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Abstract. Consensus is a fundamental building block used to solve many prac-
tical problems that appear on reliable distributed systems. In spite of the fact
that consensus is being widely studied in the context of classical networks, few
studies have been conducted in order to solve it in the context of dynamic and
self-organizing systems characterized by unknown networks. While in a classi-
cal network the set of participants is static and known, in a scenario of unknown
networks, the set and number of participants are previously unknown. This work
goes one step further and studies the problem of Byzantine Fault-Tolerant Con-
sensus with Unknown Participants, namely BFT-CUP. This new problem aims at
solving consensus in unknown networks with the additional requirement that par-
ticipants in the system can behave maliciously. This paper presents a solution for
BFT-CUP that does not require digital signatures. The algorithms are shown to be
optimal in terms of synchrony and knowledge connectivity among participants in
the system.
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1 Introduction

The consensus problem [1,2,3,4,5], and more generally the agreement problems, form
the basis of almost all solutions related to the development of reliable distributed sys-
tems. Through these protocols, participants are able to coordinate their actions in order
to maintain state consistency and ensure system progress. This problem has been exten-
sively studied in classical networks, where the set of processes involved in a particular
computation is static and known by all participants in the system. Nonetheless, even in
these environments, the consensus problem has no deterministic solution in presence of
one single process crash, when entities behave asynchronously [2].

T.P. Baker, A. Bui, and S. Tixeuil (Eds.): OPODIS 2008, LNCS 5401, pp. 22–40, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Byzantine Consensus with Unknown Participants 23

In self-organizing systems, such as wireless mobile ad-hoc networks, sensor net-
works and, in a different context, unstructured peer to peer networks (P2P), solving
consensus is even more difficult. In these environments, an initial knowledge about par-
ticipants in the system is a strong assumption to be adopted and the number of partici-
pants and their knowledge cannot be previously determined. These environments define
indeed a new model of distributed systems which has essential differences regarding the
classical one. Thus, it brings new challenges to the specification and resolution of fun-
damental problems. In the case of consensus, the majority of existing protocols are not
suitable for the new dynamic model because their computation model consists of a set
of initially known nodes. The only notably exceptions are the works of Cavin et al. [6,7]
and Greve et al. [8].

Cavin et al. [6,7] defined a new problem named FT-CUP (fault-tolerant consen-
sus with unknown participants) which keeps the consensus definition but assumes that
nodes are not aware of Π , the set of processes in the system. They identified necessary
and sufficient conditions in order to solve FT-CUP concerning knowledge about the
system composition and synchrony requirements regarding the failure detection. They
concluded that in order to solve FT-CUP in a scenario with the weakest knowledge con-
nectivity, the strongest synchrony conditions are necessary, which are represented by
failures detectors of the class P [4].

Greve and Tixeuil [8] show that there is in fact a trade-off between knowledge con-
nectivity and synchrony for consensus in fault-prone unknown networks. They provide
an alternative solution for FT-CUP which requires minimal synchrony assumptions;
indeed, the same assumptions already identified to solve consensus in a classical en-
vironment, which are represented by failure detectors of the class ♦S [4]. The ap-
proach followed on the design of their FT-CUP protocol is modular: Initially, algorithms
identify a set of participants in the network that share the same view of the system.
Subsequently, any classical consensus – like for example, those initially designed for
traditional networks – can be reused and executed by these participants.

Our work extends these results and study the problem of Byzantine Fault-Tolerant
Consensus with Unknown Participants (BFT-CUP). This new problem aims at solv-
ing CUP in unknown networks with the additional requirement that participants in
the system can behave maliciously [1]. The main contribution of the paper is then
the identification of necessary and sufficient conditions in order to solve BFT-CUP.
More specifically, an algorithm for solving BFT-CUP is presented for a scenario which
does not require the use of digital signatures (a major source of performance over-
head on Byzantine fault-tolerant protocols [9]). Finally, we show that this algorithm
is optimal in terms of synchrony and knowledge connectivity requirements,
establishing then the necessary and sufficient conditions for BFT-CUP solvability in
this context.

The paper is organized in the following way. Section 2 presents our system model
and the concept of participant detectors, among other preliminary definitions used in
this paper. Section 3 describes a basic dissemination protocol used for process com-
munication. BFT-CUP protocols and respective necessary and sufficient proofs are des-
cribed in Section 4. Section 5 presents some comments about our protocol. Section 6
presents our final remarks.
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2 Preliminaries

2.1 System Model

We consider a distributed system composed by a finite set Π of n processes (also called
participants or nodes) drawn from a larger universe U . In a known network, Π and n is
known to every participanting process, while in an unknown network, a process i ∈ Π
may only be aware of a subset Πi ⊆ Π .

Processes are subject to Byzantine failures [1], i.e., they can deviate arbitrarily from
the algorithm they are specified to execute and work in collusion to corrupt the system
behavior. Processes that do not follow their algorithm in some way are said to be faulty.
A process that is not faulty is said to be correct. Despite the fact that a process does
not know all participants of the system, it does know the expected maximum number
of process that may fail, denoted by f . Moreover, we assume that all processes have a
unique id, and that it is infeasible for a faulty process to obtain additional ids to be able
to launch a sybil attack [10] against the system.

Processes communicate by sending and receiving messages through authenticated
and reliable point to point channels established between known processes1. Authentici-
ty of messages disseminated to a not yet known node is verified through message chan-
nel redundancy, as explained in Section 3. A process i may only send a message directly
to another process j if j ∈ Πi, i.e., if i knows j. Of course, if i sends a message to j such
that i �∈ Π j, upon receipt of the message, j may add i to Π j, i.e., j now knows i and
become able to send messages to it. We assume the existence of an underlying routing
layer resilient to Byzantine failures [11,12,13], in such a way that if j ∈ Πi and there
is sufficient network connectivity, then i can send a message reliably to j. For example,
[12] presents a secure multipath routing protocol that guarantees a proper communi-
cation between two processes provided that there is at least one path between these
processes that is not compromised, i.e., none of its processes or channels are faulty.

There are no assumptions on the relative speed of processes or on message transfer
delays, i.e., the system is asynchronous. However, the protocol presented in this paper
uses an underlying classical Byzantine consensus that could be implemented over an
eventually synchronous system [14] (e.g., Byzantine Paxos [9]) or over a completely
asynchronous system (e.g., using a randomized consensus protocol [5,15,16]). Thus,
our protocol requires the same level of synchrony required by the underlying classical
Byzantine consensus protocol.

2.2 Participant Detectors

To solve any nontrivial distributed problem, processes must somehow get a partial
knowledge about the others if some cooperation is expected. The participant detec-
tor oracle, namely PD, was proposed to handle this subset of known processes [6]. It
can be seen as a distributed oracle that provides hints about the participating processes
in the computation. Let i.PD be defined as the participant detector of a process i. When

1 Without authenticated channels it is not possible to tolerate process misbehavior in an asyn-
chronous system since a single faulty process can play the roles of all other processes to some
(victim) process.
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queried by i, i.PD returns a subset of processes in Π with whom i can collaborate.
Let i.PD(t) be the query of i at time t. The information provided by i.PD can evolve
between queries, but must satisfy the following two properties:

– Information Inclusion: The information returned by the participant detectors is non-
decreasing over time, i.e., ∀i ∈ Π ,∀t ′ ≥ t : i.PD(t) ⊆ i.PD(t ′);

– Information Accuracy: The participant detectors do not make mistakes, i.e., ∀i ∈
Π ,∀t : i.PD(t) ⊆ Π .

Participant detectors provide an initial context about participants present in the sys-
tem by which it is possible to expand the knowledge about Π . Thus, the participant de-
tector abstraction enriches the system with a knowledge connectivity graph. This graph
is directed since the knowledge provided by participant detectors is not necessarily bidi-
rectional [6].

Definition 1. Knowledge Connectivity Graph: Let Gdi = (V,ξ ) be the directed graph
representing the knowledge relation determined by the PD oracle. Then, V = Π and
(i, j) ∈ ξ iff j ∈ i.PD, i.e., i knows j.

Definition 2. Undirected Knowledge Connectivity Graph: Let G = (V,ξ ) be the undi-
rected graph representing the knowlegde relation determined by the PD oracle. Then,
V = Π and (i, j) ∈ ξ iff j ∈ i.PD or i ∈ j.PD, i.e., i knows j or j knows i.

Based on the properties of the knowledge connectivity graph, some classes of parti-
cipant detectors have been proposed to solve CUP [6] and FT-CUP [7,8]. Before defi-
ning how a participant detector encapsulates the knowledge of a system, let us define
some graph notations. We say that a component Gc of Gdi is k-strongly connected if
for any pair (vi,v j) of nodes in Gc, vi can reach v j through k node-disjoint paths. A
component Gs of Gdi is a sink component when there is no path from a node in Gs to
other nodes of Gdi, except nodes in Gs itself. In this paper we use the weakest participant
detector defined to solve FT-CUP, which is called k-OSR [8].

Definition 3. k-One Sink Reducibility (k-OSR) PD: The knowledge connectivity graph
Gdi, which represents the knowledge induced by PD, satisfies the following conditions:

1. the undirected knowledge connectivity graph G obtained from Gdi is connected;
2. the directed acyclic graph obtained by reducing Gdi to its k-strongly connected

components has exactly one sink;
3. consider any two k-strongly connected components G1 and G2, if there is a path

from G1 to G2, then there are k node-disjoint paths from G1 to G2.

To better illustrate Definition 3, Figure 1 presents two graphs Gdi induced by a k-OSR
participant detector. Figures 1(a) and 1(b) show knowledge relations induced by par-
ticipant detectors of the class 2-OSR and 3-OSR, respectively. For example, in Figure
1(a), the value returned by 1.PD is the subset {2,3} ⊂ Π .

In our algorithms, we assume that for each process i, its participant detector i.PD
is queried exactly once at the beginning of the protocol execution. This can be im-
plemented by caching the result of the first query to i.PD and returning that value in
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Fig. 1. Knowledge Connectivity Graphs Induced by k-OSR Participant Detectors

subsequent calls. This ensures that the partial view about the initial composition of the
system is consistent for all nodes in the system, what defines a common knowledge
connectivity graph Gdi. Also, in this work we say that some participant p is neighbor
of another participant i iff p ∈ i.PD.

2.3 The Consensus Problem

In a distributed system, the consensus problem consists of ensuring that all correct pro-
cesses eventually decide the same value, previously proposed by some processes in the
system. Thus, each process i proposes a value vi and all correct processes decide on
some unique value v among the proposed values. Formally, consensus is defined by the
following properties [4]:

– Validity: if a correct process decides v, then v was proposed by some process;
– Agreement: no two correct processes decide differently;
– Termination: every correct process eventually decides some value2;
– Integrity: every correct process decides at most once.

The Byzantine Fault-Tolerant Consensus with Unknown Participants, namely BFT-
CUP, proposes to solve consensus in unknown networks with the additional requirement
that a bounded number of participants in the system can behave maliciously.

3 Reachable Reliable Broadcast

This section introduces a new primitive, namely reachable reliable broadcast, used by
processes of the system to communicate. It is invoked by two basic operations:

– reachable send(m,p) – through which the participant p sends the message m to all
reachable participants from p. A participant q is reachable from another participant

2 If a randomized protocol such as [5,15,17] is used as an underlying Byzantine consensus, the
termination is ensured only with probability 1.
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p if there is enough connectivity from p to q (see below). In this case, q is a receiver
of messages disseminated by p.

– reachable deliver(m,p) – invoked by the receiver to deliver a message m dissemi-
nated by the participant p.

This primitive should satisfy the following four properties:

– Validity: If a correct participant p disseminates a message m, then m is eventually
delivered by a correct participant reachable from p or there is no correct participant
reachable from p;

– Agreement: If a correct participant delivers some message m, disseminated by a cor-
rect participant p, then all correct participants reachable from p eventually deliver
m;

– Integrity: For any message m, every correct participant p delivers m only if m was
previously disseminated by some participant p′, in this case p is reachable from p′.

Notice that these properties establish a communication primitive with specification
similar to the usual reliable broadcast [4,5,15]. Nonetheless, the proposed primitive
ensures the delivery to all correct processes reachable in the system.

Implementation. The main idea of our implementation is that participants execute a
flood of their messages to all reachable processes, which, in turn, will deliver these
messages as soon as its authenticity has been proved. Assuming a k-OSR PD, a partici-
pant q is reachable from a participant p if there is enough connectivity in the knowlegde
graph, i.e., if there are at least 2 f +1 node-disjoint paths from p to q (k ≥ 2 f +1). This
connectivity is necessary to ensure that all reachable processes will be able to receive
and authenticate messages.

In our implementation, formally described in Algorithm 1, a process i disseminates
a message m through the system by executing the procedure reachable send. In this
procedure (line 6), i sends m to its neighbors (i.e., processes in i.PD) and when m is
received at some process p, p forwards m to its neighbors and so on, until that m arrives
at all reachable participants (line 17). Moreover, p stores m together with the route
traversed by m in a buffer (line 11). Also, p delivers m if it has received m through f +1
node-disjoint paths (lines 13-14), i.e., the authenticity of m has been verified. Afterward,
since m has been delivered, p removes it from the buffer of received messages (line
15). The function computeRoutes(m.message, i.received msgs) computes the number
of node-disjoint paths through which m.message has been received at participant i.

An important feature of this dissemination is that each message has the accumulated
route according with the path traversed from the sender to some destination. A partici-
pant will process a received message only if the participant that is sending (or forward-
ing) this message appears at the end of the accumulated route (line 8). This solution is
based on the approach used in [18] and it enforces that each participant appends itself at
the end of the routing information in order to send or forward a message. Nonetheless,
a malicious participant is able to modify the accumulated route (removing or adding
participants) and modify or block the message being propagated. Notice, however, that
the connectivity of the knowledge graph (k ≥ 2 f +1) ensures that messages will be re-
ceived at all reachable participants. Moreover, since a process delivers a message only
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Algoritm 1. Dissemination algorithm executed at participant i.
constant:

1. f : int // upper bound on the number of failures

variables:
2. i.received msgs : set of 〈message,route〉 tuples // set of received messages

message:
3. REACHABLE FLOODING: // struct of this message
4. message :value to flood // value to be disseminated
5. route : ordered list of nodes // path traversed by message

** Initiator Only **
procedure: reachable send(message,sender) // sender = i

6. ∀ j ∈ i.PD, send REACHABLE FLOODING(message,sender) to j;

** All Nodes **
INIT:

7. i.received msgs ← ∅;

upon receipt of REACHABLE FLOODING(m.message,m.route) from j
8. if getLastElement(m.route) = j ∧ i �∈ m.route then
9. append(m.route, i);

10. initiator ← getFirstElement(m.route);
11. i.received msgs ← i.received msgs ∪ {〈m.message,m.route〉};
12. routes ← computeRoutes(m.message, i.received msgs);
13. if routes ≥ f + 1 then
14. trigger reachable deliver(m.message, initiator);
15. i.received msgs ← i.received msgs\ {〈m.message,∗〉};
16. end if
17. ∀z ∈ i.PD\ { j}, send REACHABLE FLOODING(m.message,m.route) to z;
18. end if

after it has been received through f +1 node disjoint paths, it is able to verify its authen-
ticity. These measures prevent the delivery of forged messages (generated by malicious
participants), because the authenticity of them cannot be verified by correct processes.

An “undesirable” property of the proposed solution is that the same message, sent
by some participant, could be delivered more than once by its receivers. This property
does not affect the use of this protocol in our consensus protocol (Section 4). Thus, we
do not deal with this limitation of the algorithm. However, it can be easily solved by
using buffers to store delivered messages that must have unique identifiers.

Additionaly, each message’ receiver, disseminated by some participant p, is able
to send back a reply to p using some routing protocol resilient to Byzantine fail-
ures [11,12,13]. Our BFT-CUP protocol (Section 4) uses this algorithm to disseminate
messages.

Sketch of Proof. The correctness of this protocol is based on the proof of the properties
defined for the reachable reliable broadcast.
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Validity: By assumption, the connectivity of the system is k ≥ 2 f + 1. Thus, according
to Definition 3, there are at least 2 f + 1 node-disjoint paths from the sender of a mes-
sage m to the receivers (nodes that are reachable from the sender). Moreover, as validity
is established over messages sent by correct participants (correct sender), there are at
least f + 1 node-disjoint paths formed only by correct participants, through which it is
guaranteed that the same message m will reach the correct receivers. In this case, the
predicate of line 8 will be true at least f + 1 times and the authenticity of m can be
verified through redundancy. This is done by the execution of lines 9–12, which are re-
sponsible to maintain information regarding the different routes from which m has been
received. Whenever the message authenticity is proved, i.e., m has been received by at
least f + 1 different routes (line 13), the delivery of m is authorized by the invocation
of reachable deliver (line 14).

Agreement: As the agreement is established over messages sent by correct participants,
this proof is identical to the validity proof.

Integrity: A message is delivered only after its reception through f + 1 node-disjoint
paths (lines 13-14), what guarantees that this message is authentic, i.e., this message
was really sent by its sender (sender). Thus, a malicious participant j is not able to
forge that message m was sent by a participant i because the autenticity of m will not
be proven. That is, a receiver r will not be able to find f + 1 node-disjoint paths from
i to r through which m has been received. Even with a collusion of up to f malicious
participants, r will obtain at most f node-disjoint paths through which m was received
“from i” (each of these f paths could contain one malicious participant). �

4 BFT-CUP: Byzantine Consensus with Unknown Participants

This section presents our solution for BFT-CUP. Our protocol is based on the dissemi-
nation algorithm presented in Section 3, which, together with the underlying routing
layer resilient to Byzantine failures, hides all details related to participants communica-
tion. Thereafter, as in [8], the consensus protocol with unknown participants is divided
into three phases. In the first phase – called participants discovery (Section 4.1) – each
participant increases its knowledge about other processes in the system, discovering the
maximum possible number of participants that are present in some computation. The
second phase – called sink component determination (Section 4.2) – defines which par-
ticipants belong to the sink component of the knowlegde graph induced by a k-OSR
PD. Thus, each participant will be able to determine whether it belongs to the sink
component or not. In the last phase (Section 4.3), members of the sink component ex-
ecute a classical Byzantine fault tolerant consensus and disseminate the decision value
to other participants in the system. The number of participants in the sink component,
namely nsink, should be enough in order to e xecute a classical Byzantine fault-tolerant
consensus. Usually nsink ≥ 3 f + 1, to run, for example, Byzantine Paxos [9,19].

4.1 Participants Discovery

The first step to solve consensus in a system with unknown participants is to provide
processes with the maximum possible knowledge about the system. Notice that, through
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its local participant detector, a process is able to get an initial knowledge about the
system that is not enough to solve BFT-CUP. Then, a process expands this knowledge
by executing the DISCOVERY protocol, presented in Algorithm 2. The main idea is
that each participant i broadcasts a message requesting information about neighbors of
each reachable participant, making a sort of breadth-first search in the knowledge graph.
At the end of the algorithm, i obtains the maximal set of reachable participants, which
represents the participants known by i (a partial view of the system).

The algorithm uses three sets:

1. i.known – set containing identifiers of all processes known by i;
2. i.msg pend – this set contains identifiers of processes that should send a message

to i, i.e., for each j ∈ i.msg pend, i should receive a message from j;
3. i.nei pend – this set contains identifiers of processes that i knows, but does not

know all of their neighbors (i is still waiting for information about them), i.e., for
each 〈 j, j.neighbor〉 ∈ i.nei pend, i knows j but does not know all neighbors of j.

In the initialization phase of the algorithm for participant i, the set i.known is updated
to itself plus its neighbors, returned by i.PD, and the set i.msg pend to its neighbors
(line 7). Moreover, a message requesting information about neighbors is disseminated
to all participants reachable from i (line 8). When a participant p delivers this message,
p sends back to i a reply indicating its neighbors (line 9).

Upon receipt of a reply at participant i, the set of known participants is updated,
along with the set of pending neighbors3 and the set of pending messages (lines 10 - 12).
The next step is to verify whether i has acquired knowledge about any new participant
(line 13 - 16). Thus, i gets to know other participant j if at least f + 1 other processes
known by i reported to i that j is their neighbor (line 13). After this verification, the
set of pending neighbors is updated (lines 17 - 21), according to the new participants
discovered.

To determine if there is still some participant to be discovered, i uses the sets
i.msg pend and i.nei pend, which store the pendencies related to the replies received
by i. Then, the algorithm ends when there remain at most f pendencies (lines 22 - 24).
The intuition behind this condition is that if there are at most f pendencies at process i,
then i already has discovered all processes reachable from it because k ≥ 2 f + 1. Thus,
the algorithm ends by returning the set of participants discovered by i (line 23), which
contains all participants (correct or faulty) reachable from it. Algorithm 2 satisfies some
properties that are stated by Lemma 1.

Lemma 1. Consider Gdi a knowlegde graph induced by a k-OSR PD. Let f < k
2 < n

be the number of nodes that may fail. Algorithm DISCOVERY executed by each correct
participant p satisfies the following properties:

– Termination: p terminates the execution of the algorithm and returns a set of known
processes;

– Accuracy: the algorithm returns the maximal set of processes reachable from p in
Gdi.

3 If i reaches p, i also reaches all neigbours of p and should receive a reply to its initial dissemi-
nation (line 8) from all of them.
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Algorithm 2. Algorithm DISCOVERY executed at participant i.
constant:

1. f : int // upper bound on the number of failures

variables:
2. i.known : set of nodes // set of known nodes
3. i.nei pend : set of 〈node,node.neighbor〉 tuples

// i does not know all neighbors of node
4. i.msg pend : set of nodes // nodes that i is waiting for messages (replies)

message:
5. SET NEIGHBOR: // struct of the message SET NEIGHBOR
6. neighbor : set of nodes // neighbors of the node that is sending the message

** All Nodes **
INIT:

7. i.known ← {i} ∪ i.PD; i.nei pend ← ∅; i.msg pend ← i.PD;
8. reachable send(GET NEIGHBOR, i);

upon execution of reachable deliver(GET NEIGHBOR,sender)
9. send SET NEIGHBOR(i.PD) to sender;

upon receipt of SET NEIGHBOR(m.neighbor) from sender
10. i.known ← i.known ∪ {sender};
11. i.nei pend ← i.nei pend ∪ {〈sender,m.neighbor〉};
12. i.msg pend ← i.msg pend \ {sender};
13. if (∃ j : #〈∗,〈 j〉〉i.nei pend > f ) ∧ ( j �∈ i.known) then
14. i.known ← i.known ∪ { j};
15. i.msg pend ← i.msg pend ∪ { j};
16. end if
17. for all 〈 j, j.neighbor〉 ∈ i.nei pend do
18. if (∀z ∈ j.neighbor : z ∈ i.known) then
19. i.nei pend ← i.nei pend \ {〈 j, j.neighbor〉};
20. end if
21. end for
22. if (|i.nei pend| + |i.msg pend|) ≤ f then
23. return i.known;
24. end if

Sketch of Proof. Termination: In the worst case, the algorithm ends when p receives
replies from at least all correct reachable participants (line 22). By dissemination proto-
col properties, even in the presence of f < k

2 failures, all messages disseminated by p is
delivered by its correct receivers (processes reachable from p). Thus, each correct parti-
cipant reachable from p receives a request (line 8) and sends back a reply (line 9) that is
received by p (lines 10 - 24). Then, as Π is finite, it is guaranteed that p receives replies
from at least all correct reachable participants and ends the algorithm by returning a set
of known processes.

Accuracy: The algorithm only ends when there remain at most f pendencies, which
may be divided between processes that supply information about neighbors that do not
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exist in the system (i.nei pend) and processes from which p is still waiting for their
messages/replies (i.msg pend). Moreover, each participant z (being z reachable from p)
is neighbor of at least 2 f + 1 other participants, because f < k

2 < n. Now, we have to
consider two cases:

– If z is malicious and does not send back a reply to p (line 9), then p computes
messages (replies) from at least f + 1 correct neighbors of z, discovering z (lines
13 - 16).

– If z is correct, in the worst case, the message from z to p is delayed and f neighbors
of z are malicious and do not inform p that z is in the system. However, as f < k

2 ,
there remain f + 1 correct neighbors of z in the system that inform p about the
presence of z in the system.

As the algorithm only ends when there remain at most f pendencies, in both cases it
is guaranteed that p only ends after discovering z, even if it firstly computes messages
from the f malicious processes. �

4.2 Sink Component Determination

The objective of this phase is to define which participants belong to the sink component
of the knowlegde graph induced by a k-OSR PD. More specifically, through Algorithm
3 (SINK), each participant is able to determine whether or not it is member of the sink
component. The idea behind this algorithm is that after the execution of the procedure
DISCOVERY, members in the sink component obtain the same partial view of the sys-
tem, whereas in the other components, nodes have strictly more knowledge than in the
sink, i.e., each node knows at least members of the component to which it belongs and
members of the sink (see Definition 3).

In the initialization phase of the algorithm for participant i, i executes the DISCO-
VERY procedure in order to obtain its partial view of the system (line 8) and sends this
view to all reachable/known participant (line 10). When these messages are delivered
by some participant j, j sends back an ack response to i if it has the same knowledge of
i (i.e., j belongs to the same component of i). Otherwise, j sends back a nack response
(lines 11-15).

Upon receipt of a reply (lines 16-27), i updates the set of processes that have al-
ready answered (line 16). Moreover, if the reply received is a nack, the set of processes
that belong to other components (i.nacked) is updated (line 18) and if the number of
processes that do not belong to the same component of i is greater than f (line 19), i
concludes that it does not belong to the sink component (lines 20-21). This condition
holds because the system has at least 3 f +1 processes in the sink, known by all partici-
pants, that have strictly less knowledge about Π than processes not in the sink (Lemma
1). On the other hand, if i has received replies from all known processes, excluding f
possible faulty (line 24), and the number of processes that belong to other components
is not greater than f , i concludes that it belongs to the sink component (lines 25-26).
This condition holds because processes in the sink receive messages only from mem-
bers of this component. Moreover, in both cases, a collusion of f malicious participants
cannot lead a process to decide incorrectly. Lemma 2 states the properties satisfied by
Algorithm 3.
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Algorithm 3. Algorithm SINK executed at participant i.
constant:

1. f : int // upper bound on the number of failures

variables:
2. i.known : set of nodes // set of known nodes
3. i.responded : set of nodes // set of nodes that has sent a reply to i
4. i.nacked : set of nodes // set of processes not in the same component of i
5. i.in the sink : boolean // is i in the sink?

message:
6. RESPONSE: // struct of the message RESPONSE
7. ack/nack : boolean

** All Nodes **
INIT:

8. i.known ← DISCOVERY();
9. i.responded ← {i}; i.nacked ← ∅;

10. reachable send(i.known, i);

upon execution of reachable deliver(sender.known,sender)
11. if i.known = sender.known then
12. send RESPONSE(ack) to sender;
13. else
14. send RESPONSE(nack) to sender;
15. end if

upon receipt of RESPONSE(m) from sender
16. i.responded ← i.responded ∪ {sender}
17. if m.nack then
18. i.nacked ← i.nacked ∪ {sender};
19. if |i.nacked| ≥ f + 1 then
20. i.in the sink ← f alse;
21. return 〈i.in the sink, i.known〉;
22. end if
23. end if
24. if |i.responded| ≥ |i.known| − f then
25. i.in the sink ← true;
26. return 〈i.in the sink, i.known〉;
27. end if

Lemma 2. Consider a k-OSR PD. Let f < k
2 < n be the number of nodes that may fail.

Algorithm SINK, executed by each correct participant p of the system that has at least
3 f + 1 nodes in the sink component, satisfies the following properties:

– Termination: p terminates the execution by deciding whether it belongs (true) or
not (false) to the sink;

– Accuracy: p is in the unique k-strongly connected sink component iff algorithm
SINK returns true.
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Sketch of Proof. Termination: For each participant p, the algorithm returns in two
cases: (i) when it receives f + 1 replies from processes that belong to other compo-
nents (processes not in the sink – line 19) or (ii) when it receives replies from at least
all correct known processes (processes in the sink – line 24). By properties of the dis-
semination protocol, even in the presence of f < k

2 failures, all messages disseminated
by p are delivered by its receivers (processes reachable from p). Thus, each correct par-
ticipant known by p (reachable from p) receives the request (line 10) and sends back a
reply (lines 11-15) that is received by p (lines 16-27). Then, it is guaranteed that either
(i) or (ii) always occur.

Accuracy: By Lemma 1, after execution of the DISCOVERY algorithm, each correct
participant discovers the maximal set of participants reachable from it. Then, by Lemma
1 and by k-OSR PD properties, it is guaranteed that all correct processes that belong to
the same component obtain the same partial view of the system. Thus, as members in the
sink component receive replies only from members of this component, it is guaranteed
that these participants end correctly (line 26). Moreover, as the sink has at least 3 f + 1
nodes, members in other components know at least 2 f + 1 correct members in the sink
(Lemma 1). Then, before making a wrong decision, these members must compute at
least f + 1 replies from correct members in the sink (that have strictly less knowledge
about Π , due to Lemma 1), what makes it possible for correct members not in the sink
to end correctly (line 21). �

4.3 Achieving Consensus

This is the last phase of the protocol for solving BFT-CUP. Here, the main idea is to
make members of the sink component execute a classical Byzantine consensus and send
the decision value to other participants of the system. The optimal resilience of these
algorithms to solve a classical consensus is 3 f + 1 [3,9]. Thus, it is necessary at least
3 f + 1 participants in the sink component.

The Algorithm 4 (CONSENSUS) presents this protocol. In the initialization, each
participant executes the SINK procedure (line 11) in order to get its partial view of
the system and decide whether or not it belongs to the sink component. Depending on
whether or not the node belongs to the sink, two distinct behaviors are possible:

1. Nodes in the sink execute a classical consensus (line 13) and send the decision value
to other participants (lines 18 and 20-24). By construction, all correct nodes in the
sink component share the same partial view of the system (exactly the members in
the sink – Lemma 1). Thus, these nodes know at least 2 f + 1 correct members that
belong to the sink component, what makes possible to reach the properties of the
classical Byzantine consensus (Section 2.3);

2. Other nodes (in the remaining components) do not participate to the classical con-
sensus. These nodes ask for the decison value to all known nodes, i.e., all reachable
nodes, what includes all nodes in the sink (line 15). Each node decides for a value
v only after it has received v from at least f +1 other participants, ensuring that v is
gathered from at least one correct participant (lines 25-31). Theorem 1 shows that
Algorithm 4 solves the BFT-CUP problem as defined in Section 2.3 with the stated
participant detector and connectivity requirements.
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Algorithm 4. Algorithm CONSENSUS executed at participant i.
constant:

1. f : int // upper bound on the number of failures

input:
2. i.initial : value // proposal value (input)

variables:
3. i.in the sink : boolean // is i in the sink?
4. i.known : set of nodes // partial view of i
5. i.decision : value // decision value
6. i.asked : set of nodes // nodes that have required the decision value
7. i.values : set of 〈node,value〉 tuples // reported decisions

message:
8. SET DECISION: // struct of the message SET DECISION
9. decision : value // the decided value

** All Nodes **
INIT: {Main Decision Task}
10. i.decision ←⊥; i.values ← ∅; i.asked ← ∅;
11. (i.in the sink, i.known) ← SINK();
12. if i.in the sink then
13. Consensus.propose(i.initial); // underlying Byzantine consensus with all

p ∈ i.known
14. else
15. reachable send(GET DECISION, i);
16. end if

** Node In Sink **
upon Consensus.decide(v)
17. i.decision ← v;
18. ∀ j ∈ i.asked, send SET DECISION(i.decision) to j;
19. return i.decision;

upon execution of reachable deliver(GET DECISION,sender)
20. if i.decision = ⊥ then
21. i.asked ← i.asked ∪ {sender};
22. else
23. send SET DECISION(i.decision) to sender;
24. end if

** Node Not In Sink **
upon receipt of SET DECISION(m.decision) from sender
25. if i.decision = ⊥ then
26. i.values ← i.values ∪ {〈sender,m.decision〉};
27. if #〈∗,m.decision〉 i.values ≥ f + 1 then
28. i.decision ← m.decision;
29. return i.decision;
30. end if
31. end if
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Theorem 1. Consider a classical Byzantine consensus protocol. Algorithm CONSEN-
SUS solves BFT-CUP, in spite of f < k

2 < n failures, if k-OSR PD is used and assuming
at least 3 f + 1 participants in the sink.

Sketch of Proof. In this proof we have to consider two cases:
Processes in the sink: All correct participants in the sink component determine that they
belong to the sink (Lemma 2) (line 12) and start the execution of an underlying classical
Byzantine consensus algorithm (line 13). Then, as the sink has at least 2 f + 1 correct
nodes, it is guaranteed that all properties of the classical consensus will be met, i.e., va-
lidity, integrity, agreement and termination. Thus, nodes in the sink obtain the decision
value (line 17), send this value to other participants (line 18) and return the decided
value to the application (line 19), ensuring termination. Whenever a process in the sink
receives a request for decision from other processes (lines 20–24), it will send the value
if it has already decided (line 23); otherwise, it will store the sender’s identity in order
to send the decision value later (line 18) after the consensus has been achieved.

Processes not in the sink: Processes not in the sink request the decision value to all par-
ticipants in the sink (line 15). Notice that if there is enough connectivity (k ≥ 2 f + 1),
nodes in the sink are reachable from any node of the system. Moreover, by properties of
the reachable reliable broadcast, all correct participant in the sink will receive requests
sent by correct participants not in the sink, even in the presence of f < k

2 failures (lines
20–24). Thus, as there are at least 2 f + 1 correct participants in the sink able to send
back replies for these requests (lines 18, 23), it is guaranteed that nodes not in the sink
will receive at least f + 1 messages with the same decision value (lines 25-31) and the
predicate of line 27 will be true, allowing the process to terminate and return the de-
cided value (line 28). Moreover, a collusion of up to f malicious participants cannot
lead a process to decide for incorrect values (line 27), guaranteeing thus agreement. In-
tegrity is ensured through the verification of predicate on line 25, by which each correct
participant decides only once. Notice that validity is ensured through the underlying
classical Byzantine consensus protocol, i.e., the decided value is a value proposed by
nodes in the sink. This proves that k-OSR PD is sufficient to solve BFT-CUP. �

4.4 Necessity of k-OSR Participant Detector to Solve BFT-CUP

Using a k-OSR PD, our protocol requires a degree of connectivity k ≥ 2 f + 1 to solve
BFT-CUP. Theorem 2 states that a participant detector of this class and this connectivity
degree are necessary to solve BFT-CUP.

Theorem 2. A participant detector PD ∈ k-OSR is necessary to solve BFT-CUP, in
spite of f < k

2 < n failures.

Sketch of Proof. This proof is based on the same arguments to prove the necessity of
OSR (One Sink Reducibility) for solving CUP [6]. Assume by contradiction that there
is an algorithm which solves BFT-CUP with a PD �∈ k-OSR. Let Gdi be the know-
ledge graph induced by PD, then two scenarios are possible: (i.) there are less than k
node-disjoint paths connecting a participant p in Gdi; or (ii.) the directed acyclic graph
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obtained by reduction of Gdi to its k-strongly connected components has at least two
sinks. There are two possible scenarios to be considered.

In the first scenario, let at most 2 f node-disjoint paths connect p in Gdi. Then, the
simple crash failure of f neighbors of p makes it impossible for a participant i (being
p reachable from i) to discover p, because only f processes are able to inform i about
the presence of p in the system. In fact, i is not able to determine if p really exists, i.e.,
it is not guaranteed that i has received this information from a correct process. Then,
the partial view obtained by i will be inconsistent, what makes it impossible to solve
BFT-CUP. Thus, we reach a contradiction.

In the second scenario, let G1 and G2 be two of the sink components and consider
that participants in G1 have proposition value v and participants in G2 value w, with
v �= w. By Termination property of consensus, processes in G1 and G2 must eventually
decide. Let us assume that the first process in G1 that decides, say p, does so at time t1,
and the first process in G2 that decides, say q, does so at time t2. Delay all messages sent
to G1 and G2 such that they are received after max{t1, t2}. Since the processes in a sink
component are unaware of the existence of other participants, p decides v and q decides
w, violating the Agreement property of consensus and reaching thus a contradiction. �

5 Discussion

This section presents some comments about the protocol presented in this paper.

5.1 Digital Signatures

It is worth to notice that the lower bound required to solve BFT-CUP in terms of con-
nectivity and resiliency is k ≥ 2 f +1, and it holds even if digital signatures are used. By
using digital signatures, it is possible to exchange messages among participants, since
there is at least one path formed only by correct processes (k ≥ f + 1). However, even
with digital signatures, a connectivity of k ≥ 2 f +1 is still required in order to discover
the participants properly (first phase of the protocol). In fact, if k < 2 f +1, a malicious
participant can lead a correct participant p not to discover every node reachable from it,
what makes it impossible to use this protocol to solve BFT-CUP (the partial view of p
will be inconsistent).

For example, Figure 2 presents a knowledge connectivity graph induced by a 2-OSR
PD (k = 2) in which the system does not support any fault (to support f = 1, k ≥ 3).
Now, consider that process 2 is malicious and that process 1 is starting the DISCOVERY
phase. Then, process 2 could inform to process 1 that it only knows process 3. At this
point, process 1 will break the search because it is only waiting for a message from
process 3, i.e., number of pending messages less or equal to f . Thus, process 1 obtains
the wrong partial view {1,2,3} of the system.

5.2 Protocol Limitations

The model used in this study, as well as in all solutions for FT-CUP [7,8], supports
mobility of nodes, but it is not strong enough to tolerate arbitrary churn (arrivals and
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Fig. 2. 2-OSR with Process 2 Faulty

departures of processes) during protocol executions. This happens because, after the
relations of knowledge have been established (first phase of the protocol), new partici-
pants will be considered only in future executions of consensus.

In current algorithms, process departures can be considered as failures. Nonethe-
less, this is not the optimal approach, since our protocols tolerate Byzantine faults and
the behaviour of a departing process resembles a simple crash failure. An alternative
approach consists in specifying an additional parameter d to indicate the number of
supported departures, separating departures from malicious faults. In this way, the de-
gree of connectivity in the knowledge graph should be k ≥ 2 f + d + 1 to support up
to f malicious faults and up to d departures. Moreover, even with departures, the sink
component should remains with enough participants to execute a classical consensus,
i.e., nsink ≥ 3 f + 2d + 1, following the same reasoning as [19].

5.3 Other Participant Detectors

Although k-OSR PD is the weakest participant detector defined to solve FT-CUP, there
are other (stronger) participant detectors able to solve BFT-CUP [6,8]:

– FCO (Full Connectivity PD): the knowledge connectivity graph Gdi = (V,ξ ) in-
duced by the PD oracle is such that for all p,q ∈ Π , we have (p,q) ∈ ξ .

– k-SCO (k-Strong Connectivity PD): the knowledge connectivity graph Gdi = (V,ξ )
induced by the PD oracle is k-strongly connected.

Notice that a characteristic common to all participant detectors able to solve BFT-
CUP (except for the FCO PD that is fully connected) is the degree of connectivity k,
which makes possible the proper work of the protocol even in the presence of failures.
Using these participant detectors (FCO or k-SCO) the partial view obtained by each
process in the system contains exactly all processes in the system (first phase of the pro-
tocol). Thereafter, the consensus problem is trivially solved using a classical Byzantine
consensus protocol, since all processes have the same (complete) view of the system.

6 Final Remarks

Most of the studies about consensus found in the literature consider a static known
set of participants in the system (e.g., [1,3,4,5,17,19]). Recently, some works which
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Table 1. Comparing solutions for the consensus with unknown participants problem

Approach failure participant k participants connectivity synchrony
model detector in the sink between components model

CUP without OSR – 1 OSR asynchronous
[6] failures

FT-CUP crash OSR – 1 OSR + safe asynchronous + P
[7] crash pattern

FT-CUP crash k-OSR f +1 2 f +1 k node-disjoint asynchronous + ♦S
[8] paths

BFT-CUP Byzantine k-OSR 2 f +1 3 f +1 k node-disjoint same of the underlying
(this paper) paths consensus protocol

deal with a partial knowledge about the system composition have been proposed. The
works of [6,7,8] are worth noticing. They propose solutions and study conditions in
order to solve consensus whenever the set of participants is unknown and the system is
asynchronous. The work presented herein extends these previous results and presents
an algorithm for solving FT-CUP in a system prone to Byzantine failures. It shows
that to solve Byzantine FT-CUP in an environment with little synchrony requirements,
it is necessary to enrich the system with a greater degree of knowledge connectivity
among its participants. The main result of the work is to show that it is possible to solve
Byzantine FT-CUP with the same class of participant detectors (k-OSR) and the same
synchrony requirements (♦S ) necessary to solve FT-CUP in a system prone to crash
failures [8]. As a side effect, a Byzantine fault-tolerant dissemination primitive, namely
reachable reliable broadcast, has been defined and implemented and can be used in
other protocols for unknown networks.

Table 1 summarizes and presents a comparison with the known results regarding the
consensus solvability with unknown participants.
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