
Future Generation Computer Systems 93 (2019) 473–485

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

BigFlow: Real-time and reliable anomaly-based intrusion detection
for high-speed networks
Eduardo Viegas a,b, Altair Santin a,∗, Alysson Bessani b, Nuno Neves b

a Graduate Program in Computer Science / Pontifical Catholic University of Parana, Curitiba, Parana, Brazil
b LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal

h i g h l i g h t s

• A dataset containing over a year of real and labeled network traffic.
• Machine and stream learning classifiers reliability is evaluated over time.
• An intrusion detection engine that maintain its accuracy over long periods of time.
• A scalable intrusion detection engine using big data streaming processing.

a r t i c l e i n f o

Article history:
Received 31 March 2018
Received in revised form 9 August 2018
Accepted 22 September 2018
Available online 1 November 2018

Keywords:
Data stream
Stream learning
Classification reliability
Anomaly-based intrusion detection

a b s t r a c t

Existingmachine learning solutions for network-based intrusion detection cannotmaintain their reliabil-
ity over timewhen facing high-speed networks and evolving attacks. In this paper,we propose BigFlow, an
approach capable of processing evolving network trafficwhile being scalable to large packet rates. BigFlow
employs a verification method that checks if the classifier outcome is valid in order to provide reliability.
If a suspicious packet is found, an expert may help BigFlow to incrementally change the classification
model. Experiments with BigFlow, over a network traffic dataset spanning a full year, demonstrate that
it can maintain high accuracy over time. It requires as little as 4% of storage and between 0.05% and 4%
of training time, compared with other approaches. BigFlow is scalable, coping with a 10-Gbps network
bandwidth in a 40-core cluster commodity hardware.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

According to the CISCO network forecast report, the worldwide
network traffic in 2016 was 96 EB/month and is expected to reach
278 EB/month in 2021 [1]. Current network devices can reach a
bandwidth of 100Gbps, and there are plans to support a bandwidth
of 400 Gbps in the near future [2]. Moreover, recent network-
based cyber-attacks also take advantage of this scenario to hide
themselves – given that they deceive detection engines – by taking
advantage of the large amount of data that should be inspected
in a very short time. For instance, in October 2016, a DDoS attack
with 100 thousand malicious endpoints surpassed a bandwidth
of 1.2 Tbps in a domain name server infrastructure. Attacks of
this kind can potentially bring down several sites in US and Eu-
rope, including Twitter, Netflix, and CNN [3]. Nonetheless, reports
of attacks reaching more than 100 Gbps of traffic are becoming
surprisingly common nowadays [3,4]. Therefore, operators need

∗ Corresponding author.
E-mail addresses: eduardo.viegas@ppgia.pucpr.br (E. Viegas),

santin@ppgia.pucpr.br (A. Santin), anbessani@ciencias.ulisboa.pt (A. Bessani),
nfneves@ciencias.ulisboa.pt (N. Neves).

access to solutions for real-time analysis of suchmalicious content
over those massive network attacks.

Current approaches for network traffic measurement and anal-
ysis in the Big Data context often rely on Hadoop-based clusters [5,
6]. In general, they store packets as raw data (pcap) to a distributed
filesystem (e.g., HDFS [7]) and process them later. Although such
approaches offer significant improvements in scalability [5], they
lack applicability to real-world environments because in such set-
tings, the network trafficmust be analyzed at line speed for a delay-
free intrusion detection.

Current methods for discovering new network attacks mostly
use unsupervised machine learning (ML) techniques, which typ-
ically require storing the network traffic over a certain time for
identifying unknown anomalies [8]. However, owing to the mas-
sive amount of network packets, their storage for further analysis is
not feasible in most scenarios [9]. Thereby, to enable the near real-
time (as close as possible to the network throughput) detection
of threats, supervised ML techniques should be considered [10].
When using these methods, the traffic behavior is in general rep-
resented as a model, resulting from a computationally expensive

https://doi.org/10.1016/j.future.2018.09.051
0167-739X/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2018.09.051
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2018.09.051&domain=pdf
mailto:eduardo.viegas@ppgia.pucpr.br
mailto:santin@ppgia.pucpr.br
mailto:anbessani@ciencias.ulisboa.pt
mailto:nfneves@ciencias.ulisboa.pt
https://doi.org/10.1016/j.future.2018.09.051


474 E. Viegas, A. Santin, A. Bessani et al. / Future Generation Computer Systems 93 (2019) 473–485

process (the training stage). Afterward, the classifier uses the ob-
tained model, to categorize the input events as either normal or
attacks.

However, as the behavior of traffic changes, either due to new
types of malicious actions or alterations in the transmitted content
(e.g., due to the offering of new services [9,11]), the attack models
require constant revision. Consequently, the model’s accuracy ob-
served on the training dataset might not be evidenced on unseen
data. In such a case, the intrusion detection engine will no longer
be trusted by the operator given that the alarms are not gener-
ated as expected [9]. In this paper, we assess this accuracy loss
experimentally, using a real network traffic dataset spanning a year
and four ML classifiers. Our experiments show that the accuracy of
classifiers trained in the beginning of the year can decrease by up
to 23% during the year.

The identification of changes in the network behavior is a chal-
lenging task, which often requires human intervention for the
reevaluation of the current model’s error rate. Thus, to achieve
reliability, the model must be periodically tested and updated
(e.g., every month). This requires human intervention not only for
rebuilding the model (which takes time and storage) but also for
ensuring that the productionmodel is operational, with acceptable
error rates.

This paper proposes BigFlow, a system for reliable real-time
network traffic classification in high-speed networks. Our proposal
is based on two main insights. First, BigFlow determines whether
the classification outcome should be accepted or not, in contrast
to traditional approaches, which always classify events as normal
or attack. The purpose is to make the administrator aware that a
possible change has occurred in the network traffic behavior. In
this sense,when an event is rejected, there is a high probability that
a new network traffic behavior is taking place. Although classifica-
tion rejection has been used in other areas (e.g., for optical charac-
ter recognition (OCR) [12] ormedical diagnosis [13]), in these areas
contextual information can help to identify pattern deviations;
however, in the high-speed network traffic field, such a task is
challenging. The main challenge that is not present in other ar-
eas [12,13] relates to rejections based on the classifier confidence.
This is because a classifier may become unreliable when facing
unseen network traffic behavior, thereby committing classification
mistakes with high confidence [14]. The second insight relates to
the fact that BigFlow employs stream learning techniques [15] to
analyze traffic in near real time. Such techniques support incre-
mental model updates based on the rejected instances. The expec-
tation is that after a period (e.g., within one week), the rejected
event is properly classified by an expert or a tool (e.g. signature-
basednetwork-based intrusiondetection system— NIDS) based on
public information (e.g., new indicators of compromise). A major
advantage of this approach is that the incremental model updates,
that incorporates new knowledge into the model, is based only
on correctly classified events. This decreases the risk of inaccurate
detections, which may lead to a high rate of false positives when
processing further packets. Moreover, incremental model updates
significantly decrease training time because the current model is
not discarded, which is advantageous for high-speed networks.

Rejecting low-confidence classifications in an NIDS – the key
idea of this work – leads to two important benefits: better detec-
tion accuracy (i.e., fewer misclassifications) and the identification
of newcharacteristics of the evolving traffic,which are thenused to
incrementally update the classifier model. These benefits improve
BigFlow reliability over time, even if the network’s traffic behavior
changes, at the same time significantly decreasing the amount
of computational and storage resources needed to operate the
system.

In combination, these techniques make BigFlow scalable with
the number of nodes employed in the system (with a network

traffic processing capacity of up to 10 Gbps in our experiments),
without losing accuracy over time.

In summary, the paper includes four contributions:

1. We provide the first publicly available dataset for bench-
marking intrusion detection engines over a long period,
called MAWIFlow. This dataset contains real and labeled
network traffic records with 158 features each, extracted
from 15-min-long daily traces spread over a year of real
network traffic. MAWIFlow is composed of over 6 billion
network flows with almost 8 TB of data;

2. We analyze the behavior of several traditional ML classifiers
usingMAWIFlow. Our findings show that current approaches
are unable to cope with traffic changes observed in real
networks, and their accuracy decreases significantly in a few
months after the training period;

3. We present BigFlow, a reliable stream learning intrusion
detection engine that can maintain its accuracy over long
periods of time. Our solution evaluates the classification reli-
ability, while it allows to incrementally update the intrusion
detection engine. BigFlow requires as little as 4% of storage
and from 0.05% to 4% of training time, compared with cur-
rent intrusion detection approaches in the literature;

4. We address the problem of network traffic classification us-
ing big data streaming processing, without data persistence,
aiming to scale up to relevant data rates on commodity
hardware. Our experiments show that BigFlow can copewith
a 10 Gbps traffic rate in a 40-core cluster of commodity
hardware.

The remainder of this paper is organized as follows: Section
2 presents the background for BigFlow; Section 3 presents the
MAWIFlow dataset and evaluation using several traditional ML
schemes; Section 4 describes the BigFlow proposal, while Section 5
describes the prototype architecture and implementation; Section
6 presents the evaluation of our solution; Section 7 describes the
related works; and Section 8 concludes our work.

2. Background

2.1. Stream processing

BigFlow is built on top of a stream processing platform for
dealing with large volumes of network traffic in near real-time.
Stream processing platforms (e.g., Apache Storm [16] and Apache
Flink [17]) receive data from registered sources and compute over
such data through a set of processing elements (PE). Each PE is
responsible for a specific operation on the arriving data and for
sending the result to another PE, until the computation completes.
In general, the messages transmitted through the PEs can be for-
warded according to three approaches: shuffle, keyed, or broadcast.
In the shuffle approach, the PE messages are sent to another PE
in a uniformly distributed manner. The keyed approach groups
messages according to a key (e.g., IP address) and sends them to the
PE associatedwith it. Finally, the broadcast approach transmits the
messages to every PE of the same type. The near real-time process-
ing using such platforms is achieved by keeping the computation in
each PE type as small as possible, and by distributing the message
load uniformly through many PE in parallel.

2.2. ML for intrusion detection

In general, network attacks are detected using either signature-
based or anomaly-based techniques [19]. In the former approach,
the attack patterns must be known and implemented in the sys-
tem because the detection of attacks is achieved by scanning
the packets for well-known attack patterns. The main drawback



E. Viegas, A. Santin, A. Bessani et al. / Future Generation Computer Systems 93 (2019) 473–485 475

Table 1
Network-level feature set used in the experiments throughout this work [18].
Type Grouping Features

Host-based Host to All Number of Packets, Number of Bytes, Average Packet Size, Percentage of Packets (PSH Flag), Percentage of Packets
(SYN and FIN Flags), Percentage of Packets (FIN Flag), Percentage of Packets (SYN Flag), Percentage of Packets (ACK
Flag), Percentage of Packets (RST Flag), Percentage of Packets (ICMP Redirect Flag), Percentage of Packets (ICMP
Redirect Flag), Percentage of Packets (ICMP Time Exceeded Flag), Percentage of Packets (ICMP Unreachable Flag),
Percentage of Packets (ICMP Other Types Flag), Average Packet Size, Throughput in Bytes, Protocol

Flow-based

Source to Destination Number of Packets, Number of Bytes, Average Packet Size, Percentage of Packets (PSH Flag), Percentage of Packets
(SYN and FIN Flags), Percentage of Packets (FIN Flag), Percentage of Packets (SYN Flag), Percentage of Packets (ACK
Flag), Percentage of Packets (RST Flag), Percentage of Packets (ICMP Redirect Flag), Percentage of Packets (ICMP
Redirect Flag), Percentage of Packets (ICMP Time Exceeded Flag), Percentage of Packets (ICMP Unreachable Flag),
Percentage of Packets (ICMP Other Types Flag), Throughput in Bytes

Destination to Source

Both

of this approach is the high number of patterns that need to
be stored/analyzed as every attack has a unique signature [20].
Nonetheless, attackers often make changes to already known at-
tacks to evade this detection technique. For instance, only in the
first quarter of 2017, more than 55 thousand attack variations for
only 15 attack families were discovered [21].

Recently, anomaly detection has been done using ML tech-
niques, which can be broadly divided into unsupervised and su-
pervised categories. Unsupervised ML techniques are simpler to
use but usually result in many false positives [8]. Therefore, they
are seldom used in practice. Supervised ML methods require a
model of the network’s behavior, which is built in a computa-
tionally expensive process – the training stage – using a training
dataset [10]. Afterward, the built model can be used in production
(real-world environment) by a classifier algorithm, to classify input
events as either normal or attacks. Thus, as long as the network
traffic behavior follows the same pattern captured in the training
stage, the constructed classifiermodel can be used for the real-time
detection of threats [10].

When using ML for intrusion detection, the network traffic
behavior is represented by a set of features. In general, when
network-level attacks are considered, the features are usually ex-
tracted according to the network flow. Table 1 lists a subset of the
features that were used throughout the experiments in this paper.
The features in Table 1 are divided into two groups: Host-based
and Flow-based. The former refers to the features extracted from
all the data sent from a specific host during a period. In contrast,
the latter refers to the communication between two entities over
the network, which can be from source to destination, destination
to source, or both.

Unfortunately, general-purpose networks rarely exhibit stable
traffic patterns [9,11]. On the contrary, the set of target concepts
(e.g., network traffic classes) learned during the training stage
often evolves over time [15]. For instance, the behavior of a net-
work may change because new services are added [9] or owing to
modifications of the attacks’ execution.

The identification of changes in production networks typically
involves a computationally demanding task of model rebuilding,
which can only be performed if there is access (storage) of recently
observed traffic and prior (manual) classification of events. Fur-
thermore, model rebuilding cannot be postponed, because while a
newmodel is being constructed, themodel currently in use should
maintain acceptable error rates, ideally as low as the ones observed
during the training stage [9]. This makes the process unfeasible for
most high-speed networks.

In other fields, a typical approach to deal with evolving envi-
ronments is to resort to stream learning algorithms [15]. These
techniques allow the update of the detection mechanism to be
performed at the arrival of each new event, incrementally, without
discarding the current model. Thus, the time needed for building
an updated classifier model can be shortened [9]. However, these
techniques typically rely on supervised learning, in which events
need to be previously classified [8]. Moreover, it is necessary to

devise a method for event selection that would be suitable for
incrementally updating the model [15]. This renders the current
approaches not applicable to networked environments [10].

Another solution that has been explored for improving the
reliability of ML classifiers – but not for intrusion detection – is
to reject classifications [12]. Therefore, the classification outcome
may be rejected according to the given event class (Normal or
Attack) probability (confidence). For example, events classified as
attacks could only be accepted when their associated confidence
measure is above 90%. This approach has been employed in areas
where errors have a high associated cost, such as OCR [12] and
medical diagnostics [13]. However, in the field of network detec-
tion, the reliability of detection is often neglected [9], leading to an
unreliable intrusion detection system.

3. MAWIFlow dataset and analysis

In this section, we describe a novel dataset based on real net-
work traffic [22], and experiments in which we evaluated the
accuracy of traditional intrusion detection methods over time.

3.1. MAWIFlow

To benchmark ML-based NIDS, we present the MAWIFlow
dataset (i.e., a collection of records labeled as either Normal or
Attack), assembled based on real network flows collected over a
year. A dataset for the tasks that we study should fulfill a number
of requirements, including realism and high variability, having
labeled data with correctly classified events, being reproducible,
and being publicly available [18]. Ideally, the data should be ob-
tained from real network activity, as it provides all the expected
properties fromanevaluation testbed [8]. However, collecting such
data is difficult and, when obtained, its sharing is unlikely owing to
privacy concerns [9]. Furthermore, establishing proper event labels
for network activity is a challenging task, which often requires
human intervention [10].

MAWIFlow is based on real and publicly available network traf-
fic. More specifically, it is based on the network flows thatwere ex-
tracted from the MAWI network packets traces [22] (Samplepoint-
F in MAWI archive), collected daily for a 15-min-long interval,
from a transit link between Japan and USA. During the period of
recording, the Samplepoint was made of a 1Gbps network traffic
link. In addition, the network traces are anonymized, i.e. network
packet payloads are removed, and sensitive network packet header
fields are anonymized. The labeling of recordswasperformedusing
MAWILab [8], which labels the daily anomalous events (network
flows) fromMAWI through a combination of several unsupervised
anomaly detectors. For the purpose of this work, we consider
all of the network traffic available for the year 2016. Network
anomalies are classified according to their attack types as labeled
byMAWILab. Therefore, network anomalies can bemade of several
types of portscan, network scan, denial-of-service, distributed denial-
of-service, amongst others network-level attacks [22].



476 E. Viegas, A. Santin, A. Bessani et al. / Future Generation Computer Systems 93 (2019) 473–485

Table 2
MAWIFlow statistics.
Field Value

Average Daily Network Packets ∼110 Millions
Average Daily Network Flows ∼22 Millions
Average Daily Throughput ∼570 Mbps
Average Daily Anomalous Flows ∼1.7 Millions
Average Daily Dataset Size ∼21.7 GB
Total Network Packets ∼30.36 Billions
Total Network Flows ∼6.07 Billions
Total Dataset Size ∼7.9 TB

The MAWIFlow dataset was built using the BigFlow feature ex-
traction module (discussed in Section 4.1), which extracted 158
host-based and flow-based features, some of which have been em-
ployed in previousworks (15 features in [23], 21 features in [24], 60
features in [25], and 62 features in [18]). Table 1 provides a partial
list of those features. For the label assignment process, MAWI-
Flow assigns labels that are associated with the flows from which
the features were extracted. Table 2 summarizes the MAWIFlow
dataset. As can be seen, this dataset contains over six billion net-
work flows, extracted by analyzing more than 30 billion network
packets (real traffic) for the year 2016.

The original MAWIFlow dataset contains over 7.9 TB of data. A
stratification process was needed to reduce its size, enabling its
sharing and facilitating its use for the NIDS evaluation. Thereby,
the proportional random stratified sampling without replacement
method [26] was employed to generate the stratified MAWIFlow
dataset. The resulting dataset comprised just one percent of the
original dataset, while itmaintained the original proportions of the
network traffic classes (Normal and Attack), which were randomly
chosen.1

Besides being the first publicly available dataset of this kind,
MAWIFlow overcomes the main challenges associated with build-
ing realistic datasets for benchmarking intrusion-detection en-
gines. More specifically, it has all of the desired characteristics
described in [27], summarized as follows.

Realism: The network traffic used for building the dataset was
obtained from real network traces. Moreover,MAWIFlowwas built
from over a year-long observation data of real network traces,
enabling not only evaluation of the detection system during a
specific period of time, but also the evaluation of its behavior over
time, when facing new network traffic behavior;

Validity: The network traces used for building the MAWIFlow
dataset were collected from real network traces. Although MAWI
(network traces used in MAWIFlow) is provided in a sanitized
manner, i.e., payload is removed and sensitive data from network
packet headers are encrypted, the network flow reconstruction
is still possible. In this manner, the sanitization process used by
MAWI does not affect the features’ values;

Prior labeling: The event labels were identified by state-of-the-
art unsupervised ML techniques (assessed by MAWILab). In this
manner, supervised ML techniques can be evaluated regarding
their performance as compared to unsupervised techniques;

High Variability: MAWIFlow is highly variable not only owing
to the used network traces but also owing to its long period of
recording. The used network traces are real, valid, and collected
from real network infrastructure, thereby it presents the expected
variability from production environments. Nonetheless, owing to
its long period of recording (the entire year 2016), the detection

1 In order to validate the stratification procedure, all classifiers (Section 3.2)
were also evaluated using the original MAWIFlow dataset through Apache Spark
MLib, the same accuracy behavior was evidenced.

system can be evaluated considering the environment variability
during an entire year.

Reproducibility and Public Availability: The used network traces
were collected from publicly available sources (MAWI). Moreover,
BigFlow (Section 4) source code is also publicly available

3.2. Accuracy degradation of ML classifiers

The purpose of the analysis is to determine if ML-based ap-
proaches can maintain accuracy over time while processing traffic
from real networks. In our evaluation,we considered three individ-
ual and different classifiers that are usually employed for intrusion
detection: decision tree (DT) [28], random forest (RF) [29], gradient
boosting (GB) [30], and an ensemble [31] classifier composed from
DT, RF, and GB that decides based on majority voting across each
classifier’s decisions.

For each of the evaluated classifiers two update schemes were
tested: no-update andweekly-update. The no-update scheme used a
single training step using the data ofMAWIFlow from the first seven
days of January, and then employed the built model for the re-
mainder of the year. In theweekly-update scheme, themodel lasted
for only seven days, and then a new model was built using the
previous seven days of data as training, thus retraining (rebuilding)
the classifier 52 times during the year (once every week).

Apache Spark MLib [32] version 2.1.1 was used for the imple-
mentation and evaluation of the aforementioned classifiers. The
DT information gain criterion relies in Gini impurity measure. The
RF was composed of 50 decision trees, with a feature subset se-
lection strategy as the square root of the number of decision trees.
Finally, for the GB, 50 iterations were used with decision trees as
weak learners. Owing to the imbalanced nature of network traffic
(in MAWIFlow only 1.52% of flows were labeled as anomalies),
the random undersampling without replacement method [26] was
applied during the training stage, to balance the classes (Normal
and Attack). The true negative (Normal accuracy) and true positive
(Attack accuracy) rates are shown in Fig. 1. The figure shows the
monthly average accuracy of the classifiers in the no-update and
theweekly-update schemes, with the 62 features listed in Table 1.2

All evaluated classifiers have shown an accuracy impact during
the year 2016. Considering the no-update scheme (Figs. 1-a, 1-
b, 1-c, and 1-d), the classifiers were able to maintain accuracy
for Attack for the first two months (January and February), while
exhibiting a reduction during the remainder of the year. Comparing
the average Attack accuracy in January with the rest of the year,
we observed a reduction of 6%, 10%, 6.8%, and 7% for the DT, RF,
GB, and ensemble classifiers, respectively. The worst case was
evidenced in October, with the Attack accuracy drops of 16.8%,
23%, 17.2%, and 17.5% for the DT, RF, GB, and ensemble classifiers,
respectively. On the contrary, the accuracy of Normal packets did
not significantly change, and in the best case, it increased by 1.2%
(ensemble classifier).

With regard to the weekly-update classifiers (Figs. 1-e, 1-f, 1-
g and 1-h), the results demonstrate that the periodic updates
helped the classifiers to remain reliable. Their accuracy did not
significantly change during the year, and in some cases, even
improving compared with their initial accuracy in January. The
highest increase in the accuracy was by 2.6% for Attack detection.

In summary, this experiment provides evidence that in produc-
tion high-speed networks, anomaly detection classifiers must be
updated periodically; otherwise, their outputs become unreliable
over time. However, regularly updating the classifiers is challeng-
ing in high-speed networks, because the networks’ activity must
be stored for further analysis and should be labeled accordingly.

2 It is important to note that the same behavior was evidenced with the other
features sets for all experiments; however, for space purposes only the results
obtained using the set of 62 features [18] are shown.



E. Viegas, A. Santin, A. Bessani et al. / Future Generation Computer Systems 93 (2019) 473–485 477

Fig. 1. Average monthly accuracy behavior for different classifiers with and without periodic model updates during 2016 in theMAWIFlow dataset.

Fig. 2. BigFlow real-time feature extraction module architecture for high-speed networks.

4. BigFlow

To address the aforementioned evolving behavior of high-speed
open networks, we present BigFlow, a reliable stream learning
intrusion detection system. The goal is to maintain reliability in
the outputs of the classifier and high accuracy over time, while
substantially reducing the extent of human expert intervention
and the amount of data that needs to be stored. The operation of
BigFlow proceeds in twomain stages: feature extraction and reliable
stream learning.

Feature extraction is performed using a traditional stream pro-
cessing framework. Its purpose is to compute the flow statistics,
which are represented as a feature vector (an event or instance, in
ML terminology). The flow statistics computation is performed in
real time, summarizing the information about the traffic between
two hosts in a time interval. Since only the statistical analysis
results need to be stored in the memory, during the specified time
interval, there is no requirement for the storage of the observed
network packets.

The reliable stream learning stage receives as input the feature
vector (composed from the flow statistics) and classifies it as either

Normal or Attack. To operate in near real time, BigFlow employs
a stream learning classifier with a verifier module. This module
decides whether the classification outcome is reliable and should
be accepted; otherwise, it is rejected. When an event is rejected,
it is stored until it can be labeled. The rejected event is labeled by
a human expert, normally by collecting more information about
a new behavior, e.g., by consulting a public repository of vulnera-
bilities/threats such as the common vulnerabilities and exposures
(CVE), or by finding that a new type of service is being used in
the network. Then, the rejected instance is used to incrementally
update the stream learning classifier.

The next subsections describe in detail these two stages, includ-
ing the architecture of the modules that implement the stages and
description of the main components.

4.1. Feature extraction

To measure and classify the network activity, it is necessary to
compute statistics about the network traffic exchanged between
relevant entities over a period of time. There are several works



478 E. Viegas, A. Santin, A. Bessani et al. / Future Generation Computer Systems 93 (2019) 473–485

Fig. 3. BigFlow flow computation through the Tumbling Window approach.

that focus on extracting features for flow classification [23–25].
However, contrary to BigFlow, none of them is capable of moni-
toring high-speed evolving networks. In such a context, to avoid
the storage of network data, the feature extraction process should
be performed in near real-time. Thereby, we have established a
feature set according to the processing demanded for its extraction,
which is, in general, responsible for themost significant part of the
overall demanded processing [18] (Section 6.2).

BigFlow can extract up to 158 features. The feature set considers
both host (host statistics) and flow (host to host statistics) granu-
larity. Host statistics are features that are extracted based solely on
the data sent/received from a specific host, e.g., percentage of SYN
packets sent in a time period. On the other hand, flow statistics
features comprise information about the communication between
two hosts, e.g., average size of the packets exchanged between the
hosts.

The architecture of the feature extraction module of BigFlow is
shown in Fig. 2. Monitored agents (e.g., hosts, network switches or
routers) transmit the events through a message middleware. An
event corresponds to a unit of analysis, e.g., a network packet or a
netflow record. Themessagemiddleware acts as a broker of events,
being responsible for providing a single interface for themonitored
agents.

The Message Consumer module acts as the data producer for
the feature extraction module. Its only purpose is to receive the
available events from the message middleware, regardless of their
content or source agent. Each collected event is forwarded to
the Message Parser module in a PE of stream processing, using
the shuffle approach (Section 2.1). The Message Parser module in
turn determines the event’s source, fields, and type (e.g., network
packet or netflow record).

As an example, consider twodistinctmonitored agents: a switch
and a router. The switch exports network packet headers, while
the router exports expired netflow records. The Message Con-
sumer module reads both types of events from themessage queue,
and simply distributes them through the available Message Parser
module, keeping the computing load even. The Message Parser
module, in turn, processes the packet headers and netflow records
according to each event type, collecting the relevant fields.

The Host Aggregator and Flow Aggregator modules perform the
actual network flow statistics computation (feature extraction).
To do that in near real-time and in a distributed manner, both
aggregators receive messages through a keyed stream. The key for
the Host Aggregator module is calculated by hashing the event
source addresses (source IP address), while the key for the Flow
Aggregator module relies on the XOR operation on both source
and destination addresses (source and destination IP addresses).
To divide the load, each module is responsible for a range of hash
values. Thus, through XOR’ing, it is possible to forward messages
from two specific hosts to the same flow aggregator PE, regardless
of the direction taken by a packet.

To compute feature values from the grouped events, BigFlow
discretizes them in time intervals, referred to as the TumblingWin-
dow modules. Each Tumbling Window module stores and updates
the features’ values for a specific period, according to each received

event. When a Tumbling Window expires (i.e., the period is over),
the values of the flow features are exported in a host or flow
statistics format, and the computation of the features’ values starts
over for a new window.

Fig. 3 illustrates the BigFlow computation through Tumbling
Windows. The figure considers two hosts exchanging messages
over the network for 60 s, and a TumblingWindow period of 15 s. To
compute the flow statistics, the Message Parser module forwards
all arriving events exchanged between these two hosts to the
same Host and Flow Aggregators. Each aggregator computes the
flow features’ values during 15 s (‘‘T.Window 1’’ in the figure).
When a Tumbling Window expires, it exports the host and flow
statistics to the next module. As a new event arrives after the
initial 15 s, the Host and Flow Aggregators create another Tumbling
Window (‘‘T.Window 2’’ in the figure) and start the flow features’
computation again.

The usage of Tumbling Windows for computing flow features
brings two important benefits. First, it ensures that all active flows
will expire, without periodic checks, supporting a simple garbage
collection mechanism. Second, it ensures that the amount of re-
sources required for the computation of long-lived flow features
values remains limited, thus allowing scalable processing.

Finally, the Flow Joiner modules are responsible for receiving
all host and flow statistics values and for joining them in a single
stream. Themodule receives the exported events through the hash
of the source address of either host or flow statistics. Thus, a Flow
Joiner is responsible for a range of hash values, causing all values
from a given subset of hosts to be given to the same module. For
each received flow statistic, the Flow Joiner aggregates it with the
respective host statistics and exports the result to the nextmodule.

Notice that a single host may have several exported flow fea-
tures,while having a single host feature, e.g., a single host accessing
services in several other hosts. Thereby, the Flow Joiner module
must also store the host flow, to join it with several exported flow
features in a single Tumbling Window. To this end, the Flow Joiner
module also relies on the Tumbling Windowmodule.

4.2. Reliable Stream Learning

After the network flow computation, it becomes possible to
classify the feature vectors as either Normal or Attack (anomalous).
As shown in Section 3.2, the network content/traffic changes over
time, rendering the classifier unreliable. Thereby, the employed
classification mechanism must be able to reliably cope with such
changes. In practice in production networks, the model must be
updated regularly (e.g., every week), owing to evolving traffic
patterns [9]; eventually, if a new vulnerability is critical, an update
should be made immediately after rejection.

To deal with the intrinsic evolving nature of the network traffic,
BigFlow relies on the stream learning intrusion detection. When a
classification outcome is rejected, BigFlow stores that event until
an administrator labels it. The rejected events are used later for
incremental updates, thereby minimizing the costs of the model
update, while still having an updated classifier model. Fig. 4 shows
an overview of the BigFlow reliable stream-based classification
module.

4.2.1. Setup
At the startup, BigFlow trains the stream learning classifier using

a training dataset. A classifier model is obtained and replicated,
among several classification processors, to ensure that the clas-
sification throughput scales with the number of PEs. During the
testing stage, the classification thresholds for each class (Normal
or Attack) are defined. The class classification thresholds are used
to definewhether the classification outcome should be accepted or
not.



E. Viegas, A. Santin, A. Bessani et al. / Future Generation Computer Systems 93 (2019) 473–485 479

Fig. 4. BigFlow reliable stream learning module.

4.2.2. Real-time learning
The BigFlow stream learning module aims to provide reliable

classifications, employing a Verification module; at the same time,
to provide updated ML models, it executes incremental classifier
updates using the rejected instances.

The verification module receives (from the classifier), the in-
stance, the assigned class, and the classifier confidencemeasure on
the assigned class. Using the classification thresholds established
during the setup stage, the verifier module decides whether the
classification outcome should be accepted or not. For instance,
consider a confidence threshold of 70% for the Attack class; then,
the verifier module accepts an instance labeled as Attack only if its
confidence level is above 70%; otherwise, the event is rejected.

The rejected instances are stored (Fig. 4). Periodically, these
instances are retrieved, and their labels are requested by an ad-
ministrator. This administrator can be a human that verifies the
event label using publicly available label sources, such as the CVE,
Twitter or security newsfeed, or the one that is able to understand
new legitimate applications or traffic behaviors on the network.
It can also be an auxiliary system composed of signature-based
NIDSs that are periodically and automatically updated with a new
indicator of compromises (e.g., Snort [33], and Bro [34]), which
hopefully capture novel attack behaviors.

If an event is labeled, the instance and its correct label are used
for the incremental model update; otherwise, the event remains
stored until its class (normal or attack) becomes publicly known, or
a certain threshold time is reached. In the latter case, the instance
can be either discarded or assumed to be Normal. For example, a
rejected event is stored for amonth, and after this time, if it still had
not been associated with an Attack using any of the public sources
for labeling, it is deemed as a Normal event.

BigFlow assumes that when an unknown event (attack or not)
is classified, the classification confidence level is not reached;
thereby, the event is rejected rather than being misclassified. The
core idea is simple: high-confidence accepted results represent
patterns which the classifier model is still able to identify, while
low-confidence results require more attention on the administra-
tor’s side as they potentially represent new traffic behaviors that
must be learned by the system.

A possible drawback of such an assumption is regarding uncer-
tain classifier output over time [14]. In such a case, the classifier
outputs can no longer be used, owing to changes in the network
traffic behavior (as already evidenced in other fields [14]). This
happens, for instance, when the classificationmodel is not updated
in a long period of time. Thereby, a classifier may wrongly classify
unseen network traffic with high confidence, making themodel no
longer reliable. To address such a scenario, our proposal employs
an ensemble of stream learning algorithms. The key idea is that
a classification can only be accepted when the confidence level is
met in all employed stream learning algorithms, i.e., the classifica-
tion remains reliable as long as there is at least one reliable stream
learning algorithm that outputs correct classification.

Fig. 5. BigFlow architecture.

As a result, BigFlow provides an updated stream learning clas-
sification in near real-time with selective human assistance. This
is because only instances that passed through the classifiers and
were rejected require action from experts. Thereby, this approach
requires minimal human intervention and, most importantly, mit-
igates the false positives/negatives alarms.

As the models are incrementally updated only with instances
thatwere previously rejected, the proposal alsominimizes the cost
of model updates.

5. Implementation

A BigFlow prototype was implemented and deployed in a dis-
tributed environment, as shown in Fig. 5. The prototype takes
as input network packet headers from MAWI [22], and for each
network packet, its header is exported to themessagemiddleware.
The message middleware was deployed through the well-known
open-source Apache Kafka, version 0.10.2.0.

Our prototype was implemented on top of Apache Flink stream
processing framework [17], version 1.3.0. The proposed window-
ingmechanisms (TumblingWindows)were also implementedusing
the native windowing mechanism provided by the Flink. A default
value of 15 s for each Tumbling Window was used, as it provided
the best results after some preliminary evaluation. The customized
keyed messaging was implemented using the KeySelector Flink in-
terface. The Apache Kafkamessages were read through the Apache
Flink connector API, version 0.10_2.10.

The reliable stream learning classification module was imple-
mented using the massive online analysis (MOA) library [35], re-
lease 16.04. At the startup, the Classification and Incremental Clas-
sifiers Update modules loaded the same classification model. The
rejected instanceswere stored inmemory by the Rejected Instances
Retrieval (Fig. 4), which retrieved the rejected instances through
Kafka. The PE parallelism level was set according to the number of
worker nodes used in our experimental evaluation (Section 6.2).



480 E. Viegas, A. Santin, A. Bessani et al. / Future Generation Computer Systems 93 (2019) 473–485

Fig. 6. Average monthly accuracy behavior for different stream learning classifiers without periodic model updates during 2016 in theMAWIFlow dataset.

Fig. 7. Error-reject tradeoff during January 2016 inMAWIFlow dataset. Average error rate is given by the average of FP and FN rates, whilst Average rejection rate is computed
by averaging the rejection rate of both Normal and Attack classes. Thresholds for each class, Normal and Attack, was varied from 1.00 to 0.00 in a 0.01 interval, all operation
points are shown.

6. Evaluation

The evaluation test was performed in two steps. First, our pro-
posed reliable stream learning module was evaluated in terms
of accuracy over time using the MAWIFlow dataset. Second, we
evaluated the BigFlow performance and scalability as well as the cost
of updating the stream learning module.

6.1. Accuracy

For the evaluation of the Reliable Stream Classification module,
four stream learning classifierswere evaluated:Hoeffding Tree [36],
OzaBoosting [37], Leveraging Bag [38], and an Ensemble of the prior
three classifiers that performs majority voting on the individual
outcomes. Similarly, to the tests conducted in Section 3.1, the clas-
sifiers were trained using the first seven days of January, and them
employed in the remainder of the year, without period updates.
The Hoeffding Tree was evaluated with a grace period of 200, a
Naïve Bayes leaf prediction strategy, information gain with respect
to distribution of class values split criterion, and a tie threshold of
0.05. Both OzaBoosting and Leveraging Bag uses 50 Hoeffding Trees
as their base learners, inwhich each base learner also uses the same
parameters as the individual Hoeffding Tree.

Our evaluation was performed in three steps: without BigFlow,
with BigFlow without updates (i.e., rejecting results but not up-
dating the model), and BigFlow with the verifier module and with
weekly incremental model updates. A weeklong delay for the in-
cremental model updates for the rejected instances was adopted
to mimic the time until an attack label becomes publicly available.

Fig. 6 shows how each stream learning classifier performs in
MAWIFlow dataset without BigFlow. The same behavior evidenced
in Section 3.2 can be seen in the absence of period model updates.
The accuracy degradation occurs in the first months after training.
In 2016, the attack error rate (FP) percentage increases by up
to 16%, 20%, 16%, and 18%, for the Hoeffding Tree, OzaBoosting,
Leveraging Bag, and Ensemble respectively. In contrast, the normal
error rate remains similar in the remainder of the year. Thereby,

these results also show that to remain reliable for a long period,
the intrusion detection model must be updated.

BigFlow updates its models by the means of the rejected in-
stances, which are considered to be unreliable (Section 4.2). To
this end, BigFlow, through the verifier module, evaluates whether
the classifier confidence met a specific threshold, according to the
given class (Class Related Threshold, CRT [39]). Thereby, in order to
evaluate the verifier module, each class must have its threshold
set. However, even if a proper class threshold is selected, the event
confidence level can be biased, i.e., an unseen event (unknown
behavior) may have its confidence level high [14] (see Section
4.2.2). In the light of this, BigFlow computes the class confidence
for the Ensemble classifier according to Eq. (1).

Classconfidence =

n∏
i

Classiconfidence (1)

In which n denotes the number of used classifiers, and
Classiconfidence the ith class confidence outcome for a class given
by the Ensemble classifier. Thereby, only instances that have a
high confidence for all classifiers will have a high Classconfidence.
The confidence values for each used classifier was computed as a
probability value ranging from0 to 1. TheHoeffding Tree confidence
value was computed as the class probability as measured by the
Naïve Bayes in a given node. For the Leveraging Bag the class
confidence was computed as the normalized sum of each base
learner. On the other hand, the OzaBoosting confidence values
was computed as the weighted normalized sum of each base
learner. For both Leveraging Bag and OzaBoosting the base learners
computes their confidence values by themeans of a Hoeffding Tree.
Fig. 7 shows the relation between the average error rate and the
average rejection rate for the evaluated classifiers in the training
month (January). The average error rate refers to the average of
the FP and FN rates, whilst the average rejection rate refers to the
average rejection of both normal and attack events. It is possible to
note that, for all evaluated classifiers, one can further reduce the
average BigFlow error rate, when a certain rate of rejection can be
tolerated.



E. Viegas, A. Santin, A. Bessani et al. / Future Generation Computer Systems 93 (2019) 473–485 481

Fig. 8. Non-dominated solutions for the evaluated Stream Learning algorithms.
Attack error refers to FN rates. Operation points were chosen at 40 percent of
average events rejection rate.

As previously evaluated, the classifiers increase their FP rate
over time (Figs. 1 and 6). In this sense, the classes confidence
thresholds were set according to the attack error rate improve-
ment. Fig. 8 shows the non-dominated solutions (best operation
points), considering the relation between the attack error rate
(FP) and the average rejection rate. It is possible to note that the
Ensemble classifier presents the best error-reject tradeoff. More-
over, a relation can be seen regarding the attack error rate and
the average rejection rate. For instance, if a 20 percent of average
rejection rate could be tolerated, the attack error rate percentage
can be decreased by 4, and 5, for the Hoeffding Tree, OzaBoosting,
Leveraging Bag, and Ensemble respectively.

For the remainder of the evaluation tests, the classifiers thresh-
olds were chosen when the average rejection rate met 40 percent
(Fig. 8, Operation Points). The operation points were established in
order to enable the evaluation of BigFlowwithout updates (i.e., re-
jecting results but not updating the model), and BigFlow with the
verifier module and with weekly incremental model updates. In
this sense, a lower rejection rate would not enable the proper
evaluation of the model update impact.

Fig. 9 shows the average monthly accuracy and rejection rate
for the evaluated classifiers with the verifier module set, how-
ever, without periodic model updates. Several observations can be
made regarding the verifier module. The average rejection rate re-
mains similar to the chosen operation point over time (40 percent).
The normal accuracy (TN) significantly improves for all classifiers,
reaching up to 99 percent, improving the TN by up to 8 percent.
The attack accuracy (TP) also significantly increases, however, in
general, it decreases over time, in the absence of incremental
model updates.

It is important to note that, when compared to their initial accu-
racy in January (Fig. 6), without the verifier module, all evaluated
classifiers remained reliable until October. After that period, the
TP rate for the Hoeffding Tree, was lower than the TP rate for the
Hoeffding Tree in January, without the verifier module (Fig. 6-a
versus Fig. 9-a). In this sense, in the worst case, the classifiers can
be considered reliable, for at least 10 months, when the verifier
module is applied, despite the rejection rate. Finally, it is possible
to note that the Ensemble classifier, by the means of the proposed
Classconfidence computation (Eq. (1)), is able to significantly improve
its accuracy when compared to the other classifiers. This occurred
because only instances with a high-class confidence value for all
classifiers were accepted. Thereby, the event will be rejected even
if the majority of the classifiers confidence values are biased, be-
cause, if one classifier output a low confidence value, the eventwill
have a low final confidence.

The reliability improvement shown by the verifier module is
a desired property for high-speed production networks. In such
environments, correct event labels may not be available in a short
period of time, e.g., the attack becomes publicly known after three
months of its rejection by the verifier module. In such a case,
the rejected events would be stored, and their labels would be
verified on a regular basis. However, considering the incremental
model updatewould only be possible threemonths after the attack
occurrence, the classifier model would still be reliable during this
time.

Finally, Fig. 10 shows the classifiers accuracy and rejection rates
with the verifier module and aweeklong delay for incremental up-
dates. Several observations can bemade regarding the incremental
update impact. First, all evaluated classifiers remained reliable
throughout the year, considering both TP and TN rates. Moreover,
both TP andTN rates significantly increaseswhen compared to only
applying the verifier module, without the incremental updates
(Figs. 9 and 10). The average rejection rate percentage significantly
decreases over time, presenting average rejection rates of 13%,
12%, 12%, and 5% in January, and decreasing up to 5%, 4%, 4%, 2%
throughout the year, for theHoeffding Tree, OzaBoosting, Leveraging
Bag, and Ensemble respectively — in both cases. Nonetheless, it is
possible to note that the proposed Ensemble approach significantly
decreases the rejection ratewhen compared to the other classifiers,
while also presents higher TP and TN rates.

As the results show, BigFlow maintains or even improves the
model’s reliability even when facing new network traffic behavior,
regardless of themodel being incrementally updated or not. Fig. 11
shows a comparison between our proposal, the no-update and the
weekly-updated classifiers shown in Section 3.2. The proposed ap-
proach greatly improves the detection of attacks for all considered
cases, outperforming even the weekly-updated classifiers.

Discussion. Although BigFlow was able to significantly decrease
the average rejection rate by the means of incremental model
updates (in the best case from 40 percent to up to 1 percent), the
rejection of events in high-speed networks can be challenging. The
main challenge refers to the number of events that are going to be
rejected, and then, how to process them later.

First, for evaluation purposes, the tests performed previously
have operated at 40 percent rejection rate point (Fig. 8). For pro-
duction usage, one will most likely operate at a lower rejection
rate operation point, thereby rejecting less instances. Nonetheless,
it is important to note that BigFlow was able to reject up to only
1 percent of instances, starting at a 40 percent rejection rate. This
indicates that, the average rejection ratewill significantly decrease
over time when compared to the initial chosen operation point.
Finally, in production usage, rejected instances will most likely be
stored for a period, until its label is publicly known.

Second, the labeling task of such rejected instances can be
achieved either by the help of a human expert, normally by col-
lecting more information about a new behavior, e.g., by consulting
automatically a public repository of vulnerabilities/threats such as
the common vulnerabilities and exposures (CVE), or by finding that
a new type of service is being used in the network.

In this sense, the BigFlow rejection rate can be even further
decreased. Nonetheless, the labeling process can be made auto-
matically, if a labeling delay can be tolerated for instance.

The most important benefit of our proposal, compared to liter-
ature, is to enable the detection that an event cannot be classified
accurately and immediately alert the administrator, even if the
classifier makes a classification mistake with a high confidence.
The action the administrator will perform is under her/his discre-
tion,weonly list some in order to show theproposal is feasible. One
can be noticed that even a traditional approach, which demands
the model rebuilding, a method for event labeling is still required,
the main difference is that the output of rejection mechanism is a
selective way to do that, facilitating the expert work.



482 E. Viegas, A. Santin, A. Bessani et al. / Future Generation Computer Systems 93 (2019) 473–485

Fig. 9. Average monthly accuracy and rejection rate behavior for different stream learning classifiers without incremental model updates during 2016 in the MAWIFlow
dataset.

Fig. 10. Average monthly accuracy and rejection rate behavior for different stream learning classifiers without incremental model updates during 2016 in the MAWIFlow
dataset.

Fig. 11. Reliable Stream Learning (Ensemble) module performance comparison during 2016 inMAWIFlow dataset.

Fig. 12. BigFlow throughput performance according to thenumber ofworker nodes.

6.2. Performance, scalability, and cost

For evaluating the scalability of our prototype, we set up a 12-
node cluster in a single rack, connected through a 10 GbE interface.
Each node has a 4-core CPUwith 8 GB of memory. In all considered
experiments, we set up the BigFlow prototype (Fig. 5), with the

Fig. 13. BigFlow throughput comparison with and without updates.

Ensemble classifier in the following way: 1 node ran Apache Kafka,
1 node ran the Flink Job Manager and from 1 to 10 nodes ran
Flink Task Managers. For throughput evaluation purposes, a set of
only 62 features from Table 1 was considered. For the evaluation
purposes, the entire month of January in 2016, was used, and a



E. Viegas, A. Santin, A. Bessani et al. / Future Generation Computer Systems 93 (2019) 473–485 483

Table 3
Weekly computational and storage resources used by each approach (Excluding
initial setup)

Approach Demanded Storage (Gb) Training Time (hours)

Avg. Min. Max. Avg. Min. Max.

Decision Tree

36.41 21.09 43.36

3.91 2.27 4.79
Random Forest 4.40 2.55 5.28
Gradient Boosting 182.7 104.5 213.0
Ensemble 189.0 108.3 224.0
Hoeffding Tree 2.14 1.22 2.58

BigFlow 1.53 0.28 5.03 0.09 0.03 0.25

weeklong delay for the incremental model updates was consid-
ered.

Fig. 12 shows the throughput and performance breakdown. The
throughput performance is divided into Read and Parse (Message
Consumer and Message Middleware, in Fig. 2), Feature Extraction
(Host Aggregator, Flow Aggregator and Flow Joiner, in Fig. 2) and
Classification and Update (Feature Extraction Module, in Fig. 4). The
proposed approach achieved 10.72 Gbps with 10 worker nodes.
Regarding its scalability, the proposed approach increased the
throughput by 1.02 Gbps for each additional worker node. The
Feature Extraction module required the most significant part of
the overall processing, representing 61% of the processing time on
average, while Classification and Update together required only 23%
on average.

Fig. 13 shows the impact of the model’s update on the system’s
throughput. In such a case, the system’s throughput performance
was divided into Classification Without Updates (BigFlow without
Rejected Instances Retrieval and Incremental Classifier Update mod-
ules) and Classification With Updates (BigFlow). On average, the
model’s updates incurred a throughput loss of little more than 1%.
Considering the throughput for the cluster of 10 worker nodes,
themodel’s updates incurred a throughput reduction of only 0.25%
(0.03 Gbps).

Finally, Table 3 shows the weekly training time and required
storage for all the evaluated classifiers shown in Section 3.2, con-
sidering they would be updated every week. BigFlow required (on
average) only 4.2% of the storage required by other approaches.
Regarding the weekly training time, BigFlow required at most 4.2%
out of the total time when compared with the complete retraining
of DT, RF, GB, ensemble, and Hoeffding tree classifiers.

7. Related work

Several existing works address intrusion detection using ML
techniques [40–42]. However, task of model updates has not been,
in general, considered in related works [9,10]. Thereby, the pro-
cessing and storage costs required for such a task have been dis-
carded [9]. The next subsections further describe related works
that address the tasks of building proper Benchmark Datasets for
IDS, Flow Measurement and Classification, and the Classification Re-
liability.

7.1. Benchmark dataset for IDS

Over the last years, generation of proper datasets for bench-
marking intrusion detection systems has been the subject of sev-
eral studies [20,43,44]. However, despite extensive efforts, cur-
rently the most used dataset is still the DARPA1998 dataset [43],
with several known issues [45,46]. When a benchmark dataset
is built for IDSs, normally some strong assumptions about the
training data are adopted [20]. For instance, Canali et al. [47]
created their dataset by collecting several website contents from
the Internet; they labeled each datum by using state-of-the-art

tools and manually inspected the data to ensure proper labeling.
In this case, the authors assumed that the most frequently visited
websites worldwide are benign, despite several known cases of
malicious websites [44]. On the other hand, Shiravi et al. [27]
created user profiles on the basis of the user behavior for each
application during an observed time interval, while Kendall [48]
created a dataset by statistically reproducing the user behavior
in an air force environment. In contrast, in UNSW-NB15 [49],
the authors rely in a traffic generator tool to create their dataset
in a controlled environment. In general, these approaches lack
upgradability, wrongly assuming that network traffic is immutable
and considering that the user behavior can be modeled [50,51].
MAWIFlow tackles the problem of creating representative datasets
by using real and valid network traces, while labeling is achieved
using state-of-the-art signature-based detection techniques.

7.2. Flow measurement and classification

Approaches for flowmeasurement and classification ofmassive
network activities in general rely on pre-stored data. Lee and
Lee [5] proposed a Hadoop-based network traffic monitoring and
analysis system. The authors performed flow measurements by
mapping rawnetwork activity (PCAP) files in HDFS. Their proposed
approach achieved 14 Gbps in a cluster of 200 nodes (2 CPU cores
each), however, requiring the prior storage of the PCAP files. The
authors performed the classification relying on a simple connec-
tion threshold through Hive queries, which must be periodically
updated in evolving networks. Fortugne et al. [8] focused on in-
tegrating several anomaly detectors in the Hadoop architecture
for network monitoring. The authors also adopted a similar hash
function approach to divide network traffic in splits. Each split
had an anomaly detection algorithm, which identified network
activities based on their anomality scores, according to a specific
threshold. However, their approach also required the execution of
computationally expensive periodic updates (i.e., full retraining).
Moreover, their reported system throughput is unfeasible for high-
speed network monitoring.

Some works have applied stream processing techniques for
the measurement of massive network activities. Baer et al. [52]
proposed a data stream warehouse for network monitoring. The
authors also relied on time windows for incremental and contin-
uous execution of queries. Moreover, they combined their pro-
posal with an ML framework for the classification of exported
time windows. However, their approach relied on a supervised
dataset, without considering the scalability of ML algorithms. They
also did not address scalability, reliability, or model updates. A
similar approach to BigFlowwas also taken by ApacheMetron [53].
Metron relied on Apache Storm [16] to perform feature extraction
in time window intervals. The tool however required the storage
of activities in the HBase for post classification, thus requiring also
periodic updates. In a recent work, Viegas et al. [54] used a subset
of 20 features from [18] to address the resiliency to adversarial
attacks in a stream-based intrusion detection system for high-
speed networks. BigFlow improved their reported throughput by a
factor of 9, while extracting 138 additional features and addressing
reliability over time through the rejection approach. Finally, a sim-
ilar labeling process used in theMAWIFlow dataset was adopted by
Mazel et al. [55] for the evaluation of unsupervised ML algorithms.
The authors however extracted a small set of flow-based features
and did not evaluate supervised ML schemes. To the best of our
knowledge, BigFlow is the first approach that does not require the
storage of the network activities for neither the feature extraction
nor classification, while it is still able to deal with the evolving
behavior of networks in the case of high-speed networks.



484 E. Viegas, A. Santin, A. Bessani et al. / Future Generation Computer Systems 93 (2019) 473–485

7.3. Classification reliability

Regarding the reliability of classifications in the face of un-
known behavior, a verification approach is often applied in other
fields in which errors have a high cost, such as OCR [12], medical
diagnostics [13], and software fault detection [56], to name a
few. For instance, in the field of medical diagnostics, Hanczar and
Dougherty [13] employed a verification strategy to reach a desired
error rate, while in software fault detection, Mesquita et al. [56]
rejected classification outcomes that did notmeet a desired degree
of certainty. Both approaches rely on an expert to establish the
correct event labels. We did not find any work proposing the
use of verification strategy for intrusion detection. In contrast,
BigFlow employs a verification strategy to deal with the evolving
network behavior and to reach reliability; moreover, differently
from related works, it is able to incorporate the expert assistance
into the prior stream learning model, significantly reducing the
number of further rejected events.

8. Conclusion

Current approaches for network traffic classification are unable
to meet the desired throughput; they are also unable to deal with
the evolving behavior of network traffic. The approach proposed in
this paper, BigFlow, aimed at providing high detection throughputs,
reliability in face of new network traffic behavior, and a computa-
tionally modest model update mechanism.

Ahigh detection throughputwas reached by performing feature
extraction and classification through stream processing frame-
works. The approach used by BigFlow groups the exchanged data
over the network and summarizes them in time intervals, sig-
nificantly reducing the required computational effort and storage
requirements on the intrusion detector.

To maintain reliability even with evolving network traffic,
BigFlow employs a verification mechanism, which checks whether
the classification outcome should be accepted in order to avoid
high confidence in classification mistakes.

Finally, to provide a lightweight update mechanism, BigFlow
exploits existing stream learning algorithms, incorporating expert
assistance for labeling rejected events when they are better under-
stood.

Our experimental evaluation demonstrated that BigFlow is fea-
sible for use in production andhigh-speednetworks: our prototype
reached up to a 10.72-Gbps throughput in a cluster of 40 cores,
being also capable of dealing with evolving network behavior over
a year of real network traffic, as evaluated through our MAWIFlow
dataset, by incrementally updating its detection mechanism with
expert assistance.

Acknowledgments

This work was partially sponsored by Coordination for the Im-
provement of Higher Education Personnel (CAPES), grant
99999.008512/2014-0, by FCT through projects LaSIGE (UID/CEC/
00408/2013) and Resilient Supervision and Control in Smart Grids,
and by the European Commission through the H2020 grant agree-
ment 700692 (DiSIEM).

References

[1] CISCO, Cisco visual networking index: global mobile dataTraffic forecast up-
date, 2016–2021, 2017.

[2] P802.3cd - Standard for Ethernet Amendment (online). Available: https://
standards.ieee.org/develop/project/802.3cd.html.

[3] DDoS attack that disrupted internet was largest of its kindin history, experts
say (online). Available: https://www.theguardian.com/technology/2016/oct/
26/ddos-attack-dyn-mirai-botnet.

[4] Symantec, The continued rise of DDoS attacks (online). Available:
http://www.symantec.com/content/en/us/enterprise/media/security_
response/whitepapers/the-continued-rise-of-ddos-attacks.pdf.

[5] Y.Y. Lee, Y.Y. Lee, Toward scalable internet traffic measurement and analysis
with Hadoop, SIGCOMM Comput. Commun. Rev. 43 (1) (2012) 5–13.

[6] R. Fontugne, J. Mazel, K. Fukuda, Hashdoop: A MapReduce framework for
network anomaly detection, in: INFOCOMWork, 2014, pp. 494–499.

[7] HDFS Architecture Guide (online). Available: https://hadoop.apache.org/
docs/r1.2.1/hdfs_design.html.

[8] R. Fontugne, P. Borgnat, P. Abry, K. Fukuda, MAWILab: Combining diverse
anomaly detectors for automated anomaly labeling and performance bench-
marking, in: Proc. 6th Int. Conf. - Co-NEXT ’10, 2010, pp. 1–12.

[9] R. Sommer, V. Paxson, Outside the closed world: on using machine learning
for network intrusion detection, Proc. IEEE Symp. Secur. Priv. (May) (2010)
305–316.

[10] C. Gates, C. Taylor, Challenging the anomaly detection paradigm: A provoca-
tive discussion, in: Proc. 2006 Work. New Secur. Paradig., 2007, pp. 21–29.

[11] P. Borgnat, G. Dewaele, K. Fukuda, P. Abry, K. Cho, Seven years and one day:
sketching the evolution of internet traffic, in: Proc. IEEE Proc. INFOCOM, 2009,
pp. 711–719.

[12] J.R. Navarro-Cerdan, J. Arlandis, R. Llobet, J.C. Perez-Cortes, Batch-adaptive re-
jection threshold estimation with application to OCR post-processing, Expert
Syst. Appl. 42 (21) (2015) 8111–8122.

[13] B. Hanczar, E.R. Dougherty, Classification with reject option in gene expres-
sion data, Bioinformatics 24 (17) (2008) 1889–1895.

[14] R. Jordaney, K. Sharad, S.K. Dash, Z. Wang, D. Papini, I. Nouretdinov, L. Caval-
laro, Transcend: detecting concept drift in malware classification models, in:
26th USENIX Secur. Symp., USENIX Secur. 17, 2017, pp. 625–642.

[15] M.M. Gaber, A. Zaslavsky, S. Krishnaswamy, Mining data streams: A Review,
ACM Sigmod Rec. 34 (2) (2005) 18–26.

[16] Apache Storm (online). Available: http://storm.apache.org/.
[17] Apache Flink (online). Available: https://flink.apache.org/.
[18] E. Viegas, A. Santin, A. França, R. Jasinski, V. Pedroni, L. Oliveira, Towards

an energy-efficient anomaly-based intrusion detection engine for embedded
systems, IEEE Trans. Comput. 66 (1) (2016) 1–14.

[19] A. Buczak, E. Guven, A survey of data mining and machine learning methods
for cyber security intrusion detection, IEEE Commun. Surv. Tutorials PP (99)
(2015) 1.

[20] E. Viegas, A.O. Santin, L.S. Oliveira, Toward a reliable anomaly-based intrusion
detection in real-world environments, Comput. Netw. 127 (2017) 200–216.

[21] SecureList, IT Threat Evolution Q1 2017 Statistics (online). Available: https:
//securelist.com/it-threat-evolution-q1-2017-statistics/78475/.

[22] MAWI Working Group Traffic Archive (online). Available: http://mawi.wide.
ad.jp/mawi/samplepoint-F/.

[23] J. Dromard, G. Roudire, P. Owezarski, Online and scalable unsupervised net-
work anomaly detection method, IEEE Trans. Netw. Serv. Manage. 14 (1)
(2017) 34–47.

[24] N. Williams, S. Zander, G. Armitage, A preliminary performance comparison
of five machine learning algorithms for practical ip traffic flow classification,
ACM SIGCOMM Comput. Commun. Rev. 36 (5) (2006) 5.

[25] A. Moore, D. Zuev, M. Crogan, Discriminators for use in flow-based classifica-
tion, Queen Mary Westf. Coll. Dep. Comput. Sci. (August) (2005).

[26] H. He, E.A. Garcia, Learning from imbalanced data, IEEE Trans. Knowl. Data
Eng. 21 (9) (2009) 1263–1284.

[27] A. Shiravi, H. Shiravi, M. Tavallaee, A. a. Ghorbani, Toward developing a
systematic approach to generate benchmark datasets for intrusion detection,
Comput. Secur. 31 (3) (2012) 357–374.

[28] R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publish-
ers, San Mateo, CA, 1993.

[29] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5–32.
[30] J.H. Friedman, Greedy function approximation: A gradient boosting machine,

Ann. Statist. 29 (5) (2001) 1189–1232.
[31] T. Nguyen, G. Armitage, A survey of techniques for internet traffic classifica-

tion using machine learning, IEEE Commun. Surv. Tutor. 10 (4) (2008) 56–76.
[32] Apache Spark MLib (online). Available: https://spark.apache.org/mllib/.
[33] Snort – Network Intrusion Detection System (online). Available: https://

www.snort.org/.
[34] Bro – The BroNetwork SecurityMonitor (online). Available: https://www.bro.

org/.
[35] MOA –Massive Online Analysis (online). Available: https://moa.cms.waikato.

ac.nz/.
[36] G. Hulten, L. Spencer, P. Domingos, Mining time-changing data streams, in:

Proc. 7th ACM SIGKDD Int. Conf. Knowl. Discovery DataMining, 2001, pp. 97–
106.

[37] N. Oza, S. Russell, Online bagging and boosting, Proc. Artif. Intell. Stat. (2001)
105–112.

[38] A. Bifet, G. Holmes, B. Pfahringer, Leveraging bagging for evolving data
streams, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell.
Lect. Notes Bioinformatics) 6321 LNAI (PART 1) (2010) 135–150.

[39] G. Fumera, F. Roli, G. Giacinto, Reject optionwithmultiple thresholds, Pattern
Recognit. 33 (12) (2000) 2099–2101.

https://standards.ieee.org/develop/project/802.3cd.html
https://standards.ieee.org/develop/project/802.3cd.html
https://standards.ieee.org/develop/project/802.3cd.html
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/the-continued-rise-of-ddos-attacks.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/the-continued-rise-of-ddos-attacks.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/the-continued-rise-of-ddos-attacks.pdf
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb5
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb5
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb5
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb9
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb9
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb9
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb9
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb9
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb12
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb12
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb12
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb12
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb12
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb13
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb13
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb13
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb15
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb15
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb15
http://storm.apache.org/
https://flink.apache.org/
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb18
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb18
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb18
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb18
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb18
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb19
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb19
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb19
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb19
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb19
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb20
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb20
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb20
https://securelist.com/it-threat-evolution-q1-2017-statistics/78475/
https://securelist.com/it-threat-evolution-q1-2017-statistics/78475/
https://securelist.com/it-threat-evolution-q1-2017-statistics/78475/
http://mawi.wide.ad.jp/mawi/samplepoint-F/
http://mawi.wide.ad.jp/mawi/samplepoint-F/
http://mawi.wide.ad.jp/mawi/samplepoint-F/
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb23
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb23
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb23
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb23
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb23
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb24
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb24
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb24
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb24
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb24
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb25
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb25
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb25
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb26
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb26
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb26
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb27
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb27
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb27
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb27
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb27
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb28
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb28
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb28
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb29
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb30
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb30
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb30
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb31
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb31
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb31
https://spark.apache.org/mllib/
https://www.snort.org/
https://www.snort.org/
https://www.snort.org/
https://www.bro.org/
https://www.bro.org/
https://www.bro.org/
https://moa.cms.waikato.ac.nz/
https://moa.cms.waikato.ac.nz/
https://moa.cms.waikato.ac.nz/
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb37
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb37
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb37
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb38
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb38
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb38
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb38
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb38
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb39
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb39
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb39


E. Viegas, A. Santin, A. Bessani et al. / Future Generation Computer Systems 93 (2019) 473–485 485

[40] S. Lee, J. Kim, S. Shin, P. Porras, V. Yegneswaran, Athena: A Framework for
Scalable Anomaly Detection in Software-Defined Networks, in: Proc. - 47th
Annu. IEEE/IFIP Int. Conf. Dependable Syst. Networks, DSN 2017, 2017, pp.
249–260.

[41] S.E. Gómez, B.C. Martínez, A.J. Sánchez-Esguevillas, L. Hernández Callejo,
Ensemble network traffic classification: Algorithm comparison and novel
ensemble scheme proposal, Comput. Netw. 127 (2017) 68–80.

[42] C. Feng, T. Li, D. Chana, Multi-level Anomaly Detection in Industrial Control
Systems via Package Signatures and LSTM Networks, in: Proc. - 47th Annu.
IEEE/IFIP Int. Conf. Dependable Syst. Networks, DSN 2017, 2017, pp. 261–272.

[43] R.P. Lippmann, D.J. Fried, I. Graf, J.W. Haines, K.R. Kendall, D. McClung, D. We-
ber, S.E.Webster, D.Wyschogrod, R.K. Cunningham,M. a. Zissman, Evaluating
intrusion detection systems: the 1998 DARPA off-line intrusion detection
evaluation, in: Proc. DARPA Inf. Surviv. Conf. Expo. DISCEX’00, vol. 2, 2000.

[44] Symantec, Internet Security Threat Report 2017 (online). Available:
https://www.symantec.com/content/dam/symantec/docs/reports/istr-
22-2017-en.pdf.

[45] S. Brugger, J. Chow, An assessment of the DARPA IDS Evaluation Dataset using
Snort, in: UCDAVIS Dep. Comput. Sci., 2007, pp. 1–19.

[46] J. McHugh, Testing Intrusion detection systems: a critique of the 1998 and
1999 DARPA intrusion detection system evaluations as performed by Lincoln
Laboratory, ACM Trans. Inf. Syst. Secur. 3 (4) (2000) 262–294.

[47] D. Canali, M. Cova, G. Vigna, C. Kruegel, Prophiler: A fast filter for the large-
scale detection of malicious web pages categories and subject descriptors, in:
Proc. Int. World Wide Web Conf., 2011, pp. 197–206.

[48] K. Kendall, A Database of Computer Attacks for the Evaluation of Intrusion
Detection Systems, 1999.

[49] N. Moustafa, J. Slay, UNSW-NB15: a comprehensive data set for network
intrusion detection systems (UNSW-NB15 network data set), Mil. Commun.
Inf. Syst. Conf. (2015) 1–6.

[50] V. Paxson, S. Floyd, Wide-Area traffic: the failure of poisson modeling,
IEEE/ACM Trans. Netw. 3 (3) (1995) 226–244.

[51] S. Axelsson, The base-rate fallacy and the difficulty of intrusion detection,
ACM Trans. Inf. Syst. Secur. 3 (3) (2000) 186–205.

[52] A. Bar, A. Finamore, P. Casas, L. Golab, M. Mellia, Large-scale network traffic
monitoring with DBStream, a system for rolling big data analysis, in: 2014
IEEE Int. Conf. Big Data, Big Data, 2014, pp. 165–170.

[53] Apache Metron (online). Available: http://metron.apache.org/.
[54] E. Viegas, A. Santin, N. Neves, A. Bessani, V. Abreu, A resilient stream learning

intrusion detection mechanism for real-time analysis of network traffic, in:
IEEE Globecom, 2017, pp. 1–6.

[55] J. Mazel, P. Casas, R. Fontugne, K. Fukuda, P. Owezarski, Hunting attacks in the
dark: clustering and correlation analysis for unsupervised anomaly detection,
Int. J. Netw. Manag. 12 (2014) 17–31.

[56] D.P.P. Mesquita, L.S. Rocha, J.P.P. Gomes, A.R. Rocha Neto, Classification with
reject option for software defect prediction, Appl. Soft Comput. J. 49 (2016)
1085–1093.

Eduardo Viegas received the BS degree in computer sci-
ence in 2013 and the MSC degree in computer science in
2016 from PUCPR. He is currently working towards his
PhD degree in computer science at PUCPR. His research
interests include machine learning and security.

Altair Olivo Santin received the BS degree in Computer
Engineering from the PUCPR in 1992, the MSc degree
from UTFPR in 1996, and the PhD degree from UFSC
in 2004. He is a full professor of Graduate Program in
Computer Science (PPGIa) and head of Security & Privacy
Lab (SecPLab) at PUCPR. He is amember of the IEEE, ACM,
and the Brazilian Computer Society.

Alysson Bessani is an Associate Professor of the Depart-
ment of Computer Science of the Faculty of Sciences of the
University of Lisboa, Portugal, and a member of LaSIGE
research unit and the Navigators research team. He holds
a PhD in Electrical Engineering from Santa Catarina Fed-
eral University, Brazil (2006), and was a visiting profes-
sor at Carnegie Mellow University (2010), and a visiting
researcher at Microsoft Research Cambridge (2014). His
main interests are distributed algorithms, Byzantine fault
tolerance, coordination, and security monitoring.

Nuno Neves is Associate Professor with Habilitation at
the Faculty of Sciences of the University of Lisboa. He is
also Director of the LaSIGE Lab and he leads the Naviga-
tors group. Hismain research interests are in security and
dependability aspects of distributed systems. Currently,
he is principal investigator of the SUPERCLOUD and SEG-
RID European projects and he is involved in projects
BiobankClouds and Erasmus+ ParIS. His work has been
recognized in several occasions, for examplewith the IBM
Scientific Prize and the William C. Carter award. He is on
the editorial board of the International Journal of Critical

Computer-Based Systems.

http://refhub.elsevier.com/S0167-739X(18)30763-5/sb41
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb41
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb41
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb41
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb41
https://www.symantec.com/content/dam/symantec/docs/reports/istr-22-2017-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-22-2017-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-22-2017-en.pdf
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb46
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb46
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb46
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb46
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb46
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb48
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb48
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb48
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb49
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb49
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb49
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb49
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb49
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb50
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb50
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb50
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb51
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb51
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb51
http://metron.apache.org/
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb55
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb55
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb55
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb55
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb55
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb56
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb56
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb56
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb56
http://refhub.elsevier.com/S0167-739X(18)30763-5/sb56

	BigFlow: Real-time and reliable anomaly-based intrusion detection for high-speed networks
	Introduction
	Background
	Stream Processing
	ML for Intrusion Detection

	MAWIFlow dataset and analysis
	MAWIFlow
	Accuracy degradation of ML classifiers

	BigFlow
	Feature Extraction
	Reliable Stream Learning
	Setup
	Real-time learning


	Implementation
	Evaluation
	Accuracy
	Performance, Scalability, and Cost

	Related work
	Benchmark dataset for IDS
	Flow measurement and classification
	Classification reliability

	Conclusion
	Acknowledgments
	References


