IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. Y, MAY 2020

GenoDedup: Similarity-Based Deduplication and
Delta-Encoding for Genome Sequencing Data

Vinicius Cogo, Joao Paulo, and Alysson Bessani

Abstract—The vast datasets produced in human genomics must be efficiently stored, transferred, and processed while prioritizing
storage space and restore performance. Balancing these two properties becomes challenging when resorting to traditional data
compression techniques. In fact, specialized algorithms for compressing sequencing data favor the former, while large genome
repositories widely resort to generic compressors (e.g., GZIP) to benefit from the latter. Notably, human beings have approximately
99.9% of DNA sequence similarity, vouching for an excellent opportunity for deduplication and its assets: leveraging inter-file similarity
and achieving higher read performance. However, identity-based deduplication fails to provide a satisfactory reduction in the storage
requirements of genomes. In this work, we balance space savings and restore performance by proposing GenoDedup, the first method
that integrates efficient similarity-based deduplication and specialized delta-encoding for genome sequencing data. Our solution
currently achieves 67.8% of the reduction gains of SPRING (i.e., the best specialized tool in this metric) and restores data 1.62x faster
than SeqDB (i.e., the fastest competitor). Additionally, GenoDedup restores data 9.96 x faster than SPRING and compresses files

2.05x more than SeqDB.

Index Terms—Storage, Deduplication, Compression, Genome Sequencing Data

1 INTRODUCTION

ERSONALIZED medicine brings medical decisions to the in-

dividual level propelling the use of specific procedures and
treatments for each patient. Human genomics enables advances
in this and many other critical applications that are increasing our
health awareness and life expectancy [[1]]. Datasets produced in this
subject are huge since its studies compare thousands to millions
of biological samples, where hundreds of gigabytes of data are
generated from each sequenced body cell [2].

This data deluge must be efficiently stored, transferred, and
processed to avoid stagnating medical breakthroughs [3]. Cutting
costs in storage space and achieving a high-throughput in restoring
data are paramount for this domain. Our primary goal is to
increase data reduction gains and restore it faster than the generic
compressors used in practice (e.g., GZIP), while approaching the
reduction gains to the ones from specialized tools.

Genomic data has three main representations, as shown in
Figure (1} Sequencing data is the immediate output from genome
sequencing machines [4]] and is typically stored in the FASTQ
format [5]]. It contains millions of randomly-dispersed small
DNA sequences with associated quality scores (QS) to attest
the sequencing accuracy. Aligned data results from ordering the
FASTQ entries based on a reference genome, and is stored in
the SAM/BAM format [6]]. Assembled data results from merging
the aligned overlapping entries into contiguous DNA sequences,
which are commonly stored in the FASTA format.

e VC and AB are with LASIGE, Faculdade de Ciéncias, Universidade de
Lisboa, Lisboa, Portugal. JP is with HASLab—High-Assurance Software
Lab, INESC TEC & U. Minho, Portugal. Authors e-mails: vielmo@lasige.
di.fc.ul.pt, jtpaulo@inesctec.pt, and anbessani@ ciencias.ulisboa.pt,

o This work was supported by the European Commission, through SUPER-
CLOUD project (H2020-1CT-643964), and by National Funds through
the Portuguese funding agency, FCT—Fundagdo para a Ciéncia e a Tec-
nologia, within project IRCoC (PTDC/EEISCR/6970/2014) and research
units LASIGE (UIDB/00408/2020 and UIDP/00408/2020) and INESC TEC
(UIDB/50014/2020).

Humans have 99.9% of DNA sequence similarity since the
assembled genome of any two individuals differ in less than
0.1% [7]. Additionally, this representation has a public blueprint
(i.e., areference genome) for human It sizes ~3GB of data from
its 3.2 billion contiguous sequence of nucleobases. Assembled
human genomes can be reduced ~700x from ~3GB to ~4.2MB
in 40 seconds [§]] by storing only the genome differences to the
mentioned blueprint in a process called referential compression.
However, sequencing data is much bigger than assembled data
and has particularities that prevent such compression ratio.

Sequencing data is the most critical representation in genomics
because it contains the purest version of genomic data and is
unbiased from subsequent processing steps [5]. On the contrary,
the output from alignment and assembly is imprecise, lossy, and
algorithm-dependent [9]. For instance, using aligned data from
multiple sources means they presumably were aligned with dif-
ferent algorithms and reference genomes. It precludes subsequent
analyses, except if one first converts data back to sequencing data
and realigns it with the same algorithm and reference (see §2).

The main reasons sequencing data is harder to compress than
assembled data are (i) the randomness on entries’ locality (small
data chunks sequenced in no specific order [[10]]); and (ii) the lack
of a stable reference for quality scores [3] (e.g., a similar blueprint
as the hg38 available for human DNA). Corroborating these
observations, specialized algorithms usually compress sequencing
data no more than 7 X (see for details on FASTQ compression).

Many algorithms favor maximizing compression ratio, which
usually comes with penalties in (de)compression speed. This
decision is justifiable when data is intended to be archived.
However, the decompression speed becomes a bottleneck in cases
where compressed data is read from remote storage systems
and needs to be decompressed and read several times. In fact,
this threshold justifies why many real-world solutions (e.g., 1000

1. hg38, |http://genomereference.org/

vielmo@lasige.di.fc.ul.pt
vielmo@lasige.di.fc.ul.pt
jtpaulo@inesctec.pt
anbessani@ciencias.ulisboa.pt
http://genomereference.org/

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. Y, MAY 2020 2

Genomes Project [11]) prefer generic compression algorithms that
decompress fast (e.g., GZIP) rather than those that only compress
more.
Storage of sequencing data is an important, challenging mostly
unexplored domain for the systems community [3]. It presents an
excellent opportunity for deduplication and its assets: leveraging
inter- le similarity and achieving high-performance in reading
data. However, traditional identity-based deduplication fails to
provide a satisfactory reduction in the storage requirements of
genomes (sex4.1).
Solutions for similarity-based deduplication commonly cluster
similar entries into buckets and use identity-based deduplication
within them [12], or they focus mostly on the delta-encodingigure 1. Genome sequencing overview, some subsequent work ows,
problem [13] while employing inef cient global indexes [14].8"d @ FASTQ entry.
In this work, we balance space savings and restore performance
by proposingGenoDedup, the rst method that integrates scal-Comment Lines
able, ef cient similarity-based deduplication and specialized deltgqre (st and third lines of each FASTQ entry are com-
encoding for genome sequencing data. _ ments that start with a @ character in the former and
Novelty in our approach encompasses (i) the proposl{ 5 «i» in the latter. These lines usually contain: a sam-

and implementationx5.3.2) of GenoDedup, a similarity-based ple identier (e.g., SRR618666 in Figure 1), the entry iden-

deduplication solution that integrates scalable, ef cient Locality; o, (e.g., 296), and some information about the sequencing

Sensitive Hashing (LSH) with delta-encoding; and (i) specializgy, (e g. HwiI-ST483:151:C08KDACXX:7:1101:21215:2070/1).
tions on delta-encoding for genome sequencing data, namely: -, mments follow a similar structure through the le, which can

Circular deltas X2); be determined if it contains numeric or alphanumeric elds, and if
Delta-Hamming X5.3.1); they are constant, incremental, or variable among entries [17].
A scalable modeling of generic indexes for multipleDNA

genomesx5.2).

Additionally, we introduce a converged characterization of aspec-;liks]e second line of each entry contains the DNA sequence inter-

from sequencing data important to deduplicati®®)(and justify preted by the sequencing machine. This sequence is composed of

| : L ; . . characters, where this lengtftan be con gured on each sequenc-
why identity-based deduplication fails on x4.1). Our experi- ing job. Nucleobases can be represented using different sets of
mental resultsXg) attest the feasibility oGenoDedup since it g J0b. P 9

currently achieves 68% of the reduction gains of SPRING [15] charac_ters, where the most commqnly used_ IS NE; G.;T; Ng. .
. L - . . I} considers the four nucleobases (i.e., adenine, cytosine, guanine,
(i.e., the best specialized tool in this metric) and restores data

1:62 faster than SeqDB [16] (i.e., the fastest competitor). Aoqnd thymine) and a special character "N to represent any of them

ditionally, GenoDedup restores data:96 faster than SPRING when the r_nachlne Is unsure of the sgquenc_eq nucleobase.
. A contiguous human genome size2 dillion nucleobases
and compresses les:@5 more than SeqDB.

and results in more than 3GB of data in text mode (e.g., UTF-8
encodes each character in 1 byte). However, NGS machines do
2 GENOME SEQUENCING FILES not provide the whole genome in a single contiguous DNA se-
Data obtained from sequencing genomes is stored in the FAS§Qence [10]. They generate millions of randomly-dispersed reads,
text format [5], which is usually written once and read manwhich contain small pieces of DNA sequences with hundreds to
times later for processing. FASTQ is the standard format in boghousands of nucleobases each [5].
cold and hot storage systems for genomic sequencing data [5]. A con gurable sequencing parameter determines the coverage
A discussion on other datasets and on why this work favoii$ which a genome is sequenced. It is equivalent to the average
sequencing data rather than aligned or assembled representati@msber of different entries in which every nucleobase position
is available inx7. from a genome appears in. Common con gurations consider cov-
A FASTQ le contains many entries with four lines each—erage of 30-45 to increase accuracy. This redundancy results, for
similar to the one presented at the top right corner of Figure ihstance, in 96 to 144GB of DNA characters per whole sequenced
The rst line is acommentabout the entry starting with a@ human genome in the FASTQ format.
character. The second line contains DA sequenceterpreted
by the machine—e.gA for adenineC for cytosine Gfor guanine, Quality Scores (QS)
andT for thymine. The third line is another comment that start§he fourth line of each FASTQ entry contains the sequence of
with a “+” character to determine the end of the DNA sequencquality scores asserting the con dence level for each sequenced
and can optionally be followed by the same content as the raticleobasePhred quality score [18] is the typical notation in
one. The fourth line containguality scores (QSWwhich measure FASTQ les. QS values usually range from 0 to 93 (the higher,
the machine's con dence for each sequenced nucleobase. the better) and are encoded in ASCII (requiring seven bits per
The second (DNA) and fourth (QS) lines have the same leng@8) [5]. QS roughly occupy the same storage space as DNA in
since one QS is attributed for each sequenced nucleobase. HASTQ since there is one QS for each nucleobase, and standard
length is con gurable and may vary from le to le, but it is text encoding (e.g., UTF-8) uses eight bits per character.
usually constant within the same le. In the following descriptions, Quality score sequences are the most challenging portion
we detail each portion of FASTQ entries. of FASTQ entries to compress, and as such, we concentrate

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. Y, MAY 2020 3

most of our efforts on it. There is no reference sequence fbioinformatics (e.g., Persona [28]) use GZIP to compress data. The
quality scores [3], but they do have patterns that can boost datain strength of GZIP is its decompression/restore throughput,
reduction [19]. In this paper, we take into consideration three wfhich reaches 41MB/s on average in our les and 66MB/s in its
them. The rst pattern is that many NGS machines have a limitgzhrallel version (i.e., pigz), while ZPAQ, Quip, and Fgzcomp reach
precision and generate QS only in the range between 0 and 40 [8}s than 10MB/s and SPRING reaches 20MB/s. FaStore and BSC
[15], which allows one to describe them using six bits instead ofach a similar throughput as GZIP, but DSRC2 and SeqDB are the
seven. Second, the longer the read DNA sequence is, the biggerfttstest (specialized) tools to decompress FASTQ les, reaching a
uncertainty at the end of the QS sequence. For instance, a practicedughput of approximately 125MB/s. We use GZIP and pigz as
implication from this pattern is that, in FASTQ les from Illumina the baseline generic tools and SeqDB and DSRC2 as the baseline
HiSeq 2008 (the most common NGS machine in the world [20])specialized tools in experiments that evaluate throughput.
several QS sequences nish with a chain of “#” characters—i.e., a Many specialized tools for FASTQ les focus on maximizing
low Phredvalue equivalent to 0. compression ratio. For instance, SPRING is the specialized tool
The third pattern is the fact that subsequent QS tend to vahat reaches the best compression ratio in our les (i.€28%
little from one to the other [21]. It means that one may replaaen average). It is followed up by FaStore (i.e:45) and by the
subsequent QS by a delta value, which results in the zero valyeneric tool ZPAQ (i.e., 2). We use ZPAQ as the baseline
most of the time [19], and convert data to a normal distributiogeneric tool (together with GZIP and pigz due to their importance
between 40 and+ 40. and restore throughput) and SPRING as the baseline specialized
However, using delta values naively increases the numbertobl in experiments that evaluate FASTQ compression ratio.
bits required to describe a QS to seven bits again since there arewe have evaluated other specialized (e.g., G-SQZ [29] and
eighty-one options between40 and+ 40. With this in mind, we KIC [30]) and generic compression algorithms (e.g., BZIBAd
propose to use modular arithmetic to convert thencireular |ZMA28). However, they compress data less than SPRING [15]
deltas which distributes the mentioned range into a circular arrayhd restore data slower than pigz and SeqDB [16] in our experi-
from 20 to+20. Each circular delta can be translated into tweents. Additionally, we have evaluated LFQC [31] and discarded
different normal delta values. For instance, the circular defta its results because it uses LPAQ8 to compress the quality score
is equivalent to both 1 and+40 normal deltas. When solving sequences, and LPAQ8 does not support les bigger than 2GB.
circular deltas to restore the original QS sequence, the corrg¢le complete discussion on these alternative tools is available in
alternative can unambiguously be distinguished because onlk3atof our Supplementary Material.
results in a valid QS between 0 and 40. This transformation A|go|’ithms that a|ign the DNA data before Compressing it
reduces the QS encoding back to six bits. (e.g., SlimGene [19]) can reduce the DNA portion alone up to
20 , but they take considerable time (e.g., 8 hours per human
genome) and consequently reduce the compression throughput.
3 SEQUENCING DATA COMPRESSION Nonetheless, our methods can work with aligned dataXsée
Before presenting the challenges of deduplicating genomic S€- Finally, Zhouet al. [32] propose a similarity-based compres-
quencing data, we discuss the state-of-the-art on the compressigp, algorithm for quality scores from genome sequencing data.
of sequencing data, its limitations, and the opportunities it |eavﬁ%wever, they use a non-scalable memetic algorithm to create
open for deduplication. There is a well-known trade-off in datg small codebook for each FASTQ le they want to compress
compression between compression ratio and throughput [22]. W& inef ciently compare each QS sequence to all base chunks in
selected ten relevant compression algorithms that achieve {hg codebook to calculate the best delta-encoding. Additionally,
best results in these properties [23], [24]: G2IBigz,' BSC? \ye cannot compare the performance of our solution to theirs
ZPAQ? SeqDB [16], DSRC2 [25], Quip [26], FQZcomp [23], empirically because they provide no implementation, but our work

FaStore [27], and SPRING [15]. . surpasses theirs in several other theoretical aspects, which are
Our analyses use ve representative FASTQ les of humagetsiled inxs.

genomes from the 1000 Genomes Project [11]: SRR400039,
SRR618664, SRR618666, SRR618669, and SRR622458. Only the
FASTQ le from the rst end of these genomes are considereﬂ HUMAN GENOME DEDUPLICATION
in our analyses, but they sum up 265GB of data and result in
almost one billion FASTQ entries. Table 1 presents these ld3eduplication reduces the storage requirements by eliminating
and the resulting compression ratio and restore throughput of eacinelated redundant data [33]. Additionally, deduplication has
algorithm on them. More details on these les (e.g., number @fvo advantages when compared to compression algorithms: it
entries, sequence lengths, and coverage) can be se@moinour may leverage the inter- le similarities, while most compression
Supplementary Material. algorithms consider only intra- le data or use a single generic
GZIP is a generic compression tool employed in several applientiguous reference; and it usually achieves a better restore
cation domains, including the storage of human genome sequeperformance than compression.
ing data. For instance, the 1000 Genomes Project [11] stores theirThere are many deduplication approaches and systems avail-
FASTQ les compressed with GZIP. Even recent frameworks faible [12], and several of them rely dndex data structureso
lookup exact copies of data already stored in the system. This
2. https://www.illumina.com/documents/products/datasheets/datasheet indexing mechanism maps the content of stored chunks to their

hiseq2000.pdf
3. https:/iwww.gzip.org/ actual storage location to ef ciently nd duplicate instances.

4. https://zlib.net/pigz/
5. http://libbsc.com/ 7. https://github.com/enthought/bzip2-1.0.6
6. http://mattmahoney.net/dc/zpagpmpression.pdf 8. https://www.7-zip.org/

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. Y, MAY 2020 4

Table 1
Genomes and compression tools. Per genome: its identi er and size in GB. Per algorithm: compression ratio (i.e., original_size<compressedsize
on each genome, write and read throughput (in MB/s), its version, and where it was published. ~Generic compression algorithm. T We used only
portions of this le to complete 100GB of DNA and of QS lines in our experiments. ? See x6 for the complete analysis.

g’)) g
N —
o (@4 GDJ) 8 8 = %
= N O < o a4 2 N N o c
. . N k=)) [y o) 7] > o Iy o [}
Genome Qize in GB) O o] N n] (04 L w) o
SRR4000391 (34.3GB) 2.800 2.801 3994 4426 2015 3.878 4550 4.523 4.695179 4.110
SRR6186641 (64.6GB) 3.006 3.004 4.328 4.839 2.007 4.240 4.982 4.935 N/A038 4.419
SRR6186661 (62.3GB) 2.927 2.930 4.198 4.688 2.003 4.120 4.825 4.776 N/B841 4.354
SRR6186691 (79.6GB) 3.027 3.027 4.362 4.886 2.012 4.287 5.029 4968 N/A187 4.517
SRR62245817 (23.6GB) 4367 4373 5.830 7.367 1.924 4212 4811 5.018 6.1B3869 3.047
Avg. Comp. Ratio 3.225 3.227 4543 5241 1,992 4148 4.839 4.844 5484023 4.089
Write (MB/s) 155 281.1 159.9 5.3 415613759 287 605 255 431 073
Read (MB/s) 414 66.1 46.2 11 1279 1253 3.4 9.6 45.2 202087
Version 16 310 715 200 021 1.1.8 4.6 1.0 080 9.22 0.1
4.1 Identity-based Deduplication include the fact FASTQ les contain the unique sample and entry

In this section, we discuss the strengths and limitations of commigignti ers; the DNA sequences contain mutations, transforma-
approaches for identity-based deduplication and present exam2as, and are sequenced in no speci c order; and the distribution
confronting them with FASTQ les. Given the particularities of°" QS varies from run to run.

FASTQ les (x2), this discussion is of extreme importance t&Xample. We have split three FASTQ les (SRR400039,
clarify and caution the general deduplication community in theRR618664, and SRR618666) into 40 million xed-size blocks
search for ef cient solutions to the problem of interest. The neff 4KiB, calculated the MDS hash of each block, and veri ed that
discussions encompass three approaches: le deduplication, bi§gre are no duplicates on it. We executed the same experiment

deduplication, and application-aware deduplication. with variable-size chunks using the Rabin ngerprinttAgwith
blocks between 1-8KiB) to generate more than 23 million hashes,
File deduplication where no duplicates were found.

This approach identi es exact copies of the same le by comparin
their content hashes (e.g., SHA-2) and replaces the redundant
with pointers to a single instance. It is ineffective in genoma nal strategy is to take into consideration the les' structure and
repositories because these facilities store data mostly from theintent to increase the chances of deduplication. One may write
unigue samples [34] or because even sequencing the same samgdh line type of FASTQ entries into different les—each one
results in les with different content [10]. containing only (1) the “@” sequencing comments, (2) the DNA
Example The 1000 Genomes Project [11] contains half a milliosequences, (3) the “+” comments, or (4) the quality scores—and
les, in which more than 200k are FASTQ. We downloaded itsleduplicate them separately. Both xed- and variable-size block
current directory treeand compared the content hashes (MD5) afeduplication can be employed in this approach.
all FASTQ les to obtain the duplicate ratio. These MD5 hasheBxample (Comment linestomments have an identi able struc-
are available in the last column of this directory tree, which meansre that can be parsed into elds—e.g., lines from the SRR618666
one does not need to download all FASTQ les to perform thgenome have ten elds each. Five of them are constant across the
present comparison. The result indicates that less th@@78 whole le, two are incremental numbers, and three are variable.
of the FASTQ collection is composed of duplicate les, whictOne may replace the constant and incremental elds by a small en-
validates the low interest for le deduplication in sequencing dataoding at the beginning of a compressed le. Then, the remaining
variable elds can be placed in a le to be deduplicated separately.
Block deduplication In SRR618666, the 231 million lines, with three variable elds

This approach splits les into xed- or variable-size blocks, calcu€ach, can be replaced by pointers to only 48 unique values in

lates their content hashes, and compares them to nd duplicaté¥ rst eld, 20k in the second, and 199k in the third. Bhat

Systems with xed-size block deduplication commonly adopdl- [17] compresses comments 1#vith this approach.

blocks of 4KiB for historical and compatibility reasons—e.g., thiExample (DNA and QS blocksjVe separate the lines from the

is the size of virtual memory pages in several computer arcfiiree FASTQ les as previously mentioned, removed the new-

tectures and of blocks in many lesystems. For variable-lengiine character, and performed the block deduplication previously

blocks, the most common algorithms are the Rabin ngerprintingfesented. We split the DNA and the QS les into 4KiB blocks

and the Two-Threshold Two-Divisor (TTTD). and separately compared their content hashes, which results in
Block deduplication fails to identify copies of FASTQ datan0 duplicates. Similarly, executing the same work ow with Rabin

chunks because they are unlikely to happen. Reasons for ti@erprinting does not nd any redundant blocks.

glication-Aware deduplication

9. http://ftp.1000genomes.ebi.ac.uk/voll/ftp/current.tree 10. https://github.com/datproject/rabin

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. Y, MAY 2020 5

We execute the same block deduplication with the bloakne may resort to optimization, memetic (e.g., [32]), or clustering
size as 100 characters in SRR618664 and SRR618666 (i.e., (fg., K-Means [35]) algorithms to nd the best codebooks to the
sequence length in these les). This approach is the rst tdeduplication task.
provide a considerable number of duplicates. From the 471 million Another option is to choose the most frequent sequences from
entries in these genomes, 44 million DNA lines4@%) are exact each le empirically. However, naively creating the index with
duplicates, as well as 468 thousand QS lines (0.01%). Howeventries exactly as they appear in FASTQ les is inef cient due
these values are unsatisfactory since spatial deduplication requitea combinatorial explosion. Finally, one may initiate the system
gains of 20—-40% to be worth the invested cost and time [33]. with an empty deduplication index and dynamically insert every

queried entry that has not found a similar enough neighbor (i.e.,
Summary under a prede ned threshold). However, the index may grow
The three selected FASTQ les used in these examp|e3 are enoﬂ@iﬁ' nitely if the threshold is too hard to aChieve, or it will result
to illustrate the inef ciency of traditional identity-based dedupliin low reduction gains if the threshold is too easy to reach.
cation methods, whereas considering more genomes here leads td\fter obtaining a deduplication index that achieves satisfac-
similar conclusions. Identity-based deduplication provided signifory compression results, one may decide how to improve the
icant gains only in comment lines in our analyses. Based on thealability and performance of the system [36]. The human DNA
descriptions from the present section and the characteristicsr@ference provides nearly3billion base chunks. As mentioned
FASTQ les, there are excellent opportunities for similarity-basefiefore, QS sequences do not have a reference, and thus one may
deduplication, which we discuss in the next section. de ne the limits of the index size according to its capacity. For
instance, storing 1 billion entries of 100 characters each in a
simple key-value store, indexed by integers of 32-bits, results
in at least 100GB of data. Keeping all data in main memory in
Similarity-based deduplication matches resembling objects of agysingle node may become a burden, and thus partitioning data
size using similarity search to deduplicate them [13]. We integra@ross several nodes [37] or using sparse indexes [38] emerge as
similarity-based deduplication with delta-encoding, which storgfesirable alternatives.
(1) a pointer to the most similar entry together with (2) the Fjpally, reducing the number of candidate comparisdas
minimal list of modi cationsto restore the original object from gnother crucial performance improvement to the system. One
this entry. This most similar entry is known as these chunk12]. may achieve this goal through other auxiliary data structures

Associating this approach with the application-aware dedupliych as K-mer tables [39], indexes for Locality-Sensitive Hash-
cation is intuitively a promising solution to deduplicate genomefg (LSH) [40], or cluster deduplication [37]. However, these
However, there are at least three challenges that need to dhgictures may interfere with the recall of the best deduplication
addressed: (1ghoosing a distance metric and encodi@) mod- entries, producing suboptimal search results depending on their
eling the deduplication indexand (3) reducing the number of con guration. It means that there is a trade-off in improving the

candidate comparisons performance that may compromise the deduplication gains.
A distance metrids critical as it de nes what makes entries

similar and determines how to choose the best deduplication
candidates. In this work, we consider three metrics and presént GENODEDUP
experiments using them 6.

4.2 Similarity-based Deduplication

In this section, we describ8enoDedup, which integrates scal-

HAMMING : Counts the number of positions with different@ble, ef cient similarity-based deduplication and specialized delta-
characters in two strings of the same size. The resultirﬁ“@COding for sequencing data. In Section 5.1, we present the main
list of edit operations is composed of orlyNMODIFIED COmponents ofGenoDedup and how data ows among them.
andSUBSTITUTION operations. Sections 5.2 and 5.3 detail how we solve the three main challenges
LEVENSHTEIN Calculates the minimal number of mod-from Section 4.2.

i cations to convert a string into another. It considers

UNMODIFIED DELETE INSERT, andSUBSTITUTION 51 Overview

operations. Since it considers insertions and deletes,_ljrt1e main components dbenoDedup can be seen in Figure 2

allows comparing strings with different sizes. AT L
JACCARD: Calculates the ratio between the intersectiofhe S|m|Iar|ty-base_d dedupllcatlo_n sele_cts the nea_lr_est base chunk
and the union of N-grams from the strings. It also i or each sequence in FA.STQ ent_r_|es usmg_two a”""'?“y datas_truc-
independent of the size of the to-be-compared strings. tres. The rSt.'S a challty-Sensmve Hashing (LSH) index, V\.Ihlc.h
enables the similarity search when the number of deduplication
The rst two metrics return the distance value and a list ofandidates is too big to perform optimal searches. Entries are
edit operations to restore the original data from the base chuikgcks with a variable size similar to the length of the DNA and
whereas the last one provides only the distance. QS lines in the FASTQ les used in this work. The second data
After choosing the distance metric, one magdel the dedu- structure is a key-value store (KVS) indexing unique entries that
plication indexbased on it. It is an optimization process thaare used in optimal similarity searches and to retrieve the value
selects a subset of (real or synthetic) entries and results, @rdeduplication candidates using their content hashes as keys.
example, in the smallest distance sum to a known sample Afdata storage component is used to store the deduplicated les
sequences. As previously mentioned, human DNA sequeneesl provide them to readers. Readers use a restore module, which
have a comprehensive reference (ileg38 that can be used reads the pointers and delta-encoding from the deduplicated le
to create such an indekut there is no such reference for QSand queries the deduplication index of unique entries to restore
sequence$3]. To create the index for quality score sequencethe original FASTQ le from it.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. Y, MAY 2020 6

Figure 2. Overview of the architecture of GenoDedup.

An of ine setup phase, described ix6.2 but not shown in (i.e., the one with the smallest edit distance). After identifying the
Figure 2, prepares the environment where the deduplication vikst candidate, it (16) calculates the edit operations between the
take place. This phase populates the auxiliary data structures (sequence from the FASTQ le and the best candidate and (17)
LSH and KVS) with the previously generated list of deduplicationonverts the edit operations to the delta-encoding using Huffman
candidates. For instance, the human reference genomeh@3§, codes. In parallel to this process, the deduplication component
can be loaded to the LSH and KVS during this phase. At tH{&8) compresses the comment lines with an external algorithm
end of this of ine phase, data has been loaded to the appropriéeg.,Bholaet al. [17]). At the end, the component (19) joins the
data structures in a way that similarity search can be ef cientlyeduplicated and compressed version of the comment, DNA, and
executed. QS lines and (20) sends the reduced entry to a storage component,

Data ow during a deduplication execution is composed ohich (21) writes the entry in a deduplicated le.
the numbered steps present in Figure 2. Steps 1-21 represent the
deduplication process, while steps 22-34 represent the FASTQ re-When a client intends to read a deduplicated FASTQ le, he
store process. Squared steps are processor-bounded tasks, cir@2darreads the le from the disk and (23) transfers it to the FASTQ
steps are disk-bounded, and triangular ones are network-boundegtore component. The restore module (24) converts, both for the

When sequencing a genome, (1) NGS machines generate dd¥A and QS sequences, the bytecode to the pointer to the best
at @3MB/s, which is (2) stored in a disk that supports this througltandidate, to the rst character of the original QS sequence and the
put. Similarity-based deduplication receives the sequenced deedta-encoding. For each sequence (25), the restore module (26)
by (3) reading it from the disk and (4) transferring it through theends the pointer to the KVS, which (27) obtains the respective
network to the deduplication component. Then, (5) each FAST@Ilue indexed by the pointer as a key and (28) returns the value
entry is parsed into the different line types, where comments arethe best candidate to the restore module. The restore module
sent to Step 18 (see below), DNA to Step 7, and QS to Step 6. (9&n (29) applies the edit operations from the delta-encoding to
sequences are (6) converted to circular deltas, and QS and DA returned candidate and (30) converts from circular delta QS to
sequences are used to (7) calculate the hashes that will be usetbignal QS if it is a QS sequence. Finally, it (31) decompresses the
query the LSH. These hashes are (8) sent to the LSH componéatnment lines using an external algorithm (e.g., Blalal.[17])
which will (9) obtain the internal LSH keys from these hashegnd (32) joins the restored comment, DNA, and QS lines. The
query them in the respective LSH indexes, and join the lists tgstored entry is (33) sent to the client, which (34) stores it in a
pointers to the candidates in a bigger list, which is (10) returnédhSTQ le on disk.
to the deduplication component.

The deduplication component (11) receives this list of pointers Steps 12 and 14 can be avoided if the LSH index stores and
to candidates and (12) sends it to the KVS to obtain their contergturns the list of the actual content of the deduplication candidates
The KVS (13) obtains the candidate value using each pointeriastead of their content hashes. These content hashes are used as
a key and (14) returns the list of candidates (their content, nmbinters to retrieve the candidate content from the KVS index
the pointers). The deduplication algorithm (15) calculates the ediith unique entries. We opted to store only the content hashes
distance only (not the edit operations) between each candidatecandidates in the LSH because it makes the size of LSH
from the received list and the sequence from the FASTQ le ariddex smaller and linearly proportional to the number of entries,
keeps track only on the pointer and value of the best candidatedependent on the candidate's size.

	Introduction
	Genome Sequencing Files
	Sequencing Data Compression
	Human Genome Deduplication
	Identity-based Deduplication
	Similarity-based Deduplication

	GenoDedup
	Overview
	Offline Phase
	Optimizations of the Online Phase
	Distance Metric and Encoding
	Number of Candidate Comparisons

	Evaluation
	Encoding Gains
	Performance
	Read Operations
	Write Operations

	Large End-to-End Workload

	Discussion
	Other Data Representations
	Paired-end Sequencing
	Other Species
	Other Sequencing Machines
	Other Sequence Lengths
	Reordering FASTQ entries

	Conclusion
	References
	Biographies
	Vinicius Cogo
	João Paulo
	Alysson Bessani

