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1 INTRODUCTION

The complexity and extensibility of current computer
systems have been causing a plague of exploitable soft-
ware bugs and configuration mistakes. Accordingly, the
number of cyber-attacks has been growing, confirming
computer security as an increasingly important research
challenge. As an approach to meet this challenge, several
asynchronous Byzantine fault-tolerant algorithms have been
proposed1. The main idea of these algorithms is to allow
a system to automatically continue operating correctly,
even if some of its components exhibit arbitrary, possibly
malicious behavior [4], [12], [13], [15], [17], [19], [26],
[29], [30], [39], [49]. These algorithms have already been
used to design intrusion-tolerant services such as network
file systems [12], [14], [49], cooperative backup [3], large
scale storage [2], DNS [11], coordination services [8], [14],
certification authorities [50], databases [21], and key man-
agement systems [40].

Byzantine fault-tolerant systems are often built using
replication. The state machine approach is a generic replica-
tion technique to implement deterministic fault-tolerant
services. It has been used as a means to tolerate both
crash and Byzantine/arbitrary faults [42], [12], [39]. The
algorithms used in the second case are usually called
simply BFT. There are, however, other algorithms in the
literature that are Byzantine fault-tolerant, but provide
weaker semantics, e.g., registers implemented with quo-
rum systems [31]. When we speak about BFT in the paper,
we do not include these.
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1. Although the term asynchronous is often used in this context, most
of these algorithms are not strictly asynchronous, but more precisely do
not rely on synchrony for correctness. Most of them make weak time
assumptions like the ones we make in Section 3.

This paper presents two novel BFT algorithms. Their
novelty comes from these algorithms improving previous
ones in terms of three metrics: number of replicas, trusted
service simplicity and number of communication steps. We say
that these algorithms are efficient, in this sense that they
are equal to or better than previous algorithms in terms of
these metrics. Efficiency in this case comes from the use of
a simple trusted component. This means that the system
model we consider is slightly different from those of most
previous works, but the difference is worthwhile, since the
latter present algorithms that are already optimal in the
system model they consider. We explain this efficiency in
the following paragraphs.

Number of replicas. BFT algorithms typically require
3f + 1 servers (or replicas2) to tolerate f Byzantine (or
faulty) servers [12], [17], [26], [39]. They are based on the
idea that correct replicas can overcome faulty replicas in
a sequence of votes and, for this to happen, they would
need at least f + 1 correct replicas, in a total of 2f + 1
servers. However, these algorithms require f more servers
than this minimum. The only two algorithms that require
just 2f + 1 servers are those proposed by Chun et al. [13]
and Correia et al. [15].

Reducing the number of replicas has an important im-
pact in the cost of intrusion-tolerant systems as one replica
is far more costly than its hardware. For tolerating attacks
and intrusions, the replicas can not be identical and share
the same vulnerabilities, otherwise causing intrusions in
all the replicas would cost almost the same as in a single
one. Therefore, there has to be diversity among the repli-
cas, i.e., replicas shall have different operating systems,
different application software, etc. [20], [34]. This involves
considerable additional costs per-replica, in terms not only
of hardware but especially of software development, ac-
quisition, and management. There are also complementary
solutions that can create some levels of diversity automat-
ically, like address space layout randomization [48] and

2. We use the two words interchangeably, since servers are used
exclusively as replicas of the service they run.
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instruction set randomization [6].
The first sense in which the BFT algorithms presented

in the paper are said to be efficient is that they require
only 2f + 1 replicas, which is clearly the minimum for
BFT algorithms, since a majority of the replicas must be
non-faulty for majority voting to be applied [42]. It also
matches the lower bound for non-synchronous crash fault
tolerance [18].

Trusted service simplicity. A few years ago, a BFT algo-
rithm that needs only 2f + 1 replicas was published [15].
This algorithm requires that the system is enhanced with a
tamperproof distributed component called Trusted Timely
Computing Base (TTCB). The TTCB provides an ordering
service used to implement an atomic multicast protocol
that is the core of the replication scheme. Recently, another
BFT algorithm with only 2f + 1 replicas was presented,
A2M-PBFT-EA [13]. It is based on an Attested Append-Only
Memory (A2M) abstraction that has to be tamperproof,
like the TTCB, but local to each computer, instead of
distributed.

These two works have shown that one can reduce the
number of replicas from 3f + 1 to 2f + 1 by extending
the servers with tamperproof components, i.e., with com-
ponents that provide a correct service even if the server
where they are installed becomes faulty. Therefore, an im-
portant aspect of the design of 2f+1 BFT algorithms is the
design of these components so that they can be trusted to
be tamperproof. This problem is not novel for it is similar
to the problem of designing a Trusted Computing Base
or a reference monitor. A fundamental goal is to design
the component in such a way that it is verifiable, which
requires simplicity (see for example [23]). Despite this
need of simplicity, the TTCB is a distributed component
that provides several services and A2M provides a log that
can grow considerably and an interface with functions to
append, lookup and truncate messages in the log.

The second sense in which the algorithms presented
in this paper are said to be efficient is that the
trusted/tamperproof service in which they are based is
simpler that the previous two in the literature (TTCB,
A2M) and is the simplest that we can conceive. Let us
explain this last statement. Some papers prove that it
is not possible to design specific Byzantine fault-tolerant
agreement algorithms with fewer than 3f + 1 servers
[9], [28]. Looking into these proofs it can be seen that
the main problem is that a malicious server can lie to
the correct ones. In case of state machine replication, the
main agreement problem is to make all correct replicas
execute the same sequence of operations. In this sense,
a trusted service has to provide at least something that
gives to replicas the notion of a sequence of operations,
in such a way that a malicious replica would not be
able to make different correct replicas execute different
operations as their i-th operation. It is not difficult to see
that nothing is simpler than a trusted monotonic counter,
used to associate sequence numbers to each operation (the
state is only one natural number). On the other hand, the
values generated by this counter should be unforgeable,
so some kind of authentication based on cryptographic

primitives must be employed. The trusted service pre-
sented in this paper (USIG) provides an interface with
operations only to increment a counter and to verify if
other counter values (incremented by other replicas) are
correctly authenticated.

An important side effect of the simplicity of our trusted
component is that it can be implemented even on COTS
trusted hardware, such as the Trusted Platform Module
(TPM) [36]. This secure co-processor is currently available
in the mainboard of many commodity PCs.

Number of communication steps. The number of com-
munication steps is an important metric for distributed
algorithms, for the delay of communication tends to have
a major impact in the latency of the algorithm. This is
specially important in WANs, where the communication
delay can be as much as a thousand times higher than
in LANs. Moreover, to tolerate disasters and large-scale
attacks like DDoS, replicas have to be deployed in different
sites, which increases the message communication delays.

The first algorithm we propose – MinBFT – follows
a message exchange pattern similar to PBFT’s [12]. The
replicas move through a succession of configurations
called views. Each view has a primary replica and the
others are backups. When a quorum of replicas suspects
that the primary replica is faulty, a new primary is chosen,
allowing the system to make progress. In each view there
are communication steps in which the primary sends mes-
sages to all backups, and steps in which all replicas send
messages to all others. The fundamental idea of MinBFT
is that the primary uses the trusted counters to assign
sequence numbers to client requests. However, more than
assigning a number, the tamperproof component produces
a signed certificate that proves unequivocally that the
number is assigned to that message (and not another) and
that the counter was incremented (so the same number can
not be used twice). This is used to guarantee that all non-
faulty replicas consider that all messages with a certain
identifier are the same and, ultimately, agree on the same
order for the execution of the requests.

The second algorithm we propose – MinZyzzyva– is
based on speculation, i.e., on the tentative execution of
the clients’ requests without previous agreement on the
order of their execution. MinZyzzyva is a modified ver-
sion of Zyzzyva, the first speculative BFT algorithm [26].
The Zyzzyva communication pattern is similar to PBFT’s
except for speculation: when the backups receive a request
from the primary, they speculatively execute the request
and send a reply to the client.

For BFT algorithms, the metric considered for latency
is usually the number of communication steps in nice
executions, i.e., when there are no failures and the system
is synchronous enough for the primary not to be changed.
MinBFT and MinZyzzyva are very efficient in terms of
this metric, because in nice executions the two algorithms
run in the minimum known number of communication
steps of non-speculative and speculative algorithms, re-
spectively 4 [30] and 3 steps [26]. Notice that the gain of
one step in speculative algorithms comes at a price: in
certain situations Zyzzyva and MinZyzzyva may have to
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PBFT Zyzzyva TTCB A2M-PBFT-EA MinBFT MinZyzzyva
[12] (+[49]) [26] [15] [13] this paper this paper

Model Tamperproof component no no TTCB A2M USIG USIG
Speculative no yes no no no yes
Cost Total replicas 3f + 1 3f + 1 2f + 1 2f + 1 2f + 1 2f + 1

Replicas with application state 2f + 1 [49] 2f + 1 2f + 1 2f + 1 2f + 1 2f + 1
Throughput HMAC ops at bottleneck server 2 + (8f + 1)/b 2 + 3f/b 3 2 + (2f + 4)/b 2 + (f + 3)/b 2 + sign/b (†)
Latency Communication steps 5 / 4 3 5 5 4 3

Table 1
Comparison of BFT algorithms, expanding Table 1 in [26]. The throughput and latency metrics are for each request. f is

the maximum number of faulty servers and b the size of the batch of requests used. (†) MinZyzzyva does 2 HMAC
operations and one signature.

rollback some executions, which makes the programming
model more complicated.

Benefits and drawbacks. Table 1 presents a summary of
the characteristics of the algorithms presented in the paper
and the state-of-the-art algorithms in the literature with
which they are compared. It summarizes the benefits in
terms of the above mentioned metrics.

The benefits in terms of number of replicas and commu-
nication steps come from the use of the trusted service.
A core problem in Byzantine fault-tolerant algorithms
is duplicity, i.e., the possibility of a faulty server send-
ing inconsistent messages to different servers [28]. More
precisely, a faulty server may send two messages with
different content but the same identifier to two different
subsets of servers. Tolerating this behavior requires, e.g.,
that every subset of n − f servers (because f may be
crashed) contains a majority of correct servers, which leads
to a minimum of 3f + 1 servers. Our trusted service,
USIG, can prevent this duplicity because it is used to
assign identifiers to messages and never assigns the same
identifier to two different messages. When it assigns an
identifier, it provides also a certificate that is appended to
the message, proving that the identifier was actually given
by the service.

It is important to understand that that these improve-
ments have a downside, there are no free lunches. In
relation to BFT algorithms that do not use a trusted
component, our algorithms (as the previous two [13], [15])
have an additional point of failure: the assumption of the
tamperproofness of the component. With this regard, we
stress again the simplicity of the USIG trusted service used
in this paper, making a verified implementation or the use
of commercial trusted hardware (e.g., TPM) straightfor-
ward. In consequence, and given a robust design of those
components, this is only a disadvantage in settings where
the potential attacker has physical access to a replica,
since protecting even hardware components from physical
attacks is at best complicated.

Contributions. The contributions of the paper can be
summarized as follows:

• it presents two BFT algorithms that match or improve
previous algorithms in terms of number of replicas
(only 2f + 1), complexity of the trusted service used,
and number of communication steps (4 and 3 re-
spectively without/with speculation); it also shows
that, even with the trusted component access over-
head, these algorithms can have better throughput

than Castro and Liskov’s PBFT, and better latency in
networks with non-negligible communication delays;

• it presents the first implementations with some level
of isolation for a trusted component used to improve
BFT algorithms. We implemented several versions of
the USIG service with different cryptography mech-
anisms that are isolated both in separate virtual ma-
chines and trusted hardware.

The characteristics of the presented BFT algorithms in
terms of number of replicas, trusted service simplicity and
number of steps, leads to a simplicity that we believe
makes them practical to a level only comparable with
crash fault-tolerant algorithms.

2 USIG SERVICE

The Unique Sequential Identifier Generator (USIG) is a local
service that exists in every server. It assigns to messages
(i.e., arrays of bytes) the value of a counter and signs
it. Identifiers are unique, monotonic and sequential for
that server. These three properties imply that the USIG
(1) will never assign the same identifier to two different
messages (uniqueness), (2) will never assign an identifier
that is lower than a previous one (monotonicity), and (3)
will never assign an identifier that is not the successor
of the previous one (sequentiality). These properties are
guaranteed even if the server is compromised, so the
service has to be implemented in a tamperproof module.

The interface of the service has two functions:
• createUI(m) – returns a USIG certificate that contains

a unique identifier UI and certifies that this UI was
created by this tamperproof component for message
m. The unique identifier is essentially a reading of the
monotonic counter, which is incremented whenever
createUI is called.

• verifyUI(PK,UI ,m) – verifies if the unique iden-
tifier UI is valid for message m, i.e., if the USIG
certificate matches the message and the rest of the
data in UI .

There are two basic options to implement the service,
depending on the certificate being based on cryptographic
hashes or public-key cryptography:

• USIG-Hmac: a certificate contains a Hash-based Mes-
sage Authentication Code (HMAC) [27] obtained us-
ing the message and a secret key owned by this USIG
but known by all the others, for them to be able to
verify the certificates generated.
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• USIG-Sign: the certificate contains a signature ob-
tained using the message and the private key of this
USIG.

In USIG-Hmac the properties of the service (e.g.,
uniqueness) are based on the secretness of the shared
keys, while in USIG-Sign the properties are based on
the secretness of the private keys. Therefore, while for
USIG-Hmac both functions createUI and verifyUI must
be implemented inside the tamperproof component, for
USIG-Sign the verification requires only the public-key of
the USIG that created the certificate, so this operation can
be done outside of the component. In both cases, keys
have to be shared for the verification to be done in servers
other than the one where createUI was called.

The implementation of the service is based on an iso-
lated, tamperproof, component that we assume can not be
corrupted. This component contains essentially a counter
and either an HMAC primitive (for USIG-Hmac) or a
digital signature primitive (for USIG-Sign). More details
about the USIG implementation can be found in Section
6.

3 SYSTEM MODEL AND PROPERTIES

The system is composed by a set of n servers P =
{s0, ..., sn−1} that provides a Byzantine fault-tolerant ser-
vice to a set of clients. Clients and servers are intercon-
nected by a network and communicate only by message-
passing.

The network can drop, reorder and duplicate messages,
but these faults are masked using common techniques like
packet retransmissions. Messages are kept in a message
log in order to be retransmitted. An attacker may have
access to the network and be able to modify messages, so
messages contain digital signatures or HMACs. Servers
and clients know which keys they need, in order to check
these signatures/HMACs. We make the standard assump-
tions about cryptography, i.e., that hash functions are
collision-resistant and that signatures can not be forged.

Servers and clients are said to be either correct or faulty.
Correct servers/clients always follow their algorithm. On
the contrary, faulty servers/clients can deviate arbitrar-
ily from their algorithm, even by colluding with some
malicious purpose. This class of unconstrained faults is
usually called Byzantine or arbitrary. We assume that at
most f out of n servers can be faulty for n = 2f + 1. In
practice, and in order to prevent early resource exhaustion
by common-mode attacks, this requires that the servers be
diverse [20], [34]. Notice that we are not considering the
generic case (n ≥ 2f + 1) but the tight case in which the
number of servers n is the minimum for a value of f , i.e.,
n = 2f + 1. This restriction is known to greatly simplify
the presentation of the algorithms, which are simple to
modify to the generic case.

Each server contains a local trusted/tamperproof com-
ponent that provides the USIG service. Therefore, the fault
model we consider is hybrid [46], with the hybrid behavior
enforced by the architecture. In fact, whilst we state that
any number of clients and any f servers can be faulty

in a Byzantine manner, there is a set of components of
the system architecture which are tamperproof: each of
these components implements the USIG service, which
always satisfies its specification, even if hosted in a faulty
server. For instance, a faulty server may decide not to
send a message or send it corrupted, but it can not send
two different messages with the same value of the USIG’s
counter and a correct certificate.

We do not make assumptions about processing or com-
munication delays, except that these delays do not grow
indefinitely (like in [12]). This rather weak assumption has
to be satisfied only to ensure the liveness of the system, not
its safety. This can be confirmed by following the proofs
in the supplemental material.

Properties. The algorithms presented in the following two
sections implement the state machine approach, which
consists of replicating a service in a group of servers
and maintaining a strong consistency amongst them. Each
server maintains a set of state variables, which are modified
by a set of operations. These operations have to be atomic
(they can not interfere with other operations) and deter-
ministic (the same operation executed in the same initial
state generates the same final state), and the initial state
must be the same in all servers. The properties that the
algorithm has to enforce are: safety – all correct servers
execute the same requests in the same order; liveness – all
correct clients’ requests are eventually executed.

4 MINBFT
This section presents MinBFT, the non-speculative 2f + 1
BFT algorithm. MinBFT follows a message exchange pat-
tern similar to PBFT’s (see Figure 1). The servers move
through successive configurations called views. Each view
has a primary replica and the rest are backups. The primary
is the server sp with p = v mod n, where v is the current
view number. Clients issue requests with operations.

In the normal case operation the sequence of events is
the following: (1) a client sends a request to all servers;
(2) the primary assigns a sequence number (execution order
number) to the request and sends it to all servers in a
PREPARE message; (3) each server multicasts a COMMIT
message to other services when it receives a PREPARE from
the primary; (4) when a server accepts a request, it executes
the corresponding operation and returns a reply to the
client; (5) the client waits for f + 1 matching replies for
the request and completes the operation.

When f + 1 backups suspect that the primary is faulty,
a view change operation is executed, and a new server s′p
with p = v′ mod n becomes the primary (v′ > v is the
new view number). This mechanism provides liveness by
allowing the system to make progress when the primary
is faulty.

Clients. A client c requests the execution of an operation
op by sending a message 〈REQUEST, c, seq , op〉σc

to all
servers. seq is the request identifier that is used to ensure
exactly-once semantics: (1) the servers store in a vector
Vreq the seq of the latest request they executed for each
client; (2) the servers discard requests with seq lower than
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Figure 1. Message patterns of PBFT and MinBFT.

the latest executed (to avoid executing the same request
twice), and any requests received while the previous one
is being processed. Requests are signed with the private
key of the client. Requests with an invalid signature σc are
simply discarded. After sending a request, the client waits
for f + 1 replies 〈REPLY, s, seq , res〉 from different servers
s with matching results res , which ensures that at least
one reply comes from a correct server. If the client does
not receive enough replies during a time interval read in
its local clock, it resends the request. In case the request
has already been processed, the servers resend the cached
reply.

Servers: normal case operation. The core of the algorithm
executed by the servers is the PREPARE and COMMIT
message processing (see Figure 1). MinBFT has only two
communication steps, not three like PBFT or A2M-PBFT-
EA. When the primary receives a client request, it uses a
PREPARE message to multicast the request to all servers.
The main role of the primary is to assign a sequence
number to each request. This number is the counter value
returned by the USIG service in the unique identifier UI .
These numbers are sequential while the primary does not
change, but not when there is a view change, an issue that
we discuss later.

The basic idea is that a request m is sent by the primary
si to all servers in a message 〈PREPARE, v, si,m,UIi〉,
and each server sj resends it to all others in a message
〈COMMIT, v, sj , si,m,UIi ,UIj 〉, where UIj is obtained by
calling createUI. Each message sent, either a PREPARE or
a COMMIT, has thus a unique identifier UI obtained by
calling the createUI function, so no two messages can
have the same identifier. Servers check if the identifiers
of the messages they receive are valid for these messages,
using the verifyUI function.

If a server sk did not receive a PREPARE message but
received a COMMIT message with a valid identifier gener-
ated by the sender, then it sends its COMMIT message.
This can happen if the sender is faulty and does not
send the PREPARE message to server sk (but sends it to
other servers), or if the PREPARE message is simply late
and is received after the COMMIT messages. A request
m is accepted by a server following the algorithm if the
server receives f+1 valid COMMIT messages from different
servers for m.

This core algorithm has to be enhanced to deal with
certain cases. A correct server sj multicasts a COMMIT
message in response to a message 〈PREPARE, v, si,m,UIi〉
only if three additional conditions are satisfied: (1) v is
the current view number on sj and the sender of the
PREPARE message is the primary of v (only the primary

can send PREPARE messages); (2) the request m contains
a valid signature produced by the requesting client (to
prevent a faulty primary from forging requests); and
(3) sj already accepted request m′ with counter value
cv′ = cv − 1, where cv is the counter value in UIi (to
prevent a faulty primary from creating “holes” in the
sequence of messages). This last condition ensures that
not only the requests are executed in the order defined by
the counter of the primary, but also that they are accepted
in that same order. Therefore, when a request is accepted it
can be executed immediately (there is never the necessity
of waiting for requests with lower numbers). The only
exception is that if the server is faulty it can “order” the
same request twice. So, when a server accepts a request,
it first checks in Vreq if the request was already executed
and executes it only if not.

This message ordering mechanism imposes a FIFO or-
der that is also enforced to other messages (in the view
change operation) that also take a unique identifier UI : no
correct server processes a message 〈..., si, ...,UIi , ...〉 sent
by any server si with counter value cv in UIi before it
has processed message 〈..., si, ...UIi ′, ...〉 sent by si with
counter value cv − 1. To enforce this property, each server
keeps a vector Vacc with the highest counter value cv
it received from each of the other servers in PREPARE,
COMMIT, CHECKPOINT or VIEW-CHANGE messages. The
FIFO order does not impose that the algorithm works
in lockstep, i.e, the primary can send many PREPARE
messages but all servers will accept the corresponding
requests following the sequence order assigned by the
primary.

FIFO order is needed to complement the use of unique
identifiers in preventing duplicity. These identifiers alone
do not prevent duplicity because a faulty server can send
inconsistent messages to different servers, even if with
different identifiers. By processing messages in the FIFO
order indicated by the counters, all correct servers process
the messages sent by the faulty server in the same order,
or stop processing them if they do not receive one of them,
thus preventing duplicity.

Servers: garbage collection and checkpoints. Messages
sent by a server are kept in a message log in case they
have to be resent. To discard messages from this log,
MinBFT uses a garbage collection mechanism based on
checkpoints, similar to PBFT’s.

Servers generate checkpoints periodically when a re-
quest sequence number (the counter value in the UI
produced by the primary) is divisible by the constant
cp (checkpoint period). After the server sj produces the
checkpoint it multicasts 〈CHECKPOINT, sj ,UI latest, d,UI j〉
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where UI latest is the unique identifier of the latest exe-
cuted request, d is the hash of the server’s state and UIj is
obtained by calling createUI for the checkpoint message
itself. A server considers that a checkpoint is stable when
it receives f+1 CHECKPOINT messages signed by different
replicas with the same UI latest and d. We call this set
of messages a checkpoint certificate, which proves that the
server’s state was correct until that request execution.
Therefore, the replica can discard all entries in its log with
sequence number less than the counter value of UI latest.

The checkpoint is used to limit the number of messages
in the log. We use two limiters: the low water mark (h)
and the high water mark (H). The low water mark is the
sequence number of the latest stable checkpoint. Replicas
discard received messages with the counter value less
than h. The high water mark is H = h + L where L is
the maximum size of the log. Replicas discard received
messages with the counter value greater than H . This
mechanism is for a single view. When there is a view
change, a new checkpoint is generated and the log is
cleaned.

Servers: view change operation. In normal case operation,
the primary assigns sequence numbers to the requests it
receives and multicasts these numbers to the backups us-
ing PREPARE messages. This algorithm strongly constrains
what a faulty primary can do: it can not repeat or assign
arbitrarily higher sequence numbers. However, a faulty
primary can still prevent progress by not assigning se-
quence numbers to some requests, or even to any requests
at all.

When the primary is faulty, a view change has to be
executed and a new primary chosen. View changes are
triggered by timeout. When a backup receives a request
from a client, it starts a timer that expires after Texec. When
the request is accepted, the timer is stopped. If the timer
expires, the backup suspects that the primary is faulty and
starts a view change.

The view change operation is represented in Figure 1.
When a timer in backup si times-out, si sends a message
〈REQ-VIEW-CHANGE, si, v, v

′〉 to all servers, where v is
the current view number and v′ = v + 1 the new view
number3.

When a server si receives f + 1 REQ-VIEW-CHANGE
messages, it moves to view v + 1 and multicasts 〈VIEW-
CHANGE, si, v

′, Clatest,O ,UI i〉, where Clatest is the latest
stable checkpoint certificate and O is a set of all mes-
sages sent by the replica since the latest checkpoint was
generated (PREPARE, COMMIT, VIEW-CHANGE and NEW-
VIEW messages). At this point, that replica stops accepting
messages for v.

The VIEW-CHANGE message takes a unique identifier
UIi obtained by calling createUI. The objective is to pre-
vent faulty servers from sending different VIEW-CHANGE
messages with different Clatest and O to different subsets
of the servers, leading to different decisions on which was
the last request of the previous view. Faulty servers still

3. It seems superfluous to send v and v′ = v + 1 but in some cases
the next view can be for instance v′ = v + 2.

can do it, but they have to assign different UI identifiers to
these different messages, which will be processed in order
by the correct servers, so all will take the same decision
on the last request of the previous view. Correct servers
only consider 〈VIEW-CHANGE, si, v

′, Clatest,O ,UI i〉 mes-
sages that are consistent with the system state: (1) the
checkpoint certificate Clatest contains at least f+1 valid UI
identifiers; (2) the counter value (cvi) in UIi is cvi = cv+1,
where cv is the highest counter value of the UI s signed by
the replica in O; if O is empty the highest counter value
will be the UI in Clatest signed by the replica when it
generated the checkpoint; and (3) there are no holes in
the sequence number of messages in O.

When the new primary for view v′ receives f + 1
VIEW-CHANGE messages from different servers, it stores
them in a set Vvc, which is the new-view certificate. Vvc
must contain all requests accepted since the previous
checkpoint, and can also include requests that only were
prepared. In order to define the initial state for v′, the
primary of this view uses the information in the Clatest
and O fields in the VIEW-CHANGE messages to define S,
which is the set of requests that were prepared/accepted
since the checkpoint. To compute S, the primary starts
by selecting the most recent (valid) checkpoint certificate
received in VIEW-CHANGE messages. Next, it picks in
VIEW-CHANGE messages the requests in O sets with UI
counter values greater than the UI counter value in the
checkpoint certificate.

After this computation, the primary multicasts a mes-
sage 〈NEW-VIEW, si, v

′, Vvc, S,UI i〉. When a replica re-
ceives a NEW-VIEW message it verifies if the new-view cer-
tificate is valid. All replicas also verify if S was computed
properly doing the same computation as the primary. A
replica begins the new view v′ after all requests in S that
have not been executed before are executed. If a replica
detects that there is a hole between the sequence numbers
of the latest request that it executed and of the first request
in S, it requests to other replicas the commit certificates
of the missing requests to update its state. If due to the
garbage collection the other replicas have deleted these
messages, there is a state transfer (using the same protocol
of PBFT).

In previous BFT algorithms, requests are assigned with
sequential execution order numbers even when there are
view changes. This is not the case in MinBFT as the se-
quence numbers are provided by a different tamperproof
component (or USIG service) for each view. Therefore,
when there is a view change the first sequence number
for the new view has to be defined. This value is the
counter value in the unique identifier UIi in the NEW-
VIEW message plus one. The next PREPARE message sent
by the new primary must follow the UIi in the NEW-VIEW
message.

When a server sends a VIEW-CHANGE message, it starts
a timer that expires after Tvc units of time. If the timer
expires before the server receives a valid NEW-VIEW mes-
sage, it starts another view change for view v + 2 4. If

4. But the previous view is still v. Recall the previous footnote about
REQ-VIEW-CHANGE messages.
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Figure 2. MinZyzzyva basic operation.
additional view changes are needed, the timer is multi-
plied by two each time, increasing exponentially until a
new primary responds. The objective is to avoid timer
expirations forever due to long communication delays.

The complete proof of correctness of the algorithm can
be found in the supplemental material.

5 MINZYZZYVA

This section presents the second BFT algorithm of the
paper, MinZyzzyva. This algorithm has characteristics
similar to the previous one, but needs one communication
step less in nice executions because it is speculative.
MinZyzzyva is a modified version of Zyzzyva, the first
speculative BFT algorithm [26].

The idea of speculation is that servers respond to clients’
requests without first agreeing on the order in which
the requests are executed. They optimistically adopt the
order proposed by the primary server, execute the request,
and respond immediately to the client. This execution is
speculative because that may not be the real order in
which the request should be executed. If some servers
become inconsistent with the others, clients detect these
inconsistencies and help (correct) servers converge on a
single total order of requests, possibly having to rollback
some of the executions. Clients only rely on responses that
are consistent with this total order.

MinZyzzyva uses the USIG service to constrain the be-
havior of the primary, allowing a reduction of the number
of replicas of Zyzzyva from 3f + 1 to 2f + 1, preserving
the same safety and liveness properties.

Gracious execution. This is the optimistic mode of the
algorithm. It works essentially as follows: (1) A client
sends a request in a REQUEST message to the primary
sp. (2) The primary receives the request, calls createUI to
assign it a unique identifier UI p containing the sequence
number (just like in MinBFT), and forwards the request
and UI p to other servers. (3) Servers receive the request,
verify if UI p is valid and if it comes in FIFO order, assign
another unique identifier UI s to the request, speculatively
execute it, and send the response in a RESPONSE message
to the client (with the two UI identifiers). (4) The client
gathers the replies and only accepts messages with valid
UI p and UI s. (5) If the client receives 2f + 1 matching
responses, the request completes and the client delivers
the response to the application.

Notice that 2f + 1 are all the servers. This is a re-
quirement for MinZyzzyva to do gracious execution, just
like it was for Zyzzyva. Clients and servers use request
identifiers (seq) to ensure exactly-once semantics, just like
in MinBFT (seq of the latest request executed of each client

is stored in vector Vreq). The client only accepts replies that
satisfy the following conditions: (1) contain UI p and UI s
that were generated for the client request; and (2) contain a
UI p that is valid and that is the same in all replies. Clients
do not need to keep information about the servers’ counter
values.

A replica may only accept and speculatively execute
requests following the primary sequence number order
(FIFO order), but a faulty primary can introduce holes in
the sequence number space. A replica detects a hole when
it receives a request with the counter value cv in the pri-
mary’s UI , where cv > maxcv+1 and maxcv is the counter
value of the latest request received. In this situation, it
sends to the primary a 〈FILL-HOLE, si, v

′,maxcv + 1, cv〉
message and starts a timer. Upon receiving a FILL-HOLE
message the primary sends all requests in the interval
reported by the replica. The primary ignores FILL-HOLE
messages of previous views. If the replica’s timer expires
without it having received a reply from the primary, it
multicasts the FILL-HOLE message to the other replicas
and also requests a view change by sending REQ-VIEW-
CHANGE message (just like Zyzzyva).

Non-gracious execution. If the network is slow or one
or more servers are faulty, the client may never receive
matching responses from all 2f +1 servers. When a client
sends a request it sets a timer. If this timer expires and it
has received between f + 1 and 2f matching responses,
then it sends a COMMIT message containing a commit
certificate with these responses (with the UI p and UI s
identifiers) to all servers. A commit certificate is thus
composed by f+1 matching responses from f+1 different
servers. These certificates can be (1) sent by a client in the
non-gracious execution, (2) obtained when a view change
occurs (below) or (3) obtained from a set of f+1 matching
checkpoints (below).

When a correct server receives a valid commit certificate
from a client, it acknowledges with a LOCAL-COMMIT
message. Servers store in a vector Vacc the highest received
counter value of the other servers (that come in the UI
identifiers). With the UI p and UI s in the COMMIT message,
the servers update their vector values5. The client resends
the COMMIT message until it receives the corresponding
LOCAL-COMMIT messages from f + 1 servers. After that,
the client considers the request completed and delivers the
reply to the application. The system guarantees that even
if there is a view change, all correct servers execute the
request at this point.

If the client receives less than f +1 matching responses
then it sets a second timer and resends the request to
all servers. If a correct server receives a request that it
has executed, it resends the cached response to the client.
Otherwise, it sends the request to the primary and starts
a timer. If the primary replies before the timeout, the
server executes the request. If the timer expires before the
primary sends a reply, the server initiates a view change.

5. Notice that the COMMIT messages do not contain the message
history (as in Zyzzyva [26]), since the validity of UI p requires that the
operations were executed in order.



8

Using the USIG service, it is not possible to generate
the same identifier for two different messages. A faulty
primary can try to cause the re-execution of some requests
by assigning it two different UI identifiers. However the
servers detect this misbehavior using the clients’ seq iden-
tifier in the request and do not do the second execution,
just like in MinBFT6.

Garbage collection and checkpoints. Like in Zyzzyva, the
properties ensured by MinZyzzyva are defined in terms
of histories. Each server in MinZyzzyva maintains an
ordered history of the requests it has executed. Part of that
history, up to some request, is said to be committed, while
the rest is speculative. A prefix of the history is committed
if the server has a commit certificate to prove that a certain
request was executed with a certain sequence number.

Like in MinBFT, replicas generate checkpoints pe-
riodically, when the counter value in a UI gener-
ated by the primary is divisible by constant cp. Af-
ter the replica sj produces the checkpoint, it multicasts
〈CHECKPOINT, sj , UIi, d, UIj〉 where UIi is the unique
identifier of the latest executed request, d is the digest of
the current replica’s state and UIj is obtained by calling
createUI for the checkpoint message itself. A replica
considers that a checkpoint is stable when it receives
f + 1 CHECKPOINT messages with valid UI identifiers
from different replicas with the same UIi and d. Then all
messages executed before UI i are removed from the log.

View change. The view change operation works essen-
tially as MinBFT’s but MinZyzzyva weakens the condition
under which a request appears in the new view message.
When a server si suspects that the primary is faulty
it sends a 〈REQ-VIEW-CHANGE, si, v, v

′〉 message. When
a server receives f + 1 REQ-VIEW-CHANGE messages, it
multicasts a 〈VIEW-CHANGE, si, v

′, Clatest,O ,UI i〉, where
Clatest is the latest commit certificate collected by the
replica and O is a set of ordered requests since Clatest
that were executed by the replica. Each ordered request
has UIp signed by the primary and UIi signed by the
replica during the request execution. At this point, the
replica stops accepting messages other than CHECKPOINT,
VIEW-CHANGE and NEW-VIEW.

Correct servers evaluate VIEW-CHANGE messages and
the new primary build NEW-VIEW messages exactly as in
MinBFT. When a replica receives a NEW-VIEW message it
verifies if the new-view certificate is valid. Replicas consider
a valid NEW-VIEW message equivalent to a commit certifi-
cate.

This algorithm strongly constrains what a faulty pri-
mary can do since it can not repeat or assign arbitrarily
high sequence numbers. However, due to the speculative
nature of MinZyzzyva, in some cases servers may have
to rollback some executions. This can happen after a view
change when the new primary does not include in the
NEW-VIEW message some operations that were executed
by less than f servers. This can only happen for operations
that do not have a commit certificate; therefore, the client

6. Therefore Zyzzyva’s proof of misbehavior [26] is not needed in
MinZyzzyva.

also received neither 2f +1 RESPONSE messages nor f +1
LOCAL-COMMIT messages, and thus the operations did
not complete. Rollback is an internal server operation and
does not involve the USIG service (there is no rollback of
the counter). As mentioned before, the NEW-VIEW message
is equivalent to a commit certificate, so operations that
were rolled back by a replica will not appear in the next
view changes or checkpoint messages.

The complete proof of correctness of the algorithm can
be found in the supplemental material.

6 IMPLEMENTATION

We implemented the prototypes for both MinBFT and
MinZyzzyva in Java. We chose Java for three reasons.
First, we expect that avoiding bugs and vulnerabilities
will be more important than performance in most BFT
deployments, and Java offers features like sandboxing,
type safety and memory safety that can make a BFT
implementation more dependable. The second reason is
to improve the system portability, making it easier to get
deployed in different environments. Finally, we want to
show that an optimized BFT Java prototype can have
performance that is competitive with C implementations
such as PBFT in terms of throughput.

The prototypes were implemented for scalability, i.e.,
for delivering a throughput as high as possible when
receiving requests from a large number of clients. To
achieve this goal, we built a scalable event-driven I/O
architecture (which can be seen as a simpler version
of SEDA [47]) and implemented an adaptive batching
algorithm and window congestion control similar to the
one used in PBFT (the algorithm can run a pre-configured
maximum number of parallel agreements; messages re-
ceived when there are no slots for running agreements are
batched in the next agreement possible). Other common
BFT optimizations [12] such as making agreements over
the request hashes instead of the entire requests, and using
authenticators were also employed in our prototypes.
Additionally, we used recent Java features such as non-
blocking I/O and the concurrent API (from packages
java.nio and java.util.concurrent). Finally, we used TCP
sockets.

Options for implementing the tamperproof component.
Several options have been discussed in papers about the
TTCB [16] and A2M [13]. The TTCB [16] can be seen as
one of the earlier attempts at achieving isolation between
general host services (including operating system) and a
security kernel hosting trustworthy services. A2M [13] is
another such example.

The main difficulty being the isolation of the service
from the rest of the system, virtualization comes in as a
very interesting solution, because a hypervisor provides
isolation between a set of virtual machines with their own
operating system. Examples include Xen [5] and other
more security-related technologies like Terra [22], Nizza
[43], and VM-FIT [38].

AMD’s Secure Virtual Machine (SVM) architecture [1]
and Intel’s Trusted Execution Technology (TXT) [24] are
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recent technologies that provide a hardware-based solu-
tion to launch software in a controlled way, allowing the
enforcement of certain security properties. Flicker explores
these technologies to provide a minimal trusted execution
environment, i.e., to run a small software component in
an isolated way [33]. Flicker and similar mechanisms can
be used to implement the USIG service.

Implementing USIG-Sign with the TPM. As mentioned
before, the simplicity of the USIG service allows it to be
implemented with the Trusted Platform Module (TPM).
More precisely, USIG-Sign can be implemented using
TPMs compliant with the Trusted Computing Group
(TCG) 1.2 specifications [36], [37].

TPMs have the ability to sign data using the private key
of an attestation identity key pair (private AIK) that never
exits the TPM, thus it can serve as the private key of the
USIG service (the corresponding public keys have to be
distributed by all servers). Furthermore, TPMs of version
1.2 provide a 32-bit monotonic counter on which only two
commands can be executed: TPM_ReadCounter (returns
the counter value), TPM_IncrementCounter (increments
the counter and returns the new value).

The idea is to implement createUI in a way that
the TPM produces a certificate containing not only a
signature obtained using the message and the private
key of this USIG (like before), but also a reading of the
counter and a proof that is was incremented. This idea
is implemented using the TPM’s transport command suite.
Each call to createUI involves a communication session
between the USIG software library and the local TPM.
During this session a sequence of TPM commands are
issued, a log of the commands is kept, a hash of this log
is obtained, and a digital signature of this hash (with the
private AIK) is obtained. The certificate is composed by
the signature plus the log, which must contain a call to
TPM_IncrementCounter to be considered valid.

If two applications need to use BFT replication in the
same set of servers and they can not share the same repli-
cation service, two USIG service instances are needed per
machine. This is not a limitation because with a software-
implemented USIG it is simple to implement several USIG
services. For a hardware-implemented USIG, it is possible
to use a virtualized TPM [7], so our service can also be
used by several replicated services with a single instance
of the hardware.

Implementations of the USIG service Our algorithm
implementations access the USIG service through a small
abstract Java class that was extended to implement the
several versions of USIG. In all these versions the funda-
mental idea was to isolate the service from the rest of the
system but the levels of isolation obtained are different
(see Figure 3):
• Non-secure USIG: The non-secure version of USIG

(NS) is a simple class that provides methods to in-
crement a counter and return its value together with
a signature. This version of the USIG service is not
isolated and thus can be tampered by a malicious
adversary that controls the machine. The practical

interest of this version is to allow us to understand
what would be the performance of our algorithms if
the time of accessing the USIG service was 0.

• VM-based USIG: This version runs the USIG service as
a process in a virtual machine (VM) different from the
one in which the normal system (operating system,
algorithm code) runs. In each system replica we use
the Xen hypervisor [5] to isolate the replica process
and the USIG service. The replica with the algorithm
code runs on domain1, which is connected to the
network and contains all untrusted software. The
USIG service (a hundred lines of Java code plus the
crypto lib) runs on domain0, which is not connected to
the network and contains as little services as possible.
The communication between the replica process and
the USIG service is done using sockets. To ensure that
the counter value is kept when a replica reboots, its
value should be stored in a flash memory or other
high speed secondary storage (but this feature was
not implemented in our prototype).

• TPM USIG: The TPM-based version of USIG is the
most secure version of the service we have deployed
so far since the service is implemented by trusted
hardware, providing stronger isolation. In this version
the USIG service is implemented by a thin layer of
software (a function in a library) and by the TPM
itself, as discussed above. The identifier generated by
the service is signed using the TPM’s private AIK, a
RSA key with 2048-bits. We used TPM/J, an object-
oriented API written in Java, to access the TPM [41].

To explore the costs associated with the authentication
operations, versions NS and VM of the USIG service were
implemented using several methods of authenticating an
UI : NTT ESIGN with 2048-bit keys (Crypto++ lib accessed
through the Java Native Interface), RSA with 1024-bit keys
and SHA1 to produce HMACs (both from the Java 6
JCA default provider). Using HMAC, the servers have
a shared key therefore the UI verification has to be
carried out inside of the trusted service. For this reason,
only MinBFT can use the USIG service implemented with
HMAC (USIG-Hmac). In MinZyzzyva the client verifies
if the UI is the same in all server replies, which turns
impossible the use of HMACs in this algorithm in our
system model (only the servers have a trusted module).

Considering the two possible implementations of the
USIG service (Section 2) and the kinds of isolation that
can be seen in Figure 3, we have implemented seven ver-
sions of the USIG service: NS-Hmac, NS-Sign(ESIGN), NS-
Sign(RSA), VM-Hmac, VM-Sign(ESIGN), VM-Sign(RSA)
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and TPM.
The counter used in the NS and VM versions of the

USIG has 64 bits (a Java long variable), which is enough
to prevent it from burning out in less than 233 years if it
is incremented twice per millisecond.

We assume that it is not possible to tamper with the
service, e.g., decrementing the counter, but privileged
software like the operating system might call the function
createUI. This is a case of faulty replica as the replica
deviates from the expected behavior (does not use se-
quential values for UI ) but the service remains correct.
A simple authentication mechanism is used to prevent
processes other than the replica processes from accessing
the service. Both, the TPM and VM-based version are able
to continue to work correctly even under attacks coming
from the network against the server software. However,
only the version with the TPM is tolerant to a malicious
administrator that manipulates the services hosted by f
servers, and even this version is not tolerant to physical
attacks.

7 PERFORMANCE EVALUATION

This section presents performance results of our algo-
rithms using micro-benchmarks. We measured the latency
and throughput of the MinBFT and MinZyzzyva imple-
mentations using null operations.

PBFT [12] is often considered to be the baseline for
BFT algorithms, so we were interested in comparing our
algorithms with the implementation available on the web7.
To compare this implementation with our MinBFT and
MinZyzzyva algorithms, we made our own implemen-
tation of PBFT’s normal case operation in Java (JPBFT).
We did not compare with the TTCB-based algorithm and
A2M-PBFT-EA because their code was not available.

Unless where noted, we considered a setup that can
tolerate one faulty server (f = 1), requiring n = 4 servers
for PBFT and JPBFT and n = 3 servers for MinBFT
and MinZyzzyva. We did not explore higher values of f
because increasing the number of replicas is costly (e.g., to
enforce diversity), so we believe in practice f = 1 will be
used. We executed from 1 to 120 logical clients distributed
through 6 machines. The servers and clients machines
were 2.8 GHz Pentium-4 PCs with 2 GBs RAM running
Sun JDK 1.6 on top of Linux 2.6.18 connected through a
Dell gigabit switch. The PCs had a Atmel TPM 1.2 chip.
In all experiments in which Java implementations were
used, we enabled the Just-In-Time (JIT) compiler and run a
warm-up phase to load and verify all classes, transforming
the bytecodes into native code. All experiments run only
in normal case operation, without faults and timeout
expirations, which is usually considered to be the normal
case. The above-mentioned batch mechanism was used.

7.1 Micro-Benchmarks
For the first part of the performance evaluation we chose
the versions of MinBFT and MinZyzzyva that presented

7. http://www.pmg.lcs.mit.edu/bft/ – the updated version that com-
piles with gcc4.

best performance and we compared them with PBFT.
We evaluated the performance of four algorithms, PBFT,
JPBFT, MinBFT-Hmac and MinZyzzyva-Sign(ESIGN), on
a LAN. The two last algorithms used the VM-based USIG
service. We measured the latency of the algorithms using a
simple service with no state that executes null operations,
with arguments and results varying between 0 and 4K
bytes. The latency was measured at the client by reading
the local clock immediately before the request was sent,
then immediately after a response was consolidated (i.e.,
the same response was received by a quorum of servers),
and subtracting the former from the latter. Each request
was executed synchronously, i.e., it waited for a reply be-
fore invoking a new operation. The results were obtained
by timing 100,000 requests in two executions. The obtained
latencies are averages of these two executions. The results
are shown in Table 2.

Req/Res PBFT JPBFT MinBFT-Hmac MinZyzzyva-Sign
0/0 0.4 ms 1.8 ms 2.3 ms 2.9 ms

4K/0 0.6 ms 2.2 ms 2.9 ms 3.1 ms
0/4K 0.8 ms 2.5 ms 3.0 ms 3.2 ms

Table 2
Latency varying request and response size for the best
versions of MinBFT and MinZyzzyva, plus PBFT and

JPBFT.

In this experiment, PBFT has shown the best perfor-
mance of all algorithms/implementations, followed by
JPBFT, MinBFT-Hmac and MinZyzzyva-Sign, which was
the worse. This experiment shows clearly that our Java
implementation runs an agreement much slower than the
original PBFT prototype. One of the possible reasons for
this is the overhead of our event-driven socket manage-
ment layer that maintains several queues and event listen-
ers to deal smoothly with a high number of connections.
When compared with JPBFT, MinBFT-Hmac has a small
extra cost because of the overhead to access the USIG
service to create and to verify the UI . Zyzzyva is known to
be faster than PBFT in most cases [26], [44], but Zyzzyva
(like PBFT) uses only HMACs, while MinZyzzyva uses
signatures, so MinZyzzyva ends up being slower than
PBFT, JPBFT and MinBFT-Hmac.

The second part of the micro-benchmark had the objec-
tive of measuring the peak throughput of the algorithms
with different loads. We ran experiments using requests
and responses with 0 bytes. We varied the number of
logical clients between 1 and 120 in each experiment,
where each client sent operations periodically (without
waiting for replies), in order to obtain the maximum
possible throughput. Each experiment ran for 100,000
client operations to allow performance to stabilize, before
recording data for the following 100,000 operations.

Figure 4 shows that the fewer communication steps and
number of replicas in MinZyzzyva is reflected in higher
throughput by achieving around 30,000 operations per
second. For the same reason, the MinBFT-Hmac through-
put is 10% higher than the one observed for PBFT. It is
interesting to notice that the reduced number of communi-
cation steps and replicas (which reduces the quorum sizes
used by the algorithms) makes the replicas process less
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Figure 4. Peak throughput for 0/0 operations for the best
versions of MinBFT and MinZyzzyva, together with PBFT
and a similar Java implementation.

messages (less I/O, less HMAC verification, etc.), which
increases the throughput. Due to the optimizations for
scalability discussed in Section 6, JPBFT presented only
5% lower throughput when compared with the original
PBFT implementation.

The throughput values in the figure together with the
latency values of Table 2 show the effect of adaptive
batching. The similarity on the peak throughput values
is explained by the fact that, in our experiments under
heavy load (e.g., 120 clients accessing the system), PBFT
runs more agreements with batches of up to 70 messages
while our algorithms use batches of up to 200 messages.

7.2 Effects of Communication Latency
In the third experiment we emulated WAN network de-
lays on all links and run latency experiments to better
understand how these algorithms would behave if the
replicas and clients were deployed on different sites. De-
spite the fact that this scenario does not correspond to
what is most common today (all replicas inside a data
center), it makes sense if one considers the deployment
of a fault independent replicated system: it can tolerate
malicious attacks (such as DDoS), link failures, site mis-
configurations, natural disasters and many other problems
that can affect whole sites. We used netem8 to inject delays
in each machine by varying the delays between 1 and 50
ms and use a standard deviation of 10% of the injected
delay. The latency was measured in the same way as in
previous section. Figure 5 presents the results.

As expected, the measurements show that the latency
becomes higher with larger delays. Due to the tentative
execution optimization (described in Section 6.1 of [12]),
PBFT reduces the number of communication steps from
5 to 4 communication steps, and it is reflected in the
results obtained. We did not implement this optimization
in JPBFT, therefore it presents the worse latency in our
experiments. MinBFT and MinZyzzyva presented the best
latency results when the latency is greater than 2 ms, due
to their smaller number of communication steps. Surpris-
ingly, MinBFT executes requests with almost the same

8. http://www.linuxfoundation.org/en/Net:Netem.
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Figure 5. Latency for 0/0 operations with several link
latency values.

latency as MinZyzzyva, which contradicts the theoretical
number of communication steps of these algorithms: 4 and
3 respectively. The explanation for this fact highlights one
interesting advantage of MinBFT when tolerating a single
fault. In a setup with f = 1 in which the network latency is
stable, replicas receive the PREPARE and COMMIT messages
from the primary almost together (the primary “sends”
the PREPARE to itself and sends its COMMIT immediately).
Since, the MinBFT algorithm needs only f + 1 COMMIT
messages to accept a request, with f = 1 only two
COMMITs are required. These two COMMITs would be
received just after the PREPARE: one from the leader and
another from the server itself. Therefore, the client request
is executed soon after the PREPARE message from the
primary server arrives, making MinBFT reach the latency
of MinZyzzyva. In setups with f > 1 this nice feature
will not appear since the quorum for COMMIT acceptance
should contains at least 3 replicas. Therefore, the use
of small quorums can make our algorithms particularly
efficient in real networks due to their large variance in
link latency [25].

7.3 Comparing Different USIG Versions

To explore the different implementations of the USIG ser-
vice and the computational overhead added by different
cryptographic mechanisms, we measured the latency and
throughput of MinBFT and MinZyzzyva with all USIG
implementations in a LAN, except the TPM-based that is
evaluated in the next section.

Figure 6 shows the results for our latency experiments.
The signature-based versions of the algorithms add sig-
nificant computational overheads when compared with
HMAC-based authenticators.

Algorithm createUI verifyUI

Hmac (SHA1) 0.008 ms 0.007 ms
ESIGN (2048 bits) 1.035 ms 0.548 ms
RSA (1024 bits) 10.683 ms 0.580 ms

Table 3
Overhead of UI creation and verification for messages

with 20 bytes (the size of request hash).

Since the algorithms require two createUI calls and one
(in MinZyzzyva) or f+1 (in MinBFT) verifyUI call in their
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Figure 6. Latency of 0/0 operations for MinBFT and
MinZyzzyva using several USIG implementations.

critical path, the algorithms latencies are very dependent
of the USIG implementation. To better understand the
nature of that relation, it is worth understanding the costs
of the cryptography employed in these versions. Table 3
presents the latency of createUI and verifyUI on several
implementations of the USIG (with has no access cost, i.e.,
NS versions). The data in this table explains the results
observed on Figure 6: the use of ESIGN adds roughly 2.5
ms to the latency of MinBFT when compared with Hmac,
while RSA adds 17.5 ms when compared with ESIGN.

Figure 7 shows the throughput of the algorithms with
the different USIG implementations. The VM-based ver-
sions have throughput lower than the non-secure versions
due to the overhead to access the trusted service. This
difference is especially relevant when comparing the val-
ues for the VM-based MinBFT using Hmac and its corre-
sponding Non-Secure version because the UI verification
is executed inside of the trusted component.
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Figure 7. Peak throughput for 0/0 operations in for MinBFT
and MinZyzzyva using several USIG implementations.

This graph shows that the costs of accessing the VM-
based USIG lowers the peak throughput by a factor from
6% (MinZyzzyva-Sign(ESIGN)) to 16% (MinBFT-Hmac).
It shows that the VM-based isolation is a cost-effective
solution in the sense that a moderate level of isolation
can be obtained without losing too much performance.

7.4 Hardware-based USIG Performance
Table 4 presents the latency and peak throughput of the
USIG service implemented with an Atmel TPM 1.2 chip

in the computer mainboard.

Algorithm Latency Peak Throughput
MinBFT 1617 ms 23404 ops/s
MinZyzzyva 1552 ms 24179 ops/s

Table 4
Latency and peak throughput of MinBFT and MinZyzzyva

using the TPM USIG.

The time taken by the TPM-based USIG service to
run createUI is 797 ms, almost all of which is taken
by the TPM to increment the counter and produce an
RSA signature. In this sense, the latency values can be
explained by the execution of two createUI executed in
the critical path of the algorithm. The verification of a UI
takes approximately 0.07 ms, since it is executed outside
of the TPM, so, its effect in the latency is minimal.

The peak throughput shows that the values are not
so bad if compared with the values presented in Figure
7. However, to obtain these values with TPM USIG we
needed to batch a large number of requests in the PRE-
PARE messages because the restriction of one increment
by 3.5 seconds. The throughput is strictly dependent of
the number of messages batched during this time, in
our experiments we found that the peak throughput was
achieved with batches with more than 20000 messages. So,
the behavior of the execution of our system is: 3.5 seconds
without accepting any message followed by one second
accepting with more than 20000 messages, which may be
unacceptable in many practical services.

There are at least two important reasons for the poor
performance of the TPM USIG. The first is the maximum
increment rate of the TPM monotonic counter, which
makes the system able to execute one agreement (to order
a batch of messages) every 3.5 seconds. The TPM spec-
ification version 1.2 defines that the monotonic counter
“must allow for 7 years of increments every 5 seconds”
and “must support an increment rate of once every 5
seconds” [36]. The text is not particularly clear so the
implementers of the TPM seem to have concluded that the
counter must not be implemented faster than once every 5
seconds approximately, while the objective was to prevent
the counter from burning out in less than 7 years. The
counter value has 32 bits, so it might be incremented once
every 52 ms still attaining this 7-year target. Furthermore,
if in a future TPM version the counter size is increased
to 64 bits (as it is in our VM-based USIG), it becomes
possible to increment a counter every 12 picoseconds,
which will make this limitation disappear. The second
reason for the poor performance we observed is the time
the TPM takes to do a signature (approximately 700 ms).
A first comment is that normally cryptographic algorithms
are implemented in hardware to be faster, not slower,
but our experiments have shown that with the TPM the
opposite is true. This suggests that the performance of
the TPM signatures might be much improved. We believe
that it will be indeed improved with the development of
new applications for the TPM. Moreover, at least Intel is
much interested in developing the TPM hardware. For
instance, it recently announced that it will integrate the
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TPM directly into its next generation chipset [10]. Others
have also been pushing for faster TPM cryptography [32].

8 RELATED WORK

The idea of tolerating intrusions (or arbitrary/Byzantine
faults) in a subset of servers appeared in seminal works
by Pease et al. [35] and Fraga and Powell [19]. However,
the concept started raising more interest much later with
works such as Rampart [39] and PBFT [12].

The idea of using a hybrid fault model in the context of
intrusion tolerance or Byzantine fault tolerance, was first
explored in the MAFTIA project with the TTCB work [16].
The idea was to extend the replicas with a tamperproof
subsystem. It was in this context that the first 2f + 1
state machine replication solution appeared [15]. However,
it was based on a distributed trusted component, with
harder to enforce tamperproofness.

More recently Chun et al. presented another 2f +1 BFT
algorithm based on similar ideas, A2M-PBFT-EA [13]. This
algorithm requires only local tamperproof components,
dubbed Attested Append-Only Memory (A2M). The A2M
is an abstraction of a trusted log. A2M offers methods
to append values and to lookup values within the log.
It also provides a method to obtain the end of the log
and to advance the suffix stored in memory (used to
skip ahead by multiple sequence numbers). There are
no methods to replace values that have already been
assigned. The main goal of this trusted component is to
provide a mechanism for algorithms to become immune
to duplicity, similarly to the USIG used in our algorithms.
Replicas using the A2M are forced to commit to a single,
monotonically increasing sequence of operations. Since the
sequence is externally verifiable, faulty replicas can not
present different sequences to different replicas. MinBFT
and MinZyzzyva are BFT algorithms that also require only
2f+1 servers, but use a simpler trusted service and a lower
number of communication steps.

The quest for reducing the number of replicas of BFT
algorithms had other interesting developments. Yin et
al. presented a BFT algorithm for an architecture that
separates agreement (made by 3f+1 servers) from service
execution (made by 2f+1 servers) [49]. This was an impor-
tant contribution to the area because service execution is
expected to require much more computational resources
than agreement. However agreement still needs 3f + 1
machines, while in the present work we need only 2f +1
replicas also for agreement. Li and Mazieres proposed
an algorithm, BFT2F, that needs 3f + 1 replicas but if
more than f but at most 2f replicas are faulty, the system
still behaves correctly, albeit sacrificing either liveness or
providing only weaker consistency guarantees [29].

Monotonic counters are a service of the TPM that ap-
peared only in version 1.2 [36], [37]. Two papers have
shown the use of these counters in very different ways
than we way we use them. van Dijk et al. addressed
the problem of using an untrusted server with a TPM to
provide trusted storage to a large number of clients [45].
Each client may own and use several different devices
that may be offline at different times and may not be

able to communicate with each other except through the
untrusted server. The challenge of this work is not to
guarantee the privacy or integrity of the clients’ data, but
in guaranteeing the data freshness. It introduces freshness
schemes based on a monotonic counter, and shows that
they can be used to implement tamper-evident trusted
storage for a large number of users.

The TCG specifications mandate the implementation of
four monotonic counters in the TPM, but also that only
one of them can be used between reboots [36]. Sarmenta et
al. override this limitation by implementing virtual mono-
tonic counters on an untrusted machine with a TPM [41].
These counters are based on a hash-tree-based scheme and
the single usable TPM monotonic counter. These virtual
counters are shown to allow the implementation of count-
limited objects, e.g., encrypted keys, arbitrary data, and
other objects that can only be used when the associated
counter is within a certain range.

9 CONCLUSION

BFT algorithms typically require 3f +1 servers to tolerate
f Byzantine servers, which involves considerable costs in
hardware, software and administration. Therefore reduc-
ing the number of replicas has a very important impact
on the cost of the system. We show that using a simple
trusted service (only a counter plus a signing function)
it is possible to reduce the number of replicas to 2f + 1
preserving the same properties of safety and liveness of
traditional BFT algorithms. Furthermore, we present two
BFT algorithms that are better than others in the literature,
not only in terms of number of replicas and trusted service
used, but also of communication steps in nice executions:
4 and 3 steps, respectively without and with speculation.
This is an important aspect in terms of latency, especially
in networks with non-negligible communication delays. In
contrast with the two previous 2f +1 BFT algorithms, we
were able to use the TPM as the trusted component due
to the simplicity of our USIG service.
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