
IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. Y, MAY 2020 1

GenoDedup: Similarity-Based Deduplication and
Delta-Encoding for Genome Sequencing Data

Vinicius Cogo, João Paulo, and Alysson Bessani

Abstract—The vast datasets produced in human genomics must be efficiently stored, transferred, and processed while prioritizing
storage space and restore performance. Balancing these two properties becomes challenging when resorting to traditional data
compression techniques. In fact, specialized algorithms for compressing sequencing data favor the former, while large genome
repositories widely resort to generic compressors (e.g., GZIP) to benefit from the latter. Notably, human beings have approximately
99.9% of DNA sequence similarity, vouching for an excellent opportunity for deduplication and its assets: leveraging inter-file similarity
and achieving higher read performance. However, identity-based deduplication fails to provide a satisfactory reduction in the storage
requirements of genomes. In this work, we balance space savings and restore performance by proposing GenoDedup, the first method
that integrates efficient similarity-based deduplication and specialized delta-encoding for genome sequencing data. Our solution
currently achieves 67.8% of the reduction gains of SPRING (i.e., the best specialized tool in this metric) and restores data 1.62× faster
than SeqDB (i.e., the fastest competitor). Additionally, GenoDedup restores data 9.96× faster than SPRING and compresses files
2.05× more than SeqDB.

Index Terms—Storage, Deduplication, Compression, Genome Sequencing Data

F

1 INTRODUCTION

P ERSONALIZED medicine brings medical decisions to the in-
dividual level propelling the use of specific procedures and

treatments for each patient. Human genomics enables advances
in this and many other critical applications that are increasing our
health awareness and life expectancy [1]. Datasets produced in this
subject are huge since its studies compare thousands to millions
of biological samples, where hundreds of gigabytes of data are
generated from each sequenced body cell [2].

This data deluge must be efficiently stored, transferred, and
processed to avoid stagnating medical breakthroughs [3]. Cutting
costs in storage space and achieving a high-throughput in restoring
data are paramount for this domain. Our primary goal is to
increase data reduction gains and restore it faster than the generic
compressors used in practice (e.g., GZIP), while approaching the
reduction gains to the ones from specialized tools.

Genomic data has three main representations, as shown in
Figure 1. Sequencing data is the immediate output from genome
sequencing machines [4] and is typically stored in the FASTQ
format [5]. It contains millions of randomly-dispersed small
DNA sequences with associated quality scores (QS) to attest
the sequencing accuracy. Aligned data results from ordering the
FASTQ entries based on a reference genome, and is stored in
the SAM/BAM format [6]. Assembled data results from merging
the aligned overlapping entries into contiguous DNA sequences,
which are commonly stored in the FASTA format.

• VC and AB are with LASIGE, Faculdade de Ciências, Universidade de
Lisboa, Lisboa, Portugal. JP is with HASLab—High-Assurance Software
Lab, INESC TEC & U. Minho, Portugal. Authors e-mails: vielmo@lasige.
di.fc.ul.pt, jtpaulo@inesctec.pt, and anbessani@ciencias.ulisboa.pt.

• This work was supported by the European Commission, through SUPER-
CLOUD project (H2020-ICT-643964), and by National Funds through
the Portuguese funding agency, FCT—Fundação para a Ciência e a Tec-
nologia, within project IRCoC (PTDC/EEISCR/6970/2014) and research
units LASIGE (UIDB/00408/2020 and UIDP/00408/2020) and INESC TEC
(UIDB/50014/2020).

Humans have 99.9% of DNA sequence similarity since the
assembled genome of any two individuals differ in less than
0.1% [7]. Additionally, this representation has a public blueprint
(i.e., a reference genome) for humans1. It sizes∼3GB of data from
its 3.2 billion contiguous sequence of nucleobases. Assembled
human genomes can be reduced ∼700× from ∼3GB to ∼4.2MB
in 40 seconds [8] by storing only the genome differences to the
mentioned blueprint in a process called referential compression.
However, sequencing data is much bigger than assembled data
and has particularities that prevent such compression ratio.

Sequencing data is the most critical representation in genomics
because it contains the purest version of genomic data and is
unbiased from subsequent processing steps [5]. On the contrary,
the output from alignment and assembly is imprecise, lossy, and
algorithm-dependent [9]. For instance, using aligned data from
multiple sources means they presumably were aligned with dif-
ferent algorithms and reference genomes. It precludes subsequent
analyses, except if one first converts data back to sequencing data
and realigns it with the same algorithm and reference (see §2).

The main reasons sequencing data is harder to compress than
assembled data are (i) the randomness on entries’ locality (small
data chunks sequenced in no specific order [10]); and (ii) the lack
of a stable reference for quality scores [3] (e.g., a similar blueprint
as the hg38 available for human DNA). Corroborating these
observations, specialized algorithms usually compress sequencing
data no more than 7× (see §3 for details on FASTQ compression).

Many algorithms favor maximizing compression ratio, which
usually comes with penalties in (de)compression speed. This
decision is justifiable when data is intended to be archived.
However, the decompression speed becomes a bottleneck in cases
where compressed data is read from remote storage systems
and needs to be decompressed and read several times. In fact,
this threshold justifies why many real-world solutions (e.g., 1000

1. hg38, http://genomereference.org/

vielmo@lasige.di.fc.ul.pt
vielmo@lasige.di.fc.ul.pt
jtpaulo@inesctec.pt
anbessani@ciencias.ulisboa.pt
http://genomereference.org/


IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. Y, MAY 2020 2

Genomes Project [11]) prefer generic compression algorithms that
decompress fast (e.g., GZIP) rather than those that only compress
more.

Storage of sequencing data is an important, challenging mostly
unexplored domain for the systems community [3]. It presents an
excellent opportunity for deduplication and its assets: leveraging
inter-�le similarity and achieving high-performance in reading
data. However, traditional identity-based deduplication fails to
provide a satisfactory reduction in the storage requirements of
genomes (seex4.1).

Solutions for similarity-based deduplication commonly cluster
similar entries into buckets and use identity-based deduplication
within them [12], or they focus mostly on the delta-encoding
problem [13] while employing inef�cient global indexes [14].
In this work, we balance space savings and restore performance
by proposingGenoDedup, the �rst method that integrates scal-
able, ef�cient similarity-based deduplication and specialized delta-
encoding for genome sequencing data.

Novelty in our approach encompasses (i) the proposal (x4.2)
and implementation (x5.3.2) of GenoDedup, a similarity-based
deduplication solution that integrates scalable, ef�cient Locality-
Sensitive Hashing (LSH) with delta-encoding; and (ii) specializa-
tions on delta-encoding for genome sequencing data, namely:

� Circular deltas (x2);
� Delta-Hamming (x5.3.1);
� A scalable modeling of generic indexes for multiple

genomes (x5.2).

Additionally, we introduce a converged characterization of aspects
from sequencing data important to deduplication (x2) and justify
why identity-based deduplication fails on it (x4.1). Our experi-
mental results (x6) attest the feasibility ofGenoDedup since it
currently achieves 67:8% of the reduction gains of SPRING [15]
(i.e., the best specialized tool in this metric) and restores data
1:62� faster than SeqDB [16] (i.e., the fastest competitor). Ad-
ditionally, GenoDedup restores data 9:96� faster than SPRING
and compresses �les 2:05� more than SeqDB.

2 GENOME SEQUENCING FILES

Data obtained from sequencing genomes is stored in the FASTQ
text format [5], which is usually written once and read many
times later for processing. FASTQ is the standard format in both
cold and hot storage systems for genomic sequencing data [5].
A discussion on other datasets and on why this work favors
sequencing data rather than aligned or assembled representations
is available inx7.

A FASTQ �le contains many entries with four lines each—
similar to the one presented at the top right corner of Figure 1.
The �rst line is a commentabout the entry starting with a “@”
character. The second line contains theDNA sequenceinterpreted
by the machine—e.g.,A for adenine,Cfor cytosine,Gfor guanine,
andT for thymine. The third line is another comment that starts
with a “+” character to determine the end of the DNA sequence,
and can optionally be followed by the same content as the �rst
one. The fourth line containsquality scores (QS), which measure
the machine's con�dence for each sequenced nucleobase.

The second (DNA) and fourth (QS) lines have the same length
since one QS is attributed for each sequenced nucleobase. This
length is con�gurable and may vary from �le to �le, but it is
usually constant within the same �le. In the following descriptions,
we detail each portion of FASTQ entries.

Figure 1. Genome sequencing overview, some subsequent work�ows,
and a FASTQ entry.

Comment Lines
The �rst and third lines of each FASTQ entry are com-
ments that start with a “@” character in the former and
a “+” in the latter. These lines usually contain: a sam-
ple identi�er (e.g., SRR618666 in Figure 1), the entry iden-
ti�er (e.g., 296 ), and some information about the sequencing
run (e.g.,HWI-ST483:151:C08KDACXX:7:1101:21215:2070/1 ).
Comments follow a similar structure through the �le, which can
be determined if it contains numeric or alphanumeric �elds, and if
they are constant, incremental, or variable among entries [17].

DNA
The second line of each entry contains the DNA sequence inter-
preted by the sequencing machine. This sequence is composed of`
characters, where this length` can be con�gured on each sequenc-
ing job. Nucleobases can be represented using different sets of
characters, where the most commonly used is thef A;C;G;T;Ng.
It considers the four nucleobases (i.e., adenine, cytosine, guanine,
and thymine) and a special character “N” to represent any of them
when the machine is unsure of the sequenced nucleobase.

A contiguous human genome sizes 3:2 billion nucleobases
and results in more than 3GB of data in text mode (e.g., UTF-8
encodes each character in 1 byte). However, NGS machines do
not provide the whole genome in a single contiguous DNA se-
quence [10]. They generate millions of randomly-dispersed reads,
which contain small pieces of DNA sequences with hundreds to
thousands of nucleobases each [5].

A con�gurable sequencing parameter determines the coverage
in which a genome is sequenced. It is equivalent to the average
number of different entries in which every nucleobase position
from a genome appears in. Common con�gurations consider cov-
erage of 30–45� to increase accuracy. This redundancy results, for
instance, in 96 to 144GB of DNA characters per whole sequenced
human genome in the FASTQ format.

Quality Scores (QS)
The fourth line of each FASTQ entry contains the sequence of
quality scores asserting the con�dence level for each sequenced
nucleobase.Phred quality score [18] is the typical notation in
FASTQ �les. QS values usually range from 0 to 93 (the higher,
the better) and are encoded in ASCII (requiring seven bits per
QS) [5]. QS roughly occupy the same storage space as DNA in
FASTQ since there is one QS for each nucleobase, and standard
text encoding (e.g., UTF-8) uses eight bits per character.

Quality score sequences are the most challenging portion
of FASTQ entries to compress, and as such, we concentrate



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. Y, MAY 2020 3

most of our efforts on it. There is no reference sequence for
quality scores [3], but they do have patterns that can boost data
reduction [19]. In this paper, we take into consideration three of
them. The �rst pattern is that many NGS machines have a limited
precision and generate QS only in the range between 0 and 40 [5],
[15], which allows one to describe them using six bits instead of
seven. Second, the longer the read DNA sequence is, the bigger the
uncertainty at the end of the QS sequence. For instance, a practical
implication from this pattern is that, in FASTQ �les from Illumina
HiSeq 20002 (the most common NGS machine in the world [20]),
several QS sequences �nish with a chain of “#” characters—i.e., a
low Phredvalue equivalent to 0.

The third pattern is the fact that subsequent QS tend to vary
little from one to the other [21]. It means that one may replace
subsequent QS by a delta value, which results in the zero value
most of the time [19], and convert data to a normal distribution
between� 40 and+ 40.

However, using delta values naively increases the number of
bits required to describe a QS to seven bits again since there are
eighty-one options between� 40 and+ 40. With this in mind, we
propose to use modular arithmetic to convert them tocircular
deltas, which distributes the mentioned range into a circular array
from � 20 to + 20. Each circular delta can be translated into two
different normal delta values. For instance, the circular delta� 1
is equivalent to both� 1 and+ 40 normal deltas. When solving
circular deltas to restore the original QS sequence, the correct
alternative can unambiguously be distinguished because only it
results in a valid QS between 0 and 40. This transformation
reduces the QS encoding back to six bits.

3 SEQUENCING DATA COMPRESSION

Before presenting the challenges of deduplicating genomic se-
quencing data, we discuss the state-of-the-art on the compression
of sequencing data, its limitations, and the opportunities it leaves
open for deduplication. There is a well-known trade-off in data
compression between compression ratio and throughput [22]. We
selected ten relevant compression algorithms that achieve the
best results in these properties [23], [24]: GZIP,3 pigz,4 BSC,5

ZPAQ,6 SeqDB [16], DSRC2 [25], Quip [26], FQZcomp [23],
FaStore [27], and SPRING [15].

Our analyses use �ve representative FASTQ �les of human
genomes from the 1000 Genomes Project [11]: SRR400039,
SRR618664, SRR618666, SRR618669, and SRR622458. Only the
FASTQ �le from the �rst end of these genomes are considered
in our analyses, but they sum up 265GB of data and result in
almost one billion FASTQ entries. Table 1 presents these �les
and the resulting compression ratio and restore throughput of each
algorithm on them. More details on these �les (e.g., number of
entries, sequence lengths, and coverage) can be seen inx2 of our
Supplementary Material.

GZIP is a generic compression tool employed in several appli-
cation domains, including the storage of human genome sequenc-
ing data. For instance, the 1000 Genomes Project [11] stores their
FASTQ �les compressed with GZIP. Even recent frameworks for

2. https://www.illumina.com/documents/products/datasheets/datasheet
hiseq2000.pdf

3. https://www.gzip.org/
4. https://zlib.net/pigz/
5. http://libbsc.com/
6. http://mattmahoney.net/dc/zpaqcompression.pdf

bioinformatics (e.g., Persona [28]) use GZIP to compress data. The
main strength of GZIP is its decompression/restore throughput,
which reaches 41MB/s on average in our �les and 66MB/s in its
parallel version (i.e., pigz), while ZPAQ, Quip, and Fqzcomp reach
less than 10MB/s and SPRING reaches 20MB/s. FaStore and BSC
reach a similar throughput as GZIP, but DSRC2 and SeqDB are the
fastest (specialized) tools to decompress FASTQ �les, reaching a
throughput of approximately 125MB/s. We use GZIP and pigz as
the baseline generic tools and SeqDB and DSRC2 as the baseline
specialized tools in experiments that evaluate throughput.

Many specialized tools for FASTQ �les focus on maximizing
compression ratio. For instance, SPRING is the specialized tool
that reaches the best compression ratio in our �les (i.e., 6:023�
on average). It is followed up by FaStore (i.e., 5:4� ) and by the
generic tool ZPAQ (i.e., 5:2� ). We use ZPAQ as the baseline
generic tool (together with GZIP and pigz due to their importance
and restore throughput) and SPRING as the baseline specialized
tool in experiments that evaluate FASTQ compression ratio.

We have evaluated other specialized (e.g., G-SQZ [29] and
KIC [30]) and generic compression algorithms (e.g., BZIP27 and
LZMA28). However, they compress data less than SPRING [15]
and restore data slower than pigz and SeqDB [16] in our experi-
ments. Additionally, we have evaluated LFQC [31] and discarded
its results because it uses LPAQ8 to compress the quality score
sequences, and LPAQ8 does not support �les bigger than 2GB.
The complete discussion on these alternative tools is available in
x3 of our Supplementary Material.

Algorithms that align the DNA data before compressing it
(e.g., SlimGene [19]) can reduce the DNA portion alone up to
20� , but they take considerable time (e.g., 8 hours per human
genome) and consequently reduce the compression throughput.
Nonetheless, our methods can work with aligned data (seex 7).

Finally, Zhouet al. [32] propose a similarity-based compres-
sion algorithm for quality scores from genome sequencing data.
However, they use a non-scalable memetic algorithm to create
a small codebook for each FASTQ �le they want to compress
and inef�ciently compare each QS sequence to all base chunks in
the codebook to calculate the best delta-encoding. Additionally,
we cannot compare the performance of our solution to theirs
empirically because they provide no implementation, but our work
surpasses theirs in several other theoretical aspects, which are
detailed inx5.

4 HUMAN GENOME DEDUPLICATION

Deduplication reduces the storage requirements by eliminating
unrelated redundant data [33]. Additionally, deduplication has
two advantages when compared to compression algorithms: it
may leverage the inter-�le similarities, while most compression
algorithms consider only intra-�le data or use a single generic
contiguous reference; and it usually achieves a better restore
performance than compression.

There are many deduplication approaches and systems avail-
able [12], and several of them rely onindex data structuresto
lookup exact copies of data already stored in the system. This
indexing mechanism maps the content of stored chunks to their
actual storage location to ef�ciently �nd duplicate instances.

7. https://github.com/enthought/bzip2-1.0.6
8. https://www.7-zip.org/



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. Y, MAY 2020 4

Table 1
Genomes and compression tools. Per genome: its identi�er and size in GB. Per algorithm: compression ratio (i.e., original size=compressedsize)
on each genome, write and read throughput (in MB/s), its version, and where it was published. 
 Generic compression algorithm. † We used only

portions of this �le to complete 100GB of DNA and of QS lines in our experiments. ? See x6 for the complete analysis.

Genome (Size in GB) G
Z

IP



pi
gz




B
S

C



Z
P

A
Q




S
eq

D
B

D
S

R
C

2

Q
ui

p

F
qz

co
m

p

F
aS

to
re

S
P

R
IN

G

G
en

oD
ed

up

SRR4000391 (34.3GB) 2.800 2.801 3.994 4.426 2.015 3.878 4.550 4.523 4.6955.179 4.110
SRR6186641 (64.6GB) 3.006 3.004 4.328 4.839 2.007 4.240 4.982 4.935 N/A6.038 4.419
SRR6186661 (62.3GB) 2.927 2.930 4.198 4.688 2.003 4.120 4.825 4.776 N/A5.841 4.354
SRR6186691 (79.6GB) 3.027 3.027 4.362 4.886 2.012 4.287 5.029 4.968 N/A6.187 4.517
SRR6224581† (23.6GB) 4.367 4.373 5.830 7.367 1.924 4.212 4.811 5.018 6.1736.869 3.047

Avg. Comp. Ratio 3.225 3.227 4.543 5.241 1,992 4.148 4.839 4.844 5.4346.023 4.089
Write (MB/s) 15.5 281.1 159.9 5.3 415.6 1375.9 28.7 60.5 25.5 43.1 0.3?

Read (MB/s) 41.4 66.1 46.2 1.1 127.9 125.3 3.4 9.6 45.2 20.9208.2?

Version 1.6 3.1.0 7.15 2.00 0.2.1 1.1.8 4.6 1.0 0.8.0 9.22 0.1

4.1 Identity-based Deduplication

In this section, we discuss the strengths and limitations of common
approaches for identity-based deduplication and present examples
confronting them with FASTQ �les. Given the particularities of
FASTQ �les (x2), this discussion is of extreme importance to
clarify and caution the general deduplication community in the
search for ef�cient solutions to the problem of interest. The next
discussions encompass three approaches: �le deduplication, block
deduplication, and application-aware deduplication.

File deduplication

This approach identi�es exact copies of the same �le by comparing
their content hashes (e.g., SHA-2) and replaces the redundant data
with pointers to a single instance. It is ineffective in genome
repositories because these facilities store data mostly from their
unique samples [34] or because even sequencing the same sample
results in �les with different content [10].
Example. The 1000 Genomes Project [11] contains half a million
�les, in which more than 200k are FASTQ. We downloaded its
current directory tree9 and compared the content hashes (MD5) of
all FASTQ �les to obtain the duplicate ratio. These MD5 hashes
are available in the last column of this directory tree, which means
one does not need to download all FASTQ �les to perform the
present comparison. The result indicates that less than 0:007%
of the FASTQ collection is composed of duplicate �les, which
validates the low interest for �le deduplication in sequencing data.

Block deduplication

This approach splits �les into �xed- or variable-size blocks, calcu-
lates their content hashes, and compares them to �nd duplicates.
Systems with �xed-size block deduplication commonly adopt
blocks of 4KiB for historical and compatibility reasons—e.g., this
is the size of virtual memory pages in several computer archi-
tectures and of blocks in many �lesystems. For variable-length
blocks, the most common algorithms are the Rabin �ngerprinting
and the Two-Threshold Two-Divisor (TTTD).

Block deduplication fails to identify copies of FASTQ data
chunks because they are unlikely to happen. Reasons for that

9. http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/current.tree

include the fact FASTQ �les contain the unique sample and entry
identi�ers; the DNA sequences contain mutations, transforma-
tions, and are sequenced in no speci�c order; and the distribution
of QS varies from run to run.
Example. We have split three FASTQ �les (SRR400039,
SRR618664, and SRR618666) into 40 million �xed-size blocks
of 4KiB, calculated the MD5 hash of each block, and veri�ed that
there are no duplicates on it. We executed the same experiment
with variable-size chunks using the Rabin �ngerprinting10 (with
blocks between 1–8KiB) to generate more than 23 million hashes,
where no duplicates were found.

Application-Aware deduplication

A �nal strategy is to take into consideration the �les' structure and
content to increase the chances of deduplication. One may write
each line type of FASTQ entries into different �les—each one
containing only (1) the “@” sequencing comments, (2) the DNA
sequences, (3) the “+” comments, or (4) the quality scores—and
deduplicate them separately. Both �xed- and variable-size block
deduplication can be employed in this approach.
Example (Comment lines). Comments have an identi�able struc-
ture that can be parsed into �elds—e.g., lines from the SRR618666
genome have ten �elds each. Five of them are constant across the
whole �le, two are incremental numbers, and three are variable.
One may replace the constant and incremental �elds by a small en-
coding at the beginning of a compressed �le. Then, the remaining
variable �elds can be placed in a �le to be deduplicated separately.
In SRR618666, the 231 million lines, with three variable �elds
each, can be replaced by pointers to only 48 unique values in
the �rst �eld, 20k in the second, and 199k in the third. Bholaet
al. [17] compresses comments 17� with this approach.
Example (DNA and QS blocks). We separate the lines from the
three FASTQ �les as previously mentioned, removed the new-
line character, and performed the block deduplication previously
presented. We split the DNA and the QS �les into 4KiB blocks
and separately compared their content hashes, which results in
no duplicates. Similarly, executing the same work�ow with Rabin
�ngerprinting does not �nd any redundant blocks.

10. https://github.com/datproject/rabin



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. Y, MAY 2020 5

We execute the same block deduplication with the block
size as 100 characters in SRR618664 and SRR618666 (i.e., the
sequence length in these �les). This approach is the �rst to
provide a considerable number of duplicates. From the 471 million
entries in these genomes, 44 million DNA lines (9:42%) are exact
duplicates, as well as 468 thousand QS lines (0.01%). However,
these values are unsatisfactory since spatial deduplication requires
gains of 20–40% to be worth the invested cost and time [33].

Summary

The three selected FASTQ �les used in these examples are enough
to illustrate the inef�ciency of traditional identity-based dedupli-
cation methods, whereas considering more genomes here leads to
similar conclusions. Identity-based deduplication provided signif-
icant gains only in comment lines in our analyses. Based on the
descriptions from the present section and the characteristics of
FASTQ �les, there are excellent opportunities for similarity-based
deduplication, which we discuss in the next section.

4.2 Similarity-based Deduplication

Similarity-based deduplication matches resembling objects of any
size using similarity search to deduplicate them [13]. We integrate
similarity-based deduplication with delta-encoding, which stores
(1) a pointer to the most similar entry together with (2) the
minimal list of modi�cationsto restore the original object from
this entry. This most similar entry is known as thebase chunk[12].

Associating this approach with the application-aware dedupli-
cation is intuitively a promising solution to deduplicate genomes.
However, there are at least three challenges that need to be
addressed: (1)choosing a distance metric and encoding, (2) mod-
eling the deduplication index, and (3) reducing the number of
candidate comparisons.

A distance metricis critical as it de�nes what makes entries
similar and determines how to choose the best deduplication
candidates. In this work, we consider three metrics and present
experiments using them inx6.

� HAMMING : Counts the number of positions with different
characters in two strings of the same size. The resulting
list of edit operations is composed of onlyUNMODIFIED
andSUBSTITUTION operations.

� LEVENSHTEIN: Calculates the minimal number of mod-
i�cations to convert a string into another. It considers
UNMODIFIED, DELETE, INSERT, andSUBSTITUTION
operations. Since it considers insertions and deletes, it
allows comparing strings with different sizes.

� JACCARD: Calculates the ratio between the intersection
and the union of N-grams from the strings. It also is
independent of the size of the to-be-compared strings.

The �rst two metrics return the distance value and a list of
edit operations to restore the original data from the base chunk,
whereas the last one provides only the distance.

After choosing the distance metric, one maymodel the dedu-
plication index based on it. It is an optimization process that
selects a subset of (real or synthetic) entries and results, for
example, in the smallest distance sum to a known sample of
sequences. As previously mentioned, human DNA sequences
have a comprehensive reference (i.e.,hg38) that can be used
to create such an index,but there is no such reference for QS
sequences[3]. To create the index for quality score sequences,

one may resort to optimization, memetic (e.g., [32]), or clustering
(e.g., K-Means [35]) algorithms to �nd the best codebooks to the
deduplication task.

Another option is to choose the most frequent sequences from
each �le empirically. However, naively creating the index with
entries exactly as they appear in FASTQ �les is inef�cient due
to a combinatorial explosion. Finally, one may initiate the system
with an empty deduplication index and dynamically insert every
queried entry that has not found a similar enough neighbor (i.e.,
under a prede�ned threshold). However, the index may grow
inde�nitely if the threshold is too hard to achieve, or it will result
in low reduction gains if the threshold is too easy to reach.

After obtaining a deduplication index that achieves satisfac-
tory compression results, one may decide how to improve the
scalability and performance of the system [36]. The human DNA
reference provides nearly 3:2 billion base chunks. As mentioned
before, QS sequences do not have a reference, and thus one may
de�ne the limits of the index size according to its capacity. For
instance, storing 1 billion entries of 100 characters each in a
simple key-value store, indexed by integers of 32-bits, results
in at least 100GB of data. Keeping all data in main memory in
a single node may become a burden, and thus partitioning data
across several nodes [37] or using sparse indexes [38] emerge as
desirable alternatives.

Finally, reducing the number of candidate comparisonsis
another crucial performance improvement to the system. One
may achieve this goal through other auxiliary data structures
such as K-mer tables [39], indexes for Locality-Sensitive Hash-
ing (LSH) [40], or cluster deduplication [37]. However, these
structures may interfere with the recall of the best deduplication
entries, producing suboptimal search results depending on their
con�guration. It means that there is a trade-off in improving the
performance that may compromise the deduplication gains.

5 GENODEDUP

In this section, we describeGenoDedup, which integrates scal-
able, ef�cient similarity-based deduplication and specialized delta-
encoding for sequencing data. In Section 5.1, we present the main
components ofGenoDedup and how data �ows among them.
Sections 5.2 and 5.3 detail how we solve the three main challenges
from Section 4.2.

5.1 Overview

The main components ofGenoDedup can be seen in Figure 2.
The similarity-based deduplication selects the nearest base chunk
for each sequence in FASTQ entries using two auxiliary data struc-
tures. The �rst is a Locality-Sensitive Hashing (LSH) index, which
enables the similarity search when the number of deduplication
candidates is too big to perform optimal searches. Entries are
blocks with a variable size similar to the length of the DNA and
QS lines in the FASTQ �les used in this work. The second data
structure is a key-value store (KVS) indexing unique entries that
are used in optimal similarity searches and to retrieve the value
of deduplication candidates using their content hashes as keys.
A data storage component is used to store the deduplicated �les
and provide them to readers. Readers use a restore module, which
reads the pointers and delta-encoding from the deduplicated �le
and queries the deduplication index of unique entries to restore
the original FASTQ �le from it.



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. Y, MAY 2020 6

Figure 2. Overview of the architecture of GenoDedup.

An of�ine setup phase, described inx5.2 but not shown in
Figure 2, prepares the environment where the deduplication will
take place. This phase populates the auxiliary data structures (i.e.,
LSH and KVS) with the previously generated list of deduplication
candidates. For instance, the human reference genome (e.g.,hg38)
can be loaded to the LSH and KVS during this phase. At the
end of this of�ine phase, data has been loaded to the appropriate
data structures in a way that similarity search can be ef�ciently
executed.

Data �ow during a deduplication execution is composed of
the numbered steps present in Figure 2. Steps 1–21 represent the
deduplication process, while steps 22–34 represent the FASTQ re-
store process. Squared steps are processor-bounded tasks, circular
steps are disk-bounded, and triangular ones are network-bounded.

When sequencing a genome, (1) NGS machines generate data
at 0:3MB/s, which is (2) stored in a disk that supports this through-
put. Similarity-based deduplication receives the sequenced data
by (3) reading it from the disk and (4) transferring it through the
network to the deduplication component. Then, (5) each FASTQ
entry is parsed into the different line types, where comments are
sent to Step 18 (see below), DNA to Step 7, and QS to Step 6. QS
sequences are (6) converted to circular deltas, and QS and DNA
sequences are used to (7) calculate the hashes that will be used to
query the LSH. These hashes are (8) sent to the LSH component,
which will (9) obtain the internal LSH keys from these hashes,
query them in the respective LSH indexes, and join the lists of
pointers to the candidates in a bigger list, which is (10) returned
to the deduplication component.

The deduplication component (11) receives this list of pointers
to candidates and (12) sends it to the KVS to obtain their content.
The KVS (13) obtains the candidate value using each pointer as
a key and (14) returns the list of candidates (their content, not
the pointers). The deduplication algorithm (15) calculates the edit
distance only (not the edit operations) between each candidate
from the received list and the sequence from the FASTQ �le and
keeps track only on the pointer and value of the best candidate

(i.e., the one with the smallest edit distance). After identifying the
best candidate, it (16) calculates the edit operations between the
sequence from the FASTQ �le and the best candidate and (17)
converts the edit operations to the delta-encoding using Huffman
codes. In parallel to this process, the deduplication component
(18) compresses the comment lines with an external algorithm
(e.g.,Bholaet al. [17]). At the end, the component (19) joins the
deduplicated and compressed version of the comment, DNA, and
QS lines and (20) sends the reduced entry to a storage component,
which (21) writes the entry in a deduplicated �le.

When a client intends to read a deduplicated FASTQ �le, he
(22) reads the �le from the disk and (23) transfers it to the FASTQ
restore component. The restore module (24) converts, both for the
DNA and QS sequences, the bytecode to the pointer to the best
candidate, to the �rst character of the original QS sequence and the
delta-encoding. For each sequence (25), the restore module (26)
sends the pointer to the KVS, which (27) obtains the respective
value indexed by the pointer as a key and (28) returns the value
of the best candidate to the restore module. The restore module
then (29) applies the edit operations from the delta-encoding to
the returned candidate and (30) converts from circular delta QS to
normal QS if it is a QS sequence. Finally, it (31) decompresses the
comment lines using an external algorithm (e.g., Bholaet al. [17])
and (32) joins the restored comment, DNA, and QS lines. The
restored entry is (33) sent to the client, which (34) stores it in a
FASTQ �le on disk.

Steps 12 and 14 can be avoided if the LSH index stores and
returns the list of the actual content of the deduplication candidates
instead of their content hashes. These content hashes are used as
pointers to retrieve the candidate content from the KVS index
with unique entries. We opted to store only the content hashes
of candidates in the LSH because it makes the size of LSH
index smaller and linearly proportional to the number of entries,
independent on the candidate's size.


	Introduction
	Genome Sequencing Files
	Sequencing Data Compression
	Human Genome Deduplication
	Identity-based Deduplication
	Similarity-based Deduplication

	GenoDedup
	Overview
	Offline Phase
	Optimizations of the Online Phase
	Distance Metric and Encoding
	Number of Candidate Comparisons


	Evaluation
	Encoding Gains
	Performance
	Read Operations
	Write Operations

	Large End-to-End Workload

	Discussion
	Other Data Representations
	Paired-end Sequencing
	Other Species
	Other Sequencing Machines
	Other Sequence Lengths
	Reordering FASTQ entries

	Conclusion
	References
	Biographies
	Vinicius Cogo
	João Paulo
	Alysson Bessani


