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1 HAMMING AND LEVENSHTEIN ENCODINGS

In this section, we present the encoding details for the Hamming
and the Levenshtein algorithms. In the Hamming algorithm, the
list of edit operations between two strings with the same size
considers only UNMODIFIED and SUBSTITUTION operations.
One may encode the result using 1 bit per edit operation (e.g.,
0 for UNMODIFIED or 1 for SUBSTITUTION), plus the symbol
encoding when characters do not match. We employ the mentioned
Hamming encoding with the use of Huffman codes [1] to describe
the divergent characters. The resulting size (in bits) is given by
Equation (1).

SizeH = M+C0 + `+(S∗huf (•)) (1)

The size of the candidate pointer M (in bits) corresponds to
M = log2(N), where N is the expected number of entries in the
deduplication index. C0 describes the first character in the original
sequence, which allows one to initiate a chain of conversions from
circular delta values to the original quality score sequence. C0
is unnecessary for DNA sequences since these do not use delta
values. It can be a fixed-size value or a Huffman code based
on the distribution of the first character observed from several
FASTQ files. ` is the length of the entry sequence, S is the
number of characters that differ from the base chunk, and huf (•)
is the function that returns the size of the Huffman code for
each divergent character. The best-case scenario for the Hamming
encoding results in ` bits per sequence, an exact match, which
leads to a compression ratio upper bounded by 8×.

The Levenshtein algorithm verifies four different edit opera-
tions (UNMODIFIED, SUBSTITUTION, DELETE, and INSERT),
which requires 2 bits per operation. Similarly to the previ-
ous encoding, we use Huffman codes to describe characters in
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SUBSTITUTION and INSERT operations. The resulting size (in
bits) is given by Equation (2).

SizeL = M+C0 +2∗ `+((S+ I)∗huf (•)) (2)

S and I denote the number of SUBSTITUTION and INSERT
operations. In this Levenshtein encoding, the best-case scenario
results in 2 ∗ ` bits when all characters match, which is the
equivalent to an upper bound of 4× in compression ratio.

We also evaluated a Delta-Levenshtein encoding, similar to
the proposed Delta-Hamming. However, it has a limited impact
because it requires more bits to represent its additional operations
and it reduces very little the total number of edit operations of
deduplicated sequences.

2 DATASETS

Our analyses use five representative FASTQ files of human
genomes from the 1000 Genomes Project [2]: SRR400039,
SRR618664, SRR618666, SRR618669, and SRR622458. They
are human genomes sequenced with the Illumina HiSeq 2000
platform [3]. To the best of our knowledge, this machine was
the most used NGS machine in sequencing laboratories around
the world when we started this work [4]. Additionally, some of
the selected genomes were also used in other papers on FASTQ
compression (e.g., SRR400039 in Quip’s paper [5]). Only the
FASTQ file from the first end of these genomes are considered
in our analyses, but they sum up 265GB of data and result in
almost one billion FASTQ entries.

Table S1 provides additional details about the selected
datasets. It contains the size of the selected genomes (in B, MB,
and GB), the size (in GB) of the comment, DNA, and QS portions
separately, the number of FASTQ entries, the length of each DNA
and QS sequence within an entry, and the sequencing coverage [6].

3 TOOLS

We evaluated several generic and specialized compression tools
available in the literature [13], [16]. Ten tools were selected
due to their completeness, correctness, compression ratio, and
performance: GZIP [7], pigz [8], BSC [9], ZPAQ [10], Se-
qDB [11], DSRC2 [12], Quip [5], Fqzcomp [13], FaStore [14],
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Table S1
The datasets used in this work, their size (in B, MB, and GB), the size (in GB) of the comment, DNA, and QS portions separately, the number of

FASTQ entries, the length of each DNA and QS sequence within an entry, and the sequencing coverage.

Genome Size (B) Size (MB) Size (GB) Comments DNA QS Entries Length Coverage
SRR400039 1 33712200479 33712.2 33.7 8.3 12.7 12.7 124331027 101 3.91×
SRR618664 1 64619170090 64619.2 64.8 16.2 24.3 24.3 239715311 100 7.46×
SRR618666 1 62342666306 62342.7 62.3 15.7 23.4 23.4 231285558 100 7.20×
SRR618669 1 79617500309 79617.5 79.6 20.0 29.8 29.8 295256611 100 9.20×

SRR622458 1† 23617651110 23617.7 23.6 4.0 9.8 9.8 96097046 101 3.02×
Total 263909188294 263909.2 264.2 64.2 100 100 986685553 — —

Table S2
Tools, versions and parameters used in our comparisons. $F1 = original FASTQ, $F2 = compressed file, $F3 = decompressed file.

Tool Version Compression Decompression
GZIP [7] 1.6 $F1 -d $F2
pigz [8] 2.3.1 $F1 -d $F2
BSC [9] 3.1.0 e $F1 $F2 d $F2 $F3
ZPAQ [10] 7.15 a $F2 $F1 -m5 -t24 x $F2 -t24 -force
SeqDB [11] 0.2.1 120 120 $F1 $F2 $F2 > $F3
DSRC2 [12] 2.00 c -t24 $F1 $F2 d -t24 $F2 $F3
Quip [5] 1.1.8 $F1 -d $F2
Fqzcomp [13] 4.6 $F1 $F2 -d -X $F2 $F3
FaStore [14] 0.8.0 --lossless --in $F1 --out $F2 --threads 24 --in $F2 --out $F3 --threads 24
SPRING [15] 1.0 -c -i $F1 -o $F2 -t 24 -d -i $F2 -o $F3 -t 24

and SPRING [15]. Table S2 presents the version of the tool used
in our tests and the arguments passed to compress and decompress
data. In this table, $F1 is the path to the original FASTQ file
(usually passed as input to the compressor), $F2 is the path to the
resulting compressed file, and $F3 is the path to the decompressed
file (usually different from $F1 to compare their content hashes
later).

We experimented with many other tools, but they were dis-
carded from the comparison for several reasons, which we de-
scribe in the remaining of this section.

LZMA2 is an improved multi-threaded version of the
generic compressor entitled Lempel-Ziv-Markov chain algorithm
(LZMA), which was implemented in the 7-Zip compressor [17].
We experimented the FASTQ file of the SRR400039 genome
with this tool. However, it has compressed this file 3.26× at a
throughput of 1.36MB/s and decompressed it at 14.1MB/s.

PPM (Prediction by partial matching) is another interesting
generic compression algorithm to be considered [18]. It is also
one of the possible compression methods used by 7-Zip. We
experimented with a tool called PPMd with the FASTQ file of
the SRR400039 genome, and it has compressed this file 3.95× at
a throughput of 17.1MB/s and decompressed it at 3.86MB/s.

These two tools were discarded from our complete comparison
because they are slower than GZIP and have a lower compression
ratio than ZPAQ. Other tools fall in the same situation since these
do not surpass the performance of GZIP nor compress more than
ZPAQ, namely: BZIP2 [19], G-SQZ [20], and KIC [21]. ZPAQ
achieving a better compression ratio than PPMd is usually justified
by the fact that ZPAQ (and similar context mixing algorithms) use
many prediction models from different contexts while PPMd uses
a single one [22].

The idea of context mixing brings another tool, called

LPAQ8 [23], into the discussion. LPAQ8 is a slow compressor
that reaches the best compression ratio in many benchmarks and
was developed by the same person that developed ZPAQ. Other
FASTQ compression tools (e.g., LFQC [24] and LFastqC [22])
separate the different portions of FASTQ files (i.e., comments,
DNA, and QS) and compress them separately.

Both LFQC [24] and LFastqC [22] use LPAQ8 to compress
the quality score sequences, while for the comments and DNA
sequences the former uses ZPAQ and the latter uses Mfcom-
press [25]. However, LPAQ8 uses signed integers to track the file
length, which makes it crash if its input files have more than 2GB.
As presented in the seventh column of Table S1, all QS portions
of our datasets have more than 2GB, which prevents us from using
any tool that employs LPAQ8 for compressing these portions.

Developers from LFQC suggested, in an issue report1, to
replace LPAQ8 by ZPAQ to compress the QS sequences when they
are bigger than 2GB. However, it would make LFQC’s results very
similar to the ones from ZPAQ, which vouched for discarding it
from the complete comparison.

Finally, another tool that separates the portions of FASTQ
files and uses the Mfcompress [25] for the DNA sequences
is the MZPAQ [26]. As the name suggests, it uses the ZPAQ
algorithm for the QS sequences. Unfortunately, we were not able
to find a publicly available source-code or executable of MZPAQ,
which prevents us from adding it to the complete evaluation. We
even considered running its underlying software separately, but
Mfcompress has compressed a human genome only 34.3% more
than GZIP [25] and using the ZPAQ to compress the QS sequences
would result in ZPAQ’s low restore throughput, incurring in the
same limitations as the previously mentioned generic tools.

1. https://github.com/mariusmni/lfqc/issues/4

https://github.com/mariusmni/lfqc/issues/4
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Table S3
Compressed size in MB.

Genome GZIP pigz BSC ZPAQ SeqDB DSRC Quip Fqzcomp FaStore SPRING GenoDedup
SRR400039 1 12041 12036 8441 7617 16728 8693 7410 7454 7180 6509 8202
SRR618664 1 21498 21511 14930 13355 32204 15239 12971 13094 N/A 10702 14624
SRR618666 1 21298 21277 14849 13299 31117 15132 12920 13054 N/A 10674 14318
SRR618669 1 26304 26302 18253 162958 39580 18572 15833 16025 N/A 12869 17627
SRR622458 1 5408 5401 4051 3206 12274 5607 4909 4706 3826 3438 7751

Table S4
Compression ratio (i.e., original size/compressed size).

Genome GZIP pigz BSC ZPAQ SeqDB DSRC Quip Fqzcomp FaStore SPRING GenoDedup
SRR400039 1 2.800 2.801 3.994 4.426 2.015 3.878 4.550 4.523 4.695 5.179 4.110
SRR618664 1 3.006 3.004 4.328 4.839 2.007 4.240 4.982 4.935 N/A 6.038 4.419
SRR618666 1 2.927 2.930 4.198 4.688 2.003 4.120 4.825 4.776 N/A 5.841 4.354
SRR618669 1 3.027 3.027 4.362 4.886 2.012 4.287 5.029 4.968 N/A 6.187 4.517
SRR622458 1 4.367 4.373 5.830 7.367 1.924 4.212 4.811 5.018 6.173 6.869 3.047

Average 3.225 3.227 4.543 5.241 1,992 4.148 4.839 4.844 5.434 6.023 4.089

Table S5
Compression throughput in MB/s (i.e., original size/compression time).

Genome GZIP pigz BSC ZPAQ SeqDB DSRC Quip Fqzcomp FaStore SPRING
SRR400039 1 12.804 251.584 161.302 5.416 474.820 636.079 28.888 59.457 14.053 35.301
SRR618664 1 13.460 255.412 167.842 5.347 425.126 1576.077 28.108 61.250 N/A 41.449
SRR618666 1 13.547 259.761 133.211 5.302 418.407 1558.567 29.200 61.060 N/A 40.720
SRR618669 1 13.772 201.563 136.800 5.408 277.413 1421.741 28.404 61.671 N/A 35.928
SRR622458 1 24.026 437.364 200.150 5.088 481.993 1686.975 28.979 59.044 36.960 62.316

Average 15.522 281.137 159.861 5.312 415.552 1375.888 28.716 60.497 25.506 43.143

Table S6
Decompression throughput in MB/s (i.e., compressed size/decompression time).

Genome GZIP pigz BSC ZPAQ SeqDB DSRC Quip Fqzcomp FaStore SPRING
SRR400039 44.596 69.571 45.380 1.210 164.009 140.203 3.604 9.847 47.871 22.522
SRR618664 1 44.601 70.528 43.528 1.112 82.576 75.815 3.293 9.578 N/A 19.493
SRR618666 1 44.650 69.762 35.694 1.155 92.611 76.041 3.426 9.641 N/A 21.391
SRR618669 1 38.012 58.579 36.727 1.110 102.276 54.303 3.235 9.561 N/A 18.953
SRR622458 1 34.891 62.075 69.842 0.688 197.975 280.337 3.604 9.228 42.511 22.183
Average 41.350 66.103 46.234 1.055 127.890 125.340 3.432 9.571 45.191 20.908

4 EXPERIMENTAL EVALUATION

In this section, we present the complete tables comparing the ten
selected tools using the five selected datasets in terms of com-
pressed size (Table S3), compression ratio (Table S4), compression
throughput (Table S5), and decompression throughput (Table S6).
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