least one of them will answer the RPC of lines 21 and 27
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of Algorithms 1 and 2, respectively, with values that match the digest contained on the metadata (or
the different block digests in the case of DEPSKY-CA) and make d[i] )=⊥, releasing itself from the
barrier and completing the algorithm.

The next two theorems show that DEPSKY-A and DEPSKY-CA implement single-writer multi-
reader regular registers.

THEOREM B.5. A client reading a DEPSKY-A register in parallel with zero or more writes (by
the same writer) will read the last complete write or one of the values being written.

PROOF. Lemma B.3 states that the outstanding metadata obtained on lines 16-17 of Algorithm
1 corresponds to the last write executed or one of the writes being executed. Lemma B.2 states that
the value associated with this metadata is available from at least f +1 correct clouds, thus it can be
obtained by the client on lines 20-24: just a single valid reply will suffice for releasing the barrier of
line 24 and return the value.

THEOREM B.6. A client reading a DEPSKY-CA register in parallel with zero or more writes
(by the same writer) will read the last complete write or one of the values being written.

PROOF. This proof is similar to the one for DEPSKY-A. Lemma B.3 states that the outstanding
metadata obtained on lines 22-23 of Algorithm 2 corresponds to the last write executed or one of the
writes being executed concurrently. Lemma B.2 states that the values associated with this metadata
are stored on at least f +1 non-faulty clouds, thus a reader can obtain them through the execution of
lines 26-30: all non-faulty clouds will return their values corresponding to the outstanding metadata
allowing the reader to decode the encrypted value, combine the key shares and decrypt the read data
(lines 33-35), inverting the processing done by the writer on DepSkyCAWrite (lines 7-10).

C. LOCK PROTOCOL CORRECTNESS
This section presents correctness proofs for the data unit locking protocol. Recall from Section 4.1
that this protocol requires two extra assumptions: (1) contending writers have their clocks synchro-
nized with precision ∆/2 and (2) the storage clouds provides at least read-after-write consistency.

Before the main proofs, we need to present a basic lemma that shows that a lock file created in a
quorum of clouds is read in a later listing of files from a quorum of clouds.

LEMMA C.1. An object o created with the operation writeQuorum(du,o,v) and not removed
will appear in at least one result of later list(du) operations executed on a quorum of clouds.

PROOF. The writeQuorum(du,o,v) operation is only completed when the object is cre-
ated/written in a quorum of at least n− f clouds (line 15 of Algorithm 4). If a client tries to list
the objects of du on a quorum of clouds, at least one of the n− f clouds will provide it since there
is at least one correct cloud between any two quoruns ((n− f )+(n− f )−n > f ).

In order to prove the mutual exclusion on lock possession we need to precisely define what it
means for a process to hold the lock for a given data unit.

Definition C.2. A correct client c is said to hold the write lock for a du at a given time t if an
object du-lock-c-T containing sign(du-lock-c-T,Kc) with T +∆ < t appears in at least one list(du)
result when this operation is executed in a quorum of clouds.

With this definition, we can prove the safety and liveness properties of Algorithm 3.

THEOREM C.3 (MUTUAL EXCLUSION). At any given time t, there is at most one correct client
that holds the lock for a data unit du.

PROOF. Assume this is false: there is a time t in which two correct clients c1 and c2 hold the
lock for du. We will prove that this assumption leads to a contradiction.

If both c1 and c2 hold the write lock for du we have that both du-lock-c1-T1 and du-lock-c2-
T2 with T1 +∆ < t and T2 +∆ < t are returned in list(du) operations from a quorum of clouds.
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Algorithm 3 and Lemma C.1 states that it can only happens if both c1 and c2 wrote valid lock files
(line 12) and did not remove them (line 19). In order for this to happen, both c1 and c2 must see
only their lock files in their second list(du) on the clouds (lines 14-16).

Two situations may arise when c1 and c2 acquire write locks for du: either c1 (resp. c2) writes
its lock file before c2 (resp. c1) lists the lock files the second time (i.e., either w1 precedes r2 or w2
precedes r1) or one’s lock file is being written while the other is listing lock files for the second time
(i.e., either w1 is executed concurrently with r2 or w2 is executed concurrently with r1).

In the first situation, when c2 (resp. c1) lists available locks, it will see both lock files and thus
remove du-lock-c2-T2 (resp. du-lock-c1-T1), releasing the lock (lines 14-20).

The second situation is more complicated because now we have to analyze the start and finish of
each phase of the algorithm. Consider the case in which c1 finishes writing its lock file (line 12) after
c2 executes the second list (lines 14-15). Clearly, in this case c2 may or may not see du-lock-c1-T1
in line 18. However, we can say that the second list of c1 will see du-lock-c2-T2 since it is executed
after c1 lock file is written, which happens, only after c2 start its second list, and consequently after
its lock file is written. It means that the condition of line 18 will be true for c1, and it will remove
du-lock-c1-T1, releasing its lock. The symmetric case (c2 finishes writing its lock after c1 executes
the second list) also holds.

In both situations we have a contradiction, i.e., it is impossible to have an execution and time in
which two correct clients hold the lock for du.

THEOREM C.4 (OBSTRUCTION-FREEDOM). If a correct client tries to obtain the lock for a
data unit du without contention it will succeed.

PROOF. When there is no other valid lock in the cloud (i.e., the condition of line 10 holds), c
will write du-lock-c-T on a quorum of clouds. This lock file will be the only valid lock file read on
the second list (the condition of line 18 will not hold) since (1.) no other valid lock file is available
on the clouds, (2.) no other client is trying to acquire the lock, and (3.) Lemma C.1 states that if the
lock file was written it will be read. After this, c acquire the lock and return it.

D. CONSISTENCY PROPORTIONALITY
In this section we prove the consistency proportionality of the DEPSKY-A and DEPSKY-CA proto-
cols considering some popular consistency models [Lamport 1986; Terry et al. 1994; Vogels 2009].

In the following theorem we designate by the weakest cloud the correct cloud that provides less
guarantees in terms of consistency. In homogeneous environments, all clouds will provide the same
consistency, but in heterogeneous environments other clouds will provide at least the guarantees of
the weakest cloud.

THEOREM D.1. If the weakest cloud used in a DEPSKY-CA setup satisfies a consistency model
C , the data unit provided by DEPSKY-CA also satisfies C for any C ∈ {eventual, read-your-writes,
monotonic reads, writes-follow-reads, monotonic writes, read-after-write}.

PROOF (SKETCH). Notice that cloud consistency issues only affect metadata readings since in
the DEPSKY-CA (Algorithm 2), after the max id variable is defined (line 23), the clients keep
reading the clouds until the data value is read (lines 24-32). So, even with eventual consistency (the
weakest guarantee we consider), if the metadata file pointing to the last version is read, the data will
eventually be read.

Let Qw be the quorum of clouds in which the metadata of the last executed write w was written
and let Qr be the quorum of clouds where queryMetadata obtained an array of n− f metadata files
on a posterior read r. Let cloud ∈ Qw ∩Qr be the weakest cloud among the available clouds. For
each of the considered consistency models, we will prove that if cloud provides this consistency, the
register implemented by DEPSKY-CA provides the same consistency.

For eventual consistency [Vogels 2009], if the outstanding metadata file was written on cloud and
no other write operation is executed, it will be eventually available for reading in this cloud, and
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then its associated data will be fetched from the clouds. As a consequence, the data described in the
metadata file will be read eventually, satisfying this model.

For read-your-writes consistency, if both w and r are executed by c, the fact that cloud provides
this consistency means that at least this cloud will return the metadata written in w during r execu-
tion. Consequently, the result of the read will be the value written in w, satisfying this model.

For monotonic reads consistency, assume c executed r and also another posterior read r′. Let Qr′
be the quorum accessed when reading metadata file on r′. Let cloud′ ∈ Qr ∩Qr′ be a correct cloud
providing monotonic reads consistency. We have to prove that r′ will return the same data of r or a
value written in a posterior write. Since cloud′ satisfy monotonic reads, the metadata file read in r′
will be either the one read in r or another one written by a posterior write. In any of the two cases,
the corresponding value returned will satisfy the monotonic reads consistency.

For writes-follow-reads consistency, the result is trivial since, as long as we have no contending
writers, the metadata files are written with increasing version numbers. Since the clouds provide
at least this consistency, it is impossible to observe (and to propagate) writes in a different order
they were executed, i.e., to observe them in an order different from the version numbers of their
metadata.

The same arguments holds for monotonic writes: since the clouds provide at least this consistency,
it is impossible to observe the writes in a different order they were executed.

Finally, for read-after-write consistency5, the safety properties proved in previous section (see
Theorem B.6) can be easily generalized for any read-after-write model. If the outstanding metadata
file was written on a cloud satisfying this consistency model during write w and no other write
operation is executed, any read succeeding w will see this file, and its associated data will be fetched
from the cloud.

Since the critical step of Theorem D.1’s proof uses the intersection between metadata’s reads and
writes, the following corollary states that the result just proved for DEPSKY-CA is also valid for
DEPSKY-A. The key reason is that both protocols read and validate metadata files in the same way,
as can be seen in lines 16-17 of Algorithm 1 and 22-23 of Algorithm 2).

COROLLARY D.2. If the weakest cloud used in a DEPSKY-A setup satisfies a consistency
model C , the data unit provided by DEPSKY-A also satisfies C for any C ∈ {eventual, read-your-
writes, monotonic reads, writes-follow-reads, monotonic writes, read-after-write}.
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