Efficient Byzantine Fault Tolerance

Supplemental Material

Giuliana Santos Veronese, Miguel Correia Member, IEEE,
Alysson Neves Bessani, Lau Cheuk Lung and Paulo Verissimo, Fellow, IEEE

A. MINBFT CORRECTNESS

This section sketches proofs of the correctness of MinBFT.
We have to prove that the safety property is always
satisfied (i.e., that all servers execute the same requests
in the same order) and the same for liveness (i.e., that all
clients’ requests are eventually executed).

A.1 Safety

The proof that MinBFT satisfies the safety properties is
the following.

Lemma 1 In a view v, if a correct server executes an operation
o with sequence number i, no correct server will execute o with
sequence number i’ # i.

Proof: If a correct server s executes o with sequence
number ¢, it must have received f + 1 valid COMMIT
messages for (o0,i) from a quorum () of servers. The
proof is by contradiction. Suppose there is another correct
server s’ that executes o with sequence number ' > i.
By the MinBFT algorithm, this can only happen if it
receives f + 1 valid COMMIT messages for (o,i'), from
a quorum Q" of f + 1 servers. Since n = 2f + 1 and
|Q|+|Q'| = 2f+2 > 2f+1, there must be at least one server
r (called intersection server) that sends COMMIT messages
both for (0,i) and (o,7). Assuming that the primary on
view v is the server p, we have to consider four cases:

1) the primary and the intersection server are correct: in
this case it is trivial to see that the primary will not
generate two Uls for the same request operation o,
so the intersection server will never send two valid
COMMIT messages for (o,i) and (o,1').

2) the primary is correct and the intersection server is faulty:
The (faulty) intersection server would only be able
to send valid COMMIT messages for (o,%) and (o, ")
if these messages contained UI, = (i, H(0)), and
U, = (i', H(0))p, respectively. Since the primary is

o Giuliana Santos Veronese, Miguel Correia, Alysson Bessani, Paulo Veris-
simo are with the Departmento de Informditica, Faculdade de Ciéncias,
Universidade de Lisboa, Campo Grande, C6, Lisboa, Portugal. Email:
giuliana@Iasige.di.fc.ul.pt, {bessani,mpc,pjv}@di.fc.ul.pt

o Lau Cheuk Lung is with Departamento de Informdtica e Estatistica, Cen-
tro Tecnoldgico, Universidade Federal de Santa Catarina, Brazil. Email:
lau.lung@inf.ufsc.br

correct, it will never invoke createUI for the same
operation o twice and consequently it will never
produce these two UIs.

3) the primary is faulty and the intersection server is correct:
Now the primary will create PREPARE messages
containing UI, = (i, H(0)), and U, = (i', H(0)),
and send them to the intersection server in order
to try to make it send COMMIT messages both for
(0,7) and (o,i’). However, due to the verification
of the seq field of the request operations, which is
part of o, the intersection replica will not accept the
second PREPARE for the same operation o, issued
by client ¢, because o.seq = V,¢4c|, and the servers
only accept operations from clients if their sequence
number is greater than their previous number (i.e.,
if 0.seq > Vieqlc]).

4) the primary and the intersection server are faulty: Now
both the primary and the intersection server are in
collusion to make two servers execute the same op-
eration with different numbers. Suppose that the in-
tersection server r sends (COMMIT,v,r,s, UL, UL)
message to s for (o, i) and (COMMIT, v, 7, s', U1, UI})
message to s’ for (o,i'). Suppose U, = (i, H(0)),
and U, = (i, H(0)), such that i < ¢’. In this case,
there are two cases to consider:

a) s’ executed some operation with sequence num-
ber i. In this case its sequence of operations
does not contain a “hole”, but since the USIG
service does not allow the primary p to generate
two Uls for different message with the same
sequence number, the operation with sequence
number i must be o (the same executed by s),
and thus s’ will not execute o again with ¢’
because o.seq < V,.¢q[cl;

b) s’ did not execute some operation with se-
quence number :. In this case the server will
only execute o with sequence number ¢’ if it
executed all operations with sequence number
< 4/, and since it did not execute any operation
with sequence number i, it will halt waiting for
this operation to be executed.

Consequently, it is not possible for two clients to exe-
cutes the same operation with different sequence number

in view v. .Lemma 1

Lemma 2 If a correct server executes an operation o with
sequence number i in a view v, no correct server will execute
o with sequence number i # i in any view v’ > v.

Proof: If a correct server s executes o with sequence
number 4 in a view v, it must have received f + 1 valid
COMMIT messages for (0,4, v) from a quorum Q of servers.
The proof is again by contradiction. Suppose there is
another correct server s’ that executes o with sequence
number i’ > 7 in a view v’ > v. By the MinBFT algorithm,
this can only happen if it receives f + 1 valid COMMIT
messages for (o,4,v), from a quorum Q' of servers. Since
n=2f+1and |Q|+|Q'| =2f+2 > 2f + 1, there must be
at least one server r (called again intersection server) that
sends COMMIT messages both for (o,7,v) and (o, ,v").

Now let us prove that this leads to a contradiction. For
simplicity we start by considering that v = v+ 1, then we
expand the proof for arbitrary values of v'.

First we show that the primary of the new view (p)
must assert that o was accepted/executed before v/, i.e.,
that it can not deny this fact. This assertion is done
explicitly or implicitly in the new-view certificate V;,. that
it sends in the NEW-VIEW message that starts view v':
(NEW-VIEW, p,v', V,e, S, Ul;). This certificate is composed
by f + 1 VIEW-CHANGE messages that p received from
a quorum Q" with that many servers, one of which
must be correct. Consider a server r € Q" for which
the VIEW-CHANGE message included in V. is (VIEW-
CHANGE, 7, v, Clatest, O, Uls). We have to consider four
cases:

1) the primary p is correct and there is a correct server r €

Q" that executed o: if p is correct it inserts in V,,. f +
1 VIEW-CHANGE messages, including the one that
comes from r. There are two possibilities:
a) o was executed after the latest stable checkpoint: r is
correct so O contains the COMMIT message that
r sent for o, therefore V,,. and S assert explicitly
that o was executed.
b) o was executed before the latest stable checkpoint:
the execution of o is implicit in Cjgtest 50 Vi
asserts implicitly that o was executed.

2) the primary p is correct but there is no correct server
in Q" that executed o: In this situation at least one
faulty server r € Q" accepted o because |Q|+|Q"| =
2f +2>2f+ 1. Again there are two possibilities:

a) o was executed after the latest stable checkpoint: r
might be tempted to not include the COMMIT
message for o in O but if it did it p would not
put the VIEW-CHANGE message from 7 in V..
The reason is that for not putting o in O r» would
have to do one of two things that would be
detected by p: (1) if r executed a request o’ after
o, r might put the COMMIT message for o’ in O
but not the message for o, which would leave
a “hole” in O that would be detected by p; (2)
if r sent the COMMIT message for o with a UI
with counter value cv, it might not put in O
any COMMIT with cv’ > cv, but that would be
detected by p because » would have to sign the

VIEW-CHANGE message with a Ul with counter
value cv” > cv + 1. Therefore, for the VIEW-
CHANGE message from r to be inserted in V.
by p, » must include the COMMIT message for
o in O, falling in case la above.

b) o was executed before the latest stable checkpoint:
in this situation the execution of o is implicit in
the certificate of the latest stable checkpoint (see
case 1b above). The faulty server » may attempt
to put an older checkpoint in the VIEW-CHANGE
message but p will never insert this message
in V,. because r would have to do one of the
two detectable things pointed out in case 2a.
Therefore, we fall in case 1b.

3) the primary p is faulty but there is a correct server r € Q"
that executed o: in this case the faulty primary may
attempt to modify the content of O that it inserts
in V.. If it simply removes o from O it leaves a
hole, which is detectable. If it removes o and all
later messages this is also detectable because p can
not forge a UI from r with the following counter
value. If p tries to substitute the checkpoint certifi-
cate Cigtest for an older one it also can not forge
the UI. Even if it substitutes the checkpoint for an
older checkpoint sent by r, this is detectable (servers
known that r sent messages afterwards). This shows
that these attacks are detectable so we have only to
show that they are indeed detected. This is the case
because when a correct server receives a NEW-VIEW
message it checks the validity of V,.. Therefore, a
faulty primary can not tamper the content of the
correct server VIEW-CHANGE message so we fall in
case 1.

4) the primary p is faulty and there is no correct server that
executed o in QQ"': even if there is no correct server that
executed o in @", there must be one faulty server
r € Q" that executed o because |Q|+|Q"| =2f+2 >
2f + 1. For case 2 we already showed that r can not
make the primary believe that it did not execute o.
However, in this case the primary p is faulty so p
can insert the VIEW-CHANGE message sent by r in
Vie anyway. However, this falls in case 3 because
correct servers will validate V,. when they receive
the NEW-VIEW message from p. Therefore we end up
falling in case 1.

This shows that the primary p of the new view v' must
assert that o was accepted/executed before v in the new-
view certificate V,,.. Now we prove that no correct server
will execute o with sequence number i’ # i in view v’. We
have to consider two cases:

1) the primary is correct: as already shown, the primary
must know that o was executed so it will never
generate a second Ul for the same request and
correct servers will not send a COMMIT message for
o in view v’.

2) the primary is faulty: in this case the primary can
create a new PREPARE message containing Ul =
(i’,H(0))p, and send it to the servers, say, to r.

However, r will verify the request number in the seq
field of o and discover that o.seq < V;..4[c] meaning
that the request was already executed, so it will not
execute it again.

This proves the lemma for v’ = v+ 1. Now we have to
expand for arbitrary values of v’. There are two cases:

1) v = v+ k but no requests were accepted in any view
v" such that v' < v" < v + k: this situation can be
caused but an instability in the network that leads
to several consecutive executions of the view change
algorithm. It is trivial to understand that this case
falls into the case of v/ = v + 1 because nothing
relevant happens in the views v”.

2) the generic case where there are “real” views between v
and v': an analysis of the proof for the case of v' = v+
1 shows that the information that is propagated from
view v to v+ 1 about requests that were executed is
also propagated to later views, either explicitly in the
O sets while there are no checkpoints, or implicitly
in the checkpoints. This is the information used to
prevent requests from being re-executed so this case
falls into the case of v' =v +1 .

.Lemma 2

Theorem 1 Let s be the correct server that executed more
operations of all correct servers up to a certain instant. If s
executed the sequence of operations S = (o01,...0;), then all
other correct servers executed this same sequence of operations
or a prefix of it.

Proof: Let prefiz(S,k) be a function that gets the prefix
of sequence S containing the first & operations, with
prefiz(S,0) being the empty sequence. Let *." be an op-
erator that concatenates sequences.

Assume that the theorem is false, i.e., that there is a
correct server s’ that executed some sequence of opera-
tions S’ that is not a prefix of S. More formally, assume
that prefiz(S’,j) = prefiz(S,j — 1).(0}) and prefiz(S’,j —
1).(0j) = prefiz(S, j), with o} # o;. In this case o} is the
j-th operation executed in s’ and o, is the j-th operation
executed in s. Assume that o; was executed in view v by
s and o} was executed in view v’ by s'. If v = ¢/, this
contradicts Lemma 1, and if v # v’ it contradicts Lemma

2. Consequently, the theorem holds. W rcorem 1

A.2 Liveness

In the following we present the proof of liveness for
the MinBFT algorithm. We say that an operation request
issued by a client ¢ completes when ¢ receives the same
response for the operation from at least f + 1 different
servers. We define a stable view as a view in which
the primary is correct and no timeouts expire at correct
replicas.

Lemma 3 During a stable view, an operation requested by a
correct client completes.

Proof: If the client ¢ is correct it will send its operation o
with a sequence number greater than any of its previous

requests to all servers. Since, in a stable view the primary
p is correct, it will generate an UI = (i, H(0)), and send it
to all servers in a PREPARE message. A correct server will
receive this message, verify the validity of UI by calling
verifyUI, and send a COMMIT message for (o,i). Since
there are at most f faulty servers on the system, there
are at least f + 1 correct servers (the primary plus other
f servers) that will produce these COMMIT messages and
send them to all servers. When a correct server receives
f +1 COMMIT messages, it executes o') and send a reply
to the client c. When c receives f + 1 equal replies the
operation completes, which must happen since there are
f+1 correct servers and all of them will produce the same
result when executing o as their i-th operation. By cmq 3

Lemma 4 A view v eventually will be changed to a new view
v’ > if at least f + 1 correct servers request its change.

Proof: To request a view change, a correct server s sends a
(REQ-VIEW-CHANGE, s, v,v’) to all servers, where v is the
current view number and v’ = v+1 the new view number.
Consider that a quorum of f+-1 correct servers () requests
this view change from view v to view v + 1. The primary
for the view is by definition p £ (v + 1) mod n. There are
two cases:

1) the view is stable: this means that all servers in @
receive the REQ-VIEW-CHANGE messages from each
another. When one of these servers (s) receives the
f+1th of these messages, it sends to all other servers
a message (VIEW-CHANGE, s,v’, Clgtest, O, Ul). All
the VIEW-CHANGE messages sent by servers in @
are received by all servers. The primary p for
view v + 1 is correct so it sends a message (NEW-
VIEW, p, v, Vie, S, UI,) to all servers. No timeouts
expire (the view is stable) so all servers receive this
message and the view changes to v 4 1.

2) the view is not stable: this case can be divided in two
cases:

a) p is faulty and does not send the NEW-VIEW mes-
sage, or p is faulty and sends an invalid NEW-VIEW
message that is discarded by all correct servers, or p
is not faulty but the communication is slow and
the timeout expires in all correct servers: when
the servers send a VIEW-CHANGE message they
start a timer that expires after 7T}, units of time.
In this case this timeout expires at all correct
servers, which start another view change.

b) p is faulty and sends the NEW-VIEW message but
only to a quorum Q' with at least f + 1 servers
but less than f + 1 correct, or p is correct and the
same effect happens due to communication delays:
in this case faulty servers in Q' can follow
the algorithm making the correct servers in @’
believe that the algorithm is running normally.
More precisely, the servers in @’ can exchange

1. Since the primary p is correct, when it was elected it disseminated
any pending requests of the previous view, and thus this server will not
have holes in its sequence of operations and will be able to execute the
request immediately.

PREPARE and COMMIT messages following the
algorithm. At the correct servers that are not
in @', a timer will expire after T,. units of
time and these servers will send REQ-VIEW-
CHANGE messages, but there will not be f + 1
one of them so a view change will not happen.
When faulty servers start to deviate from the
algorithm, requests will stop being accepted,
the correct servers in Q' will send REQ-VIEW-
CHANGE messages and a view change will start.

In these last two cases (2a and 2b), when another view
change starts the system can fall again in one of the cases
1 or 2. However, eventually the view will become stable,
the system will fall in case 1 and the view will be changed

to a new view v’ > v. Bcnma 4

Theorem 2 An operation requested by a correct client even-
tually completes.

Proof: The proof comes from the previous lemmas. In
stable views, operations requested by correct clients even-
tually complete (Lemma 3). If the view v is not stable,
there are two possibilities:

1) timers expire and at least f + 1 correct servers request a
view change: in this case the view will be changed to
a new view v’ > v (Lemma 4).

2) less than f + 1 correct servers request a view change:
this case is similar to case 2b of Lemma 4. If there
is a quorum @ of at least f + 1 servers that do not
request the view change and that go on following
the algorithm in view v, exchanging PREPARE and
COMMIT messages, then the system will stay in view
v and requests from correct clients will be executed.
When there is no such a quorum or requests are not
executed within Tege., all correct servers request a
view change and we fall in case 1.

Case 1 leads to a view change but the new view
v’ is not necessarily stable. The system model makes
the assumption that the processing and communication
delays do not grow indefinitely (Section 3) and in the
algorithm T, is multiplied by two each time each time a
new view change is needed (Section 4). Therefore, even if
view changes happen successively, eventually there there
will be a view v” in which one of the following two cases

is true:

1) the primary is correct and no timeouts expire at correct
replicas because Teye. 1s Qreater than the maximum
delay observed: the view is stable, so the operation
is executed by Lemma 3.

2) the primary is faulty: in this case the primary can
deviate from the algorithm causing timeout expiries
and a new view change or follow the algorithm
enough to avoid a view change. In either case, the
view is not stable so we fall in cases 1 or 2 above.
Eventually there will be a view in which the primary
is correct because only a minority of the replicas are
faulty by assumption, so this view will be stable.

n Theorem 2

B. MINZYzzYVA CORRECTNESS

The two properties that we have to prove about
MinZyzzyva are the same that were proved for Zyzzyva.
These properties are defined from the point of view of
what is observed by a client. Informally, a request is
said to have complete if the client can use the reply
to that request, i.e., if the client can be certain that the
(speculative) execution of that request will not be rolled
back. Formally, a request is said to have complete at a
client if the client received 2f 4+ 1 matching RESPONSE
messages or f+ 1 matching LOCAL-COMMIT messages for
the request. The properties that MinZyzzyva has to satisfy
are:

Safety: If a request with sequence number seq and history
hseq completes, then any request that completes with a
higher sequence number seq’ > seq has a history hgeq
that includes hg., as a prefix.

Liveness: Any request issued by a correct client eventually
completes.

B.1 Safety

The proof that MinBFT satisfies the safety properties is
the following.

Lemma 5 [n a view v, if a correct server executes an operation
o with sequence number i, no correct server will execute o with
sequence number i # i.

Proof: Despite the differences of MinZyzzyva and
MinBFT, the proof of this lemma is similar to the proof
of Lemma 1. The basic idea is that replicas process the
primary messages by order of counter value in Ul and
the primary can not associate the same Ul to two differ-
ent requests due to the properties of the USIG service.
.Lemma 5

Theorem 3 If a request with sequence number seq and history
hseq completes, then any request that completes with a higher
sequence number seq’ > seq has a history hseq that includes
hseq as a prefix.

Proof: Consider that the request o with sequence number
seq completes in view v and o’ with sequence number seq’
in view v’. We have to consider two cases:

1) v = v': the proof is by contradiction. Assume that
hseqw does not include h,., as a prefix. This is in
contradiction with Lemma 5.

2) v # v': suppose that v’ = v+ 1 (the expansion for an
arbitrary relation v" > v is simple and similar to the
one done in the proof of Lemma 2). First we have
to show that the primary of the new view (p) must
assert that o was completed before v/, i.e., that it can
not deny this fact. This assertion is done explicitly
or implicitly in the new-view certificate V,,. that it
sends in the NEW-VIEW message that starts view v’
However, the view change operation of MinZyzzyva
is almost identical to the same operation of MinBFT
so the proof is the same as the one made in the proof

of Lemma 2 and we skip it here. Then, we have to
consider two cases:

a) o is the first request executed in view v': when the
new view is installed the NEW-VIEW message
serves as a commit certificate to the requests
completed in view v’ — 1. Therefore, hseq—1 is
committed and is a prefix of hgeq (the theorem
states that o’ completes).

b) o is not the first request executed in view v': this is
trivially proved by induction considering case
2a as the base case and using Lemma 5 to prove
the induction step.

u Theorem 3

B.2 Liveness
Now we prove the liveness of MinZyzzyva.

Lemma 6 During a stable view, an operation requested by a
correct client completes.

Proof: If the client c is correct it will send its operation o
with a sequence number greater than any of its previous
requests to all servers. Since, in a stable view the primary
p is correct, it will generate an UI = (i, H(0)), and send
it to all servers and to the client. A correct server will
receive this message, verify the validity of UI by calling
verifyUI, and send a RESPONSE message for (o,i) to the
client. Since there are at most f faulty servers on the
system, there are at least f+1 correct servers (the primary
plus other f servers) that will produce these RESPONSE
messages and send them to the client. There are two cases:
1) no faulty servers: the client receives 2f + 1 RESPONSE
messages and the operation completes.
2) there are faulty servers: the client receives between f+
1 (stable view) and 2f RESPONSE messages. When
the timer expires the client sends a COMMIT message
to the servers, all correct servers reply with a LOCAL-
COMMIT message, and the operation completes.

.Lemma 6

Lemma 7 A view v eventually will be changed to a new view
v' > w if at least f + 1 correct servers request its change.

Proof: The view change operation of both algorithms is
similar so this proof is similar to the proof of Lemma 4.
.Lemma 7

Theorem 4 An operation requested by a correct client even-
tually completes.

Proof: The proof comes from the previous lemmas simi-
larly to the proof of Theorem 2. In stable views, operations
requested by correct clients eventually complete (Lemma
6). If the view v is not stable, there are two possibilities:
1) at least f + 1 correct servers suspect of the primary and
request a view change: in this case the view will be
changed to a new view v’ > v (Lemma 7).
2) less than f + 1 correct servers suspect of the primary
and request a view change: this case is similar to case

2b of Lemma 4. If there is a quorum @) of at least
f-1servers that do not request the view change and
that go on following the algorithm in view v, then
the system will stay in view v and requests from
correct clients will be executed. When there is no
such a quorum or requests are not executed within
the timeout, all correct servers request a view change
and we fall in the previous case.

n Theorem 4

