
COBRA: Dynamic Proactive Secret Sharing
for Confidential BFT Services

Robin Vassantlal? Eduardo Alchieri† Bernardo Ferreira? Alysson Bessani?
?LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal †Universidade de Brasilia, Brazil

Abstract—Byzantine Fault-Tolerant (BFT) State Machine
Replication (SMR) is a classical paradigm for implementing
trustworthy services that has received renewed interest with the
emergence of blockchains and decentralized infrastructures. A
fundamental limitation of BFT SMR is that it provides integrity
and availability despite a fraction of the replicas being controlled
by an active adversary, but does not offer any confidentiality
protection. Previous works addressed this issue by integrating
secret sharing with the consensus-based framework of BFT
SMR, but without providing all features required by practical
systems, which include replica recovery, group reconfiguration,
and acceptable performance when dealing with a large number
of secrets. We present COBRA, a new protocol stack for Dynamic
Proactive Secret Sharing that allows implementing confidentiality
in practical BFT SMR systems. COBRA exhibits the best asymp-
totic communication complexity and optimal storage overhead,
being able to renew 100k shares in a group of ten replicas 5×
faster than the current state of the art.

Index Terms—Secret Sharing, BFT, Confidentiality

I. INTRODUCTION

Context and motivation: Byzantine Fault-Tolerant (BFT)
State Machine Replication (SMR) is a classical approach
for implementing consistent and fault-tolerant services by
deterministically executing the same sequence of commands in
a set of replicas [1]. This approach maintains the integrity and
availability of a secure service even if t out of the n replicas
fail in an arbitrary/Byzantine way [2], [3]. BFT SMR gained a
renewed interest with the emergence of blockchains [4], which
can be seen as SMR systems that maintain an authenticated
log of transactions [5], [6].

However, when considering the implementation of
intrusion-tolerant services, sometimes called decentralized
trusted third parties (T3P) [7], BFT SMR systems do not
provide any means for securing the confidentiality of the
service state in face of intrusions, e.g., if a single replica of a
BFT SMR-based Key-Value (KV) store is compromised, the
adversary can access all the data stored in the system.

Problem statement: We address the problem of designing
practical BFT SMR services that can preserve the confidential-
ity of the stored data. In more detail, we are interested in pro-
tocols that can (i) operate in non-synchronous environments;
(ii) deal with dynamic sets of participants in order to support
replica servers crashing, recovering, leaving, and joining the
system; (iii) support operations on thousands of secure data
entries, as required in most real-world applications; and (iv)
preserve their security properties (integrity, availability, and
confidentiality) in long-lived systems, thus resisting strong
adaptive adversaries that can eventually control a large number

of nodes. Our ultimate goal is to be able to efficiently sup-
port large-scale applications with privacy and fault-tolerance
requirements, such as blockchains and replicated KV stores.

Prior advancements: A strawman solution to provide
confidentiality in BFT SMR is to store the data in an en-
crypted form. However, this would require a key distribution
service if the stored data is shared among multiple clients.
Implementing such a solution without relying on a trusted third
party, requires another decentralized T3P, making the problem
recursive. Some works avoid such recursion by storing data in
clear on a subset of the servers, which are expected to not leak
data (e.g., [8], [9]), albeit requiring more servers and stronger
trust assumptions.

A more evolved solution is to enrich the service with thresh-
old cryptography, in particular, a secret sharing scheme [10],
[11]. Secret sharing protects the confidentiality of the stored
data/secret by splitting it into pieces, called shares, in such a
way that the secret can only be reconstructed by combining a
fraction of its shares. Hence, each replica, instead of storing
data in clear, stores a share of the secret (e.g., shares of values
stored on a KV store). Therefore, if an adversary compromises
a replica, it will only access the replica’s share(s), which
reveals nothing about the stored secret(s).

Starting with DepSpace [12], some works followed this
approach to provide a confidentiality layer for practical
BFT SMR services using Verifiable Secret Sharing (VSS)
schemes [13]. In these schemes, besides the basic functionality
described above, each share can have its integrity verified
to cope with an active adversary that may corrupt it. A
similar approach has also been used in more recent blockchain-
oriented works [7], [14]–[16].

Nonetheless, those works do not consider an adaptive mo-
bile adversary that can move from one replica to another and
eventually collect the required number of shares to reconstruct
the secret in a long-lived system. Proactive Verifiable Secret
Sharing (PVSS, or simply PSS) schemes [17], [18] can be used
to protect against such adversary by periodically refreshing the
shares stored by the replicas without revealing the secret. Thus,
if replicas are cleaned and rebooted [19]–[21], and shares are
renewed before an adversary collects enough of them, the
secrecy of the data will be maintained. Even if an adversary
has collected some shares before a renewal, those shares are
not useful as they cannot be combined with the renewed
shares. Additionally, these schemes have also been extended
to support a dynamic set of shareholders (DPSS - Dynamic
Proactive Secret Sharing), either in a general setting [22], [23]

1

Alysson Bessani
2022 IEEE Symposium on Security and Privacy (SP)

or considering blockchains [15], [16].
Despite a large body of work on secret sharing, there is

still a fundamental limitation that prevents these schemes from
being used in practical BFT SMR systems. Most secret sharing
protocols deal with a single secret, however, in practice, these
services (e.g., KV store) are expected to store thousands of
records, each one comprising a different secret. This means
that, when adding a new replica to the group or recovering
a replica that lost its state, the shares of all these secrets
need to be regenerated or recovered. Existing approaches
have high communication and storage costs or are designed
for the synchronous model, and thus are very inefficient or
unsafe in non-synchronous environments. For instance, our
implementation of MPSS [23] takes more than an hour for
resharing 100 000 secrets in a group of ten servers (see §VIII).

Our solution: We address these limitations by present-
ing COBRA (COnfidential Byzantine ReplicAtion), a novel
approach for proactive verifiable secret sharing in dynamic
groups of processes. The centerpiece of COBRA is a new
protocol for distributed polynomial generation. This protocol
employs a Byzantine consensus algorithm to generate secret
polynomials with shares distributed to at least t + 1 cor-
rect servers, which is enough for their reconstruction. These
polynomials are used to transform the original shares during
recovery and reshare [18].

The problem with this approach is that some executions can
be adversary-influenced, and up to t correct servers may end
up with invalid shares of the generated polynomial. This is
not always an issue for share recovery, since t + 1 correct
servers are enough to help a replica rebuild its state. However,
secret reshare requires that all correct servers obtain valid
renewed shares. COBRA solves this limitation in a natural but
fundamentally different way than previous works by making
servers that received invalid shares (during a resharing) execute
the recovery protocol. The key challenge is then how to make
a process recover its share from a secret polynomial shared
by only t + 1 correct processes. Our solution is a novel
recovery protocol that can identify and remove the processes
that caused the generation of invalid shares during polynomial
generation. In this way, correct servers can re-execute the
recovery protocol, ignoring messages from removed faulty
servers. In the worst case, this will lead to t+ 1 repetitions of
the distributed polynomial generation, eventually reaching an
execution in which only correct servers participate.

This interplay between the three COBRA protocols results
in the best communication and storage complexity among ex-
isting non-synchronous DPSS protocols (see Table I), making
it a solid foundation for supporting confidential BFT SMR
with a large number of stored secrets. Using these protocols,
we devised the first DPSS-based confidentiality framework for
practical BFT SMR services, i.e., supporting replica recovery,
secret resharing, and group reconfigurations.

We implemented COBRA on top of BFT-SMaRt [24], a
popular BFT SMR library supporting all features needed in
practical BFT SMR systems such as tolerance to asynchrony,
crash recovery, and group reconfiguration. This implementa-

tion was evaluated through macro and micro benchmarks to
assess the performance of COBRA with different numbers
of secrets and replicas. The results show that COBRA is
capable of processing thousands of 1kB-updates/second, being
more than 3× faster than the closest related work [7], and of
performing recovery and resharing of 100 000 secrets using
only 67% and 19% of the time required by the state-of-the-art
protocols VSSR [7] and MPSS [23], respectively. For instance,
COBRA requires less than 12 minutes for resharing 100 000
secrets in a group of ten servers, being 5× faster than MPSS.

Contributions: In summary, we make the following con-
tributions in this paper:
• We describe, for the first time, a general model for

confidential BFT SMR that can accommodate various
types of representative services (§III);

• We introduce the COBRA DPSS scheme – a modular pro-
tocol stack for distributed polynomial generation, share
recovery, and dynamic secret resharing (§IV and §V) –
achieving the best communication and storage complexity
among existing schemes (§II);

• We implement COBRA DPSS and integrate it with the
BFT-SMaRt replication library, making it the first system
to provide all features required for practical BFT services
while ensuring confidentiality (§VI and §VII). This im-
plementation is available online [25];

• We present an experimental evaluation of COBRA con-
sidering up to 97 replicas and a state containing 100
000 stored secrets, showing it is significantly faster than
existing related work. To the best of our knowledge, we
are the first to evaluate the use of proactive secret sharing
with such large number of secrets (§VIII).

II. BACKGROUND AND RELATED WORK

A. Secret Sharing and its Variants

A secret sharing scheme transforms a secret s into n shares
s1...sn such that any combination of t+1 ≤ n of these shares
can recover s, and no information about s can be obtained with
t or less shares [10]. This mechanism considers three roles for
processes: dealer, who distributes the secret; shareholder, who
stores a share; and combiner, who recovers the secret using
at least t + 1 shares. In the BFT SMR model considered in
this paper (§III), the service clients play the 1st and 3rd roles,
while the server replicas are shareholders.

The most popular implementation of secret sharing is the
Shamir scheme [10]. In this scheme, the dealer builds a
random polynomial P of degree t such that P (0) = s and
generates each of the n shares s1...sn as points of P , i.e.,
si = P (i). The secret s can be recovered by gathering t + 1
shares, interpolating the polynomial (i.e., recovering P), and
calculating P (0).

A key limitation of Shamir scheme is that it is not safe
against an active adversary. More specifically, if some of
the t + 1 shares used to interpolate the polynomial are
corrupted, the generated polynomial P ′ 6= P will lead to
a different secret s′ = P ′(0). To cope with this issue, the

2

TABLE I
COMPARISON OF PROACTIVE SECRET SHARING (PSS) SCHEMES. BEST-CASE COMMUNICATION AND STORAGE COMPLEXITY OF PROTOCOLS DEFINED IN

TERMS OF n (NUMBER OF SHAREHOLDERS). WHEN REQUIRED, WE ASSUME THE SAME CONSTANT-SIZE COMMITMENT SCHEME [26] AND CONSENSUS
PROTOCOL WITH LINEAR COMMUNICATION COMPLEXITY [27], [28] ARE USED IN ALL SCHEMES. ‡ CANNOT DECREASE THE POLYNOMIAL DEGREE.

PSS Scheme Synchronous Dynamic Share/Combine Reshare Storage Resilience
Herzberg et al. [18] yes no O(n) O(n3) O(1) t < n/2
Cachin et al. [29] no no O(n3) O(n4) O(n) t < n/3

Desmedt and Jajodia [30] yes yes‡ O(n) O(n2) O(1) t < n/2
Wong et al. [31] yes yes‡ O(n2) O(exp(n)) O(1) t < n/2
Baron et al. [32] yes yes‡ O(n) O(n3) O(1) t < n/2− ε
Opt-CHURP [15] yes yes‡ O(n2) O(n2) O(n) t < n/2
Goyal et al. [16] yes yes O(n) O(n2) O(1) t < n/2

Zhou et al. [22] no yes‡ O(exp(n)) O(exp(n)) O(exp(n)) t < n/3
MPSS [23] no yes‡ O(n) O(n4) O(n2) t < n/3
Exp-CHURP [15] no yes‡ O(n2) O(n3) O(n) t < n/3
COBRA DPSS (this paper) no yes O(n) O(n3) O(1) t < n/3

scheme must be extended with commitments, implementing a
Verifiable Secret Sharing (VSS) [13], [26], [33]–[36]. A (non-
interactive) commitment scheme adds a piece of information
to each share si, the commitment ci, allowing shareholders
and combiners to detect corrupted shares. For example, in
the Feldman scheme [13], the commitment for a polynomial
P (x) = akx

k + ...+ a1x+ a0 is c = 〈gak , ..., ga0〉, being g a
public generator of a cyclic group, which reveals no informa-
tion about the polynomial under the hardness of discrete log in
multiplicative groups assumption. The verification that a point
(x, y) is in a polynomial P (i.e., P (x) = y) is performed by
checking if gy = (gak)x

k × ...× (ga1)x × (ga0) is true.
A Proactive Secret Sharing (PSS) scheme can protect the

secrecy of the data in a long-lived system against a mobile
adversary that can eventually compromise more than t share-
holders by periodically renewing the shares [17], [18]. For
example, Herzberg et al. [18] introduced a PSS scheme1 in
which shareholders build a random renewal polynomial Q of
degree t such that Q(0) = 0. The shares of the secret are
renewed on each shareholder by adding the shares of Q to the
shares of P , i.e., i uses P (i)+Q(i) as its new share. The secret
P (0) will be preserved since (P + Q)(0) = P (0). However,
P (i) (the old share) will be different from (P + Q)(i) (the
new share) since Q(i) 6= 0. This same scheme can also be
used to recover the share si of a shareholder i. The idea is
to use a recovery polynomial R such that R(i) = 0 to blind
P , allowing i to recover the polynomial P + R and evaluate
(P + R)(i) = P (i) = si.

Proactive Verifiable Secret Sharing (PVSS) schemes [22],
[29] combine the ideas above to support share-renewing and
verifiability at the same time. Typically, this is done by
generating commitments for all auxiliary polynomials and
combining these commitments using additive homomorphism.

A key challenge in PVSS schemes is how to generate the
auxiliary polynomial Q (or R, in case of recovery) in such
a way that no party knows it entirely, only its share. In
synchronous systems, this is easily done by making each party
i generate a random polynomial Qi and send its shares to

1It is worth remarking that this scheme was shown to be vulnerable, but
subsequent works patched it maintaining the same idea [37].

every other party j. Every party waits for shares from all other
parties for a fixed time and generates its share for the resulting
polynomial by summing the received valid shares from differ-
ent polynomials, i.e., Q(j) = Q0(j) + ... + Qn(j) [18]. In
asynchronous systems, this procedure becomes substantially
more complicated since every party can only wait for at most
n − t other parties. In this case, the selection of the points
to be used typically requires the execution of a Byzantine
consensus protocol (e.g., [3], [28], [38]–[41]), either explicitly
or by using a blockchain, to ensure that every party selects the
same subset of polynomials to build Q [15], [23].

A natural extension of PVSS schemes is the support for
changing the set of shareholders without endangering the
secret’s confidentiality. The key challenge here is to execute
the resharing protocol with up to 2t malicious parties, t in the
old group plus t in the new group. Works like MPSS [23],
CHURP [15], Baron et al. [32], and Goyal et al. [16] deal
with this problem using different techniques. These schemes
are usually called Dynamic Proactive Verifiable Secret Sharing
(DPVSS), or just DPSS for simplicity.

Table I summarizes some of the characteristics of existing
schemes and COBRA DPSS, including the fault-free commu-
nication complexity of share/combine and reshare protocols,
the storage overhead on each shareholder, and the resilience of
the scheme. The table shows that there are only three schemes
(besides COBRA) that support dynamism in non-synchronous
systems, which is the typical setting in practical BFT SMR.
Among these, Zhou et al. [22] requires an exponential number
of messages on the number of shareholders. The other schemes
are arguably more practical, but with different drawbacks.
MPSS [23] has linear share/combine communication com-
plexity (which is optimal), but has a high communication
complexity on reshare due to the need to generate n+1 shared
polynomials. CHURP [15] has a quadratic share/combine
complexity due to the use of bivariate polynomials, in which
each share is also a polynomial, but a cubic reshare complexity
due to the use of this technique. Further, these protocols have a
high storage overhead due to the need to store some messages
from previous reshares [23] or due to the use of bivariate
polynomials [15]. COBRA matches the optimal share/combine

3

complexity of MPSS and the reshare complexity of (asyn-
chronous) CHURP, while improving the storage overhead of
both to O(1) (also optimal). Moreover, COBRA can decrease
the shared polynomial degree, following reconfigurations that
decrease t, something previously available only on a syn-
chronous scheme [16].

B. Data Confidentiality in BFT Systems

The seminal work on intrusion tolerance by Fraga and
Powell [42] was the first to consider information scattering
and threshold schemes for protecting data confidentiality in a
replicated synchronous system. Later works like Secure Store
[43] and CODEX [44] ensure confidentiality, integrity, and
availability of stored data in asynchronous systems by using
Byzantine quorum protocols [45] together with secret sharing.

To the best of our knowledge, DepSpace [12] was the first
work to use secret sharing for achieving confidentiality in
a BFT SMR system based on PBFT [3]. Similarly, Belisar-
ius [46] also implemented a confidentiality-preserving storage
service based on PBFT, with some tweaks for improving the
performance of data reads. More recently, CALYPSO [14]
proposed a practical blockchain-based infrastructure to store
and share secrets. The two sharing protocols supported in CA-
LYPSO are somewhat similar to what was done in DepSpace
and CODEX, with some additional features, e.g., for better
management of identities. Some of these systems [12], [46]
achieved a performance similar to BFT SMR without confi-
dentiality, but neither of them support the recovery of state,
share renewal, or replica group reconfiguration, and thus are
not adequate for practical BFT SMR systems.

The recent work of Basu et al. [7] partially solves this
problem by introducing a share recovery protocol (VSSR) for
static BFT SMR. However, the protocol uses four additional
recovery shares per stored secret, which implies a significant
overhead on storage, communication and computation (see
§VIII). Similarly, some of the already mentioned works on
asynchronous DPSS [15], [23] could be adapted to support
reconfiguration on confidential BFT SMR, albeit with bad
performance (see Table I).

Finally, it is worth mentioning the relationship between
Secure Multiparty Computation (MPC) [47], [48] and confi-
dential BFT SMR. In MPC, clients/parties jointly compute,
typically in a synchronous peer-to-peer way, an arbitrary
function without giving up their inputs’ privacy. In BFT SMR,
clients (asynchronously) submit commands to update the state
of a service deployed on a set of untrusted servers. Therefore,
confidential BFT SMR can be seem as a restricted form of
MPC with temporal decoupling and support for restricted
forms of private stateful computations. We expect to see
more integration between these techniques as confidentiality
solutions for BFT SMR mature. Additionally, since additively-
homomorphic secret sharing is a fundamental building block
for MPC, we believe COBRA DPSS might be of independent
interest to recent MPC-as-a-Service [49] systems that consider
long computations and dynamic participation [50].

III. MODELS AND GOALS

A. System Model

We consider a fully-connected distributed system composed
by a universe of processes Π that can be divided into two
subsets: an infinite set of replicas/servers Σ = {r1, r2, ...},
and an infinite set of clients Γ = {c1, c2, ...}. Clients access
the BFT SMR system maintained by a subset of the replicas
(a view - see next) by sending their requests to these replicas.

We assume a trusted setup, in which each replica and
client has a unique identifier that can be verified by every
other process of Π through standard means, e.g., through a
public key infrastructure. More specifically, each replica ri
has a public-private key pair 〈pki, ski〉 used for signatures
and encryption. A message m signed with ski is denoted by
mσi

. A message m encrypted with pki is denoted by Ei(m).
We suppress process ids for readability when the involved
processes are obvious.

We further assume a partially synchronous model [51] in
which the network and processes may behave asynchronously
until some unknown global stabilization time GST after
which the system becomes synchronous, with unknown time
bounds for computation and communication. This assumption
is required to ensure the liveness of the consensus protocol
employed by COBRA. Finally, every pair of processes com-
municate through private and authenticated fair links, i.e.,
messages can be lost and delayed, but not forever.

B. Dynamic Replica Groups and Views

We consider a dynamic system where BFT SMR replicas
are able to join and leave the system during its execution by
processing reconfiguration requests that install a sequence of
views in the system [24], each one with the set of replicas
at that time. These requests are totally ordered and, after a
reconfiguration, all correct replicas will adopt the same current
view Vcur, which represents the most up-to-date view of the
system. Until another view is installed, the replicas from Vcur
are the only ones that may participate in the execution of
client requests. We denote by V.n the number of replicas
in a view V and V.t the number of replicas in V allowed
to fail simultaneously. When not considering reconfigurations,
we use just n and t for Vcur.n and Vcur.t, respectively.

We further assume a non-empty initial view Vini known
to all processes. At any moment, clients obtain Vcur through
standard means, e.g., by consulting a directory service [24].

C. Confidential SMR Service Model

The state machine replication model defines that all correct
replicas work as a deterministic state machine and have the
same state (the replicated service state) after executing the
same sequence of operations [1]. However, by integrating
secret sharing in this model, it becomes impossible for all
replicas to have the same state, in particular because different
replicas will have different shares of the stored secrets. There-
fore, we define a Confidential SMR service model in which
the system globally stores the state S, but locally each replica
maintains two “states”, one common to all replicas (similarly

4

to the standard SMR model) and one specific to each replica,
containing the replica shares.

More formally, given a global state S = {D1, ..., Dm}
composed of m data entries, each correct server ri maintains
a state Si = 〈C,Pi〉, composed of two parts:

1) C = {〈D1, D
e
1, c1〉, ..., 〈Dm, De

m, cm〉} is the common
state, represented by a set of tuples with the information
replicated to all servers: Dj is the non-sensitive data
associated with the data entry (e.g., the key associated
with a value in a KV store, the metadata of a transaction
in a blockchain), De

j corresponds to Dj encrypted using
a random symmetric key Kj , and cj is the commitment
for the shares of Kj ;

2) Pi = {si,1, ..., si,m} is the private state of server ri,
containing its shares si,j for each key Kj .

Additionally, the model considers that clients (acting as
dealers and combiners w.r.t. shared secrets) manipulate data
entries respecting access control policies implemented by
replicas (the shareholders), as in other works (e.g., [12], [14]).
Without such access control, a single corrupted client could
trivially read all entries stored in the service.

This model explicitly incorporates secret sharing techniques
for ensuring the confidentiality of the service state, allowing
the specification of state recovery and reconfiguration pro-
tocols that require secret sharing primitives. Moreover, it is
general enough to accommodate different types of services. In
particular, we foresee three major types of services that can
benefit from this model: (1) database services for the storage
of small secret records (e.g., [14], [15], [44]), in which Dj

is the public id of secret j, De
j is empty, and cj and s∗,j are

the commitment and share of one of the records, i.e., secret
sharing is applied directly over the small records; (2) services
for the storage of large data blobs or files (e.g., confidential
document databases with searchable encryption features [52]),
where Dj can be a portion of the encrypted index, De

j is the
encrypted data entry, and s∗,j a share of the encryption key;
and (3) outsourced encrypted databases allowing computations
directly over the encrypted values [53], where De

j is, for
instance, a homomorphically encrypted record and s∗,j the
share of its encryption key.

D. Adversary Model

We consider a probabilistic polynomial-time (PPT) adaptive
adversary, that can control the network and may at any
time decide to corrupt an unbounded number of clients and
a fraction of the replicas in the current view. Corrupted
clients and replicas are allowed to deviate arbitrarily from
the protocol, i.e. they are prone to Byzantine failures. Such
processes are said to be faulty or corrupted. A process that is
not faulty is said to be correct or honest. More specifically, for
a current view V , the adversary can control simultaneously at
most V.t = bV.n−13 c replicas. Additionally, since we consider
that replicas erase their state after each view, the adversary
can corrupt an arbitrary number of replicas that have left the
system. For corrupted replicas, the adversary can learn the
private state that they store.

Byzantine Consensus
Distributed Polynomial Generation

BFT State Machine Replication
Group reconfiguration
(reshare private state)

Replica recovery
(recover private state)Update and

read (share
and combine
private state)

Recovery Dynamic Reshare

Fig. 1. COBRA protocol stack. Dark boxes represent COBRA DPSS.

For our proofs (Appendix B), we consider the recent def-
inition of CC-adaptive security2 [55], following the standard
real/ideal paradigm.

E. Confidential SMR Security Goals

In addition to ensuring the standard Safety (or Lineariz-
ability [56], i.e., the replicated service emulates a centralized
service) and Liveness (or Wait-freedom [57], i.e., all correct
client requests are executed) properties of SMR [1], [19],
COBRA also ensures a new property designated as Secrecy.

DEFINITION 3.1 (BFT SMR Secrecy): A dynamic BFT
SMR system that evolves in a series of views Vini, ...,Vcur
satisfies Secrecy of its state S = {D1, ..., Dm} if, for each
view V and data entry Dj ∈ S not accessible by faulty clients,
an adversary controlling no more than V.t servers of V while
V is the current system view, learns no information about Dj

besides its non-sensitive part Dj .
Secrecy ensures that no private information about the state

of a confidential BFT SMR system can be obtained if the
failure threshold of each current view is respected.

IV. COBRA OVERVIEW

COBRA aims to provide a confidentiality layer for practical
BFT SMR systems. This is done through the protocol stack
presented in Fig. 1. As in non-confidential BFT SMR systems,
state updates and reads are ordered using a Byzantine consen-
sus protocol. The difference here is that the shares s1,j , ..., sn,j
of the private part of data entry Dj will also be distributed (in
updates) and obtained (in reads) together with the ordering
of the request, with clients playing the roles of dealers and
combiners, respectively.

Additionally, COBRA also uses Byzantine consensus for
distributed polynomial generation. This protocol allows repli-
cas to jointly create new random polynomials in a distributed
way and serves as a basis for the two other protocols in the
COBRA stack: replica recovery, and group reconfiguration.

Supporting replica recovery requires the re-generation of the
replica’s lost shares. When server ri recovers from a failure,
it needs (1) to obtain the common part C of its state (which is

2We resort to this model due to the well known ”commitment problem” and
our usage of efficient binding commitments (similarly to previous works [7],
[15], [23]), which can not be properly simulated in the standard UC-adaptive
model. Another possibility to deal with this problem would be to assume the
usage of secure erasable memory [54], since we already consider that replicas
erase their state between views.

5

r1
r2
r3
r4

Share
Computation

Polynomial
Proposal

Selection
(Byz. Consensus)

P
P
P

Fig. 2. Polynomial generation message pattern in an execution with n = 4.

replicated in other servers) using a state transfer protocol and
(2) invoke the share recovery protocol for each stored data
entry Dj , effectively reconstructing its private state.

Adding and removing replicas (group reconfigurations) can
require changing the secret-encoding polynomials used in
the service private state, e.g., reconfiguring a group Vi to a
larger group Vi+1 demands higher-degree polynomials to still
tolerate b(Vi+1.n− 1)/3c failures. This requires an operation
for refreshing shares during group changes. COBRA supports
a novel dynamic reshare protocol that needs to be invoked
for each entry Dj on the state for transforming the shares
s1,j , ..., sVi.n,j into s′1,j , ..., s

′
Vi+1.n,j

.
Next we give a high-level overview of our protocols for

share recovery and dynamic reshare, which are built on top of
the distributed polynomial generation protocol. Together, these
protocols form the COBRA DPSS scheme.

a) Distributed polynomial generation: This protocol al-
lows a group of n ≥ 3t + 1 servers to create a random
polynomial P of degree t with an encoded point (x, y). At the
end of the protocol execution, each correct server ri obtains a
share si of P and its commitment c.

This protocol, illustrated in Fig. 2, has three steps: (i) each
server locally generates a random polynomial and distributes
its shares to the group; (ii) servers run Byzantine consensus
to ensure that correct servers select the same set with t+ 1 of
these random polynomials; and (iii) the selected polynomials
are summed, resulting in the shares of a polynomial P .

This protocol generates a shared random polynomial that is
recoverable by correct servers, i.e., at least t+1 correct servers
obtain a valid share of P , and the other correct servers will
detect that their shares are invalid by using c. A key insight of
COBRA is that this relatively simple protocol (when compared
with previous works [15], [23]) is enough for supporting share
recovery and reshare.

b) Share recovery: If a server rk of V fails and recovers,
it can reconstruct its shares through a share recovery operation.
To recover its share sk, rk asks the other servers to generate
a random recovery polynomial R, with R(k) = 0, using
the distributed polynomial generation protocol. As discussed
before, at least t + 1 correct servers will obtain valid shares
of R, and use them to blind their own shares of P , generating
shares of P + R, which are then sent to rk. With t + 1
correct shares of P +R, rk can recover its share by calculating
(P + R)(k) = P (k) + R(k) = P (k).

s1 ... sn
!!"# !$%&

Q Q’
Distributed Polynomial Generation

s’1 ... s’n

B(i) = si + Q(i)

Combine t+1 shares of
B, and obtain z = B(0)

RecoveryIf invalid points of Q’ are received

s’j = z – Q’(j) Why is the secret s preserved?
s = P(0)

= P(0) + Q(0) - Q’(0)
= z - Q’(0)

Fig. 3. COBRA dynamic reshare protocol.

This relatively simple procedure works only if all correct
replicas have correct shares of P . More precisely, we have a
set of correct servers SP with shares of P and a set of correct
servers SR with shares of R. The described share recovery
method works only if |SP ∩ SR| ≥ t + 1, i.e., when there
are enough correct servers with shares of both P and R to
answer rk. However, in a BFT SMR scenario, a malicious
client (dealer) can collude with faulty servers and distribute
shares of a secret only to |SP | = t + 1 correct servers and
still execute its state update (see §VI). A similar situation can
happen in the reshare protocol, as described next. The second
novel insight of COBRA is how to execute a recovery even
when not all correct servers have the required shares.

Our solution relies on the fact that correct servers that
receive invalid shares of R at the end of the distributed
polynomial generation know their shares are invalid and have
an undeniable proof pointing to the faulty server b that
misbehaved during the protocol execution. When this proof
is revealed, correct servers start ignoring b and restart the
protocol. In the end, the recovery can fail up to t times,
removing t faulty servers, but eventually executing correctly.

c) Dynamic reshare: The dynamic reshare protocol al-
lows a group of servers Vold to transfer the shared secret to
a (possibly overlapping) group Vnew by changing the shares
while preserving the secret and its secrecy. Fig. 3 presents a
high-level view of the protocol.

The first step of the protocol is to run a modified version of
the distributed polynomial generation among the two (possibly
overlapping) groups, generating two polynomials Q and Q′,
one for each group, encoding the same random secret on their
independent term, i.e., Q(0) = Q′(0). Servers in Vold blind
their shares with Q and send them to Vnew. Each receiving
correct server combines t + 1 blinded shares and calculates

6

the independent term of the blinded polynomial, z = P (0) +
Q(0). Using this value and their valid shares of Q′, the correct
servers of Vnew obtain renewed shares that, when combined,
lead to the same original secret.

Notice that a server of Vnew can only obtain its share if it
has a valid share of Q′, something the distributed polynomial
generation cannot guarantee for all correct servers. Therefore,
when an invalid share is obtained, the server employs the share
recovery protocol to get a valid share of Q′, removing the
malicious server(s) that was responsible for generating such
invalid share from Vnew.

V. COBRA DPSS

We now detail COBRA’s DPSS scheme, starting with its
building blocks and functionality definition.

A. Building Blocks

1) Verifiable Secret Sharing (VSS): Our protocols employ
a VSS scheme based on Shamir’s work [10] to enable a client
to share a secret among n servers. Formally, a VSS scheme
provides the following functionality (omitting an Init protocol
for simplicity):
• 〈{si}i∈[n], c〉 = Share(n, t, x, y) is a randomized proce-

dure that generates shares {si}i∈[n] and a commitment c
of random polynomial P of degree t in which P (x) = y;3

• false|true = Verify(i, si, c) is a deterministic procedure
that verifies if a share si is in polynomial P from which
c was generated. If it returns true , we say si is valid;

• y = Reconstruct(St+1, x) is a deterministic procedure
that obtains y = P (x), where P is a polynomial of degree
t interpolated using a set S of t + 1 valid shares.

The security of a VSS scheme lies in its Hiding and
Binding properties [26]. Hiding states that an adversary cannot
distinguish between two shared secrets with high probability,
even if one is chosen by it and shared by the client through
Share, and it has access to t shares of both. Binding states
that the probability that an adversarial dealer can cause two
distinct secrets to be reconstructed with the same commitment
is negligible.

2) Byzantine Consensus (BC): We use a variant of BC to
propose and decide values considered valid according to an
application-defined predicate. The Consensus functionality can
be described as follows. One or more correct processes in a
view V ⊂ Σ propose a value v to all processes in V . All
correct processes in V will eventually output a decision v∗

(Termination), which is the same (Agreement), and that was
proposed by some ri ∈ V (Validity). Additionally, we require
Validity to be strengthened to ensure the decided value v∗ is
useful, i.e., it satisfy some application-specific predicate P:

DEFINITION 5.1 (P-Validity): A decided value v∗ is valid
(i.e., P(v∗) = true) to at least t + 1 correct processes of V .

3To simplify the exposition, we assume all shareholders use the same
commitment c to validate their shares. In schemes where this is not true
(e.g., [26]), we consider the part of the commitment specific to each share is
sent together with it to its shareholder.

This property is a more general version of a similar property
used in some consensus formulations [38], [58], [59]. These
works consider a local predicate that can be computed in
polynomial time, while our definition allows external factors
to be used (e.g., the reception of some message that validates
v∗). The only requirement we make is that there is some value
v among proposals such that eventually P(v) = true in every
correct process of V . For instance, this property can be easily
implemented by extending a protocol like PBFT [3], as we
do in COBRA. In this implementation, correct servers accept
the leader proposal (PBFT’s PRE-PREPARE message) only
if the proposed value is valid w.r.t. to P . Since a proposed
value is decided in PBFT only if 2t+1 (out of 3t+1) servers
accepted it, at least t + 1 correct servers need to accept it,
satisfying P-Validity. The same idea can be applied to other
leader-based protocols such as HotStuff [28]. An interesting
open question is if such property is implementable in more
decentralized protocols (e.g., [38], [59]).

B. DPSS Definition

COBRA’s Dynamic Proactive Secret Sharing definition ex-
tends the VSS with the Recover and Reshare functionalities.
Shareholders use these to cope with failure recoveries and
dynamism. They are specified as follows:

• 〈sk, c〉 = Recover(V, k, {si}ri∈V\{rk}, c) is a determin-
istic protocol that allows shareholders in V to collabora-
tively recover rk’s share sk and corresponding commit-
ment c using V.t + 1 correct shares.

• 〈{s′i}ri∈Vnew , c′〉 = Reshare(Vold ,Vnew , {si}ri∈Vold , c) is
a randomized protocol that enables servers in Vold to
move the secret to servers in Vnew , creating new shares
{s′i}ri∈Vnew for them.

A DPSS scheme is considered secure with respect to the
following definition [15], [23]:

DEFINITION 5.2 (DPSS): A secure DPSS scheme satisfies
the following properties for any PPT adversary A:

Secrecy: If A cannot corrupt more than V.t shareholders
in the current view V during Recover, and more than Vold .t
servers in Vold and Vnew .t servers in Vnew during Reshare,
then A learns no information regarding the shared secret.

Integrity: If A cannot corrupt more than V.t shareholders
in the current view V during Recover, and more than Vold .t
servers in Vold and Vnew .t servers in Vnew during Reshare,
then the shares for honest shareholders can be correctly
computed and the shared secret remains intact.

Termination: In a partially synchronous model, if A cannot
corrupt more than V.t shareholders in current view V during
Recover, and more than Vold .t servers in Vold and Vnew .t
servers in Vnew during Reshare, then all honest shareholders
eventually terminate these protocols.

Secrecy and Integrity ensure that the DPSS scheme is
secure, while Termination states that the primitives are live.

Next, we detail the COBRA DPSS protocols.

7

C. Distributed Polynomial Generation
COBRA’s distributed polynomial generation protocol allows

a group of servers to create a random polynomial P of degree
t encoding a point (x, 0). This protocol serves as black-box
component for the Recover and Reshare protocols, aiding in
their execution.

More precisely, this functionality can be described as
follows: 〈S, {si}ri∈V , c〉 = GeneratePolynomial(V, x) is a
randomized protocol that allows shareholders to generate a
random polynomial P of degree V.t encoding (x, 0). The
function outputs at each correct server ri ∈ V a share si of P ,
a commitment c, and a set S of polynomial proposals used to
generate P . By the end of the protocol, at least V.t+1 correct
servers obtain valid shares of P , correct servers receiving
corrupted shares can verify their shares are corrupted (using
c), and the adversary A knows no more than V.t shares of P .

Our implementation of GeneratePolynomial is described
bellow. The protocol has three phases, as illustrated in Fig. 2:
Polynomial Proposal (Steps S1 and S2), Selection (Steps S3
and S4), and Share Computation (Step S5).

PROTOCOL GeneratePolynomial(V, x)

Server ri ∈ V with input (V, x):
S1. Invokes 〈{si,1, ..., si,n}, ci〉 = Share(V.n,V.t, x, 0).
S2. Sends 〈PROPOSAL, E1(si,1)...EV.n(si,V.n), ci〉σi to V .
S3. Collects V.n − V.t PROPOSAL messages and runs

Consensus:
a) Let rl ∈ V be an elected consensus leader. rl builds

a set S = {〈j, cj〉 : rj ∈ V} using V.t + 1 valid
proposals (a proposal from rj is valid for rl iff
〈PROPOSAL, ...El(sj,l)..., cj〉σj is correctly signed
and both Verify(x, 0, cj) and Verify(l, sj,l, cj) return
true) and proposes it.

b) A correct replica accept the set S proposed by rl if
it received all proposals in S and they are valid (our
P-Validity predicate).

S4. Waits for Consensus to output S. For all 〈j, cj〉 ∈ S, ri
asks for rj’s proposal 〈PROPOSAL, ...Ei(sj,i)..., cj〉σj in
V if it does not have it.

S5. Decrypts all Ei(sj,i), computes si =
∑
〈j,∗〉∈S sj,i and

c =
⊗
〈j,∗〉∈S cj , and outputs 〈S, si, c〉.

In the first phase servers create proposals with shares from
a locally-created random polynomial and its commitment. All
these shares are distributed to every server in an encrypted
way, making all servers obtain all shares generated by correct
servers. Further, proposals are signed by their creators to be
used as an undeniable proof of misbehavior if needed.

In the second phase servers runs a Byzantine consensus to
choose a set S of proposals that are valid for at least t + 1
correct servers. This works by having the consensus leader
building S containing the identifiers of servers that sent valid
shares to it and their associated commitments (which uniquely
identifies the proposed polynomial). Due to P-Validity, a
correct server only accepts S if it received valid shares and
matching commitments from all servers in S. Therefore, a
decided set S corresponds to t+ 1 polynomial proposals with
valid shares in at least t + 1 correct servers.

Notice that if a malicious server rj sends a valid share
to the leader rl and invalid shares to other servers, and rl
proposes 〈j, cj〉 in S, the consensus might not terminate with
this proposal since S will not be accepted by enough servers.
In this case, a timeout occurs and a new leader is selected [3].
When changing leaders, servers accuse rj to the new leader
using the invalid proposal sent by it. As a result, rj’s proposal
will not be included in S, enabling consensus termination.

The final phase of the protocol is the computation of the
shares and commitment of the generated random polynomial.
This is done by adding the selected polynomials shares and
combining their commitments (e.g., in Feldman’s scheme, this
is done by multiplying the commitments vector values [13]).

Communication complexity: In the proposal phase, each
server sends n O(n)-size messages, resulting in a commu-
nication complexity of O(n3). The selection phase employs
a Byzantine consensus protocol to select a set with t + 1
constant-size values. If a protocol with linear communication
complexity like HotStuff [28] is used, the phase complexity
would be O(n2). As a result, the fault-free communication
complexity of the protocol is O(n3).

D. Share Recovery

To safely recover a server’s share, we leverage the ideas
of Herzberg et al. classical scheme [18], but adapted to non-
synchronous environments. Given a polynomial P encoding a
secret shared among a group of servers V , the algorithm works
differently depending on the existence of malicious servers
and how many correct servers have shares of P . If all correct
servers have such shares or if there are no malicious servers
in V , a single execution of the GeneratePolynomial is enough
to generate a random polynomial R to blind the shares of P .
Otherwise, there will be a set SP of at least t + 1 correct
servers with shares of P and a set SR of at least t+ 1 correct
servers with shares of R, with an intersection of only one
correct server between these sets in the worst case. This is
clearly not enough for recovery, since we need t + 1 correct
servers with shares of both P and R.

Our solution is to identify and remove malicious servers
that sent invalid proposals during the generation of R. Once
they are removed (i.e., ignored forever), the protocol restarts.
In the worst case, GeneratePolynomial can be repeated up to
t + 1 times, to remove t malicious servers one by one, and
then recover the share.

Bellow we present the protocol for recovering the share
of a server (defined in §V-B). In the protocol, we mark the
steps related with detection and removal of malicious servers
in blue, to differentiate the expected normal case from the
once-per-faulty-server repetition.

The recovery starts when rk requests blinded shares to the
other servers. When server ri receives such request, it runs
GeneratePolynomial to create a recovery polynomial R with
degree t encoding (k, 0). Each correct server that has a share
of P and obtained a valid share of R calculates a blinded
share with these two shares and return it to rk. With t + 1
valid blinded shares, rk recovers its original share.

8

PROTOCOL Recover(V, k, {si}ri∈V\{rk}, c)

Recovering server rk ∈ V with input V:
R1. Requests blinded shares from other servers in V .
R2. Waits for responses.

a. Upon receiving V.t+ 1 messages 〈REC, ∗, sb∗, c, cr〉
(same c and cr) with Verify(∗, sb∗, c ⊗ cr) = true ,
outputs 〈Reconstruct({sb∗}, k), c〉.

b. Upon receiving a message 〈ACC, j, propj , sj,i〉,
sends it to other servers in V and go to step R1.

Each server ri ∈ V \ {rk} with input (V, k, si, c):
S1. Upon receiving a blinded share request from rk, runs

GeneratePolynomial(V \ {rk}, k) to obtain 〈S, sri , cr〉.
S2. If the replica has a share for the secret being recovered, it

evaluates Verify(i, sri , c
r).

a) If true , calculates sbi = si+ sri and sends a message
〈REC, i, sbi , c, cr〉 to rk.

b) Otherwise, identifies the invalid proposal propj =
〈PROPOSAL, ...Ei(sj,i)..., cj〉σj of a server rj in
S and sends 〈ACC, j, propj , sj,i〉 to rk.

S3. Upon receiving a message 〈ACC, j, propj , sj,l〉 from rk,
where propj = 〈PROPOSAL, ...El(sj,l)..., cj〉σj and
rl ∈ V , checks if the accusation is sound (i.e., propj is
signed by rj , the encryption of sj,l with rl’s public key
matches El(sj,l), and Verify(l, sj,l, cj) = false). If yes,
adds rj to an ignore list, otherwise includes rl in such list.

If ri receives an invalid share in GeneratePolynomial, it
identifies the invalid proposal(s) that caused this and returns
an accusation to rk. When rk receives this accusation, it
disseminates it to all servers and restart the recovery. Upon
receiving an accusation, server ri verifies its soundness (i.e.,
the proposal is signed and contains an invalid share). If this
is the case, the proposal producer is added to an ignore list,
otherwise, the sender of the invalid accusation goes to this list.

Communication complexity: Apart from the share request
and its reply, the only other communication of the protocol
is due to the distributed polynomial generation, which has
communication complexity of O(n3). Therefore, the fault-free
communication complexity of the recovery protocol is O(n3).

E. Dynamic Reshare

COBRA’s DPSS protocol for dynamic reshare leverages
ideas from classical and recent works on the topic [16],
[18]. However, differently from these works, we assume a
non-synchronous setting, which significantly complicates the
realization of the approach. For instance, if an adversary
controls some servers in Vold, we might require an execution
of the recovery protocol to remove such servers and create a
renewed share for every correct server of Vnew.

We presented a high-level view of the reshare protocol
in Fig. 3. The key idea is to generate two random helper
polynomials Q and Q′, such that Q(0) = Q′(0) = q, being q
a random factor used for blinding the secret. The shares of Q
are used by servers in Vold to blind their stored shares. Servers
in Vnew use Q′ shares and the blinded secret z (obtained using
the blinded shares from Vold) to compute their renewed shares.

In the following, we detail how our protocol reshares a
secret, while “moving” shares from Vold to Vnew. The protocol
is divided in three phases: Polynomial Generation (Steps O1,
N1, and N2), (2) Blinded Secret Reconstruction (Steps O2 and
N3) (3) Share Renew (Steps O3 and N4).

PROTOCOL Reshare(Vold ,Vnew , {si}ri∈Vold , c)

Each server ri ∈ Vold with input (Vold ,Vnew , si, c):
O1. Executes GeneratePolynomial∗ to obtain Q and Q′ for

Vold and Vnew, respectively, and obtains 〈S, sqi , c
q〉.

O2. If Verify(i, sqi , c
q) is true , calculates a blinded share sbi =

si+sqi and its commitment cb = c⊗ cq , and sends 〈sbi , cb〉
to Vnew.

O3. Deletes 〈si, c〉 and halts.

Each server rj ∈ Vnew with input (Vold ,Vnew):
N1. Executes GeneratePolynomial∗ to obtain 〈S, s∗j , cq

′
〉.

N2. If Verify(j, s∗j , c
q′) = false , runs Recover to obtain a valid

share sq
′

j of Q′.
N3. Waits the reception of Vold.t + 1 messages 〈sb∗, cb〉 with

the same cb and Verify(∗, sb∗, cb) = true , and calculates
z = Reconstruct({sb∗}, 0).

N4. Compute the renewed share s′j = z − sq
′

j and its corre-
sponding commitment c′ = cb � cq

′
. Outputs 〈s′i, c′〉.

The protocol starts with all servers invoking the
GeneratePolynomial∗ protocol, a modified version of
GeneratePolynomial that generates at once two random
polynomials Q and Q′ with degree Vold.t and Vnew.t,
respectively, encoding the same random secret value q
at their independent terms. Apart from these differences,
GeneratePolynomial∗ implements a functionality similar
to what was described in §V-C, and has the same three
phases and five steps of GeneratePolynomial. We defer the
specification of this protocol to Appendix A.

After executing GeneratePolynomial∗, it might happen that
some correct servers of both groups receive invalid shares of
Q or Q′. This is not a problem for Vold since at least Vold.t+
1 correct server will have shares of Q, which is enough to
generate a blinded secret. However, servers in Vnew need valid
shares of Q′ to (re)build their shares of the secret, so they may
need to run the Recover protocol.

In the second phase of the protocol, servers in Vold compute
blinded shares and send them to Vnew servers, which use them
to reconstruct the blinded secret z. After that, in the last phase,
correct servers in Vnew use z and their shares of Q′ to compute
their renewed shares and the corresponding commitment.4

Communication complexity: Assuming a constant com-
mitment scheme, the second phase of the protocol requires
all Vold servers to send constant-size messages with their
blinded shares and commitments to Vnew servers, leading to
a quadratic asymptotic communication. As a result, the fault-
free communication complexity of resharing is dominated by
GeneratePolynomial∗, resulting in O(n3), as in Table I.

4In this step, � represents the inverse operation of ⊗, e.g., in Feldman’s
scheme, this is a division of the commitments vectors values.

9

F. Security Analysis

COBRA DPSS is secure since it fulfills the Secrecy, In-
tegrity and Termination properties of DPSS (Definition 5.2).
We present a proof sketch of this claim in Appendix B.

VI. FROM DPSS TO BFT SMR

The COBRA protocol stack for confidential BFT SMR
enables fundamental features typically needed in practical de-
ployments, such as replica recovery and group reconfiguration.
In the following we outline how we use the COBRA DPSS
scheme for supporting confidential BFT SMR. We discuss the
correctness of our design in Appendix C.

A. State Update and Read Protocols

Recall that the confidential SMR service model considers
that each server’s state is composed by a common state and a
private state (see §III-C). The common part is updated (resp.
read) using standard BFT SMR, i.e., employing Byzantine
consensus to ensure correct replicas processes client-issued
requests in total order [3], [58], while the private part requires
the distribution (resp. collection) of the shares. Clients act
as dealers/combiners that distribute/collect the shares to/from
the replicas by using the previously defined Verifiable Secret
Sharing (VSS) functions (see §V-A). COBRA employs request
processing protocols similar to the ones described in [7].

The update functionality 〈〈D,De, c〉, {si}ri∈V〉 =
Update(V, D) is implemented by a randomized protocol that
uses Share and Verify to distribute shares s∗ of confidential
data D and Byzantine consensus to multicast its associated
common data 〈D,De, c〉 to servers in V . The key challenge
in implementing this protocol is to synchronize the reception
of these two pieces of information in a single atomic update.
This is guaranteed due to Byzantine consensus’ P-Validity
property, which ensures a client-issued operation is accepted
by a replica only if it receives the corresponding valid share
from the client. This guarantees that an update implies
having at least t + 1 correct replicas with valid shares of the
associated private state, which is enough for other correct
replicas to recover their shares in case of need.

The read functionality D = Read(V, d) is implemented by
a deterministic protocol that retrieves the confidential data
associated with d from servers in V , and uses Verify and
Reconstruct to compute the correct confidential data D. To
read entries from the confidential state, clients need to obtain
(together with the common part of the entries) at least t + 1
valid shares for the entries.

B. State Recovery

In practical BFT SMR systems, it is expected that servers
will fail and lose their states. The state recover functionality
〈C,Pk〉 = StateRecover(V, k, C, {Pi}ri∈V\{rk}) is imple-
mented by a deterministic protocol that reconstructs the state
of a replica rk ∈ V . Since the common state is the same for all
servers, C is retrieved using a traditional SMR state transfer
protocol [3], [60], [61]. The private state Pk = {sk,1, ..., sk,m}

is recovered through multiple executions of the DPSS Recover
protocol (see §V-D).

The most complicated part of our implementation of this
protocol consists in running multiple instances of Recover,
which implies in the distributed generation of m polynomials
for blinding different shares. This can be done in three ways:
by running m instances of the protocol, by running a single
instance of the protocol but adapted to generate m polynomials
at once, or by mixing these two, i.e., running u instances of
the protocol, each one generating w polynomials, such that
m = u×w. We use this last approach, with a configurable w.

Notice a server does not need to wait for all shares to be
recovered before starting to process client-issued operations.
Once the common state is recovered using standard SMR
methods, operations that require only the state already recov-
ered can be processed. Furthermore, it is possible to prioritize
the recovery of the shares of certain data items based on their
popularity to enable the recovering replica to serve such items
as soon as possible. There is a rich literature on how to do
this prioritization (mostly for database sharding) that can be
adapted to COBRA (e.g., [62]).

C. Group Reconfiguration

Service reconfigurations are typically executed
by agreeing on a new set of system replicas [24].
The reconfigure functionality 〈C ′, {P ′i}ri∈Vnew 〉 =
Reconfigure(Vold ,Vnew , C, {Pi}ri∈Vold) is a randomized
protocol that enables BFT SMR service to change its
configuration from Vold to Vnew . C ′ is the new common state
stored by each replica in Vnew , and only differs from C in its
polynomial commitments. When a reconfiguration does not
require removing replicas or modifying t (e.g., a group with
four servers in which two more are added, keeping t = 1),
joining replicas can obtain the state using the StateRecover
protocol described in previous section. Otherwise, i.e., when
changes in system composition imply replica removals or
changing t, COBRA DPSS Reshare protocol (see §V-E)
needs to be executed for each secret kept in the system. Just
as in state recovery, refreshing the shares may require the
execution of the resharing protocol multiple times, each time
for several secrets, and can start serving some data items as
soon as they are refreshed.

Reconfigurations can also be used to cope with mobile
adversaries [17], [18]. The idea is to execute a “fake” reconfig-
uration, without adding or removing replicas, and hence gener-
ating a new view in which all servers reshare their secrets and
make shares from the previous view invalid. This mechanism
is important for supporting proactive recovery [19]–[21].

D. Optimizations

1) Speeding up share verification: The cost of share ver-
ification affects the system scalability since recovering or
resharing a large number of shares can become the dominant
performance factor. To reduce the impact of such verification,
we combine the Harn et al. detection scheme [35] with a tra-
ditional commitment scheme. The former allows detecting the

10

existence of at most t invalid shares during the interpolation of
a polynomial. In case there is a problem, we use the latter to
identify the invalid shares and their senders, which are ignored
when collecting shares for future interpolations.

The detection scheme requires at least t+ 2 shares, instead
of t+ 1, to detect up to t invalid shares [35]. The rationale is
that the interpolation of a polynomial using more than t + 1
shares will have degree d = t if all the used shares are valid.
Otherwise, we will have d > t with overwhelming probability.

Since the recovery of a secret or a share requires polynomial
interpolation, it is possible to detect invalid shares just by
waiting for one more share. Thus, the costly commitment
scheme is used to identify invalid shares and their senders only
when the detection scheme identifies the existence of an invalid
share. Since malicious servers are ignored after identification,
the commitment scheme ends up being used only during the
interpolation of at most t polynomials. Therefore, multiple
interpolations can be performed efficiently, decreasing the time
taken to reconstruct a secret and, more importantly, scaling
recover and reshare for large private states.

2) Decreasing share recovery cost: During the execution of
the polynomial generation protocol, honest servers collectively
select t + 1 valid polynomials. However, the sum of these
polynomials generates a single secret polynomial (Step S5
of GeneratePolynomial), wasting t good polynomials. This
squandering can be avoided by integrating a Vandermonde
matrix into the distributed polynomial generation, potentially
increasing the throughput by a factor of t. This technique,
which implements a form of batching [32], allows the trans-
formation of t + 1 selected polynomials into t + 1 random
polynomials [16], [63].

The application of this technique also requires transforming
commitments, which has a higher computational cost. There-
fore, it is not beneficial for the Reshare protocol. However, we
can leverage the Vandermonde matrix to increase the recovery
polynomial generation throughput since the commitments are
only used by the recovering server if there is a corrupted
blinded share.

VII. IMPLEMENTATION

We implemented COBRA in Java on top of BFT-
SMaRt [24], a replication library providing all features re-
quired for practical BFT SMR systems.

Byzantine consensus: BFT-SMaRt implements a Verifi-
able and Provable Consensus [58] based on Cachin’s Byzan-
tine Paxos [39], which is similar to PBFT [3]: requires three
communication steps and has a quadratic message complexity.
This is the consensus algorithm used in our implementation
of the distributed polynomial generator.

Cryptographic primitives: We implemented Shamir’s se-
cret sharing scheme using Lagrange polynomial interpolation
and Horner’s method [64] for share computation. This method
ensures that a polynomial of degree t can be evaluated using
only t multiplications and t additions, instead of t exponen-
tiations, t multiplications, and t additions. All secret sharing
computations were done in a prime field of 256 bits.

COBRA supports two commitment schemes. Feldman’s
linear commitment [13], which comprises a vector of t
integers, and Kate et al. commitment [26], which uses a
constant number of integers and is implemented using optimal
ate pairing over Barreto-Naehrig curve. Additionally, pairing-
related operations are performed using the RELIC library [65].
We use prime fields of 2048 and 256 bits for the Feldman and
Kate et al. schemes, respectively.

We implement the system to support the execution of
multiple instances of COBRA protocols in parallel. More
specifically, the cryptographic processing for different in-
stances can be executed in parallel by a number of
configurable threads. Further, we use SHA256 for hash
functions, SHA256withECDSA for signatures, TLS with-
out a cipher suite for implementing authenticated channels
(TLS_ECDHE_ECDSA_WITH_NULL_SHA), and AES with
256-bit keys for encrypting confidential information carried
on messages (e.g., shares).

Confidential Key-Value Store: We evaluate COBRA using
a KV store that can be used to store confidential data. This
is a simple application used to evaluate many BFT SMR sys-
tems [60], [66], [67], including some with confidentiality [7],
[46]. The idea is to support a put/get interface in which pairs
〈k, v〉, such that k is an open key and v is a secret that should
not be revealed if a replica is compromised, are written and
retrieved from the system.

Other protocols: Besides COBRA, we also implemented
two other recovery and resharing protocols to experimentally
compare our approach with the state of the art:

1) VSSR [7]: A recent approach for share recovery in
which a constant number of recovery polynomials are
created together with the secret to be shared.

2) MPSS [23]: The previously-known most efficient pro-
tocol for dynamic resharing in non-synchronous BFT
SMR systems.5 MPSS employs a Byzantine consensus
protocol (PBFT [3]) to make servers agree on the
set of contributors for generating renewal polynomials,
requiring thus a single consensus execution per reshare,
just like COBRA.

Open-Source Implementation: Our COBRA implemen-
tation extending BFT-SMaRt and all the code used for the
experiments in this paper (see next section) are available on
the project web page [25].

VIII. EVALUATION

We performed an experimental evaluation of COBRA and
competing protocols, aiming at answering the following ques-
tions: What is the overall impact of integrating COBRA’s
DPSS into BFT SMR normal operation? What is the cost of
recovering and resharing a significant number of secrets using

5We did not considered CHURP because, although asymptotically better
than MPSS in Table I, the use of a quadratic consensus protocol (as in
BFT-SMaRt) would lead CHURP to have the same bit complexity of MPSS
(O(n4)). Furthermore, the fact that CHURP requires O(n2) consensus
executions per reshare [15] and its quadratic share/combine communication
complexity, would make it inefficient for BFT SMR.

11

COBRA? What are the dominating factors on the latency of the
proposed protocols? How much does the presence of corrupt
replicas impacts the latency of COBRA protocols?

A. Setup and Methodology

All experiments were executed in a cluster composed of 14
physical machines connected through a gigabit ethernet. All
machines are Dell PowerEdge R410 servers, with 32GB of
memory and two quadcore 2.27 Intel Xeon E5520 processor
with hyperthreading (supporting thus 16 hardware threads).
The machines run Ubuntu Linux 20.04.1 LTS and JRE 1.8.

We present two types of experiments. First, a set of macro
benchmarks based on a KV store deployed on top of COBRA.
For these experiments, we consider small groups of up to
ten replicas (t ≤ 3), each deployed in a physical machine,
with four other machines running up to 1500 clients issuing
transactions to the system. Second, a set of micro benchmarks
used to evaluate the cost of certain steps of the protocols,
considering a large number of replicas and secrets. As in
previous works (e.g., [7], [15], [16]), our experiments focus
on fault-free executions of the protocols to assess the overhead
imposed by a secret sharing layer in typical executions of the
BFT/blockchain system. Nonetheless, at the end of the section
we present some results in which malicious servers provide
corrupted shares during the protocol execution.

In all experiments, the replicas use up to eight threads
(half of the machine resources) for verifying and building
commitments during recovery and resharing.

B. Normal Operation: Updates and Reads

Our first set of experiments aims to quantify the perfor-
mance cost of having confidentiality on a KV store built on
top of COBRA during normal operation. Table II presents the
update throughput of this service considering update values
of 1kB and groups of 4, 7, and 10 replicas. The table shows
values for the same service without confidentiality (i.e., the
KV store on top of BFT-SMaRt) as a reference, our VSSR im-
plementation (with faster, linear commitments), and COBRA
implementations using linear [13] and constant [26] (“con”
variant) commitment schemes. Additionally, we evaluate CO-
BRA with no share verification on the replicas (* variants),
which does not satisfy linearizability for malicious clients
operations [12], to highlight the overhead of such computation.
It is worth to remark that the update protocol for MPSS is
exactly the same we use in COBRA, so the latter results also
serve for MPSS.

Unsurprisingly, BFT-SMaRt (without confidentiality)
achieves the best throughput among the compared systems,
with more than 15k updates processed per second with four
replicas. COBRA without share verification reaches 67%
(linear) and 88% (constant) of these values, being the variant
that uses constant commitments more performant due to
its smaller messages. When share verification is enabled,
COBRA throughput drops significantly, especially when

TABLE II
KV STORE THROUGHPUT (OPERATIONS/SEC) FOR DIFFERENT SYSTEMS

CONSIDERING 4, 7, AND 10 REPLICAS AND UPDATES OF 1KB.

System Limitation n = 4 n = 7 n = 10

BFT-SMaRt No confidentiality 15353 10604 8028
COBRA* No linearizability 10365 6311 4071
COBRA con* 13519 9458 7727
COBRA None 2450 2114 1761
COBRA con 263 262 261
VSSR No reconfiguration 776 591 481

constant commitments are used.6 Nonetheless, COBRA still
achieves a throughput 3× better than VSSR (the state of
the art). This difference comes from two factors: (1) VSSR
updates are bigger due to the use of several shares, and, even
more importantly, (2) it requires the verification of five shares
(instead of one) on each update.

As the number of replicas increases (i.e., the system toler-
ates more faults), the difference of throughput between BFT-
SMaRt and COBRA decreases, and the throughput of COBRA
constant remains approximately the same. This is due to the
network becoming a bottleneck during consensus, and the cost
of verifying shares in the constant commitment scheme being
O(1) (instead of O(t), as in a linear commitment scheme).

The read throughput (not shown) varies between 44k to
39k in all systems with n = 4, with little degradation in
bigger groups. This behavior comes from three factors: (1)
no significant processing is done by replicas during reads, (2)
read requests have the same size in all systems, and (3) only
the reply sizes (e.g., due to the commitments) are different.

C. Recovery

Our second set of experiments measures the latency for
recovering a replica with a non-trivial state containing 100k
shares, considering systems with 4, 7, and 10 replicas. Table III
presents the results for COBRA, VSSR, and BFT-SMaRt,
factored in several columns: Pol. Gen. - the distributed poly-
nomial generation (which includes the Byzantine consensus),
Blind. - the share blinding, Recon. - the reconstruction of
share and commitment, and Other - the data transfer and other
computations (standard cryptography, serialization, etc).

The overall results show that the polynomial generation
dominates the recovery latency of COBRA (accounting for
up to 82% of total time). VSSR does not require this since
it pre-generates the helper polynomials during updates, which
makes its normal operation much slower. COBRA recovery
is an order of magnitude slower than the BFT-SMaRt state
transfer (which does not run COBRA DPSS), and 30% slower
than VSSR in a group of 4 replicas. However, COBRA beats
VSSR in bigger groups (n = 7 and n = 10) for two reasons.
First, VSSR uses distributed pseudo-random functions that
require expensive cryptographic computations [7]. Second, the

6Due to the lack of space, we report results using only linear commitments
in the recovery and reshare experiments. Nonetheless, our results show that
the use of constant commitments makes recovery (resp. reshare) 8× (resp.
12×) slower. This huge disparity between the two schemes was also observed
in previous works [7], [15].

12

TABLE III
RECOVERY LATENCY (IN SECONDS) FOR A KV STORE REPLICA STATE

WITH 100K ENTRIES (ONE SECRET/ENTRY) WITH 4, 7, AND 10 REPLICAS.

n Protocol Pol. Gen. Blind. Recon. Other Total

4
BFT-SMaRt - - - 5.7 5.7
VSSR - 6.9 100.1 5.1 113.1
COBRA 131.7 2.2 1.1 25.5 160.5

7
BFT-SMaRt - - - 10.3 10.3
VSSR - 8.4 160.6 9.9 178.9
COBRA 141.2 5.0 1.8 21.2 169.2

10
BFT-SMaRt - - - 12.3 12.3
VSSR - 9.3 231.3 12.9 253.5
COBRA 136.3 4.6 2.5 25.7 169.1

 10
 15
 25
 35
 60

 100
 185
 285

1 2 4 8 16 32 64 128
256

512
1024

 90
 100

La
te

nc
y

(m
s)

Pe
rc

en
ta

ge
 (%

)
Number of secrets

Polynomials Generation (%) Recovery (%) Total time (ms)

Fig. 4. COBRA recovery latency for 4 replicas (t = 1) and up to 1k secrets.

 300
 500

 1000

 3000

4 7 13 25 49 97

 20

 50

 80
 90
 100

La
te

nc
y

(m
s)

Pe
rc

en
ta

ge
 (%

)

Number of replicas

Polynomials Generation (%) Recovery (%) Total time (ms)

Fig. 5. COBRA recovery lat. for 1k secrets and up to 97 replicas (t = 32).

dominating factor in COBRA during recovery (i.e., polynomial
generation) is mitigated using the Vandermonde matrix (see
§VI-D). Therefore, as the group increases (i.e., tolerates more
faults), the cost of running the VSSR recovery protocol
increases much more than COBRA’s.

To better understand the factors that impact COBRA, we
performed micro benchmarks considering a variable number
of secrets and replicas. Fig. 4 shows that the cost of recovering
shares increases linearly with the number of shares (log
scale used on both axes) and that the distributed polynomial
generation accounts for about 90% of the latency of recovery.

The results of Fig. 5 show that, as n increases, the domi-
nance of the recovery phase (Blind. plus Recon. on Table III)
increases. With n = 4, recovering 1024 shares require 0.3s,
being only 5% of this due to share and commitment recovery.
This percentage goes to 80% when n = 97, with the recovery
requiring more than 2.5s. This happens because the cost of
polynomial generation is amortized by the use of the Vander-
monde matrix optimization, which allows the generation of
t + 1 polynomials on each execution of GeneratePolynomial.
Naturally, as t increases, the weight of this protocol on the
overall cost of recovery decreases. Recall that this phase also

TABLE IV
RESHARE LATENCY (IN SECONDS) FOR A KV STORE REPLICA STATE WITH

100K ENTRIES (ONE SECRET/ENTRY) WITH 4, 7, AND 10 REPLICAS.

n Protocol Pol. Gen. Blind. Recon. Other Total

4
MPSS 550.7 17.4 65.4 12.3 645.8
COBRA 283.3 2.1 15.8 18.1 319.3

7
MPSS 1721.1 27.9 91.7 21.9 1862.6
COBRA 414.8 3.1 25.4 28.7 472.0

10
MPSS 3627.1 47.7 121.6 48.2 3844.5
COBRA 665.1 5.0 32.0 41.7 743.8

includes the execution of the PBFT-like Byzantine consensus
protocol (see Fig. 2). However, in our experiments we noticed
the contribution of this protocol to the overall latency is
modest, when compared with the computational cost of VSS.

D. Reshare

Our third set of experiments considers the latency for
resharing the private state of all replicas in a group, without
reconfiguring the replica set. We note that changing the system
composition in this experiment will have negligible effect on
the performance of the reshare protocol, since the executed
steps would be exactly the same.

Table IV shows the latency of COBRA’s resharing protocol
for a private state of 100k secrets and groups of up to ten
replicas. The columns have the same meaning as in Table III,
since the high-level steps of the protocols are similar (see
Fig. 3). Since VSSR does not support resharing, in these
experiments we compare COBRA with MPSS [23].

Three observations can be made about these results. First,
reshare is at least 2× more costly than recovery, and much
more affected by an increase on group size, as it does
not use the Vandermonde matrix optimization. Second, the
polynomial generation cost is the dominating factor followed
by the shares and commitments reconstruction. Third, MPSS’s
reshare is 2 − 5× slower than COBRA’s (using the same
linear commitments), with MPSS latency growing much faster
than COBRA’s as n increases. This happens because, although
both protocols require a single consensus execution per secret
reshare, MPSS generates n + 1 helper polynomials and their
commitments, while COBRA uses only two polynomials and
an optimized share verification scheme (see §VI-D).

As done for recovery, Figs. 6 and 7 present micro bench-
mark results for the COBRA reshare protocol with a variable
number of secrets and replicas, respectively. The overall la-
tency in both experiments increases linearly with the studied
variables and the polynomial generation protocol accounts for
84% to 94% of the observed latency.

E. Impact of Malicious Servers

Our last set of experiments consider the impact of malicious
servers in COBRA. In particular, we evaluate the impact of
up to 3 malicious servers distributing invalid proposals (the
main new attack vector introduced in COBRA) when running
Reshare in a system with 10 replicas. We selected this protocol
because it uses both Recover and GeneratePolynomial. Fig. 8

13

 25

 100

 500
 1000
 2000

1 2 4 8 16 32 64 128
256

512
1024

 85
 100

La
te

nc
y

(m
s)

Pe
rc

en
ta

ge
 (%

)

Number of secrets

Polynomials Generation (%) Resharing (%) Total time (ms)

Fig. 6. COBRA reshare latency for 4 replicas (t = 1) and up to 1k secrets.

 2000
 3500
 6000

 12500

 30000

 87000

4 7 13 25 49 97

 90
 100

La
te

nc
y

(m
s)

Pe
rc

en
ta

ge
 (%

)

Number of replicas

Polynomials Generation (%) Resharing (%) Total time (ms)

Fig. 7. COBRA reshare latency for 1k secrets and up to 97 replicas (t = 32).

 0

 200

 400

 600

 800

 1000

0 1 2 3

L
a
te

n
cy

 (
m

s
)

Number of faults

1 secret

 0

 5000

 10000

 15000

 20000

0 1 2 3

L
a
te

n
cy

 (
m

s
)

Number of faults

1k secrets

Fig. 8. COBRA reshare latency with failures in a system with 10 replicas.

presents latency results for a state containing 1 (left) and 1k
(right) secrets.

With just 1 secret, the overhead of detecting and removing
the malicious replica(s) and re-executing GeneratePolynomial
unsurprisingly increases the latency of the protocol up to
58.2%. However, when running the protocol for 1k secrets,
the observed overhead is almost negligible (2.4%). This hap-
pens because when faulty replicas provide corrupted shares,
the performance of the protocols is degraded just for that
execution, since COBRA detects and isolates the malicious
nodes. Consequently, the impact of such invalid executions are
diluted through the multiple executions required for refreshing
1k shares.

IX. CONCLUSION

This paper presents COBRA, a new protocol stack for DPSS
that allows implementing confidentiality in practical BFT SMR
systems. Compared with competing alternatives, COBRA
exhibits minimal storage overhead and the best asymptotic
communication complexity (when instantiated with optimal
building blocks). Our experimental evaluation using BFT-
SMaRt [24] shows that COBRA can recover (resp. reshare) a

state with 100 000 secrets in a ten-replicas group 33% (resp.
5×) faster than VSSR [7] (resp. MPSS [23]).

ACKNOWLEDGMENT

We thank the IEEE S&P anonymous reviewers, Manuel
Barbosa, and Bernardo Portela for their constructive comments
to improve the paper. This work was supported by FCT
through a PhD scholarship (2020.04412.BD), the ThreatAdapt
project (FCT-FNR/0002/2018), the LASIGE Research Unit
(UIDB/00408/2020 and UIDP/00408/2020), the European
Commission through the VEDLIoT project (H2020 957197),
and CNPq (Brazil) through project number 420092/2018-8.

REFERENCES

[1] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,” ACM Computing Surveys, vol. 22, no. 4,
1990.

[2] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals prob-
lem,” ACM Trans. on Programing Languages and Systems, vol. 4, no. 3,
1982.

[3] M. Castro and B. Liskov, “Practical Byzantine fault tolerance,” in
Proc. of the 3rd USENIX Symp. on Operating Systems Design and
Implementation – OSDI’99, 1999.

[4] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2009.
[Online]. Available: http://bitcoin.org/bitcoin.pdf

[5] M. Vukolić, “The quest for scalable blockchain fabric: Proof-of-work
vs. BFT replication,” in Proc. of the Int. Workshop on Open Problems
in Network Security, 2015.

[6] A. Bessani, E. Alchieri, J. Sousa, A. Oliveira, and F. Pedone, “From
Byzantine replication to blockchain: Consensus is only the beginning,”
in Proc. of the 50th IEEE/IFIP Int. Conference on Dependable Systems
and Networks – DSN’20, 2020.

[7] S. Basu, A. Tomescu, I. Abraham, D. Malkhi, M. K. Reiter, and E. G.
Sirer, “Efficient verifiable secret sharing with share recovery in bft
protocols,” in Proc. of the 2019 ACM SIGSAC Conference on Computer
and Communications Security – CCS’19, 2019.

[8] S. Duan and H. Zhang, “Practical state machine replication with con-
fidentiality,” in Proc. of the 35th IEEE Symp. on Reliable Distributed
Systems – SRDS’16, 2016.

[9] M. Khan and A. Babay, “Toward intrusion tolerance as a service:
Confidentiality in partially cloud-based BFT systems,” in Proc. of the
51th IEEE/IFIP Int. Conference on Dependable Systems and Networks
– DSN’21, 2021.

[10] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, 1979.

[11] G. R. Blakley, “Safeguarding cryptographic keys,” in Proc. of the 1979
AFIPS National Computer Conference, 1979.

[12] A. N. Bessani, E. P. Alchieri, M. Correia, and J. S. Fraga, “DepSpace: A
Byzantine fault-tolerant coordination service,” in Proc. of the 3rd ACM
SIGOPS/EuroSys European Conference on Computer Systems, 2008.

[13] P. Feldman, “A practical scheme for non-interactive verifiable secret
sharing,” in Proc. of the 28th IEEE Symp. on Foundations of Computer
Science – FOCS’87, 1987.

[14] E. Kokoris-Kogias, E. C. Alp, S. D. Siby, N. Gailly, L. Gasser,
P. Jovanovic, E. Syta, and B. Ford, “CALYPSO: Auditable sharing
of private data over blockchains,” Cryptology ePrint Archive, Report
2018/209, 2018.

[15] S. K. D. Maram, F. Zhang, L. Wang, A. Low, Y. Zhang, A. Juels,
and D. Song, “CHURP: Dynamic-committee proactive secret sharing,”
in Proc. of the 2019 ACM SIGSAC Conference on Computer and
Communications Security – CCS’19, 2019.

[16] V. Goyal, A. Kothapalli, E. Masserova, B. Parno, and Y. Song, “Storing
and retrieving secrets on a blockchain,” Cryptology ePrint Archive,
Report 2020/504, 2020.

[17] R. Ostrovsky and M. Yung, “How to withstand mobile virus attacks
(extended abstract),” in Proc. of the 10th ACM Symp. on Principles of
Distributed Computing – PODC’91, 1991.

[18] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, “Proactive secret
sharing or: How to cope with perpetual leakage,” in CRYPTO’95, 1995.

14

[19] M. Castro and B. Liskov, “Practical Byzantine fault-tolerance and
proactive recovery,” ACM Trans. on Computer Systems, vol. 20, no. 4,
2002.

[20] P. Sousa, A. N. Bessani, M. Correia, N. F. Neves, and P. Verissimo,
“Highly available intrusion-tolerant services with proactive-reactive re-
covery,” IEEE Trans. on Parallel and Distributed Systems, vol. 21, no. 4,
2010.

[21] M. Garcia, A. Bessani, and N. Neves, “Lazarus: Automatic management
of diversity in BFT systems,” in Proc. of the 20th Int. Middleware
Conference – Middleware’19, 2019.

[22] L. Zhou, F. B. Schneider, and R. Van Renesse, “APSS: Proactive secret
sharing in asynchronous systems,” ACM Trans. on Information and
System Security, vol. 8, no. 3, 2005.

[23] D. Schultz, B. Liskov, and M. Liskov, “MPSS: Mobile proactive secret
sharing,” ACM Trans. on Information and System Security, vol. 13, no. 4,
2010.

[24] A. Bessani, J. Sousa, and E. Alchieri, “State machine replication for
the masses with BFT-SMaRt,” in Proc. of the 44th IEEE/IFIP Int.
Conference on Dependable Systems and Networks – DSN’14, 2014.

[25] “COBRA source code,” https://github.com/bft-smart/cobra, 2022.
[26] A. Kate, G. M. Zaverucha, and I. Goldberg, “Constant-size commitments

to polynomials and their applications,” in ASIACRYPT’10, 2010.
[27] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and M. Yin, “Sync HotStuff:

Simple and practical synchronous state machine replication,” in Proc.
of the 41st IEEE Symp. on Security and Privacy – SP’20, 2020.

[28] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham,
“HotStuff: BFT consensus with linearity and responsiveness,” in Proc.
of the 2019 ACM Symp. on Principles of Distributed Computing –
PODC’19, 2019.

[29] C. Cachin, K. Kursawe, A. Lysyanskaya, and R. Strobl, “Asynchronous
verifiable secret sharing and proactive cryptosystems,” in Proc. of the
2002 ACM SIGSAC Conference on Computer and Communications
Security – CCS’02, 2002.

[30] Y. Desmedt and S. Jajodia, “Redistributing secret shares to new access
structures and its applications,” George Mason University, Tech. Rep.
ISSE TR-97-01, 1997.

[31] T. M. Wong, C. Wang, and J. M. Wing, “Verifiable secret redistribution
for archive systems,” in Proc. of the 1st Int. IEEE Security in Storage
Workshop, 2002.

[32] J. Baron, K. El Defrawy, J. Lampkins, and R. Ostrovsky,
“Communication-optimal proactive secret sharing for dynamic groups,”
in Proc. of the 2015 Int. Conference on Applied Cryptography and
Network Security – ACNS’15, 2015.

[33] T. P. Pedersen, “Non-interactive and information-theoretic secure verifi-
able secret sharing,” in CRYPTO’91, 1991.

[34] B. Schoenmakers, “A simple publicly verifiable secret sharing scheme
and its application to electronic voting,” in CRYPTO’99, 1999.

[35] L. Harn and C. Lin, “Detection and identification of cheaters in (t,
n) secret sharing scheme,” Designs, Codes and Cryptography, vol. 52,
no. 1, 2009.

[36] A. Tomescu, R. Chen, Y. Zheng, I. Abraham, B. Pinkas, G. G. Gueta,
and S. Devadas, “Towards scalable threshold cryptosystems,” in Proc.
of the 2020 IEEE Symp. on Security and Privacy – SP’20, 2020.

[37] V. Nikov and S. Nikova, “On proactive secret sharing schemes,” in Proc.
of the Int. Workshop on Selected Areas in Cryptography, 2004.

[38] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and efficient
asynchronous broadcast protocols,” in CRYPTO’01, 2001.

[39] C. Cachin, “Yet another visit to Paxos,” IBM Research Zurich, Tech.
Rep. RZ 3754, 2009.

[40] B. Guo, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Dumbo: Faster asyn-
chronous BFT protocols,” in Proc. of the 2020 ACM SIGSAC Conference
on Computer and Communications Security – CCS’20, 2020.

[41] T.-H. H. Chan, R. Pass, and E. Shi, “Pala: A simple partially syn-
chronous blockchain,” Cryptology ePrint Archive, Report 2018/981,
2018.

[42] J. S. Fraga and D. Powell, “A fault- and intrusion-tolerant file system,” in
Proc. of the 3rd IFIP Int. Conference on Computer Security – SEC’85,
1985.

[43] S. Lakshmanan, M. Ahamad, and H. Venkateswaran, “Responsive secu-
rity for stored data,” IEEE Trans. on Parallel and Distributed Systems,
vol. 14, 2003.

[44] M. A. Marsh and F. B. Schneider, “CODEX: a robust and secure
secret distribution system,” IEEE Trans. on Dependable and Secure
Computing, vol. 1, no. 1, 2004.

[45] D. Malkhi and M. Reiter, “Byzantine quorum systems,” Distributed
Computing, vol. 11, no. 4, 1998.

[46] R. Padilha and F. Pedone, “Belisarius: BFT storage with confidentiality,”
in Proc. of the 10th IEEE Int. Symp. on Network Computing and
Applications – NCA’11, 2011.

[47] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game,” in Proc. of the 19th ACM Symp. on Theory of Computing –
STOC’87, 1987.

[48] Y. Lindell, “Secure multiparty computation,” Communications of the
ACM, vol. 64, no. 1, 2021.

[49] A. Barak, M. Hirt, L. Koskas, and Y. Lindell, “An end-to-end system
for large scale P2P MPC-as-a-Service and low-bandwidth MPC for
weak participants,” in Proc. of the 2018 ACM SIGSAC Conference on
Computer and Communications Security – CCS’18, 2018.

[50] A. R. Choudhuri, A. Goel, M. Green, A. Jain, and G. Kaptchuk, “Fluid
mpc: Secure multiparty computation with dynamic participants,” in
CRYPTO’21, 2021.

[51] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” Journal of the ACM, vol. 35, no. 2, 1988.

[52] R. Bost, B. Minaud, and O. Ohrimenko, “Forward and backward private
searchable encryption from constrained cryptographic primitives,” in
Proc. of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security – CCS’17, 2017.

[53] D. Boneh, C. Gentry, S. Halevi, F. Wang, and D. J. Wu, “Private
database queries using somewhat homomorphic encryption,” in Proc. of
the 2013 Int. Conference on Applied Cryptography and Network Security
– ACNS’13, 2013.

[54] D. Beaver and S. Haber, “Cryptographic protocols provably secure
against dynamic adversaries,” in Proc. of the Workshop on the Theory
and Application of of Cryptographic Techniques, 1992.

[55] M. Hirt, C.-D. Liu-Zhang, and U. Maurer, “Adaptive security of multi-
party protocols, revisited,” in Proc. of the Theory of Cryptography
Conference – TCC’21, 2021.

[56] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness condition
for concurrent objects,” ACM Trans. on Programming Languages and
Systems, vol. 12, no. 3, 1990.

[57] M. Herlihy, “Wait-free synchronization,” ACM Trans. on Programming
Languages and Systems, vol. 13, no. 1, 1991.

[58] J. Sousa and A. Bessani, “From Byzantine consensus to BFT state
machine replication: A latency-optimal transformation,” in Proc. of the
9th European Dependable Computing Conference – EDCC’12, 2012.

[59] T. Crain, C. Natoli, and V. Gramoli, “Red belly: A secure, fair and
scalable open blockchain,” in Proc. of the 42nd IEEE Symp. on Security
and Privacy – SP’21, 2021.

[60] A. Bessani, M. Santos, J. a. Felix, N. Neves, and M. Correia, “On the
efficiency of durable state machine replication,” in Proc. of the USENIX
Annual Technical Conference – ATC’13, 2013.

[61] M. Eischer, M. Büttner, and T. Distler, “Deterministic fuzzy check-
points,” in Proc. of the 38th Int. Symp. on Reliable Distributed Systems
– SRDS’19, 2019.

[62] R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J. Elmore, A. Aboulnaga,
A. Pavlo, and M. Stonebraker, “E-store: Fine-grained elastic partitioning
for distributed transaction processing systems,” Proc. of the Very Large
Data Base Endowment – VLDB’14, vol. 8, no. 3, 2014.

[63] I. Damgård and J. B. Nielsen, “Scalable and unconditionally secure
multiparty computation,” in CRYPTO’07, 2007.

[64] W. G. Horner, “A new method of solving numerical equations of all
orders, by continuous approximation,” Philosophical Trans. of the Royal
Society of London, vol. 109, 1819.

[65] Relic Deveplopment Team, “The relic toolkit crypto library (relic),”
https://github.com/relic-toolkit/relic, 2021.

[66] G. Golan-Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas, M. K.
Reiter, D. Seredinschi, O. Tamir, and A. Tomescu, “SBFT: a scalable
decentralized trust infrastructure for blockchains,” in Proc. of the 49th
IEEE/IFIP Int. Conference on Dependable Systems and Networks –
DSN’19, 2019.

[67] J. Behl, T. Distler, and R. Kapitza, “Hybrids on steroids: SGX-based
high performance BFT,” in Proc. of the 12th ACM SIGOPS/EuroSys
European Conference on Computer Systems – EuroSys’17, 2017.

15

APPENDIX

A. Modified Distributed Polynomial Generation

In the following we present the GeneratePolynomial∗ pro-
tocol used in COBRA’s Reshare protocol (§V-C). The main
difference between this protocol and the one presented in §V-C
is that two polynomials Q and Q′ are generated at once, i.e.,
servers in Vold obtain shares from Q while servers in Vnew
obtain shares from Q′, both with the same random independent
term.

PROTOCOL GeneratePolynomial∗(Vold ,Vnew)

Server ri ∈ Vold with inputs (Vold ,Vnew):
S1. Invokes 〈{si,1, ..., si,Vold .n}, ci〉 = Share(Vold , 0, qi) and
〈{s′i,1, ..., s′i,Vnew .n}, c

′
i〉 = Share(Vnew , 0, qi), being qi a

random number.
S2. Sends 〈PROPOSAL, E1(si,1)...EVold .n(si,Vold .n), ci, c

′
i〉σi

to Vold and 〈PROPOSAL, E1(s
′
i,1)...EVnew .n(s

′
i,Vnew .n),

ci, c
′
i〉σi to Vnew .

Server ri ∈ Vold ∪ Vnew with inputs (Vold ,Vnew):
S3. Collects PROPOSAL messages and runs Consensus:

a) Let rl ∈ Vold be an elected consensus leader. rl builds
a set S = {〈j, cj , c′j〉 : rj ∈ Vold} using Vold .t + 1
received valid proposals (a proposal from rj is
valid for rl iff 〈PROPOSAL, ...El(sj,l)..., cj , c

′
j〉σj

is correctly signed and both Verify(l, sj,l, cj) and
SameIT(cj , c

′
j) returns true) and proposes this set

to Vold ∪ Vnew .
b) A correct replica accepts the set S proposed by rl

if it received valid proposals from all rj such that
〈j, ∗, ∗〉 ∈ S (the P-Validity predicate).

c) During the protocol execution, a quorum is formed
by waiting Vold .n− Vold .t from Vold and Vnew .n−
Vnew .t from Vnew .

S4. Waits for Consensus to output S. For each tu-
ple 〈j, cj , c′j〉 ∈ S, ri asks for rj’s proposal
〈PROPOSAL, ...Ei(s∗j,i)..., cj , c′j〉σj in Vold ∪ Vnew if it
does not have it.

S5. Outputs generated shares:
a) If ri ∈ Vold : decrypts all Ei(sj,i), computes sqi =∑

〈j,∗,∗〉∈S sj,i and cq =
⊗
〈j,∗,∗〉∈S cj , and outputs

〈S, sqi , cq〉.
b) If ri ∈ Vnew : decrypts all Ei(s′j,i), computes sq

′

i =∑
〈j,∗,∗〉∈S s′j,i and cq′ =

⊗
〈j,∗,∗〉∈S c′j , and outputs

〈S, sq
′

i , cq′〉.

The protocol follows the same structure as its single-
polynomial counterpart, with three phases and five steps.
However, there are subtle but important differences. Steps S1
and S2 are only executed by servers in Vold. In S1, instead
of generating a polynomial encoding (x, 0) for a given input
x, each server ri ∈ Vold generates two different random
polynomials Qi and Q′i encoding the same point (0, qi),
being qi a random value. In S2, servers in Vold exchange
proposals with encrypted shares of Q∗ and send proposals with
encrypted shares of Q′∗ to Vnew. During consensus (Step S3),
servers, besides verifying the validity of their shares, use the
predicate SameIT(cj , c

′
j) to check if both polynomials encode

the same independent term, i.e., Qi(0) = Q′i(0). This is done

by comparing the (hidden) evaluation of both polynomials at
x = 0 using cj and c′j .

7 Finally, when running Consensus,
instead of waiting for messages from a quorum of V.n− V.t
processes before proceeding to the next phase, each server
waits for composite quorums containing Vold.n−Vold.t servers
from Vold and Vnew.n−Vnew.t servers from Vnew. In the end,
the protocol ensures that at least Vold.t+1 correct servers from
Vold can reconstruct Q (Step 5a) and Vnew.t+1 correct servers
from Vnew obtain valid shares of Q′ (Step 5b).

B. COBRA DPSS Security

Formally, the semantic security of a DPSS scheme is defined
w.r.t. an ideal functionality FDPSS , which is built on top of
ideal functionalities FVSS and FPol . FDPSS describes the
behavior of a secure DPSS scheme in an idealized world
and specifies all information that each of its operations is
allowed to reveal, which is captured by a leakage function
LDPSS . Moreover, FVSS describes the behavior of a secure
VSS scheme with leakage LVSS and FPol of a polynomial
generation scheme with leakage LPol . Then, the onus of
the security proof consists in showing that in the real world
FDPSS , FVSS , and FPol can be securely replaced by concrete
implementations

∏DPSS ,
∏VSS , and

∏Pol , respectively, iff
they exhibit the same leakage functions LDPSS , LVSS , and
LPol and reveal nothing else to an adversary.

In more detail, we describe ideal functionalities FDPSS ,
FVSS , and FPol , each with n party interfaces, an ad-
versary interface A, and a free interface W . The party
interfaces allow each party i ∈ [n] to access the
ideal functionalities and input their respective operations,
namely Share, Verify, Reconstruct, Recover, and Reshare
for FDPSS , Share, Verify, and Reconstruct for FVSS , and
GeneratePolynomial plus GeneratePolynomial∗ for FPol . In
the real world these actions map to the invocation of protocols∏DPSS

= {Share,Verify,Reconstruct,Recover,Reshare},∏VSS
= {Share,Verify,Reconstruct}, and

∏Pol
=

{GeneratePolynomial,GeneratePolynomial∗} with the same
name. Moreover, interface A allows the adversary to leak the
internal state and control the inputs and outputs of corrupted
parties, while W allows the ideal functionalities to keep track
of the set of corrupted parties.

Given their ideal functionalities, LDPSS , LVSS , and LPol

will only reveal how many operations have been carried out
and their types, plus the sizes (if they are private) or values
(if they are public) of inputs and outputs for these operations.
Additionally, LPol will reveal the generated polynomial when
running GeneratePolynomial, as it only requires the generated
polynomial to be random.

Following the CC-adaptive framework of Hirt et al. [55],
the proof must show that in the ideal world, and for each
of the three functionalities described above, there exists a set
of simulators S , with one simulator for each possible set of
correct replicas, that can model all interactions between the

7In the constant commitment scheme [26], servers have to compute addi-
tional witnesses for (0, qi) to check this equality.

16

adversary and each functionality, and that these interactions are
computationally indistinguishable from its interactions with
the respective implementations

∏∗ in the real world. Adaptive
corruptions are modeled in the CC-adaptive framework by
having every simulator SX ∈ S attached to the adversary
interface of each functionality. Further, when a party in X is
corrupted, SX halts. By describing all these simulators, which
are essentially the same, albeit with different corrupted parties,
we model all possible adaptive corruptions without incurring
in the technical difficulties of UC-adaptive model.

Next we present a proof sketch for the security of COBRA
DPSS (

∏DPSS) and of our distributed polynomial generation
scheme (

∏Pol). Since we use VSS as a building block based
on well-known schemes [13], [26], we defer to their papers
for security proofs of

∏VSS . Our sketches are centered around
the Secrecy, Integrity, and Termination properties as stated in
Definition 5.2 (§V-B), which informally model the guarantees
provided by ideal functionalities FDPSS and FPol and their
leakage functions LDPSS and LPol .

1) Secrecy: As described in §V, COBRA DPSS is com-
posed by the Recover and Reshare protocols, which are
assisted by the GeneratePolynomial and GeneratePolynomial∗
protocols, respectively.

Let Corrupt(V) be the set of up to V.t faulty servers
controlled by adversary A in V . For each protocol, and besides
its public inputs, A has access to the following information:

GeneratePolynomial:
• ∀ri ∈ Corrupt(V), shares s∗,i and commitment c∗ of all

polynomials P∗ proposed by correct servers;
• The set S = {〈j, cj〉 : rj ∈ V} decided by V;
• ∀ri ∈ Corrupt(V), share si and commitment c of the

final polynomial P .
GeneratePolynomial∗:
• ∀ri ∈ Corrupt(Vold), shares s∗,i and commitment c∗ of

all polynomials P∗ proposed by correct servers in Vold ;
• ∀ri ∈ Corrupt(Vnew), shares s′∗,i and commitment c′∗ of

all polynomials P ′∗ proposed by correct servers in Vnew ;
• The set S = {〈j, cj , c′j〉 : rj ∈ Vold} decided by Vnew ∪
Vold ;

• ∀ri ∈ Corrupt(Vold), share sqi and commitment cq of
the final polynomial Q;

• ∀ri ∈ Corrupt(Vnew), share sq
′

i and commitment cq
′

of
the final polynomial Q′.

Recover:
• ∀ri ∈ Corrupt(V), 〈S, sri , cr〉 resulting from the invoca-

tion of GeneratePolynomial;
• ∀ri ∈ Corrupt(V), accusation proposals 〈ACC, j, propj ,

sj,l〉 sent by rk;
• If recovering server rk is corrupted, blinded polynomial

B(.) = P (.) + R(.), recovered share sk, commitments
c and cr, and accusation proposals 〈ACC, j, propj , sj,i〉
sent by servers ri ∈ V;

Reshare:
• ∀ri ∈ Corrupt(Vold), 〈S, sqi , cq〉 resulting from the

invocation of GeneratePolynomial∗;

• ∀ri ∈ Corrupt(Vnew), 〈S, sq
′

j , c
q′〉 resulting from the

invocation of GeneratePolynomial∗;
• The blinded polynomial B(.) = P (.) + Q(.) and com-

mitment cb;
• ∀rj ∈ Vnew that invokes Recover, and ∀ri ∈

Corrupt(Vnew), the shares and commitments
〈Sj , s

rj
i , cr〉, the blinded polynomials Bj if rj is

also corrupted, and the accusations 〈ACC, k, propk, sk,l〉;
• ∀ri ∈ Corrupt(Vnew), share s′j and commitment c′.
To prove secrecy we have the following lemmata.
LEMMA A.1: Given a VSS scheme with Hiding and if A

corrupts no more than V.t servers in V , then polynomial P
generated in GeneratePolynomial is randomly generated.

Proof: By the Hiding property of the VSS scheme em-
ployed, the local polynomials generated by correct servers
in V will be randomly generated. Since leader rl defines S
by selecting at least V.t + 1 of such polynomials sent in
valid proposals, there will always be at least one polynomial
in S whose generation can not be influenced by A. Even
if rl is controlled by A, it will still not be able to select
V.t + 1 corrupt proposals for S, since there are at most V.t
corrupted servers in V and correct servers only accept S if they
received valid polynomial proposals from the servers indicated
in S. By the Hiding property of the underlying commitment
scheme, commitments c∗ of locally generated polynomials
P∗, and hence commitment c of final polynomial P , also
reveal no additional information to A. Consequently, A can
not influence the generation of P and, even though it ends up
with V.t + 1 shares of P (P (x) = 0 is a public parameter),
P will still be randomly generated.

LEMMA A.2: Given a VSS scheme with Hiding and if
A corrupts no more than Vold .t servers in Vold and Vnew .t
servers in Vnew , then polynomials Q and Q′ generated in
GeneratePolynomial∗ are randomly generated and secret.

Proof: This proof is similar to the proof of Lemma A.1.
Polynomials Q and Q′ will be randomly generated since
A can corrupt at most Vold .t servers in Vold and Vnew .t
servers in Vnew . Nonetheless, in this proof we must also
show that besides randomly generating polynomials Q and
Q′, GeneratePolynomial∗ also ensures their secrecy.

Secrecy is ensured by making every honest server ri in
Vold invoke Share with a secret and randomly generated value
qi and by ensuring that A never learns more than Vold .t
shares of polynomial Q and Vnew .t shares of polynomial
Q′. Given this, and considering the Hiding property of the
VSS scheme employed and that correct replicas erase secret
values qi after invoking Share, polynomials Q and Q′ will be
randomly generated and secret. Moreover, as in Lemma A.1,
commitments cq and cq

′
also reveal no additional information

to A due to the Hiding property of the commitment scheme.

LEMMA A.3: If A corrupts no more than V.t servers in V
and GeneratePolynomial randomly generates polynomial R,
then the information received by A in Recover is random and
independent of secret s.

17

Proof: By Lemma A.1, the GeneratePolynomial protocol
will generate a new random polynomial R and distribute its
shares through V . Two situations can occur then:

1) If rk /∈ Corrupt(V), A can still reconstruct R using
t + 1 shares since it may control V.t servers and rk’s
share is publicly known (point (k, 0)). However, if it
does not corrupt rk, then it does not have access to
blinded polynomial B(.) = P (.) + R(.) and can not
reconstruct P by calculating P (.) = B(.)−R(.).

2) If rk ∈ Corrupt(V), A only has access to V.t−1 shares
of R and rk’s point (k, 0). Hence, it can not reconstruct
R and can not calculate P (.) = B(.)−R(.).

Recovering sk = B(k) also does not give A any additional
advantage. Additionally, after recovering its share sk, rk
discards polynomial B. Hence, even if rk is later corrupted
by A, it will still not be able to reconstruct P . Moreover,
accusation messages 〈ACC, j, propj , sj,i〉 reveal no additional
information to A, since these messages are only sent if shares
sj,i are invalid according to the commitment sent in propj .
Finally, by the Hiding property of the underlying commitment
scheme, the commitments of all polynomials involved in
Recover reveal no additional information to A.

LEMMA A.4: If (1) A corrupts no more than Vold .t servers
in Vold and Vnew .t servers in Vnew , (2) GeneratePolynomial∗
randomly generates secret polynomials Q to Vold and Q′ to
Vnew , and (3) Recover allows any server rj ∈ Vnew to obtain
a valid share of Q′, then the information received by A in
Reshare is random and independent of secret s.

Proof: By Lemma A.2, protocol GeneratePolynomial∗
will generate new random and secret polynomials Q and Q′,
distributing their shares through Vold and Vnew , respectively.
Since A can corrupt at most Vold .t servers in Vold and
Vnew .t servers in Vnew , it can not reconstruct Q and Q′ from
their shares. Hence, even knowing the blinded polynomial
B(.) = P (.) + Q(.), it can not recover P by calculating
P (.) = B(.)−Q(.).

Additionally, calculating s′j = B(0) − Q′(j) for every
corrupted server rj in Vnew does not give A any additional
advantage. By Lemma A.3, every rj ∈ Vnew that invokes
Recover, reveals no additional information to A. Finally, by
the Hiding property of the underlying commitment scheme, the
commitments of all polynomials involved in Reshare reveal no
additional information to A.

By Lemmata A.3 and A.4, A does not learn any information
about the secret in any view V , which suffices to prove
COBRA DPSS Secrecy (Definition 5.2).

2) Integrity: For proving integrity we have to show that the
shares generated in Recover and Reshare can still be used to
reconstruct the original secret. We start by proving auxiliary
lemmata for GeneratePolynomial and GeneratePolynomial∗.

LEMMA A.5: Given a VSS scheme with Binding, if A cor-
rupts no more than V.t servers in V , then GeneratePolynomial
generates a random polynomial P with P (x) = 0 and at least
V.t + 1 honest servers will be able to reconstruct it.

Proof: During GeneratePolynomial, each honest server
in V executes Share to locally generate a random polynomial
P∗ with P∗(x) = 0 and commitment c∗. These polynomials
are sent to servers in V and a Consensus leader rl selects
a set S = {〈j, cj〉 : rj ∈ V} identifying V.t + 1 valid
proposals. A signed proposal from server rl is considered
valid by server ri iff ∀〈j, cj〉 ∈ S, both Verify(x, 0, cj) and
Verify(i, sj,i, cj) returns true . By the Binding property of the
VSS scheme, and assuming the security of the commitment
scheme and of the public-key signature scheme used, honest
nodes can correctly validate shares received in proposals. By
the P-Validity property of Consensus, it is ensured that at least
V.t + 1 honest servers accept the proposals in the decided
set S, i.e., they are valid for them. Consequently, all ri in
this set of at least V.t + 1 honest servers generate their
si = P (i) =

∑
〈j,∗〉∈S sj,i and commitment c =

⊗
〈∗,cj〉∈S cj .

Since P is the sum of V.t+1 polynomials P∗ with P∗(x) = 0,
P (x) = 0 (due to the proposals validity). Finally, these honest
servers can provide their valid shares s∗ to reconstruct P .

LEMMA A.6: Given a VSS scheme with Binding, if A
corrupts no more than Vold .t servers in Vold and Vnew .t in
Vnew , then the GeneratePolynomial∗ protocol generates two
random polynomials Q and Q′, such that Q(0) = Q′(0) = q
(being q a random value), and at least Vold .t+1 correct servers
in Vold and Vnew .t + 1 correct servers in Vnew will be able
to reconstruct Q and Q′, respectively.

Proof: This proof is similar to the proof of Lemma A.5,
and hence omitted due to space constraints.

LEMMA A.7: If A corrupts no more than V.t servers
in V , and GeneratePolynomial correctly generates a random
polynomial R with R(k) = 0 that can be reconstructed by at
least V.t + 1 correct servers, then, after Recover, recovering
server rk obtains a share sk = P (k) and commitment c.

Proof: Consider a server rk recovering its share by
sending a request to others servers in V . In response, other
correct servers execute GeneratePolynomial to generate R
with R(k) = 0. By Lemma A.6, at least V.t+1 correct servers
will generate shares for R. These servers send blinded shares
B(i) = P (i) + R(i), c, and cr to rk. Server rk eventually
receives at least V.t + 1 of such messages that are valid and
with the same c and cr. Thus, and assuming the security of the
employed commitment scheme, the V.t corrupted servers in V
are not able to make rk reconstruct an invalid polynomial B′.
Consequently, rk computes sk = B(k) = (P+R)(k) = P (k),
which is verifiable by c.

LEMMA A.8: If (1) A corrupts no more than Vold .t servers
in Vold and no more than Vnew .t servers in Vnew , (2)
GeneratePolynomial∗ randomly generates secret polynomials
Q and Q′ with Q(0) = Q′(0) that can be reconstructed by at
least Vold .t+1 and Vnew .t+1 correct servers in Vold and Vnew ,
respectively, and (3) Recover allows any server rj ∈ Vnew to
obtain a valid share of Q′, then the shares generated for honest
servers in Vnew preserve the same shared secret s.

Proof: By Lemma A.6, at least Vold .t + 1 servers in
Vold and Vnew .t + 1 in Vnew obtain valid shares of Q and

18

Q′, respectively. Hence, at least Vold .t + 1 correct servers
in Vold generate blinded shares sbi = si + Q(i) and send
them to Vnew . Consequently, and assuming the security of
the commitment scheme used, at least Vnew .t + 1 servers
in Vnew collect Vold .t + 1 blinded shares that are valid,
and reconstruct z = B(0). Correct servers in Vnew with
invalid shares of Q′ execute the Recover protocol, which,
by Lemma A.7, recover their shares. Using z and Q′(i),
rj computes s′j = z − Q′(j). Secret s remains intact since
s = P (0) = P (0) + Q(0)−Q′(0) = z −Q′(0).

By Lemmata A.7 and A.8, A can not prevent honest servers
in any view V from computing their shares and reconstructing
secret s, which suffices to prove COBRA DPSS Integrity
(Definition 5.2).

3) Termination: For proving termination we have to show
that A cannot prevent Recover and Reshare to terminate in
correct servers. We start by proving auxiliary lemmata for
GeneratePolynomial and GeneratePolynomial∗.

LEMMA A.9: If A corrupts no more than V.t servers, then
GeneratePolynomial terminates.

Proof: The system contains at least V.n − V.t correct
servers in V that eventually start the distributed polynomial
generation protocol by sending valid proposals to V . Conse-
quently, it is ensured that all correct servers in V eventually
receive at least V.n−V.t of such proposals and some correct
leader will be able to select V.t + 1 valid proposals for it
and define S to propose in Consensus. By the Byzantine
consensus’ Termination and P-Validity properties, the decided
set S was approved by at least V.t + 1 correct servers. These
servers will provide these proposals to any other correct server
that did not received them. After that, shares and commitments
are computed locally and the protocol terminates.

LEMMA A.10: If A corrupts no more than Vold .t servers
in Vold and Vnew .t in Vnew , then GeneratePolynomial∗ termi-
nates.

Proof: This proof is similar to the proof of Lemma A.9,
and hence omitted due to space constraints.

LEMMA A.11: If A corrupts no more than V.t servers in
V , then Recover terminates.

Proof: Consider a server rk ∈ V recovering its
share by sending a request to others servers. Since the
GeneratePolynomial protocol terminates (Lemma A.9) with
at least V.t + 1 correct servers in V obtaining valid shares of
the generated polynomial R (Lemma A.5), if a correct server
receives an invalid share of R from some server rj , it accuses
it of sending invalid proposals during a GeneratePolynomial
execution. All correct servers that receive this accusation
and validate its soundness, start to ignore rj from now on.
Moreover, a malicious recovering server rk is not able to
forge that a server rl is accusing rj because it does not have
the decrypted share sj,l to prove it is invalid. Consequently,
since (1) rk restarts the protocol after each accusation, (2)
each valid accusation causes a corrupt server to be ignored,
and (3) there are at most V.t corrupt servers in V , eventually
all correct servers in V obtain valid shares of R. Since at least

V.t+1 correct servers have shares and commitments of P (the
polynomial whose rk is trying to recover its share), they will
create blinded shares, and send this information to rk, which
calculates its share and commitment, terminating the protocol.

LEMMA A.12: If A corrupts no more than Vold .t servers in
Vold and Vnew .t servers in Vnew , then Reshare terminates.

Proof: By Lemma A.10, GeneratePolynomial∗ termi-
nates. By Lemma A.6, at least Vold .t + 1 correct servers
in Vold obtain valid shares of polynomial Q and send valid
blinded shares to Vnew , terminating the protocol. The remain-
ing servers in Vold with invalid shares of Q also terminate the
protocol. By Lemma A.6, at least Vnew .t + 1 correct servers
in Vnew obtain valid shares of polynomial Q′, and wait for
the Vold .t + 1 valid blinded shares from Vold . These servers
compute their renewed shares and terminate the protocol.
The correct servers in Vnew that receive invalid shares of Q′

execute the Recover protocol to obtain valid shares of Q′.
Since by Lemma A.11 this protocol terminates, these servers
will also terminate Reshare.

By Lemmata A.11 and A.12, A can not prevent honest
servers from completing the COBRA DPSS protocols, proving
thus Termination (Definition 5.2).

C. Confidential BFT SMR Security
In this section we outline the main arguments for the

security of COBRA BFT SMR. Recall that a confidential BFT
SMR service is considered secure if it fulfills Safety, Liveness,
and Secrecy (see §III-E). The first two properties follows
directly from the underlying BFT SMR framework (which
includes a Byzantine consensus protocol) and COBRA DPSS’
Integrity and Termination properties. However, Secrecy, the
main new property COBRA brings to BFT SMR, requires a
bit more of discussion.

Recall that COBRA BFT SMR global state S =
{D1, ..., Dm} is composed of m data entries, with each correct
server ri with a state Si = 〈C,Pi〉 (see §III-C). Further,
four protocols are supported: Update, Read, StateRecover,
and Reconfigure. Besides public data, adversary A has access
to the following information:
• All data entries Dc ∈ S accessible to corrupted clients;
• If Corrupt(V) 6= ∅, the service common state C =
{〈Dj , D

e
j , cj〉}j∈[m];

• ∀ri ∈ Corrupt(V), its private state Pi = {si,j}j∈[m];
• For invocations of Update and Read, no additional leak-

age is provided to A.
• For invocations of StateRecover and Reconfigure, all

the leakage from invoking COBRA DPSS Recover and
Reshare, respectively.

Assuming that A can corrupt at most V.t servers in the cur-
rent view V , and from the security of COBRA DPSS,A cannot
recover data entries from the private state of corrupted replicas.
Additionally, from the Secrecy property of COBRA DPSS, the
information leaked in StateRecover and Reconfigure also does
not reveal any additional information to A for all stored data
entries D ∈ S.

19

