
1

On the feasibility of a consistent and fault-tolerant
data store for SDNs

FÁBIO BOTELHO⇤†, FERNANDO M. V. RAMOS⇤‡, DIEGO KREUTZ⇤† ALYSSON BESSANI⇤‡

⇤FCUL/LaSIGE, University of Lisbon – Portugal
†{fbotelho,kreutz}@lasige.di.fc.ul.pt, ‡ {fvramos,bessani}@di.fc.ul.pt

Abstract—Maintaining a strongly consistent network view in

a Software Defined Network has been usually proclaimed as a

synonym of low performance. We disagree. To support our view,

in this paper we argue that with the use of modern distributed

systems techniques it is possible to build a strongly consistent,

fault-tolerant SDN control framework that achieves acceptable

performance.

The central element of our architecture is a highly-available,

strongly consistent data store. We describe a prototype imple-

mentation of a distributed controller architecture integrating the

Floodlight controller with a data store implemented using a state-

of-the-art replication algorithm. We evaluate the feasibility of

the proposed design by analyzing the workloads of real SDN

applications (a learning switch, a load balancer and a device

manager) and showing that the data store is capable of handling

them with adequate performance.

I. INTRODUCTION

A fundamental abstraction introduced by Software Defined
Networking is the concept of logical centralization. In an
SDN, network control applications can be designed and op-
erated on a global, centralized network view. This global
view enables simplified programming models and facilitates
network applications design and development.

A logically centralized programmatic model does not pos-
tulate a centralized system1. In fact, the need to guarantee
adequate levels of performance, scalability, and reliability
preclude a fully centralized solution. Instead, production-
level SDN network designs resort to physically distributed
control planes [2, 3, 4]. Consequently, the designers of such
systems have to face the fundamental trade-offs between the
different consistency models, the need to guarantee acceptable
application performance, and the necessity to have a highly
available system.

In this paper we propose a novel SDN controller architecture
that is distributed, fault-tolerant, and strongly consistent. The
central element of this architecture is a data store that keeps
relevant network and applications state, guaranteeing that SDN
applications operate on a consistent network view, ensuring
coordinated, correct behavior, and consequently simplifying
application design.

1Arguably, a less-prone-to-ambiguity definition for “logically centralized”
could be “transparently distributed” (because “either you’re centralized, or
you’re distributed” [1]).

A. Motivation for consistency

The motivation for network state consistency has been a
recurring topic in networking literature, and it gained sig-
nificant momentum with SDN. For instance, the need to
have a consistent view of routing state as a fundamental
architectural principle for reducing routing complexity has
been an important argument in favor of a strongly consistent
network state [5], for three reasons. First, decomposing the
routing configuration state across routers, as in traditional
networks, unnecessarily complicates policy expression. Sec-
ond, distributed path selection causes routing decisions at one
router to depend on the configuration of other routers. Subtle
configuration details affect the route selected with sometimes
undesirable consequences. Third, the fact that each router is
unaware of the state at other routers may result in incorrect
or suboptimal routing.

In the SDN context, Levin et al. [6] have analyzed the
impact an eventually consistent global network view would
have on network control applications — in their study, they
considered a load balancer — and concluded that state in-
consistency may significantly degrade their performance. This
example is a clear motivation for the need of a strongly
consistent network view, at least for some applications.

Recent work on SDN has explored the need for consistency
at different levels. Network programming languages such
as Frenetic [7] offer consistency when composing network
policies (automatically solving inconsistencies across network
applications’ decisions). Other related line of work proposes
abstractions to guarantee data-plane consistency during net-
work configuration updates [8]. The aim of both these systems
is to guarantee consistency after the policy decision is made.
Onix [2] provides a different type of consistency: one that is
important before the policy decisions are made. Onix provides
network state consistency — both weak and strong — between
different controller instances. The data store we propose is
similar in that it offers strong consistency for network (and
application) state between controllers2. One of our goals is in
fact to show that, despite the costs of consistent replication,
the “severe performance limitations” (quote from [2]) reported
for Onix’s transactional persistent database are a consequence
of the particular implementation of such data store, and not
an inherent property of these systems.

2By strong consistency we mean that any read that follows a write will see
the result of such write.



2

B. Motivation for fault tolerance
Fault tolerance is an essential part of any Internet-based

system, and this property is therefore typically built-in by de-
sign. Solutions such as Apache’ Zookeeper (Yahoo!), Dynamo
(Amazon) and Spanner (Google) were designed and deployed
in production environments to provide fault tolerance for a
variety of critical services. The increasing number of SDN-
based deployments in production networks is also triggering
the need to consider fault tolerance when building SDNs.
For example, Google presented recently the deployment of
its inter-datacenter WAN with centralized traffic engineering
using SDN and OpenFlow. Such centralized control requires
(and employs) fault tolerance.

SDN fault tolerance covers different fault domains [9]: the
data plane (switch or link failures), the control plane (failure
of the switch-controller connection), and the controller itself.
The latter is of particular importance since a faulty controller
can wreak havoc on the entire network. Thus, it is essential
that production SDN networks have mechanisms to cope with
controller faults and guarantee close to 100% availability.

C. Contributions
In this paper we argue that it is possible, using state-of-

the-art consistent replication techniques, to build a distributed
SDN controller that not only guarantees strong consistency and
fault tolerance, but also does so with acceptable performance
for many SDN applications. In this sense, the main contribu-
tion of this paper is showing that if a data store built using
such techniques (e.g., as provided by BFT-SMaRt [10, 11],
a high-performance fault-tolerant state machine replication
middleware) is integrated with a production-level controller
(e.g., Floodlight [12]), the resulting distributed control infras-
tructure could handle efficiently many real world workloads
(even considering applications not optimized for such control
platform).

II. CONSISTENT AND FAULT-TOLERANT DATA STORES

The key idea of our controller architecture is to make
the controller instances coordinate their actions through a
dependable data store in which all relevant state of the
network and of its control applications is maintained in a
consistent way. This data store is implemented with a set of
servers (replicas) to avoid any single point of failure, without
impairing consistency. One of the most popular techniques
for implementing such replicated data store is state machine
replication (SMR) [13, 14]. In this section we review the state
of the art on replicated data stores and describe some reasons
why, contrary to common belief, they can be a valid option
for supporting a distributed controller architecture.

Practical crash fault-tolerant replicated state machines are
usually based on the Paxos agreement algorithm for ensuring
that all updates to the data store are applied in the same
order in all replicas (thus ensuring consistency) [14]. Since
the original Paxos describes only an algorithmic framework for
maintaining synchronized replicas with minimal assumptions,
we instead describe the Viewstamped Replication (VR) pro-
tocol, a similar (but more concrete) state machine replication

System Block Size kRead/s kWrite/s
Spanner [19] 4kB 11 4
Spinnaker [16] 4kB 45+ 4
SCKV-Store [18] 4kB N/R 4.7
Zookeeper [15] 1kB 87 21

TABLE I: Throughput (in thousands data block reads and writes
per second) of consistent and fault-tolerant data stores based on state
machine replication (N/R = Not Reported).

algorithm introduced at the same time [8]. Fig. 1 shows the
messages exchanged in Paxos/VR for an update operation: the
client sends a message to a primary replica (the leader) that
disseminates the update to all other replicas. These replicas
write the update to their log and send an ACK to the primary.
In the final step the leader executes the request and sends
the reply to the client. If the primary fails, messages will not
be ordered and thus a new primary will be elected to ensure
the algorithm makes progress. When read-only operations are
invoked, the leader can answer them without contacting the
other replicas. Strong consistency is ensured due to the fact
that all requests are serialized by the leader.

C

(leader) 0

1

2

Request

Prepare PrepareOk

Reply

Fig. 1: Paxos/VR update protocol.

The Paxos/VR algorithm has served as the foundation for
many recent replicated (consistent and fault-tolerant) data
stores, from main-memory databases with the purpose of im-
plementing coordination and configuration management (e.g.,
Apache’ Zookeeper [15]), to experimental block-based data
stores or virtual discs [16, 17, 18], and even to wide-area
replication systems, such as Google Spanner [19]. Besides
the synchronization protocol, these systems employ many
implementation techniques to efficiently use the network and
storage media.

Although not as scalable as a weakly consistent data store,
these systems grant the advantages of consistency for a large
number of applications, namely those with moderate perfor-
mance and scalability requirements. To give an idea of the
performance of these systems, Table I shows the reported
throughput for read and write operations of several state-of-
the-art consistent data stores.

Given the differences in the design and the environments
where these measurements were taken, we present these values
here only as supporting arguments for the possibility of using
consistent data stores for storing the relevant state of SDN
control applications. Depending on the specific application
this state may include, for instance, a subset of the Network
Information Base (NIB). Interestingly, these values are of the
same order of magnitude of the reported values for non-



3

consistent updates in Onix (33k small updates per second
considering 3 nodes [2]), and much higher than the reported
values for their consistent data store (50 updates/second for
transactions with a single update). The Onix paper does not
describe how its consistent database is implemented but, as
shown by these results, its performance is far from what is
being reported in the current literature.

III. SHARED DATA STORE CONTROLLER ARCHITECTURE

The proposed distributed control architecture is based on a
set of controllers acting as clients of the fault-tolerant repli-
cated key-value data store, reading and updating the required
state as the control application demands, maintaining thus only
soft state locally. There are two main concerns around this
design: (i) how to avoid the storage being a single point of
failure and (ii) how to avoid making the storage a bottleneck
for the system. In the previous section we showed that state-
of-the-art state machine replication can be used to build a data
store that solves both these concerns.

Fig. 2 shows the architecture of our shared data store
distributed controller. The architecture comprises a set of
SDN controllers connected to the switches in the network.
All decisions of the control plane applications running on the
distributed controller are based on OpenFlow events triggered
by the switches and the consistent network state the controllers
share on the data store. The fact that we have a consistent data
store makes the interaction between controllers as simple as
reading and writing on the shared data store: there is no need
for code that deals with conflict resolution or the complexities
due to possible corner cases arising from weak consistency.

By design, the SMR-based data store is replicated and
fault-tolerant (as in all designs discussed in the previous
section), being up and running as long as a majority of replicas
is alive [14]. In other words, 2f + 1 replicas are needed
to tolerate f simultaneous crashes. Thus, besides offering
strong consistency, this architecture leads to a completely
fault-tolerant control plane. Furthermore, in this design the
controllers keep only soft state locally, which can be easily
reconstructed after a crash. The switches tolerate controller
crashes using the master-slave configuration introduced in
OpenFlow 1.2 [20], which allows each switch to report events
to up to f + 1 controllers (being f an upper bound on the
number of faults tolerated), with a single one being master
for each particular switch. The master is constantly being
monitored by the remaining f controllers, which can takeover
its role in case of a crash.

Interestingly, our architecture could also be used in SDN
deployments were a distributed controller is not necessary,
to implement fault tolerance for centralized controllers. In
this case the fault-tolerant data store can be used to store
the pertinent controller state, making it extremely simple to
recover from its crash. In this case, the applications deployed
on the primary controller manage the network while a set of f
backup controllers keep monitoring this primary, just as in the
distributed controller design. If the primary fails, one of the
backups – say, the one with the highest IP address – takes the
role of primary and uses the data store to continue controlling
the network.

Datastore

APPS

CONTROLLER

APPS
APPS

APPS

CONTROLLER

APPS
APPS

APPS

CONTROLLER

APPS
APPS

SLAVE CONN.

MASTER CONN.

Fig. 2: The shared data store controller architecture with each switch
sending OpenFlow messages to two controllers. The controllers coordinate
their actions using a logically centralized data store, implemented as a set of
synchronized replicas (see Figure 1).

Our distributed controller architecture covers the two most
complex fault domains in an SDN, as introduced in [9]. It has
the potential to tolerate faults in the controller (if the controller
itself or associated machinery fails) by having the state stored
in the fault-tolerant data store. It can also deal with faults in
the control plane (the connection controller-switch) by having
each switch connected to several controllers (which is ongoing
work). The third SDN fault domain — the data plane — is
orthogonal to this work since it depends on the topology of
the network and how control applications react to faults. This
problem is being addressed in other recent efforts [9, 21].

IV. FEASIBILITY STUDY

We implemented a prototype of the described dis-
tributed controller architecture integrating the Floodlight con-
troller [12] with a data store built using a state-of-the-art
state machine replication library, BFT-SMaRt [10, 11]. To
evaluate the feasibility of our design we considered three
SDN applications provided with Floodlight: Learning Switch
(a common layer 2 switch), Load Balancer (a round-robin
load balancer) and Device Manager (an application that tracks
devices as they move around a network). The applications were
slightly modified. The main change was shifting state from
the controller’s (volatile) memory to the data store efficiently
(i.e., always trying to minimize communication). Another
modification was the restructuring of the data model to fit
the key-value model of the data store.

The objective of the experiment is to analyze the workloads
generated by these applications to thereafter measure the
performance of the data store when subject to such realistic
demand. It is important to clarify from the outset that we have
not used an emulation tool such as cbench [22] because we
are measuring the data store performance, not the controller.
We are therefore interested in the controller–data store inter-
action (instead of the controller–switch interaction).

The feasibility study was done in two phases. First, we
emulated a network environment in Mininet that consisted of a



4

single switch and at least a pair of host devices. ICMP requests
(pings) were then generated between pairs of host devices. The
objective was to create OpenFlow traffic (packet-in mes-
sages) from the ingress switch to the controller. Then, for each
OpenFlow (OF) request, the controller performs a variable,
application-dependent number of read and write operations, of
different sizes, in the data store. The number of read and write
operations, along with its payload size (i.e., the workload),
was then recorded for each application. Second, the collected
workload traces were used to measure the performance of
our distributed data store. For the experiments we used four
machines, three for the distributed data store3 and one for
the controller (the data store client). Each machine had two
quad-core 2.27 GHz Intel Xeon E5520 and 32 GB of RAM
memory, and they were interconnected with gigabit Ethernet.
The front-end machine (the controller) was using 200 threads
to emulate the workload imposed to the data store. We arrived
at this number after performing simple throughput and latency
tests using a variable number of threads (from 10 to 300)
making requests to the data store. The results suggested that
200 threads offered a good tradeoff between throughput and
latency.

Each workload (see below) was run ten thousand times,
measuring both latency and throughput. In Table II we report
the results (workloads, throughput, and latency penalty). A
workload is described as a number of read (Reads) and write
(Writes) operations per OpenFlow request, with each operation
having a specific average message size (in bytes)4. We classify
OF packet-in requests according to the network packet
header they encapsulate. The throughput represents the average
number of OF Requests (i.e., flows) the data store can handle
per second. Similarly, the latency is the mean time needed by
the data store to process (receive, execute operations, and re-
ply) an OF request. For the throughput and latency we present
the average and standard deviation over all experiments.

A. Workloads & Results
In Table II, w1 and w2 represent the workloads generated

by the default operation of the Learning Switch and Load
Balancer applications, respectively. The other two workloads,
w3 and w4, cover two different scenarios of the Device Man-
ager. Workload w3 represents ICMP communication between
known devices, which generates the “lighter” workload (a best-
case scenario), whereas in w4 the devices are still unknown
by the Device Manager (representing a worst-case scenario).
Depending on the application logic, the number and type of
OF requests received and processed by the controller will vary,
with a correspondent variation in the number, type (read or
write), and size of the operations performed in the data store.

In the Learning Switch application, for each switch a differ-
ent MAC-to-switch-port table is maintained in the data store.
Its content is populated using the source address information
present in every OF request. When an ICMP request is

3To tolerate the crash from a single controller (f = 1) three replicas are
needed, as explained in Section III.

4We present only the request size for writes and the reply size for reads
since those are the values that have the highest impact on the data store
performance.

generated it triggers three OF requests. First, one ARP request,
which requires only one write operation of 113 bytes (to
store the MAC-to-switch-port information). Then, two other
OF Requests — an ARP Reply and an Echo Request — with
two operations performed in each. As before, one write is
required to associate the source address to the switch ingress
port. In addition, one read (77 bytes) is made to discover the
egress port for the destination address. As can be observed
in Table II, the learning switch application is the one where
the data store shows the best performance (it can handle 22.7
kReq/sec). Similarly, the latency penalty is also the lowest (9
ms). This is due to the smaller message size and the reduced
number of operations performed when compared to the other
workloads.

The Load Balancer employs a round-robin algorithm to
distribute the requests addressed to a virtual endpoint IP (VIP).
In our experiment three OF requests arrive at the controller.
The first is an ARP Request that requires a query to the data
store to check if the flow destination address is a VIP (1 read
needed). If it is, the controller responds directly to the host
with a MAC address for that VIP server (so, another read
is needed). Then, the Echo Request that follows requires 3
read operations, and it also causes a status update to identify
the next server address as part of the round robin algorithm
(1 write operation). Finally, an Echo Reply also triggers a
query to the data store to check if the flow destination address
is a VIP (1 read needed). This application shows a slight
decrease in performance when compared to the Learning
Switch, both in throughput and in latency. The decrease was
expected due to the higher number of operations and of
their average size. The same to its small magnitude (of the
decrease), which is justified by two factors. First, the message
size, although higher, is still of the same order of magnitude.
Second, the Load Balancer workload is composed mainly of
read operations which, as covered in Section II, have lower
overhead.

The last application we analyzed was the Device Manager.
This application provides a mapping of switch ports and
host devices attached to it (crucial information to Floodlight’s
Forwarding application). When the devices are known (w3)
the application triggers 2 reads in order to make the flow
source and destination information available to the Forward-
ing process. Additionally, it also updates (1 write) the “last
seen” timestamp of the source device. When the devices
are unknown (w4) the workload nearly doubles, as can be
observed in Table II, leading to a total of 7 reads5 and 9 write
operations. This workload is more demanding for the data
store as the message sizes increase by an order of magnitude.
Consequently, the throughput is significantly reduced and the
latency increases. The worst-case scenario is, as expected, the
one presenting the worst performance. But, interestingly, the
scale of the performance decrease is not as sharp as one would
expect for a workload with significantly higher number of
write operations (9 against 2). This seems to imply that the size
of the data written affects performance more than the number

5Recall that the size reported is that of the payload content, so the zero-
bytes read in the table is just a NULL reply from the data store when there
is no information for that device – the device is unknown.



5

Workload Data Data store Performance

Application Workload OF Requests Reads (size) Writes (size) Thr. (kReq/s) Latency (ms)

Learning Switch w1 - Mapping host-port
ARP Req.
ARP Reply
ICMP Echo Req.

0
1 (77)
1 (77)

1 (113)
1 (113)
1 (113)

22.7 ± 3.3 9 ± 3

Load Balancer w2 - Balancing a request
ARP Req.
ICMP Echo Req.
ICMP Echo Reply

2 (509)
3 (366)
1 (106)

0
1 (395)

0
19.3 ± 3 12 ± 7

Device Manager

w3 - Known devices ICMP Echo Req.
ICMP Echo Reply

2 (1680)
2 (1680)

1 (3458)
1 (3458) 4.7 ± 0.5 41 ± 6

w4 - Unknown devices
ARP Req.
ARP Reply
ICMP Echo Req.

2 (0)
3 (560)

2 (1680)

4 (1092)
4 (1092)
1 (3458)

3.6 ± 0.3 52 ± 18

TABLE II: Detail of the workloads and experimental results. We report the number of read and write operations on the data store, with their
average size in bytes, caused by each OF request sent by the ingress switch to the controller and the associated throughput (in thousands of
OF requests per second) and latency (in ms).

of write operations. This is a hypothesis we are investigating,
as its understanding may be useful for the optimizations we
are currently planning.

B. Discussion
The introduction of a fault-tolerant, consistent data store in

the architecture of a distributed SDN controller has a cost.
Adding fault tolerance increases the robustness of the system,
while strong consistency facilitates application design, but the
fact is that these mechanisms affect system performance. First,
the overall throughput will decrease to the least common
denominator, which will in most settings be the data store.
Second, the total latency will increase as the response time for
a data path request now has to include i) the latency to send
a request to the data store; ii) the time to process the request;
and iii) the latency to reply back to the controller. Starting by
assuming the inevitability of this cost, our objective in this
paper is to show that, for some network applications at least,
the cost may be bearable and the overall performance of the
system remain acceptable.

Our argument is threefold. First, we note that the perfor-
mance results of our data store are similar to those reported
for the original NOX and other popular SDN controllers [22].
The average throughput for the Learning Switch application
(the only application considered in [22]) is not far from that
reported by NOX (30kReq/s), so our data store would not
become a bottleneck in this respect. In addition, the latency is
close to the values reported for the different SDN controllers
analyzed in that work (including the high-performance, multi-
threaded ones), so the additional latency introduced, although
non-negligible, can (arguably) be considered acceptable. We
consider this result to be remarkable given that our data store
provides both strong consistency and fault tolerance.

Of course, the insightful reader will note that the results
become quite distant from what is obtained with a controller
that is optimized for performance, such as NOX-MT [22],
particularly in terms of throughput. As the second part of the
argument, it is important to understand that every update to
our data store represents an execution of the protocol of Fig. 1,

while in NOX-MT we have simply OF requests being received
by a controller with the data store kept in main memory.
Even if NOX-MT (or any other high-performance controller)
synchronously writes particular data to disk (something that
takes around 5ms), no more than 200 updates/second can be
executed. This unequivocally shows that if some basic dura-
bility guarantees are required (e.g., to ensure recoverability
after a crash), then the impressive capabilities of these high-
performance controllers will be of little use.

Finally, the applications we have analyzed consider the
data store to be local and maintained in main memory. They
therefore make no optimizations whatsoever to consider the
possibility of using a remote, distributed data store. By making
some sort of data store-awareness to be a built-in property of
the applications, we think it is possible to increase the system
performance significantly. As a first step in this direction,
we implemented a modified version of the Learning Swith
introducing a simple mechanism of caching (without impair-
ing strong consistency). Our preliminary results have shown
that with the introduction of a simple cache the throughput
increased by at least 20% and the latency decreased by 33%,
without losing any guarantees in terms of consistency or fault
tolerance.

V. RELATED WORK

Most SDN controllers are centralized, leaving to its users
the need to address several challenges such as scalability,
availability, and fault tolerance. The need for distribution
has been motivated recently in the SDN literature. Examples
include the need to reduce the latency of network control [23]
and placing local functionality closer to the data plane [4]. A
small number of distributed controllers — e.g., HyperFlow [3]
— and control platforms — Onix [2] — have been proposed
recently to address some of these challenges. HyperFlow is
a simple NOX application that uses a distributed file system
to provide a publish-subscribe sub-system for message prop-
agation among controllers. Contrary to our work, it does not
provide strong consistency. Also, the use of a file system for
publish-subscribe is inefficient. Onix is a distributed control



6

platform for large-scale production networks that handles state
distribution and provides a programmatic interface upon which
network management applications can be built. Onix provides
two levels of data consistency, weak and strong, leaving to the
application designer the choice between these two data stores.
For network state needing high update rates and availability,
Onix provides an eventually-consistent, memory-only DHT,
therefore relaxing the consistency and durability guarantees.
The drawback is that an update to the DHT by multiple Onix
instances can lead to state inconsistencies. The other option is
a transactional persistent database backed by a replicated state
machine for disseminating all state updates requiring durability
and simplified consistency management. The drawbacks of the
replicated database are the performance limitations. Currently,
the data store we incorporate in our SDN controller offers
only the strong consistency option. But the overall solution
is different in several aspects. First, its use of state-of-the-art
distributed systems techniques to optimize throughput results
in a significant performance improvement over the values
reported in the Onix paper. Second, the data store we use
offers a platform independent interface easing the integration
with different controllers.

Other works on SDN policy consistency include Fre-
netic [7], Reitblatt et al. work on abstractions for network
update [8], and Software Transactional Networking [24]. In
essence, they target consistent flow rule updates on switches,
dealing with overlapping policies and using atomic-like flow
rule installation in SDN devices. In other words, they take care
of data-plane consistency after the policy decisions are made
by the network applications. As already explained before, our
work targets consistency at a different level. Our data store
ensures strong control-plane consistency for network and/or
applications state, which means policy decisions are always
based on a consistent state.

Not many studies address the issue of fault tolerance in
SDNs. Exceptions include Kim et al’s CORONET [9], an
SDN fault-tolerant system that recovers from multiple link
failures in the dataplane, and FatTire [21]. Both these solutions
deal with data plane faults. In this work we target other SDN
fault domains: faults in the control plane (controller-switch
connection) and in the controller itself.

VI. CONCLUDING REMARKS

In this paper we have proposed a distributed, highly-
available, strongly consistent controller for SDNs. The cen-
tral element of the architecture is a fault-tolerant data store
that guarantees acceptable performance. We have studied
the feasibility of this distributed controller by analyzing the
workloads generated by representative SDN applications and
demonstrating that the data store is capable of handling these
workloads, not becoming a system bottleneck.

The drawback of a strongly consistent, fault-tolerant ap-
proach for an SDN platform is the increase in latency, which
limits responsiveness; and the decrease in throughput that hin-
ders scalability. Even assuming these negative consequences,
an important conclusion of this study is that it is possible to
achieve those goals while maintaining the performance penalty
at an acceptable level.

As future work, we will focus on the optimization of
the proposed distributed controller and on modifying the
Floodlight applications to make them “data store-aware”, as
explained before. We plan to make heavy use of optimization
techniques such as batching, caching and speculation to im-
prove the data store considering the workload characteristics
of SDN control applications.

As the number of SDN production networks increase the
need for dependability becomes essential. The key takeover
of this work is that dependability mechanisms have their
cost, and it is therefore an interesting challenge for the
SDN community to integrate these mechanisms into scalable
control platforms. But, as argued in this paper, this is a
challenge we, as a community, can surely meet.

Acknowledgements.
Thanks to the anonymous reviewers for the comments that
helped improve the paper. This work was partially supported
by the EC FP7 through project BiobankCloud (ICT- 317871)
and by FCT through the Multi-annual Program (LASIGE).

REFERENCES
[1] M. Casado. The Scaling Implications of SDN. http://goo.gl/zILFm.
[2] T. Koponen et al. “Onix: a distributed control platform for large-scale

production networks”. In: OSDI. 2010.
[3] A. Tootoonchian and Y. Ganjali. “HyperFlow: a distributed control

plane for OpenFlow”. In: INM/WREN ’10. 2010.
[4] S. Hassas Yeganeh and Y. Ganjali. “Kandoo: a framework for efficient

and scalable offloading of control applications”. In: HotSDN ’12. 2012.
[5] N. Feamster et al. “The Case for Separating Routing from Routers”.

In: ACM SIGCOMM Workshop FDNA. 2004.
[6] D. Levin et al. “Logically Centralized? State Distribution Tradeoffs in

Software Defined Networks”. In: HotSDN ’12. 2012.
[7] N. Foster et al. “Frenetic: a network programming language”. In: ACM

SIGPLAN ICFP. 2011.
[8] M. Reitblatt et al. “Abstractions for network update”. In: ACM SIG-

COMM. 2012.
[9] H. Kim et al. “CORONET: Fault tolerance for Software Defined

Networks”. In: IEEE ICNP. 2012.
[10] A. Bessani, J. Sousa, and E. Alchieri. State Machine Replication for

the Masses with BFT-SMaRt. Tech. rep. DI-FCUL TR, Oct. 2013.
[11] BFT-SMaRt. http://code.google.com/p/bft-smart/.
[12] Floodlight controller. http://floodlight.openflowhub.org/.
[13] F. B. Schneider. “Implementing Fault-Tolerant Service Using the State

Machine Aproach: A Tutorial”. In: ACM Comp. Surveys (1990).
[14] L. Lamport. “The part-time parliament”. In: ACM Trans. Computer

Systems 16.2 (May 1998), pp. 133–169.
[15] P. Hunt et al. “Zookeeper: Wait-free Coordination for Internet-scale

Services”. In: USENIX ATC. 2010.
[16] J. Rao, E. J. Shekita, and S. Tata. “Using Paxos to build a scalable,

consistent, and highly available datastore”. In: VLDB Endow. 4.4
(2011).

[17] W. Bolosky et al. “Paxos Replicated State Machines as the Basis of a
High-Performance Data Store”. In: NSDI. 2011.

[18] A. Bessani et al. “On the Efficiency of Durable State Machine
Replication”. In: USENIX ATC. 2013.

[19] J. C. Corbett et al. “Spanner: Google’s globally-distributed database”.
In: OSDI. 2012.

[20] ONF. OpenFlow Switch Specification. http://goo.gl/tKo6r. 2011.
[21] M. Reitblatt et al. “FatTire: Declarative Fault Tolerance for Software-

Defined Networks”. In: HotSDN ’13. 2013.
[22] A. Tootoonchian et al. “On controller performance in software-defined

networks”. In: USENIX HotICE. 2012.
[23] B. Heller, R. Sherwood, and N. McKeown. “The controller placement

problem”. In: HotSDN ’12. 2012.
[24] M. Canini et al. “Software Transactional Networking: Concurrent and

Consistent Policy Composition”. In: HotSDN ’13. 2013.

http://goo.gl/zILFm
http://code.google.com/p/bft-smart/
http://floodlight.openflowhub.org/
http://goo.gl/tKo6r

