
Lazarus: Automatic Management of Diversity
in BFT Systems

Miguel Garcia
miguel.garcia.th@gmail.com
LASIGE, Faculdade de Ciências,
Universidade de Lisboa, Portugal

Alysson Bessani
anbessani@ciencias.ulisboa.pt
LASIGE, Faculdade de Ciências,
Universidade de Lisboa, Portugal

Nuno Neves
nfneves@ciencias.ulisboa.pt

LASIGE, Faculdade de Ciências,
Universidade de Lisboa, Portugal

Abstract
A long-standing promise of Byzantine Fault-Tolerant (BFT)
replication is to maintain the service correctness despite the
presence of malicious failures. The key challenge here is how
to ensure replicas fail independently, i.e., avoid that a single at-
tack compromises more than f replicas at once. The obvious
answer for this is the use of diverse replicas, but most works
in BFT simply assume such diversity without supporting
mechanisms to substantiate this assumption. Lazarus is a
control plane for managing the deployment and execution
of diverse replicas in BFT systems. Lazarus continuously
monitors the current vulnerabilities of the system replicas
(reported in security feeds such as NVD and ExploitDB) and
employs a metric to measure the risk of having a common
weakness in the replicas set. If such risk is high, the set of
replicas is reconfigured. Our evaluation shows that the de-
vised strategy reduces the number of executions where the
system becomes compromised and that our prototype sup-
ports the execution of full-fledged BFT systems in diverse
configurations with 17 OS versions, reaching a performance
close to a homogeneous bare-metal setup.

CCS Concepts • Computer systems organization →
Dependable and fault-tolerant systems and networks;
• Security and privacy→Distributed systems security;

Keywords Byzantine fault tolerance, BFT, diversity, state
machine replication, vulnerability management

ACM Reference Format:
Miguel Garcia, Alysson Bessani, and Nuno Neves. 2019. Lazarus:
Automatic Management of Diversity in BFT Systems. In Middle-
ware ’19: Middleware ’19: 20th International Middleware Conference,
December 9–13, 2019, Davis, CA, USA. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3361525.3361550

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Middleware ’19, December 9–13, 2019, Davis, CA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7009-7/19/12. . . $15.00
https://doi.org/10.1145/3361525.3361550

1 Introduction
Practical Byzantine Fault-Tolerant (BFT) replication was pro-
posed as a solution to handle Byzantine faults of both acci-
dental and malicious nature [19]. The correctness of a BFT
service comes from the existence of a quorum of correct
nodes, capable of reaching consensus on the (total) order
of messages to be delivered to the replicas. For instance, to
tolerate a single replica failure, the system typically must
have four replicas [6, 20, 45]. This approach only works as
expected if nodes fail independently, otherwise, once an at-
tacker finds a way to exploit a vulnerability in one node,
it is most likely that the same attack can also be used to
successfully compromise the other replicas.
In the last twenty years of BFT replication research, few

efforts were made to justify or support this assumption.
However, there were great advances on the performance
(e.g., [6, 11, 45]), use of resources (e.g., [12, 47, 76]), and
robustness (e.g., [4, 15, 23]) of BFT systems. These works as-
sume, either implicitly or explicitly, that replicas fail indepen-
dently, relying on some orthogonal mechanism (e.g., [22, 65])
to remove common weaknesses, or rule out the possibil-
ity of malicious failures from their system models. A few
works have implemented and experimented such mecha-
nisms [21, 57, 65], but in a very limited way. Nonetheless, in
practice, diversity is fundamental for building dependable
services in avionics [80], military systems [31], and even in
blockchains (e.g., Bitcoin [40]).
For the few works that do consider the diversity of repli-

cas, the absence of common-mode failures is mostly taken
for granted. For example, by using memory randomization
techniques [65] or different OSes [21, 42], it is assumed that
such failures will not exist without providing evidence for
it. In fact, researchers have argued that randomization tech-
niques do not suffice to create fault independence [17, 67].
In addition, although the use of distinct OSes promotes fault
independence to some extent, per se it is not enough to
preclude vulnerability sharing among diverse OS distribu-
tions [33, 34].
Even if there was an initial diverse set of n replicas that

would have fault independence, long-running services even-
tually will need to be cleaned from possible failures and intru-
sions. Proactive recovery of BFT systems [20, 28, 57, 65, 70]
periodically restarts the replicas to remove undetected faulty
states introduced by a stealth attacker. However, a common

https://doi.org/10.1145/3361525.3361550
https://doi.org/10.1145/3361525.3361550

Middleware ’19, December 9–13, 2019, Davis, CA, USA Miguel Garcia, Alysson Bessani, and Nuno Neves

limitation is that these works assume that the weaknesses
will be eliminated after the recovery, which does not happen
unless the replica code changes after its recovery.
This paper presents Lazarus, the first system that auto-

matically changes the attack surface of a BFT system in a
dependable way. Lazarus continuously collects security data
from Open Source Intelligence (OSINT) feeds on the internet
to build a knowledge base about the possible vulnerabili-
ties, exploits, and patches related to the software of interest.
This data is used to create clusters of similar vulnerabili-
ties, which potentially can be affected by (variations of) the
same exploit. These clusters and other collected attributes
are used to analyze the risk of the BFT system becoming
compromised. Once the risk increases, Lazarus replaces a
potentially vulnerable replica by another one, trying to max-
imize the failure independence. Then, the replaced node is
put on quarantine and updated with the available patches,
to be re-used later. These mechanisms were implemented
to be fully automated, significantly reducing the burden of
managing different software.

In summary, this paper makes the following contributions:

1. Lazarus, a control plane that monitors OSINT data
and manages the BFT service replicas, selecting and
reconfiguring the system to always run the “most di-
verse” set of replicas at any given time (Sections 3
and 5);

2. A method for assessing the risk of a group of replicas
being compromised based on the security news feeds
available on the internet (Section 4);

3. An evaluation of our risk management method based
on real historical vulnerability data showing its ef-
fectiveness in keeping a group of replicas safe from
common vulnerabilities (Section 6);

4. An extensive evaluation of a Lazarus prototype using
17 OS versions, a BFT replication library, and three
BFT applications (including a BFT ordering service
for the Hyperledger Fabric blockchain platform [69])
showing the that it is feasible to run BFT systems with
diversity for specific configurations (Section 7).

2 Revisiting BFT for Security
In its inception, practical BFT replication was motivated by
the prevalence of software errors and malicious attacks [19].
However, as the time passed, BFT solutions focused more on
non-malicious Byzantine failures, such as hardware defects
and non-deterministic bugs. We believe one of the reasons
for this change was the difficulty in ensuring correctness in
the presence of malicious adversaries by relying on the BFT
protocol alone. In particular, it is hard to build a practical
approach that forces an intelligent attacker to find more than
f weaknesses in different replicas to be able to compromise
the system or, alternatively, that reduces the probability of a

single attack compromising more than one replica. Addition-
ally, known and unknown vulnerabilities must be cleaned
from the system, to force the attacker to look for unknown
or unpatched weaknesses. In consequence, replicas diversity
and recovery can be seen as two pillars of intrusion toler-
ance [29, 75], together with BFT replication.
Despite the existence of several works addressing these

issues [20, 21, 57, 65, 70], to the best of our knowledge no
previous proposal showed how to avoid the compromise of the
f + 1th replica with the same vulnerability. Lazarus fills this
gap by employing threat intelligence techniques (e.g., [2, 18,
48, 66, 78]) for managing a pool of diverse replicas supporting
a BFT system. More specifically, Lazarus constantly collects
cybersecurity data from OSINT sources such as National
Vulnerability Database (NVD) and ExploitDB (among others)
to procure information about newweaknesses on the replicas
software stack, which is used to reconfigure the set of active
replicas. With this, we aim to alleviate two kinds of threats:

1. Newly found vulnerabilities affecting one or more active
replicas, by identifying such threats in a timely manner
and by replacing the affected replica(s) by other vari-
ants while applying the security updates (or patches);

2. Zero-day vulnerabilities affectingmultiple running repli-
cas, by leveraging historical data about exploits, patches,
and vulnerabilities that compromise simultaneously
several systems to infer subsets of replicas less likely
to contain common vulnerabilities in the future.

For addressing (1), Lazarus employs relatively straight-
forward techniques: when new critical vulnerabilities are
published, alarms are generated and active replicas are re-
moved from the system and quarantined. However, address-
ing (2) is a significant challenge as it requires predicting the
set of active replicas, among the ones available, with less
risk of containing common vulnerabilities. One of the key
contributions of this work is devising a method to make
this prediction, taking into account the plethora of public
information about vulnerabilities, exploits, and patches, and
known results about vulnerability studies in the scientific
literature. For example, we know that looking for past vul-
nerability data can give hints about which pairs of operating
systems are more likely to have shared vulnerabilities in the
future [34]. We also know that not all vulnerabilities have the
same chance to be exploited [66], or break the same security
properties, nor have the patches available at the same time
from the affected vendors. We know (unsurprisingly) that
patched [16] or old [32] vulnerabilities are less likely to be
exploited. As a last example, it is also known that although
NVD’ Common Vulnerability Scoring System (CVSS) [25]
consolidates important information about vulnerabilities, it
is not particularly good at measuring its exploitability [1, 18].
Lazarus takes into account all this information to main-

tain correctness in an evolving threat landscape, where novel
vulnerabilities are continuously found, disclosed, and patched.

Lazarus: Automatic Management of Diversity in BFT Systems Middleware ’19, December 9–13, 2019, Davis, CA, USA

Nevertheless, it is important to note that our proposal cannot
preclude the discovery of f + 1 zero-day vulnerabilities in
distinct replicas. However, in this case, our goal has been met
as we forced the attacker to spend resources proportional to
f . In addition, coercing an adversary to find f +1weaknesses
to compromise a BFT system is arguably harder than find-
ing a single vulnerability in a non-replicated system, thus
bringing important security gains.

3 Overview and Preliminaries
In a nutshell, Lazarus provides a distributed operating sys-
tem for BFT-replicated services. The system manages in its
execution plane a set of nodes that run unmodified repli-
cas. Each node must have a small Local Trusted Unit (LTU)
that allows the activation and deactivation of replicas as
demanded by the Lazarus Controller, in the control plane.
The controller decides which software should run at any
given time by monitoring the vulnerabilities that may exist
in the replicas pool, replacing the nodes with high risk of
being compromised by the same attack. Figure 1 presents
this architecture.

3.1 System and Adversary Model
Lazarus system model shares some similarity with previous
works on the proactive recovery of BFT systems [20, 28,
57, 65, 70]. More precisely, we consider a hybrid distributed
system model composed of two planes with different failure
models:
• Execution Plane: replicas are subject to Byzantine fail-
ures and communications go through an asynchro-
nous network that can delay, drop or modify mes-
sages [6, 15, 19, 45]. This plane hosts n replicas from
which at most f can be compromised at any given mo-
ment. In this paper, we consider the typical scenario
in which n = 3f + 1.
• Control Plane: Each node hosting a replica contains
an LTU, which is a fundamental trusted component
required for safe proactive recoveries [71]. Each LTU re-
ceives power on/off commands from a logically-central-
ized controller to reconfigure their replicas. As in pre-
vious works [57, 65, 70], this controller is assumed to
be trusted. Such assumption can be substantiated by
running it in an isolated control network (similarly
to cloud resource managers) our by building it in a
trustworthy manner (tolerating Byzantine failures, as
discussed in Section 5.3).

Besides the execution and control planes, we assume the
existence of two types of external components: (1) clients of
the replicated service, which can be subject to Byzantine fail-
ures; (2) OSINT sources (e.g., NVD, ExploitDB) that cannot
be subverted and controlled by the adversary. In practice, this
assumption leads us to resort only to well-established and
authenticated data sources. Dealing with untrusted sources

Figure 1. Lazarus overview.

is an active area of research in the threat intelligence com-
munity (e.g., [2, 66]), which is orthogonal to this paper.

3.2 Diversity of Replicas
For our purposes, each replica is composed of a stack of
software, including an OS (kernel plus other software con-
tained in an OS distribution), execution support (e.g., data-
base, JVM), a BFT library, and the service that is provided by
the system. The set of n replicas is called a CONFIG.

The fault independence of the replicas is improved when
different OTS (Off-The-Shelf) components are employed in
the software stack [27]. For example, it has been shown that
using distinct databases [36], OSes [33, 34], filesystems [10],
and web browsers [79], can yield important benefits in terms
of fault independence. In addition, automatic techniques like
randomization/obfuscation of OSes [65], applications [77],
and BFT libraries [57] can enhance fault independence of
the replicas. Although Lazarus replicas can benefit from
these techniques, in this paper we focus on diverse OTS
components. In particular, Lazarus monitors the disclosed
vulnerabilities of all replicas’ software stacks to assess which
of them may contain common vulnerabilities.

In the experimental evaluation, however, we focus on the
diversity of OSes (not only their kernel, but the whole OS
distribution) because: (i) by far, most of the replica’s code
is the OS; (ii) such size and the role played in the stack,
makes the OS a significant target, with new vulnerabilities
and exploits being discovered every day; and (iii) there are
many alternatives to bring variety. The two last factors are
particularly important to enrich the validity of our analysis.
Consequently, we will not explicitly consider the diversity of
the BFT library (i.e., the protocol implementation) or the ser-
vice code implemented on top of it. Three arguments justify
this decision: (1) N-version programming is too costly [7];
(2) the small size of such components1 makes them relatively
simpler to test and assess with some confidence [46, 49]; and
(3) a few works show that such protocol implementations
can be generated from formally verified specifications, re-
sulting in no vulnerabilities at this level [38, 59]. Although
we do not consider the diversity of BFT libraries, nothing
prevents Lazarus from monitoring them in a similar way

1For example, a BFT key-value store based on BFT-SMaRt has less than 15k
lines of code in total [15].

Middleware ’19, December 9–13, 2019, Davis, CA, USA Miguel Garcia, Alysson Bessani, and Nuno Neves

as the OSes. However, there are no reported vulnerabilities
about these to support our study.

4 Diversity-aware Reconfigurations
Lazarus aims to maintain the fault independence of the
running CONFIG, given the present knowledge about vulner-
abilities. The core of Lazarus is the vulnerability evaluation
method used to assess the risk of having replicas with shared
vulnerabilities, and an algorithm to trigger replacements
when necessary.

4.1 Finding Common Vulnerabilities
The first step of ourmethod is to query vulnerability databases
on the internet to find the common vulnerabilities that may
affect the BFT system.
NIST’s NVD [54] is the authoritative data source for dis-

closure of vulnerabilities and associated information [50].
NVD aggregates vulnerability reports from more than 70 se-
curity companies, advisory groups, and organizations, thus
being the most extensive vulnerability database on the web.
All data is made available in feeds containing the reported
vulnerabilities on a given period. Each NVD vulnerability
receives a unique identifier and a short description provided
by the Common Vulnerabilities and Exposures (CVE) [53].
The Common Platform Enumeration (CPE) [52] provides
the list with the various products affected by the vulner-
ability and the date of the vulnerability publication. The
CVSS [25] calculates the vulnerability severity considering
a few attributes like the attack vector, privileges required,
exploitability score, and the security properties [8] compro-
mised by the vulnerability.
Previous studies on diversity count the CVE entries that

list multiple OSes, as they should represent vulnerabilities
that are shared, assuming that less common vulnerabilities
imply a smaller probability of compromising f + 1 repli-
cas [33, 34]. Although this intuition may seem acceptable, in
practice it underestimates the number of vulnerabilities that
compromise two or more OSes due to imprecisions in the
data source. For example, Table 1 shows three vulnerabili-
ties, affecting different OSes at distinct dates. At first glance,
one may consider that these OSes do not have the same vul-
nerability. However, a careful inspection of the descriptions
shows that they are very similar. Moreover, we checked this
resemblance by searching for additional information and
found out that CVE-2016-4428 also affects Solaris.2
Even with these imperfections, NVD is still the best data

source for vulnerabilities. Therefore, we exploit its curated
data feeds for obtaining the unstructured information present
in the vulnerability text descriptions and use this information
to find similar weaknesses. A usual way to find similarity
in unstructured data is to use clustering algorithms [41].

2
https://www.oracle.com/technetwork/topics/security/bulletinjul2016-

3090568.html

CVE (OS) Description

CVE-2014-0157
(OpenSuse 13)

Cross-site scripting (XSS) vulnerability in theHori-
zon Orchestration dashboard in OpenStack Dash-
board (aka Horizon) 2013.2 before 2013.2.4 and
icehouse before icehouse-rc2 allows remote at-
tackers to inject arbitrary web script or HTML via
the description field of a Heat template.

CVE-2015-3988
(Solaris 11.2)

Multiple cross-site scripting (XSS) vulnerabilities
in OpenStack Dashboard (Horizon) 2015.1.0 allow
remote authenticated users to inject arbitrary web
script or HTML via the metadata to a (1) Glance
image, (2) Nova flavor or (3) Host Aggregate.

CVE-2016-4428
(Debian 8.0)

Cross-site scripting (XSS) vulnerability in Open-
Stack Dashboard (Horizon) 8.0.1 and earlier and
9.0.0 through 9.0.1 allows remote authenticated
users to inject arbitrary web script or HTML by
injecting an AngularJS template in a dashboard
form.

Table 1. Similar vulnerabilities affecting different OSes.

Clustering is the process of aggregating related elements
into groups, named clusters, and is one of the most popular
unsupervised machine learning techniques. We apply this
technique to build clusters of similar vulnerabilities (see Sec-
tion 5), even if the data feed reports that they affect different
products. For example, the vulnerabilities in Table 1 will be
placed in the same cluster due to the similarity in their de-
scriptions, which can make them potentially be activated by
(variations of) the same exploit.

4.2 Measuring Vulnerability Severity
Once the set of common vulnerabilities is found, our method
assigns a score to each vulnerability in the set.
As mentioned before, each vulnerability in NVD has as-

sociated a few CVSS severity scores and metrics [25]. The
scores provide a way to marshal several vulnerability at-
tributes in a value reflecting various aspects that impact
security. The score value also has a qualitative representa-
tion to assist on the vulnerability management process, i.e.,
from NONE (0.0) to CRITICAL (9.0 to 10.0).

CVSS has some limitations that can make it inappropriate
for managing the risk associated with a replicated system: (1)
there is no correlation between the CVSS exploitability score
and the availability of exploits in the wild for the vulnera-
bility [18]; (2) CVSS does not provide information about the
date when a vulnerability starts to be exploited and when
the patch becomes ready; and (3) CVSS does not account for
the vulnerability age, which means that severity remains the
same over the years [32]; therefore, a very old vulnerabil-
ity can end up being considered as critical as a recent one,
even though for the former there has been plenty of time to
update the component and/or the defenses.

Given these shortcomings, we propose a CVSS extension
and use it to measure the risk of a BFT system configuration

https://www.oracle.com/technetwork/topics/security/bulletinjul2016-3090568.html
https://www.oracle.com/technetwork/topics/security/bulletinjul2016-3090568.html

Lazarus: Automatic Management of Diversity in BFT Systems Middleware ’19, December 9–13, 2019, Davis, CA, USA

1 1.250.940.6250.750.50.470.37

Figure 2. Modifiers of vulnerabilities scores based on age
and the existence of patches and exploits.

having replicas with shared vulnerabilities. This extension
is mostly focused on differentiating vulnerabilities by their
current potential exploitability, aiming to surpass the lim-
itations identified above. In this process, (1) and (2) were
addressed by using additional OSINT sources (e.g., other se-
curity databases and vendor sites) that provide information
about exploits and dates. In fact, often vendor sites also give
additional product versions compromised by the vulnerabil-
ity, thus improving the accuracy of the analysis. Limitation
(3) is settled by decreasing the criticality of a vulnerability
gradually through time.
Our CVSS extension uses four factors that together con-

tribute to the overall score. The starting factor is the CVSS
core score, as it is a good basis that takes into considera-
tion several attributes of the vulnerability. The other three
factors adjust the score taking into account the age and the
availability of patches and exploits. The rationale is to allow
the ranking of vulnerabilities according to their possible ex-
ploitation at a given moment in time. The worst scenario
(higher severity score) corresponds to a vulnerability that is
new (N) (i.e., recently published), for which there is an ex-
ploit already being distributed (E) and that is not yet patched
– called NE. The best scenario (lowest score) is when a vul-
nerability is old (O) and there is a patch (P) and, apparently,
no viable exploit has been crafted – named OP. Between the
two extremes, several cases of vulnerabilities are considered,
with their scores calculated accordingly (see Figure 2).

The metric is defined in Equation 1. It is a multiplication
of the CVSS core score [25] by three adjusting factors. The
first is oldness, which causes criticality to decrease over time.
It is harmonized by the oldness_threshold and the elapsed
time since the vulnerability publication3 (Equation 2). In
addition, this factor is bounded by a minimum value that
impedes it from reaching zero (which would cause the vul-
nerability to be left unnoticed). The second is patched, which
reduces the severity by half when a patch is available (Equa-
tion 3;v .patched is an on/off flag). Finally, the exploited factor
grows severity by a quarter when an exploit is made available
(Equation 4; v .exploited is again a on/off flag). The constants
in these equations were defined to ensure the aggregated
modifiers correspond to the values shown in Figure 2.

3oldness_threshold is set to 365 days in our experiments; now and
v .published_date return the current day and the day when the vulnera-
bility was published, respectively.

0
2
4
6
8

10
12

18-9-7 18-9-24

exploit

Date

sc
or

e 8.1

(a) CVE-2018-8303 (NE).

18-5-20

patch

Date
18-5-27

9.37

4.6

18-5-30

exploit

0
2
4
6
8

10
12

sc
or

e

(b) CVE-2018-8012 (NPE).

16-9-8

patch

Date
16-9-19

2.95
0.75

CVSSv3
Score

0
2
4
6
8

10
12

sc
or

e

17-9-19

(c) CVE-2016-7180 (OP).

Figure 3. Score evolution for three vulnerabilities.

score(v) =

CVSS(v) × oldness(v) × patched(v) × exploited(v)
(1)

oldness(v) =

max
(
(1 − 0.25 ×

(now −v .published_date)
oldness_threshold

), 0.75
) (2)

patched(v) = 0.5v .patched (3)

exploited(v) = 1.25v .exploited (4)
Figure 3 displays our score and CVSS for three example

vulnerabilities: (a) NE is a vulnerability that is new and has no
patch yet, but an exploit was made available a few days after
publication. Our score starts by decaying slowly but then
there is a jump on severity when the exploit is published; (b)
NPE illustrates a vulnerability that has an exploit a few days
after publishing and then a patch is also created. First, the
score is raised once the exploit starts to be distributed, next
it decreases three days later after the patch is released, and
then continues to decay over time; and (c) OP represents the
best scenario, where the vulnerability is old and a patch was
eventually distributed (and no exploit is available). Here, the
severity decreases once there is a patch, losing its relevance
over time from a security perspective.

4.3 Measuring Configurations Risk
The third step of our method is to calculate the risk of a
set of replicas according to the score of the common weak-
nesses. The risk associated with a CONFIG with n replicas is
given by Equation 5. It sums up the score (Equation 1) of
the vulnerabilities that would allow an attack to compro-
mise simultaneously a pair of replicas ri , r j ∈ CONFIG. More

Middleware ’19, December 9–13, 2019, Davis, CA, USA Miguel Garcia, Alysson Bessani, and Nuno Neves

precisely, the vulnerabilities in V (ri , r j) aggregate: (i) the
vulnerabilities that affect the software running in both repli-
cas as listed in NVD (and other OSINT sites); and (ii) groups
of vulnerabilities that are placed in the same cluster and
affect each replica in the pair (as explained in Section 4.1).

risk(CONFIG) =
∑

ri ,r j ∈CONFIG,i,j

∑
v ∈V (ri ,r j)

score(v) (5)

This metric penalizes configurations that include replica
pairs with more common weaknesses, as this is an indication
that they are less fault independent. In addition, the penalty
is kept proportional to the severity of these vulnerabilities as
observed at the time of the calculation. For example, replicas
that share weaknesses only in the distant past are consid-
ered less risky than replicas with recently highly exploitable
common vulnerabilities.

4.4 Selecting Configurations
The final step of the method is to assess the risk of a deployed
configuration and, if needed, replace replicas according to
our metric evaluation.
At a high-level, Lazarus executes the following proce-

dure. If the CONFIG risk exceeds a predefined threshold, a
mechanism is triggered to replace replicas. When this hap-
pens, the algorithm randomly picks a new replica from the
available candidates (POOL) and uses it to replace one of the
replicas in CONFIG to minimize its associated risk. Thus, mali-
ciously inspecting POOL is not enough to correctly guess the
next configuration. In addition, it removes the replica that in-
creases the overall risk and set it aside (i.e., in QUARANTINE) to
impede its re-selection. There, the replicas wait for patches
before they re-join POOL and become ready to be chosen
again. Moreover, the algorithm ensures that the running
replicas will eventually be replaced, despite their overall
score.
Algorithm 1 details this procedure. Function Monitor()

(line 5) is called on each monitoring round (e.g., at midnight
every day) to evaluate the current configuration. If the risk
of CONFIG is greater or equal than a certain threshold (line 6),
the algorithm will assess which replica should be replaced.
First, it initializes two variables, the candidates list (line 7)
and all possible combinations of n − 1 out of n elements
of CONFIG (line 8). Then, each element r in POOL (line 9) is
tested as a potential substitute, i.e., as the nth element that
would complete each of the combinations COMB with n − 1
replicas (line 10). Next, we define a CONFIG’ as COMB plus r
(line 11). The risk of CONFIG’ is calculated (line 12) and if it is
below the threshold (line 13), then CONFIG’ is added to a list of
candidate configurations (line 14). At the end of these nested
loops, we have a list with all the possible combinations of
CONFIG and POOL together with their risk. Then, the function
rand is used to randomly selects a configuration from the
list of candidates (line 15). Then the algorithm updates all

Algorithm 1: Replica Set Reconfiguration
1 CONFIG: set replicas executing ;
2 n: number of replicas in CONFIG;
3 POOL: set with the available replicas (not running);
4 QUARANTINE: set of quarantined replicas;

5 Function Monitor()
6 if risk(CONFIG) ≥ threshold then
7 candidates_list←⊥;
8 COMBINATIONS =

(
n
n−1

)
CONFIG;

9 foreach r in POOL do
10 foreach COMB in COMBINATIONS do
11 CONFIG’← COMB ∪ {r};
12 score← risk(CONFIG’);
13 if score ≤ threshold then
14 candidates_list.add(⟨CONFIG’, score⟩) ;

15 RAND_CONFIG← rand(candidates_list) ;
16 updateSets(RAND_CONFIG);

17 else
18 toRemove←⊥;
19 maxScore← HIGH;
20 foreach r in CONFIG do
21 avgScore← scoreAVG(r);
22 if avgScore ≥ maxScore then
23 toRemove← r ;
24 maxScore← avgScore;

25 if toRemove , ⊥ then
26 candidates_list←⊥;
27 foreach r ′ in POOL do
28 CONFIG’← (CONFIG \ {toRemove}) ∪ {r’};
29 score← risk(CONFIG’);
30 if score ≤ threshold then
31 candidates_list.add(⟨CONFIG’, score⟩) ;

32 RAND_CONFIG← rand(candidates_list) ;
33 updateSets(RAND_CONFIG);

34 foreach r in QUARANTINE do
35 if isPatched(r) = TRUE then
36 QUARANTINE← QUARANTINE \ {r };
37 POOL← POOL ∪ {r };

38 Function updateSets(RAND_CONFIG)
39 toRemove← x ∈ (CONFIG \ RAND_CONFIG);
40 toJoin← y ∈ (RAND_CONFIG \ CONFIG);
41 QUARANTINE← QUARANTINE ∪ {toRemove };
42 CONFIG← (CONFIG \ {toRemove }) ∪ {to Join };

the sets (line 16) using the function updateSets (lines 38-
42). To decide which element needs to be removed from
CONFIG it makes the difference between the current CONFIG
and RAND_CONFIG (line 39) and the contrary to select the
element to join the CONFIG (line 40). Then, toRemove is added
to QUARANTINE (line 41), removed from CONFIG and the new
element is added to CONFIG (line 42).

If the risk of CONFIG is lower than the threshold (line 17),
the algorithm assesses if a reconfiguration is needed. In this

Lazarus: Automatic Management of Diversity in BFT Systems Middleware ’19, December 9–13, 2019, Davis, CA, USA

scenario, we start by initializing the variable toRemove as
empty (line 18) and maxScore with the value of the CVSS
score rating HIGH (line 19). For each element r of CONFIG
(line 20) the algorithm calculates the average score of the
vulnerabilities affecting r using Equation 1 (line 21). Then,
if the average vulnerability score is equal to or greater than
HIGH (line 22), the variables toRemove and maxScore are set
to r and avgScore, respectively (lines 23 and 24). At the end
of the loop, the algorithm knows which is the element r
from CONFIG that has vulnerabilities with a highest average
score. If toRemove is empty, the algorithm proceeds to line
34. Otherwise, it selects a new replica (line 25). First, the
candidate_list is set as empty (line 26). Next, for each
element r’ in POOL (line 27) the algorithm tests a CONFIG’
with r’ instead of toRemove (line 28). Then, the score for this
configuration is calculated (line 29) and if it is lower than
threshold (line 30), it is stored in the list of candidates together
with CONFIG’ (line 31). After that, a new configuration is
randomly selected and the sets are updated (lines 32 and 33).

Finally, the algorithm checks if some quarantined replica
is ready to re-join the selection pool. More precisely, each
element in QUARANTINE is checked if it is fully patched. In the
affirmative case, the element is removed from QUARANTINE
and added to the POOL again (lines 34-37).

Algorithm 1 is subject to two unlikely corner cases where
a system administrator may need to intervene: if the POOL
runs out of elements or if there is no candidate configuration
that keeps the system risk bellow threshold. In these cases,
reconfigurations will not happen by default, but we propose
two actions to continue reconfiguring the system: increase
threshold or move the elements with fewer unpatched vul-
nerabilities from QUARANTINE to POOL.

5 Lazarus Implementation
This section details Lazarus components implementation
and briefly discusses other aspects of it.

5.1 Centralized Control Plane
Figure 4 shows Lazarus control plane with its four main
modules, described below.

1 Datamanager.A list of software products is provided
by the CPE Dictionary [52], which is also used by NVD. Then,
an administrator selects all the software that runs on each
replica from this list and indicates the time interval (in years)
during which data should be obtained from NVD.

The Data manager parses the NVD feeds considering only
the vulnerabilities that affect the chosen products. The pro-
cessing is carried out with several threads cooperatively as-
sembling as much data as possible about each vulnerability
– a queue is populated with requests pertaining a particular
vulnerability, and other threads will look for related data
in additional OSINT sources. Typically, the other sources
are not as well structured as NVD and therefore we had

Control Plane
Execution
Plane

Data
Manager

Risk
Manager

Deploy
Manager

DB

Crawlers

1 2 3

Monitor

Score

Clustering

Replica builder

VM Builder

L
T
U

Replica
Configuration

OS

BFT-lib

Service

L
T
U

Replica
Configuration

OS

BFT-lib

Service

L
T
U

Replica

OS

BFT-lib

Service

System
Configuration

DBReplica pool

JVM

4

Figure 4. Lazarus architecture.

to develop specialized HTML parsers for them. Currently,
the prototype supports eight other sources, namely Exploit
DB [64], CVE-details [63], Ubuntu [74], Debian [26], Red-
hat [60], Solaris [55], FreeBSD [30], and Microsoft [51].
The collected data is stored in a MySQL database. For

each vulnerability, we keep its CVE identifier, the published
date, the products it affects, its text description, the CVSS
attributes, exploit and patching dates.

2 Risk manager. This component finds out when it is
necessary to replace the currently running group of replicas
and discovers an alternative configuration that decreases
the risk. As explained in Section 4.2, the risk is computed
using score values that require two kinds of data: the infor-
mation about the vulnerabilities, which is collected by the
Data manager ; and the vulnerability clusters. A vulnerability
cluster is a set of vulnerabilities that are related accordingly
to their description. We used the open-source machine learn-
ing library Weka [61] to build these clusters. In a first phase,
the vulnerability description needs to be transformed into a
vector, where a numerical value is associated with the most
relevant words (up to 200 words). This operation entails, for
example, converting all words to a canonical form and calcu-
lating their frequency (less frequent words are given higher
weights). Then, the K-means algorithm [41] is executed to
build the clusters, where the number of clusters to be formed
is determined by the elbow method [73].

3 Deploymanager.This component automates the setup
and execution of the diverse replicas. It creates and deploys
the replicas in the execution environment implementing
the decisions of the Risk manager , i.e., it dictates when and
which replicas leave and join the system. This sort of be-
haviour must be initiated in a synchronous manner from a
trusted domain. One way to achieve this, is to employ virtu-
alization, leveraging on the isolation between the untrusted
and the trusted domains [28, 57, 70]. Therefore, we devel-
oped a replica builder on top of the Vagrant provisioning
tool [37], which allows the automatic deployment of ready-
to-use OSes and applications on VMs and containers (e.g.,

Middleware ’19, December 9–13, 2019, Davis, CA, USA Miguel Garcia, Alysson Bessani, and Nuno Neves

VirtualBox, VMware, and Docker), without human interven-
tion. We chose VirtualBox [62] as it supports a bigger set of
different guests OSes.

4 LTUs. Each node that hosts a replica has a Vagrant
daemon running on its trusted domain. This component is
isolated from the internet and communicates only with the
Lazarus controller through TLS channels.

5.2 Execution Plane
Despite the amount of relevant research on BFT protocols,
only a few open-source libraries exist. In theory, Lazarus
can use any of these, as long as they support replica set
reconfigurations. In particular, we need the ability to first
add a new replica and then remove the old replica to be
quarantined. Thus, we use BFT-SMaRt [15], a (reasonably)
stable BFT library that supports reconfigurations on the
replicas set.

5.3 Alternative Control Plane Design
As in previous works [57, 65], our implemented control plane
is centralized. This design was selected for two reasons. First,
it allows us to focus more on the main contributions of this
work: runtime diversity assessment and performance. Sec-
ond, it matches the classical scenario where a single orga-
nization deploys an intrusion-tolerant service [75], and even
the managed (permissioned) blockchain services offered by
major cloud providers (e.g., [3, 39]). In both scenarios, replica
resources are already managed by a single organization that
can host a Lazarus control plane.

However, such design makes the controller a single point
of compromise and disallow decentralized deploymentswhere
replicas are managed by different organizations. Therefore,
we outline a design for a BFT Lazarus control plane, by
considering a set of controller replicas running on top of a
BFT library (e.g., BFT-SMaRt [15]).
Essentially, there are four key issues that must be ad-

dressed to make this design work. First, LTUs cannot trust
a single controller command to reconfigure, so they need
to periodically poll the system (as a typical BFT client) to
see if there are reconfiguration commands for them. Sec-
ond, we need to guarantee that all controller replicas poll
OSINT sources in a (logically) synchronized way to ensure
they will use the same vulnerabilities information to decide
reconfigurations. This can be done by using a distributed
timeout protocol [44]. Third, replicas need to generate secure
and distributed random numbers to be used in the Lazarus
algorithm. There are efficient protocols for that (e.g., [72]).
Finally, it seems difficult to build a solution for “replicated
patching” as the same patch applied on the same image re-
sults on different (binary) representations, making it difficult
to vote for trusted patches. To solve this, one must rely on
trusted curator components (e.g., one per organization) for
applying patches to the quarantined replicas images and
distribute such images to the replicas trusting them.

6 Evaluation of Replica Set Risk
This section evaluates how Lazarus performs on the selec-
tion of dependable replica configurations. As discussed in
Section 3.2, we focus our experimental evaluation solely on
the OS diversity. In particular, we considered 21 OS versions
of the following distributions: OpenBSD, FreeBSD, Solaris,
Windows, Ubuntu, Debian, Fedora, and Redhat.

These experiments emulate live executions of the system
by dividing the collected data into two periods. The goal
is to create a knowledge base in a learning phase that is
used to assess Lazarus’ choices during an execution phase.
(1) The learning phase comprises all vulnerabilities between
2014-1-1 and the beginning of the execution phase; and (2)
the execution phase is divided into monthly intervals, from
January to August of 2018, allowing for eight independent
tests. A run starts on the first day of the execution phase and
then progresses through each day until the end of the interval.
Every day, we check if the executing replica set could be
compromised by an attack exploring the vulnerabilities that
were published in that month. We take the most pessimistic
approach, which is to consider the system as broken if a
single vulnerability comes out affecting at least f + 1 OSes
executing at that time. Therefore, if f of the OSes already
has a patch for the tested vulnerability, it is not counted as
compromised. In this experiment, we consider n = 4, thus
the system can tolerate up to f = 1 compromised replicas in
the set.
Four additional strategies, inspired by previous works,

were defined to be compared with Lazarus:

• Equal: all the replicas use the same randomly-selected
OS during the whole execution. This corresponds to
the scenario where most past BFT systems have been
implemented and evaluated (e.g., [4, 6, 11, 12, 15, 19,
23, 45, 47, 76]). Here, compromising a replica would
mean an opportunity to intrude the remaining ones.
• Random: a configuration of n OSes is randomly se-
lected, and then a new OS is randomly picked to re-
place an existing one each day. This solution repre-
sents a system with proactive recovery and diversity,
but with no informed strategy for choosing the next
CONFIG.
• Common: this strategy is the straw man solution to
prevent the existence of shared vulnerabilities among
OSes. This strategy minimizes the number of common
vulnerabilities for each set and was introduced in pre-
vious vulnerability studies [33, 34].
• CVSS v3: this strategy is very similar to ours as it tries
different combinations to find the best one that mini-
mizes the sum of CVSS v3 score.

6.1 Diversity vs Vulnerabilities
We evaluate how each strategy can prevent the replicated
system from being compromised. Each strategy is analyzed

Lazarus: Automatic Management of Diversity in BFT Systems Middleware ’19, December 9–13, 2019, Davis, CA, USA

 0

 20

 40

 60

 80

 100

JAN FEB MAR APR MAY JUN JUL AUG

C
o
m

p
ro

m
is

e
d
(%

) Lazarus
CVSSv3

Common
Random

Equal

Figure 5. Compromised system runs over eight months.

over 1000 runs throughout the execution phase in monthly
slots. Different runs are initiated with distinct random num-
ber generator seeds, resulting in potentially different OS
selections over time. On each day, we check if there is a
vulnerability affecting more than one replica in the current
CONFIG, and in the affirmative case the run is stopped.

Results: Figure 5 compares the percentage of compro-
mised runs of all strategies. Each bar represents the per-
centage of runs that did not terminate successfully (lower is
better). Lazarus presents the best results for every month.
The Random and Equal strategies perform worse because
eventually, they pick a group of OSes with common vulnera-
bilities as they do not make decisions with specific criteria.
Although some criteria guide the other strategies, most of
them present a majority of executions compromised during
the experiments. This result provides evidence that Lazarus
improves the dependability, reducing the probability that
f + 1 OSes eventually become compromised and, contrary
to intuition, shows that changing OSes every day with no
criteria tend to create unsafe configurations.
Nonetheless, the results from May deserve a more care-

ful inspection. We have identified some CVEs that make it
very difficult to survive to common vulnerabilities even us-
ing the Lazarus strategy. For example, CVE-2018-1125 and
CVE-2018-8897 affect a few Ubuntu and Debian releases si-
multaneously. There are also a set of vulnerabilities affecting
several Windows releases (e.g., CVE-2018-8134 and CVE-
2018-0959). We also found a vulnerability (CVE-2018-1111)
that affects few Fedora releases and one Redhat release.

6.2 Diversity vs Attacks
This experiment evaluates the same strategies when facing
notable attacks that appeared in 2017: WannaCry [43], Stack-
clash [9], and Petya [56]. Each of these attacks potentially
exploits several flaws, some of which affecting different OSes.
The attacks were selected by searching the security news
sites for high impact problems, most of them related to more
than one CVE. As some of the CVEs include applications, we
added more vulnerabilities to the database for this purpose.
Since some of these attacks might have been prepared

months before the vulnerabilities are publicly disclosed, we
augmented the execution phase to the full eight months.
Therefore, we set the learning phase to begin on 2014-1-1 and

 0

 20

 40

 60

 80

 100

WannaCry StackClash Petya All

C
o
m

p
ro

m
is

e
d
(%

) Lazarus
CVSSv3

Common
Random

Equal

Figure 6. Compromised runs with notable attacks.

to end on 2017-12-31. The execution phase comprises January
to August of 2018. As before, the strategies are executed over
1000 runs.

Results: Figure 6 shows the percentage of compromised
runs for each attack and all attacks put together. Lazarus
is the best at handling the various scenarios, with almost
no compromised executions. The StackClash is the most
destructive attack as it is the one affecting more OSes. There-
fore, decisions guided by a criteria that aim to avoid common
vulnerabilities may also fail. Nevertheless, the results show
that such strategies do improve the resilience to attacks.

7 Performance Evaluation
In this section, we present some experiments conducted to
evaluate Lazarus: we run the BFT-SMaRt microbenchmarks
in our virtualized environment (1) to compare the perfor-
mance of 17 OS versions4 against a homogeneous bare metal
setup and (2) to measure the performance of specific diverse
setups; (3) we analyze the performance of the system dur-
ing Lazarus-managed reconfigurations; and (4) we evaluate
three BFT services running in our infrastructure.
These experiments were conducted in a cluster of Dell

PowerEdge R410 machines, where each one has 32 GB of
memory and two quad-core 2.27 GHz Intel Xeon E5520 pro-
cessor with hyper-threading, i.e., supporting 16 hardware
threads on each node. The machines communicate through
a gigabit Ethernet network. Each server runs Ubuntu Linux
14.04 LTS (3.13.0-32-generic Kernel) and VirtualBox 5.1.28,
for supporting the execution of VMs with different OSes. Ad-
ditionally, Vagrant 2.0 was used as the provisioning tool to
automate the deployment process. We configure BFT-SMaRt
1.1 with four replicas (f = 1), one per physical machine.

Table 2 lists the 17 OS versions used in the experiments
and the number of cores used by their corresponding VMs.
These values correspond to the maximum number of CPUs
and the amount of memory supported by VirtualBox with
that particular OS. Given these limitations, we setup our
environment to establish a fair baseline by configuring an
homogeneous bare metal environment (BM) that uses only
four cores of the physical machine.

4Here we have less OSes than in Section 6 experiments because not all of
them were supported by Vagrant.

Middleware ’19, December 9–13, 2019, Davis, CA, USA Miguel Garcia, Alysson Bessani, and Nuno Neves

ID Name #Cores Memory

UB14 Ubuntu 14.04 4 15GB
UB16 Ubuntu 16.04 4 15GB
UB17 Ubuntu 17.04 4 15GB
OS42 OpenSuse 42.1 4 15GB
FE24 Fedora 24 4 15GB
FE25 Fedora 25 4 15GB
FE26 Fedora 26 4 15GB
DE7 Debian 7 4 15GB
DE8 Debian 8 4 15GB
W10 Windows 10 4 1GB
WS12 Win. Server 2012 4 1GB
FB10 FreeBSD 10 4 1GB
FB11 FreeBSD 11 4 1GB
SO10 Solaris 10 1 1GB
SO11 Solaris 11 1 1GB
OB60 OpenBSD 6.0 1 1GB
OB61 OpenBSD 6.1 1 1GB

Table 2. The different OSes used in the experiments and the
configurations of their VMs.

7.1 Homogeneous Replicas Throughput
We start by running the BFT-SMaRt microbenchmark using
the same OS version in all replicas. The microbenchmark
considers an empty service that receives and replies variable
size payloads, and is commonly used to evaluate BFT state
machine replication protocols (e.g., [6, 11, 12, 15, 19, 45, 47]).
Here, we consider the 0/0 and 1024/1024 workloads, i.e., 0
and 1024 bytes requests/response, respectively. The experi-
ments employ up to 1400 closed-loop clients spread on seven
machines to create the workload.

Results: Figure 7 shows the throughput of each OS run-
ning the benchmark for both loads. To establish a baseline,
we executed the benchmark in our BM Ubuntu.

The results show some significant differences between
running the system on top of different OSes. This differ-
ence is more significant for the 0/0 workload as it is much
more CPU intensive than the 1024/1024 workload. Ubuntu,
OpenSuse, and Fedora OSes are well supported by our vir-
tualization environment and achieved approx. 66% and 75%
of the BM throughput for the 0/0 and 1024/1024 workloads,
respectively. For Debian, Windows, and FreeBSD, the results
are much worse for 0/0 workloads but close to the previous
group for 1024/1024. Finally, single core VMs running Solaris
and OpenBSD reached no more than 3000 ops/sec with both
workloads.

These results show that the limitations of our virtualiza-
tion platform for supporting different OSes strongly con-
strains the performance of specific OSes in our testbed.

7.2 Diverse Replicas Throughput
In this experiment, we evaluate three diverse sets of four
BFT-SMaRt replicas, one with the fastest OSes (UB17, UB16,
FE24, and OS42), another with one replica of each OS family

10k

20k

30k

40k

50k

60k

B
M

U
B
14

U
B
16

U
B
17

O
S
42

FE
24

FE
25

FE
26

D
E
7

D
E
8

W
10

W
S
12

FB
10

FB
11

S
O

10
S
O

11
O

B
60

O
B
61

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

0/0
1024/1024

Figure 7. Microbenchmark results under 0/0 and 1024/1024
workloads for homogeneous configurations.

0

5k

10k

15k

20k

0/0 1024/1024T
h
ro

u
g
h
p
u
t
(o

p
s
/s

e
c
)

[UB17, UB16, FE24, OS42]

3
9
4
4
5

[UB16, W10, SO10, OB61]
[OB60, OB61, SO10, SO11]

Figure 8. Microbenchmark results under 0/0 and 1024/1024
workloads for three diverse configurations.

(UB16,W10, SO10, and OB61), and a last one with the slowest
OSes (OB60, OB61, SO10, and SO11). The idea is to set upper
and lower bounds on our configurations throughput.

Results: Figure 8 shows that throughput drops from 39k
to 6k for the 0/0 workload (65% and 10% of the BM perfor-
mance), and from 11.5k to 2.5k for the 1024/1024 workload
(82% and 18% of the BM performance). When comparing
these two sets with the non-diverse sets of Figure 7, the
fastest set is in 7th , and the slowest set is in 16th . It is worth
to stress that the slowest set is composed of OSes that only
support a single CPU – due to the VirtualBox limitations –
therefore the low performance is somewhat expected. The
set with OSes from different families is very close to the
slowest set, as two of the replicas use single-CPU OSes, and
BFT-SMaRt makes progress in the speed of the 3rd fastest
replica (a Solaris VM) as its Byzantine quorum needs three
replicas for ordering requests with f = 1. These results show
that running Lazaruswith current virtualization technology
results in a significant performance variation, depending on
the configurations selected by the system.

7.3 Performance During Reconfiguration
Another relevant feature of Lazarus is to adapt the replicas
over time. It leverages on the BFT-SMaRt reconfiguration
protocol to add and remove replicas while BFT state is main-
tained correct and up to date.
In this experiment, we compare the replicas reconfigura-

tion in the homogeneous BM environment with a Lazarus
setup (the initial OS configuration is DE8, OS42, FE26, and

Lazarus: Automatic Management of Diversity in BFT Systems Middleware ’19, December 9–13, 2019, Davis, CA, USA

0

3k

6k

9k

12k

 0 20 40 60 80 100 120 140 160 180 200

State
checkpoint

State
checkpoint

Boot time approx. 2 mins
(background)

Ubuntu 14.04 added Ubuntu 14.04 removed

State transfer

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

Time (secs)

(a) Bare metal (homogeneous).

0

3k

6k

9k

12k

 0 20 40 60 80 100 120 140 160 180 200

Ubuntu 16.04 added OpenSuse 42.1 removed

State
checkpoint

State
checkpoint

Boot time
(background)

State transfer

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

Time (secs)

(b) Lazarus (diverse).

Figure 9. Effect of a reconfiguration on the KVS performance under a 50/50-YCSB workload (1kB values and 500MB state).

SO11) to measure the overhead of Lazarus-induced recon-
figurations. We execute this experiment with an in-memory
Key-Value Store (KVS) service that comes with the BFT-
SMaRT library. The experiment was conducted with a YCSB
[24] workload of 50% of reads and 50% of writes, with values
of 1024 bytes associated with small numeric keys. Due to
the virtualization limitations, shown in the previous experi-
ments, we used a workload that best fits both environments.
Then we setup the benchmark to send approximately 4000
operations per second over a state of 500MBs. We selected
a time frame of 200 secs to show the performance during a
reconfiguration (i.e., the addition of a new replica before the
removal of the old one) using the BFT-SMaRt reconfiguration
protocol [15].

Results: Figure 9 shows the KVS throughput during re-
configurations when running on bare metal and on Lazarus,
as measured with the YCSB benchmark. In both scenarios,
there are two types of performance drops. The first one,
due to state checkpoints, comprises the period in which
BFT-SMaRt replicas trim their operation logs and save a
snapshot of their state. The second one, due to state trans-
fers, happens when the newly added replica fetches the state
from other replicas. The performance issues caused by these
events were already identified, and mitigated in a previous
work [14].5 Both experiments show similar checkpoint dura-
tion. Although Lazarus is slower in transferring state, it is
faster to execute the log and reach the other replicas state
due to its virtualized environment. The BM booting time
for Ubuntu 14.04 was more than 2 mins, while, in Lazarus,
Ubuntu 16.04 boots in 40 secs.

5We employ the standard checkpoint and state transfer protocols of BFT-
SMaRt and not the one introduced in [14] as the developers of the system
pointed them as more stable.

7.4 Application Benchmarks
Our last set of experiments aims to measure the throughput
of three existing BFT services built on top of BFT-SMaRt
when running in Lazarus:

• KVS is the same application employed in Section 7.3.
It represents a consistent non-relational database that
stores data in memory, similarly to a coordination ser-
vice (an evaluation scenario used in many recent pa-
pers on BFT [12, 47]). In this evaluation, we employ
the YCSB 50/50 read/write workload with values of 4k
bytes.
• SieveQ [35] is a BFT message queue service that can
also be used as an application-level firewall. Its archi-
tecture, based on several filtering layers, reduces the
costs of filtering invalid messages in a BFT-replicated
state machine. In our evaluation, we consider that all
the layers were running on the same four physical
machines as the diverse BFT-SMaRt replicas (under
different OSes). The workload imposed on the system
is composed of messages of 1k bytes.
• BFT ordering for Hyperledger Fabric [69] is the first
BFT ordering service for Fabric [5]. Fabric is an ex-
tensible blockchain platform designed for business
applications. The ordering service is the core of Fabric,
being responsible for ordering and grouping issued
transactions in signed blocks that form the blockchain.
In our evaluation, we consider transactions of 1k bytes,
blocks of 10 transactions and a single block receiver.

As in Section 7.2, we run the applications on the fastest
and slowest diverse replica sets and compare them with the
results obtained in bare metal.

Results: Figure 10 shows the peak sustained throughput
of the applications. The KVS results show a throughput of

Middleware ’19, December 9–13, 2019, Davis, CA, USA Miguel Garcia, Alysson Bessani, and Nuno Neves

0

5k

10k

KVS SieveQ BFT-Fabric

T
h
ro

u
g
h
p
u
t

(o
p
s
/s

e
c
)

BM
[UB17, UB16, FE24, OS42]
[OB60, OB61, SO10, SO11]

Figure 10. Different BFT applications running in the bare
metal, fastest, and slowest OS configurations.

6.1k and 1.2k ops/sec, for the fastest and slowest configura-
tions, respectively. This corresponds to 86% and 18% of the
7.1k ops/sec achieved on BM.

The SieveQ results show a smaller performance loss when
compared with BM results. More specifically, SieveQ in the
fastest replica set reaches 94% of the throughput achieved on
the BM. Even with the slowest set, the system achieved 53%
of the throughput of BM. This smaller loss is due to its lay-
ered architecture, in which most of the message validations
happen before the message reaches the BFT-replicated state
machine (which is the only layer managed by Lazarus).

The Fabric ordering service results show that running the
application on Lazarus virtualization infrastructure lead
to 91% (fastest set) and 39% (slowest set) of the throughput
achieved on bare metal. Nonetheless, these results do not rep-
resent a significant bottleneck considering the performance
of the Fabric ordering service [5, 69].

8 Related Work
In the last two decades there were a number of BFT sys-
tems/protocols deemed “practical” (e.g., [6, 11, 12, 19, 45, 76]).
Most of these, either ignore the issue of fault independence or
simply assume it will be solved in some way (e.g., N-version
programming [22]). In addition, only a few works address
diversity on BFT using automatic techniques [57, 65], which
are limited [17, 67]. Moreover, only two works made efforts
for evaluating diversity on practical replicated systems.
BASE [21] explores opportunistic OTS diversity in BFT

replication. The system provides an abstraction layer for
running diverse service codebases on top of the PBFT li-
brary [19]. It deals with different representations of the
replica state, allowing a replica that recovers from a fail-
ure to rebuild its state from other replicas. BASE was eval-
uated considering four different OSes and their native NFS
implementations: Linux, OpenBSD, Solaris, and FreeBSD.
The results, from 16 years ago, show the same performance
impacts of diversity. However, BASE does not address the
selection of replicas or the reconfiguration of a replica set.
Phoenix [42] is a cooperative backup system build to

avoid common weaknesses that can compromise multiple
backup nodes. Contrary to Lazarus, which uses vulnerabil-
ity data, their configurations are build by creating cores with
non-overlapping OSes and services. These are discovered

via network scans, and then, different services that use the
same port are (considered) affected by the same vulnerability.
Moreover, there is no mechanism to evolve the configura-
tions over time. Nevertheless, Phoenix mitigates a number
of weaknesses that could compromise an entire system.

9 Discussion & Conclusions
Lazarus is a first response to the long-standing open prob-
lem of managing the diversity of a BFT system to make it
resilient to malicious adversaries. We focused mainly on
two issues: how to select the best replicas’ set to run given
the current threat landscape, and what is the performance
overhead of running a diverse BFT system in practice.

One of the main limitations of Lazarus is its performance
overhead. We ran the replicas on top of VirtualBox, allowing
Lazarus to support 17 OS versions. However, it had a signifi-
cant impact on the performance as it limits the CPU/memory
resources available. Nevertheless, the results also show that
less resource-limited OSes have a similar performance. Thus,
the main overhead is due to virtualization and not (so much)
to diversity.

This paper opens many avenues for future work. First, the
current Lazarus prototype can be improved by implement-
ing a bare metal LTU based on Razor [58] and by implement-
ing the BFT controller outlined in Section 5.3. This would
enable the integration of Lazarus to decentralized Hyper-
ledger Fabric deployments, for instance. Second, Lazarus
replica set reconfiguration can be extended to monitor other
OSINT sources (e.g., IP black lists, Twitter) to obtain addi-
tional timely information about threats [2, 48, 66]. Similarly,
Lazarus can be modified to additionally use the outputs
of IDSes and other network sensors to assess the BFT sys-
tem behavior and trigger replica reconfigurations in case
of need. Finally, the performance variance of diverse BFT
replication could be alleviated if our heuristics took the per-
formance characteristics of the replicas into consideration
when selecting a next configuration. The challenge here
would be to balance the lower risk score with the higher
expected performance. Alternatively, protocols that consider
the heterogeneity of replicas could be employed by the BFT
system. For example, the leader could be allocated in the
fastest replica, or weighted replication can be employed to
give more voting power to faster replicas [13, 68].

Acknowledgements
We thank the anonymous reviewers, and our shepherd, Al-
berto Montresor, for the comments to improve the paper.
This work was supported by FCT through the Abyss project
(PTDC/EEI-SCR/1741/2014), the LASIGE Research Unit (UID/
CEC/00408/2019), and by an individual doctoral scholarship
(SFRH/BD/84375/2012), and by the European Commission
through the H2020 DiSIEM project (700692).

Lazarus: Automatic Management of Diversity in BFT Systems Middleware ’19, December 9–13, 2019, Davis, CA, USA

References
[1] L. Allodi and F. Massacci. 2014. Comparing Vulnerability Severity and

Exploits Using Case-Control Studies. ACM Transactions on Information
and System Security 17, 1 (Aug. 2014), 1–20.

[2] F. Alves, A. Bettini, P. M. Ferreira, and A. Bessani. 2019. Processing
Tweets for Cybersecurity Threat Awareness. CoRR abs/1904.02072
(April 2019). http://arxiv.org/abs/1904.02072

[3] Amazon. 2019. Amazon Managed Blockchain. https:

//aws.amazon.com/managed-blockchain/.
[4] Y. Amir, B. Coan, J. Kirsch, and J. Lane. 2011. Prime: Byzantine Repli-

cation Under Attack. IEEE Transactions on Dependable and Secure
Computing 8, 4 (Dec. 2011), 564–577.

[5] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A.
De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, S. Mu-
ralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith, A.
Sorniotti, C. Stathakopoulou, M. Vukolić, S. Cocco, and J. Yellick. 2018.
Hyperledger Fabric: A Distributed Operating System for Permissioned
Blockchains. In Proceedings of the ACM European Conference on Com-
puter Systems.

[6] P. Aublin, R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić. 2015.
The Next 700 BFT Protocols. ACM Transactions on Computer Systems
32, 4 (Jan. 2015), 1–45.

[7] A. Avizienis and L. Chen. 1977. On the Implementation of N-Version
Programming for Software Fault Tolerance During Execution. In Pro-
ceedings of the Annual International Computer Software andApplications
Conference.

[8] A. Avizienis, J. Laprie, B. Randell, and C. Landwehr. 2004. Basic Con-
cepts and Taxonomy of Dependable and Secure Computing. IEEE
Transactions on Dependable and Secure Computing 1, 1 (Jan. 2004),
11–33.

[9] B. Brenner. 2017. Stack Clash Linux vulnerability: you need to
patch now. https://nakedsecurity.sophos.com/2017/06/20/stack-

clash-linux-vulnerability-you-need-to-patch-now/.
[10] L. Bairavasundaram, S. Sundararaman, A. Arpaci-Dusseau, and R.

Arpaci-Dusseau. 2009. Tolerating File-system Mistakes with EnvyFS.
In Proceedings of USENIX Annual Technical Conference.

[11] J. Behl, T. Distler, and R. Kapitza. 2015. Consensus-Oriented Par-
allelization: How to Earn Your First Million. In Proceedings of the
ACM/IFIP/USENIX International Conference on Middleware.

[12] J. Behl, T. Distler, and R. Kapitza. 2017. Hybrids on Steroids: SGX-Based
High Performance BFT. In Proceedings of the ACM European Conference
on Computer Systems.

[13] C. Berger, H. P. Reiser, J. Sousa, and A. Bessani. 2019. Resilient Wide-
Area Byzantine Consensus Using Adaptive Weighted Replication. In
Proceedings of the IEEE Symposium on Reliable Distributed Systems.

[14] A. Bessani, M. Santos, J. Félix, N. Neves, and M. Correia. 2013. On the
Efficiency of Durable State Machine Replication. In Proceedings of the
USENIX Annual Technical Conference.

[15] A. Bessani, J. Sousa, and E. Alchieri. 2014. State Machine Replica-
tion for the Masses with BFT-SMaRt. In Proceedings of the IEEE/IFIP
International Conference on Dependable Systems and Networks.

[16] L. Bilge, Y. Han, and M. Dell’Amico. 2017. RiskTeller: Predicting the
Risk of Cyber Incidents. In Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security.

[17] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and D. Boneh. 2014.
Hacking Blind. In Proceedings of the IEEE Symposium on Security and
Privacy.

[18] M. Bozorgi, L. Saul, S. Savage, and G. Voelker. 2010. Beyond Heuristics:
Learning to Classify Vulnerabilities and Predict Exploits. In Proceedings
of the ACM International Conference on Knowledge Discovery and Data
Mining.

[19] M. Castro and B. Liskov. 1999. Practical Byzantine Fault Tolerance. In
Proceedings of the USENIX Symposium on Operating Systems Design
and Implementation.

[20] M. Castro and B. Liskov. 2002. Practical Byzantine Fault Tolerance
and Proactive Recovery. ACM Transactions on Computer Systems 20, 4
(Nov. 2002), 398–461.

[21] M. Castro, R. Rodrigues, and B. Liskov. 2003. BASE: Using Abstraction
to Improve Fault Tolerance. ACM Transactions on Computer Systems
21, 3 (Aug. 2003), 236–269.

[22] L. Chen and Algirdas Avizienis. 1978. N-version Programming: A
Fault-Tolerance Approach to Reliability of Software Operation. In
Proceedings of the IEEE Symposium on Fault-Tolerant Computing.

[23] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti. 2009.
Making Byzantine Fault Tolerant Systems Tolerate Byzantine Faults.
In Proceedings of the USENIX Symposium on Networked Design and
Implementation.

[24] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. 2010.
Benchmarking Cloud Serving Systems with YCSB. In Proceedings of
the ACM Symposium on Cloud Computing.

[25] CVSSv3. 2019. Common Vulnerability Scoring System. https://

www.first.org/cvss/specification-document.
[26] Debian. 2018. Debian Security Tracker. https://security-

tracker.debian.org/tracker/.
[27] Y. Deswarte, K. Kanoun, and J. Laprie. 1998. Diversity Against Acciden-

tal and Deliberate Faults. In Proceedings of the Conference on Computer
Security, Dependability, and Assurance: From Needs to Solutions.

[28] T. Distler, R. Kapitza, I. Popov, H. Reiser, and W. Schröder-Preikschat.
2011. SPARE: Replicas on Hold. In Proceedings of the Network and
Distributed System Security Symposium.

[29] J. S. Fraga and D. Powell. 1985. A Fault- and Intrusion-tolerant File
System. In Proceedings of the 3rd IFIP Conference on Computer Security.

[30] FreeBSD. 2019. FreeBSD Advisories. https://www.freebsd.org/

security/advisories.html.
[31] B. Freeman. 2015. A New Defense for Navy Ships: Protection from

Cyber Attacks. https://www.onr.navy.mil/en/Media-Center/Press-

Releases/2015/RHIMES-Cyber-Attack-Protection.aspx.
[32] S. Frei, M. May, U. Fiedler, and B. Plattner. 2006. Large-scale Vulnerabil-

ity Analysis. In Proceedings of the SIGCOMM Workshop on Large-scale
Attack Defense.

[33] M. Garcia, A. Bessani, I. Gashi, N. Neves, and R. Obelheiro. 2011. OS
Diversity for Intrusion Tolerance: Myth or Reality?. In Proceedings
of the IEEE/IFIP International Conference on Dependable Systems and
Networks.

[34] M. Garcia, A. Bessani, I. Gashi, N. Neves, and R. Obelheiro. 2014. Anal-
ysis of Operating System Diversity for Intrusion Tolerance. Software:
Practice and Experience 44, 6 (June 2014), 735–770.

[35] M. Garcia, N. Neves, and A. Bessani. 2018. SieveQ: A Layered BFT Pro-
tection System for Critical Services. IEEE Transactions on Dependable
and Secure Computing 15, 3 (May 2018), 511–525.

[36] I. Gashi, P. Popov, and L. Strigini. 2007. Fault Tolerance via Diversity
for Off-the-Shelf Products: A Study with SQL Database Servers. IEEE
Transactions on Dependable and Secure Computing 4, 4 (Oct 2007),
280–294.

[37] HashiCorp. 2019. Vagrant. https://www.vagrantup.com/.
[38] C. Hawblitzel, J. Howell, M. Kapritsos, J. Lorch, B. Parno, M. Roberts,

S. Setty, and B. Zill. 2015. IronFleet: Proving Practical Distributed
Systems Correct. In Proceedings of the ACM Symposium on Operating
Systems Principles.

[39] IBM. 2019. IBM Blockchain. https://www.ibm.com/blockchain/

platform.
[40] J. Pearson. 2018. A Major Bug In Bitcoin Software Could Have Crashed

the Currency. https://motherboard.vice.com/amp/enus/article/
qvakp3/a-major-bug-in-bitcoin-software-could-have-crashed-the-

currency?.
[41] A. Jain. 2010. Data Clustering: 50 Years Beyond K-means. Pattern

Recognition Letters 31, 8 (June 2010), 651–666.

http://arxiv.org/abs/1904.02072
https://aws.amazon.com/managed-blockchain/
https://aws.amazon.com/managed-blockchain/
https://nakedsecurity.sophos.com/2017/06/20/stack-clash-linux-vulnerability-you-need-to-patch-now/
https://nakedsecurity.sophos.com/2017/06/20/stack-clash-linux-vulnerability-you-need-to-patch-now/
https://www.first.org/cvss/specification-document
https://www.first.org/cvss/specification-document
https://security-tracker.debian.org/tracker/
https://security-tracker.debian.org/tracker/
https://www.freebsd.org/security/advisories.html
https://www.freebsd.org/security/advisories.html
https://www.onr.navy.mil/en/Media-Center/Press-Releases/2015/RHIMES-Cyber-Attack-Protection.aspx
https://www.onr.navy.mil/en/Media-Center/Press-Releases/2015/RHIMES-Cyber-Attack-Protection.aspx
https://www.vagrantup.com/
https://www.ibm.com/blockchain/platform
https://www.ibm.com/blockchain/platform
https://motherboard.vice.com/amp/en_us/article/qvakp3/a-major-bug-in-bitcoin-software-could-have-crashed-the-currency?
https://motherboard.vice.com/amp/en_us/article/qvakp3/a-major-bug-in-bitcoin-software-could-have-crashed-the-currency?
https://motherboard.vice.com/amp/en_us/article/qvakp3/a-major-bug-in-bitcoin-software-could-have-crashed-the-currency?

Middleware ’19, December 9–13, 2019, Davis, CA, USA Miguel Garcia, Alysson Bessani, and Nuno Neves

[42] F. Junqueira, R. Bhagwan, A. Hevia, K. Marzullo, and G. Voelker. 2005.
Surviving Internet Catastrophes. In Proceedings of USENIX Annual
Technical Conference.

[43] L. Kessem. 2017. WannaCry Ransomware Spreads Across the
Globe, Makes Organizations Wanna Cry About Microsoft Vulner-
ability. https://securityintelligence.com/wannacry-ransomware-

spreads-across-the-globe-makes-organizations-wanna-cry-about-

microsoft-vulnerability/.
[44] J. Kirsch, S. Goose, Y. Amir, Dong Wei, and P. Skare. 2014. Survivable

SCADAVia Intrusion-Tolerant Replication. IEEE Transactions on Smart
Grid 5, 1 (Jan. 2014), 60–70.

[45] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. 2010. Zyzzyva:
Speculative Byzantine Fault Tolerance. ACM Transactions on Computer
Systems 27, 4 (Jan. 2010), 1–39.

[46] H. Lee, J. Seibert, E. Hoque, C. Killian, and C. Nita-Rotaru. 2014. Turret:
A Platform for Automated Attack Finding in Unmodified Distributed
System Implementations. In Proceedings of the IEEE International Con-
ference on Distributed Computing Systems.

[47] S. Liu, P. Viotti, C. Cachin, V. Quema, and M. Vukolic. 2016. XFT:
Practical Fault Tolerance Beyond Crashes. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation.

[48] Y. Liu, Armin Sarabi, Jing Zhang, P. Naghizadeh, M. Karir, M. Bailey,
and M. Liu. 2015. Cloudy with a Chance of Breach: Forecasting Cyber
Security Incidents. In Proceedings of the USENIX Security Symposium.

[49] R. Martins, R. Gandhi, P. Narasimhan, S. Pertet, A. Casimiro, D. Kreutz,
and P. Veríssimo. 2013. Experiences with Fault-Injection in a Byzan-
tine Fault-Tolerant Protocol. In Proceedings of the ACM/IFIP/USENIX
International Conference on Middleware.

[50] F. Massacci and V. Nguyen. 2010. Which is the Right Source for
Vulnerability Studies? An Empirical Analysis on Mozilla Firefox. In
Proceedings of the International Workshop on Security Measurements
and Metrics.

[51] Microsoft. 2017. Microsoft Security Advisories and Bulletins. https:
//technet.microsoft.com/en-us/library/security/.

[52] Mitre. 2019. Common Platform Enumeration. http://cpe.mitre.org/.
[53] Mitre. 2019. CVE Terminology. http://cve.mitre.org/about/

terminology.html.
[54] National Institute of Standards and Technology. 2019. National Vul-

nerability Database. http://nvd.nist.gov/.
[55] Oracle. 2019. Map of CVE to Advisory/Alert. https:

//www.oracle.com/technetwork/topics/security/public-vuln-

to-advisory-mapping-093627.html.
[56] D. Palmer. 2017. Petya ransomware attack: What it is, and why this is

happening again. https://www.zdnet.com/article/petya-ransomware-

attack-what-it-is-and-why-this-is-happening-again/.
[57] M. Platania, D. Obenshain, T. Tantillo, R. Sharma, and Y. Amir. 2014.

Towards a Practical Survivable Intrusion Tolerant Replication System.
In Proceedings of the IEEE Symposium on Reliable Distributed Systems.

[58] Puppet. 2019. How Razor Works. https://puppet.com/docs/pe/2019.1/

howrazorworks.html.
[59] V. Rahli, I. Vukotic, M. Volp, and P. Veríssimo. 2018. Velisarios: Byzan-

tine Fault-Tolerant Protocols Powered by Coq. In Proceedings of the
European Symposium on Programming.

[60] RedHat. 2019. RedHat CVE Database. https://access.redhat.com/

security/cve/.
[61] Machine Learning Group at the University of Waikato. 2019. WEKA.

http://www.cs.waikato.ac.nz/ml/weka/.

[62] Oracle. 2019. VirtualBox. https://www.virtualbox.org/.
[63] CVE Details. 2019. The Ultimate Security Vulnerability Datasource.

http://www.cvedetails.com/.
[64] Exploit Database. 2019. Offensive SecurityâĂŹs Exploit Database

Archive. https://www.exploit-db.com/.
[65] T. Roeder and F. Schneider. 2010. Proactive Obfuscation. ACM Trans-

actions on Computer Systems 28, 2 (July 2010), 1–54.
[66] C. Sabottke, O. Suciu, and T. Dumitras. 2015. Vulnerability Disclosure

in the Age of Social Media: Exploiting Twitter for Predicting Real-
World Exploits. In Proceedings of the USENIX Security Symposium.

[67] K. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.
Sadeghi. 2013. Just-In-Time Code Reuse: On the Effectiveness of Fine-
Grained Address Space Layout Randomization. In Proceedings of the
IEEE Symposium on Security and Privacy.

[68] J. Sousa and A. Bessani. 2015. Separating the WHEAT from the Chaff:
An Empirical Design for Geo-Replicated State Machines. In Proceedings
of the IEEE Symposium on Reliable Distributed Systems.

[69] J. Sousa, A. Bessani, and M. Vukolić. 2018. A Byzantine Fault-Tolerant
Ordering Service for the Hyperledger Fabric Blockchain Platform. In
Proceedings of the IEEE/IFIP International Conference on Dependable
Systems and Networks.

[70] P. Sousa, A. Bessani, M. Correia, N. Neves, and P. Veríssimo. 2010.
Highly Available Intrusion-Tolerant Services with Proactive-Reactive
Recovery. IEEE Transactions on Parallel and Distributed Systems 21, 4
(April 2010), 452–465.

[71] P. Sousa, N. Neves, and P. Veríssimo. 2007. Hidden Problems of Asyn-
chronous Proactive Recovery. In Proceedings of the Workshop on Hot
Topics in System Dependability.

[72] E. Syta, P. Jovanovic, E. Kogias, N. Gailly, L. Gasser, I. Khoffi, M. Fischer,
and B. Ford. 2017. Scalable Bias-Resistant Distributed Randomness. In
Proceedings of the IEEE Symposium on Security and Privacy.

[73] R. Thorndike. 1953. Who Belongs in the Family. Psychometrika 18, 4
(1953), 267–276.

[74] Ubuntu. 2019. Ubuntu Security Notices. https://usn.ubuntu.com/usn/.
[75] P. Veríssimo, N. Neves, and M. Correia. 2003. Intrusion-Tolerant Ar-

chitectures: Concepts and Design. In Architecting Dependable Systems.
Springer, Chapter 1, 3–36.

[76] G. Veronese, M. Correia, A. Bessani, L. Lung, and P. Veríssimo. 2013.
Efficient Byzantine Fault-Tolerance. IEEE Transactions on Computers
62, 1 (Nov. 2013), 16–30.

[77] D. Williams-King, G. Gobieski, K. Williams-King, J. Blake, X. Yuan, P.
Colp, M. Zheng, V. Kemerlis, J. Yang, and W. Aiello. 2016. Shuffler: Fast
and Deployable Continuous Code Re-randomization. In Proceedings of
the USENIX Symposium on Operating Systems Design and Implementa-
tion.

[78] C. Xiao, A. Sarabi, Y. Liu, B. Li, M. Liu, and T. Dumitras. 2018. From
Patching Delays to Infection Symptoms: Using Risk Profiles for an
Early Discovery of Vulnerabilities Exploited in theWild. In Proceedings
of the USENIX Security Symposium.

[79] H. Xue, N. Dautenhahn, and S. King. 2012. Using Replicated Execution
for a More Secure and Reliable Web Browser. In Proceedings of the
Network and Distributed System Security Symposium.

[80] Y. Yeh. 2004. Unique Dependability Issues for Commercial Airplane Fly
by Wire Systems. In Proceedings of the IFIP World Computer Congress:
Building the Information Society.

https://securityintelligence.com/wannacry-ransomware-spreads-across-the-globe-makes-organizations-wanna-cry-about-microsoft-vulnerability/
https://securityintelligence.com/wannacry-ransomware-spreads-across-the-globe-makes-organizations-wanna-cry-about-microsoft-vulnerability/
https://securityintelligence.com/wannacry-ransomware-spreads-across-the-globe-makes-organizations-wanna-cry-about-microsoft-vulnerability/
https://technet.microsoft.com/en-us/library/security/
https://technet.microsoft.com/en-us/library/security/
http://cpe.mitre.org/
http://cve.mitre.org/about/terminology.html
http://cve.mitre.org/about/terminology.html
http://nvd.nist.gov/
https://www.oracle.com/technetwork/topics/security/public-vuln-to-advisory-mapping-093627.html
https://www.oracle.com/technetwork/topics/security/public-vuln-to-advisory-mapping-093627.html
https://www.oracle.com/technetwork/topics/security/public-vuln-to-advisory-mapping-093627.html
https://www.zdnet.com/article/petya-ransomware-attack-what-it-is-and-why-this-is-happening-again/
https://www.zdnet.com/article/petya-ransomware-attack-what-it-is-and-why-this-is-happening-again/
https://puppet.com/docs/pe/2019.1/how_razor_works.html
https://puppet.com/docs/pe/2019.1/how_razor_works.html
https://access.redhat.com/security/cve/
https://access.redhat.com/security/cve/
http://www.cs.waikato.ac.nz/ml/weka/
https://www.virtualbox.org/
http://www.cvedetails.com/
https://www.exploit-db.com/
https://usn.ubuntu.com/usn/

	Abstract
	1 Introduction
	2 Revisiting BFT for Security
	3 Overview and Preliminaries
	3.1 System and Adversary Model
	3.2 Diversity of Replicas

	4 Diversity-aware Reconfigurations
	4.1 Finding Common Vulnerabilities
	4.2 Measuring Vulnerability Severity
	4.3 Measuring Configurations Risk
	4.4 Selecting Configurations

	5 Lazarus Implementation
	5.1 Centralized Control Plane
	5.2 Execution Plane
	5.3 Alternative Control Plane Design

	6 Evaluation of Replica Set Risk
	6.1 Diversity vs Vulnerabilities
	6.2 Diversity vs Attacks

	7 Performance Evaluation
	7.1 Homogeneous Replicas Throughput
	7.2 Diverse Replicas Throughput
	7.3 Performance During Reconfiguration
	7.4 Application Benchmarks

	8 Related Work
	9 Discussion & Conclusions
	References

