
Design and Implementation of a Consistent Data
Store for a Distributed SDN Control Plane

Fábio Botelho, Tulio A. Ribeiro, Paulo Ferreira, Fernando M. V. Ramos, Alysson Bessani
LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal

{fbotelho, tribeiro, pjferreira}@lasige.di.fc.ul.pt, {fvramos,anbessani}@ciencias.ulisboa.pt

Abstract—Scalable and fault-tolerant distributed Software-
Defined Networking (SDN) controllers usually give up strong con-
sistency for the network state, adopting instead the more efficient
eventually consistent storage model. This decision is mostly due
to the performance overhead of the strongly consistent replication
protocols (e.g., Paxos, RAFT), which limits the responsiveness and
scalability of network applications. Unfortunately, this lack of
consistency leads to a complex programming model for network
applications and can lead to network anomalies. In this paper
we show how the lack of control plane consistency can lead to
network problems and propose a distributed SDN control plane
architecture to address this issue. Our modular architecture is
supported by a fault-tolerant data store that provides the strong
consistency properties necessary for transparent distribution of
the control plane. In order to deal with the fundamental concern
of such design, we apply a number of techniques tailored to SDN
for optimizing the data store performance. To evaluate the impact
of these techniques we analyze the workloads generated by three
real SDN applications as they interact with the data store. Our
results show a two- to four-fold improvement in latency and
throughput, respectively, when compared with a non-optimized
design.

I. INTRODUCTION

Software-Defined Networking [20] (SDN) is reinventing the
way computer networks are managed and operated. In SDN,
the network control plane is physically separate from the data
plane and the network view is logically centralized. The ability
to write control applications based on a global, centralized
network view is a fundamental concept of this new paradigm.
Reasoning based on a global view simplifies the design and
development of network applications. The materialization of
this concept can be made by means of a centralized SDN
controller [11] that manages the network by configuring,
solo, the underlying switches. However, the requirements
of performance, scalability, and dependability of production
networks make a centralized solution unfeasible and demand a
distributed and dependable control plane (such as ONIX [19]).
Production-level SDNs such as Google’s worldwide inter-
datacenter network [15] and VMware’s Network Virtualization
Platform [18] indeed resort to such distributed solutions.

Unfortunately, distributed systems are difficult to under-
stand, design, build, and operate [7]. In such systems, partial
failures are inevitable, testing is challenging, and the choice of
the “right” consistency model is hard. Ideally, the development
of control applications should not be exposed to such a
complex environment.

In an SDN, as the network is programmed based on a global
network view, we argue it is fundamental this view to be

consistent. This implies that upon a change in the network
state all controllers should maintain the same consistent view
of the network. Indeed, in this paper we show, by example,
that maintaining an eventually consistent view is not enough
and may lead to network anomalies (Section II).

Motivated by the need of strong consistency in the con-
trol plane to assure correct network policy enforcement, and
well informed of the complexity of building a distributed
system, we propose a novel, modular architecture for an SDN
control plane (Section III). Contrary to alternative designs
(such as ONOS [1] and Onix [19]), the central element of
this architecture is a consistent, fault-tolerant data store that
keeps relevant network and applications state, guaranteeing
that SDN applications operate on a consistent network view.
This property ensures coordinated, correct behavior, and con-
sequently simplifies application design. In our architecture
each controller is responsible for managing a specific subset of
the network switches, and is a client of this replicated, fault-
tolerant data store. The architecture is modular in the sense that
it separates the network configuration problem in two. On the
one hand, the applications running in the controllers read state
from the data store to program the network switches under
their control, and write/update network state when informed
of changes by the switches. On the other hand, the data
store is responsible for coordination, and consequently for
guaranteeing a strongly consistent view of the network and
applications state across all controllers. This separation of
concerns allows the division of the problem into more tractable
pieces and is therefore a relevant aspect of the proposed
design.

The main concern of this approach is the overhead required
to guarantee consistency on a fault-tolerant replicated data
store, which may limit its responsiveness and scalability.
To mitigate this problem, we applied several optimization
techniques for improving the performance of the data store
operation (Section IV). In order to evaluate the impact of using
these techniques, we analyzed the workloads generated by real
SDN applications (learning switch, load balancer and device
manager) as they interact with the data store (Section VI). Our
results show that the proposed optimizations can substantially
improve the latency and throughput of these applications
(Section VII).

An important contribution of this paper is to show that an
architecture as the one we propose here results in a distributed
control infrastructure that can efficiently handle representative

workloads, while guaranteeing a network view that is always
consistent. This property thus precludes network anomalies
resultant from an inconsistent network view. When combined
with the consistency abstractions proposed by Reitblat et
al. [29] and the mechanisms proposed for enforcing consis-
tency in the data plane [6], [16], [24], our architecture has
the potential of ensuring the same strong guarantees (i.e., that
all packets/flows are processed by the same global network
policy), but in a distributed scenario.

In summary, this paper makes the following contributions:
• We propose a novel SDN controller architecture that is

distributed, fault-tolerant, and strongly consistent. Con-
trary to alternative designs, our architecture is data-
centric, a design choice that favors simplicity and mod-
ularity.

• The data store that is the central piece of our architec-
ture is augmented with a set of optimization techniques
specifically targeted for an SDN, significantly improving
its performance.

• To validate our design, we present a first of its kind
workload analysis of three representative SDN control
applications.

II. (STRONG) CONSISTENCY MATTERS

Feamster et al. [9] have argued for the need to have a
consistent view of routing state as a fundamental architectural
principle for reducing routing complexity. Indeed, network
state consistency has been a recurring topic in the networking
literature, and it gained significant momentum with SDN. For
instance, Levin et al. [22] have analyzed the impact an even-
tually consistent global network view would have on network
control applications and concluded that state inconsistency
may significantly degrade their performance. In this section we
intend to show, by means of an example, how inconsistencies
in the control plane can lead to (potentially) severe network
anomalies (even when data plane consistency techniques [16],
[29] are used).

Consider Fig. 1. Controller C1 controls the left subset of
the network, whereas C2 controls the right subset of switches.
The solid arrows represent the path the packets that flow from
host H1 to H2 take initially. Assume that at a certain time t
controller C2 realizes the link between switches S3 and S4
is becoming congested and diverts H1-H2 traffic to S2 (as
it is aware of the alternative S2-S4 being less congested).
Controller C2 writes the change to the data store to update
the network view.

An eventually consistent data store will reply to the con-
troller C2 as soon as it starts processing its request. The
controller will immediately install the new rules on the
switches it controls. This will create a transient loop in the
traffic from H1 to H2 (dashed arrow in link S3-S2) even
if, as we assume in this example, the controllers use data
plane consistency mechanisms. This network anomaly will
eventually be corrected when the network state in the data
store converges and controller C1 installs the new rules in its
switches (the flow then starts using link S2-S4). A transient

Fig. 1: Consistency loop scenario.

problem such as the one presented here can have consequences
that range from an inconvenient hiccup in a VoIP call or a lost
server connection to more alarming problems such as security
breaches.

Importantly, this problem would not occur if one considers
a strongly consistent data store.1 When controller C2 sends
the update to the data store, the data store replicas will have
to reach an agreement before replying to this client. As a
consequence, controller C2 has the guarantee that, when it
receives the reply from the data store, all controllers are
already informed of the fact and will act in unison. When
coupled with data plane mechanisms (in particular recent
techniques similar to the ones proposed recently for concurrent
network control [6]) this guarantee will make it possible
to give strong consistency guarantees in a fully distributed
scenario.

The reason why the mechanisms that implement the ab-
stractions that guarantee data-plane consistency (both central-
ized [16], [29] and concurrent [6]) are, alone, insufficient to
solve the problem is that its aim is to guarantee data plane
consistency after a policy decision is made. Our work targets
a different type of consistency: one that is important before
making the policy decision. Joining these two facets has the
potential to guarantee that all packets/flows follow the same
policy and therefore avoid network anomalies in any scenario.
This is the direction we follow in our work, and of which this
paper is a first, important step.

III. CONTROLLER ARCHITECTURE

We propose a novel distributed controller architecture that
is fault-tolerant and strongly consistent. The central element
of this architecture is a replicated data store that keeps rel-

1Formally, we say a replicated data store is strongly consistent if it satisfies
linearizability [13], i.e., it mimics a centralized system.

Fig. 2: The controllers of different network domains coordinate
their actions using a logically centralized (consistent and fault-
tolerant) data store.

evant network and application state, guaranteeing that SDN
applications operate on a consistent network view.

The architecture is based on a set of controllers acting as
clients of the fault-tolerant replicated data store, reading and
updating the required state with the application demands. In
this sense, the architecture is data-centric – it is through the
data store, acting as a virtual shared memory, that we support
distribution. The data store mimics the memory model existent
in centralized controllers such as Floodlight [27]. Therefore,
other controllers can be easily integrated as a component of
our architecture.

Fig. 2 illustrates our distributed controller architecture. The
figure shows a set of controllers responsible for managing
different subsets of the network switches (called a domain).
All decisions taken by the control plane applications that run
on the controller are based on data plane events triggered
by the switches and the consistent network state (the global
view) the controllers share using the data store. The fact that
we have a consistent data store as the central piece of the
architecture simplifies the interaction between controllers to
reads and writes on a shared memory: there is no need for
code that deals with conflict resolution or the complexities
due to possible corner cases arising from weak consistency.
This additional modularity of the design (when compared with
alternative solutions [1]) allows a clean separation of concerns
we deem important for its evolution.

In terms of dependability, our distributed controller archi-
tecture covers the two most complex fault domains in an SDN,
as introduced in [17]. It has the potential to tolerate faults in
the controller (if the controller itself or associated machinery
fails) by having the state stored in the data store. It can also
deal with faults in the control plane (the connection controller-
switch) since each switch is connected to several controllers.

The controllers (and the applications they host) keep only
soft state, which can easily be reconstructed after a crash.
All the important network and application state is maintained
in the data store. This simplifies the implementation of fault
tolerance for the system since (1) all complex fault-tolerant
protocols (e.g., fault-tolerant distributed consensus) are kept

inside of the data store, reusing thus the large body of work
existent in this area (e.g., [2], [3], [21], [25], [30]), and (2)
the recovery of controllers is made very simple because there
is no hard state to synchronize. Regarding the last point, once
a controller fails any of the existent controllers can take over
its place based on the network state that resides in the data
store. The switches can tolerate controller crashes using the
master-slave configuration introduced in OpenFlow 1.2 [26],
which allows each switch to connect to f +1 controllers (f is
a parameter of the system representing an upper bound on the
number of faults tolerated), with a single one being master for
each particular switch. In our design, controller fault tolerance
is per domain, meaning that the primary of one domain is the
backup of another domain (as depicted in Fig. 2).

The bottleneck of the architecture is the data store. The rea-
son are the complex coordination protocols that run between
the replicas, which limit the scalability of the architecture.
This is an unavoidable consequence of the property we want
to guarantee: a consistent global view across controllers.
Anyway, it is possible to significantly improve the data store
performance by equipping it with a set of state-of-the-art
distributed systems techniques that are particularly useful for
the target environment. In the next sections we thus focus on
the design and implementation of the data store, considering
several optimizations, and using representative workloads gen-
erated by real and non-trivial network applications to evaluate
it.

IV. DATA STORE DESIGN

A common way to implement a consistent and fault-tolerant
data store is by using replicated state machines [30]. This
technique considers a set of replicas implementing a service
(e.g., the data store) accessed through a total order multicast
protocol that ensures all replicas process the same sequence
of requests. The core of a total order multicast protocol
is a consensus algorithm such as Paxos [21], Viewstamped
Replication [23], BFT-SMaRt [3] or RAFT [25]. In this work
we are using BFT-SMaRt for this purpose.

A fundamental concern of these systems is their limited
scalability and performance overhead. However, recent work in
this field has started showing interesting performance figures
of up to tens of thousands of small updates per second [3],
[14]. To have an idea of how these figures compare with pre-
vious solutions, this performance is three orders of magnitude
better than what was reported for the initial consistent database
used in the Onix distributed controller [19]. These performance
numbers start justifying the use of such systems as a consistent
backend for supporting a distributed controller, especially if
complemented with specific optimizations.

In the following we present a set of techniques used in
the design of an efficient data store for network control
applications. As a starting point we consider a data store
supporting an arbitrary number of tables (uniquely identified
by their name). Each table maps unique keys to opaque values
of arbitrary sizes (i.e., raw data). The server has no semantic

Controller Data Store

getCrossReference(IPS,IP)

IPS TABLE

IP MAC

MACS TABLE

MAC Device

MAC = read(IP)

Device = read(MAC)

2

3

Device

1

4

Table Key

Cross Reference Table of

Fig. 3: Cross Reference table example with Table IPS config-
ured as a cross reference to table MACS. First, the controller
sends a cross reference read request to the data store for table
IPS and key IP (1). Then, the data store performs a read in
table IPS to obtain the key MAC (2), that is used in table
MACS (3) to finally reply to the client the Device (4).

knowledge of the data present in the data store and supports
simple operations such as create, read, update, and delete.

A. Cross References

A classical key-value table is restricted to a single key to
identify a value despite the number of unique attributes that are
associated with the value. However, in some cases it is useful
to have an additional table that relates a “secondary” key with
the value indexed by some “primary” key. As an example,
consider an application tracking hosts accessing a network that
assumes a device is uniquely identified either by an IP or
MAC address. Therefore, we could use two tables: table IPS,
relating IPs (key) to MACs (value), and table MACS, relating
MACs (key) to devices (value). This is a reasonable scheme
in a local environment given that the cost to obtain a device
with a MAC address or its IP is the same. However, in a
distributed environment, this requires two accesses to the data
store just to obtain a single device with an IP address (one to
fetch the MAC, and another to fetch the device), incurring in
a significant latency penalty.

To avoid this penalty for obtaining a single value we
implemented a Cross Reference table, which in this example
is able to obtain the device with a single access to the data
store. Fig. 3 illustrates how our Cross Reference table works.
In this example, the client (controller) configures the IPS table
as a cross reference to the MACS table. In practice, this is
understood as: the values of the IPS table can be used in the
MACS table. With this setting, the client can fetch a device
from the IPS table with a single data store operation (the
getCrossReference method). Thus, this operation halves the
latency penalty required to obtain the device.

B. Versioning

Despite being strongly consistent, our data store is still
exposed to the pitfalls of concurrent updates performed by
clients. Namely, the loss of data caused by overlapping writes.
As an example, consider an HTTP network logger running in
a controller that maintains a key-value table in the data store
to map each web page accessed to the set of IP addresses
that have visited it. For updating the set, the controllers need
first to fetch it, add an element locally, and update the data

Controller 1

Controller 2

visitors = {IP1}

visitors = {IP1}

Data store

read visitors

read visitors

visitors = {IP1, IP2}

visitors = {IP1, IP3}

Fig. 4: Concurrent updates lead to loss of data.

store with the new set. Fig. 4 illustrates how, in this setting,
concurrent updates can lead to data loss.

Controllers 1 and 2 fetch the same visitors set for
a particular web site (uniquely identified by the URL), and
then they replace it by a new set that includes IP2 and IP3,
respectively. The lack of concurrency control results in the loss
of the write operation that includes the IP2 visit to the site
(visitors={IP1,IP2}), because the last write (visitors = {IP1,
IP3}) overwrites the previous.

To solve this problem we make each table entry (i.e., key-
value pair) be associated with a monotonically increasing
counter (the version number) that is incremented in every
update executed for the key. By creating this Versioning
mechanism, we empower the data store with the capability
to detect and prevent conflicting updates that otherwise could
result in data loss.

C. Columns

With a key value data model, clients are able to map a
unique key to any arbitrary value with no semantic meaning for
the data store (it is just raw data). This is a quite limited data
model since values are often composed of multiple attributes.
Consequently, when the client interest lies towards a small
portion of the value (e.g., a single attribute), this model can
be a bottleneck, since both the update messages (sent to the
data store), and reply messages (received from the data store)
may contain unnecessary attributes (thus increasing the latency
penalty for the client). Therefore, we expanded the key value
table to allow clients to access the individual components of
a value with an additional key (i.e., the column name). With
Columns, we enhance the unidimensional model of a key value
table to a bi-dimensional one whereby two keys (as opposed
to one) can access an individual attribute of a value inside a
table.

Despite the fact that a Column table decomposes a value
into columns, the client is still able to manipulate the entire
value. Namely, the client is still able to retrieve or update a
value “entirely” even if she is not aware of the column names
that compose a value. Furthermore, the column names are not
static, not even in the context of a table. Each key-value entry
may have different columns, and clients can add and delete
columns from a value as they see fit (in run-time).

D. Micro Components

So far, we have focused in particular client use cases
(i.e., multiple keys to obtain a value, concurrent updates,

Controller

Data StoreCache

read(k1, ts)

Key Value : timestamp

k1 v1 : t0

Key Value

k1 v1

[(current time - t0) > ts]

[Otherwise]

Fig. 5: Reading Values from the Cache: the client performs
a read on the data store for key k1 and accepted staleness ts.
The cache returns a local value iff: it was added to the cache
for less than ts time. Otherwise, it obtains the value from the
data store (and updates the cache).

and manipulation of attributes) to introduce techniques that
reduce the number and size of messages during the interaction
between clients and the data store. However, for an arbitrary
number of operations that have no explicit connection to each
other we need a more general abstraction. Imagine a control
application needs to execute the following transaction in the
data store: “read two values from different tables: the total
number of bytes allowed to be forwarded and the byte counter
from the forwarding table (that gives the number of bytes
effectively forwarded)”, “subtract them” and “update the first
table with the new number of bytes allowed to be forwarded”.
With the current interface, this set of operations will require
multiple controller-data store interactions, thus revealing a
significant latency penalty for such a simple task.

To address this limitation, we propose the use of a mecha-
nism for running the whole transaction at the server side. More
specifically, we deploy specific data store extensions, called
Micro Components. This is similar to the use of extensions in
coordination services [8] or stored procedures in transactional
databases.

The most significant advantage of a micro component is
performance since it allows the client to merge multiple
operations in a single method reducing the number of accesses
to the data store.

E. Cache

With a cache the client can keep frequently accessed values
locally, for a particular data store table. For this table, each
value that is read or written from and to the data store is
added to the local cache. As the cache affects consistency (a
point we will return to below), the client has the option to
define a bound on the window of inconsistency she is willing
to tolerate. For each client request, the cache returns the local
value if the request is within the staleness bound. Otherwise,
the cache retrieves the value from the data store. This is shown
in Fig. 5. Of course, if the bound specified by the client is zero,
the cache is bypassed and the request is sent to the data store.

A strong point of our architecture is the guarantee of a
consistent global view for network and application state. As
such, the reader may correctly question why we consider the
use of a cache. Our goal in this respect is to offer some level
of flexibility, as we anticipate not all state to require the same
level of consistency. We thus leave the client with explicit
control over the window of inconsistency she is willing to
accept. Particular state may lead to inconsistencies, as that
concerning cross-domain operations, such as the example in
Section II. But since in our design a single controller controls
all switches in its domain, no concurrency issues will occur
for non-cross domain operations and a part of the state may
be served from the cache.

V. IMPLEMENTATION

We implemented a prototype of the previously described
architecture by integrating the Floodlight controller with a
data store built on top of a state-of-the-art State Machine
Replication library, BFT-SMaRt [3]. Furthermore, we modified
three SDN applications provided with Floodlight in order to
operate with our data store: Learning Switch (a common layer2
switch), Load Balancer (a round-robin load balancer), and
Device Manager (an application that tracks devices as they
move around a network).

The BFT-SMaRt library supports a tunable fault model and
durability. The fault model can be either Byzantine2 or crash-
recovery. For performance reasons, we consider the crash-
recovery model whereby a process (i.e., replica) is considered
faulty if either the process crashes and never recovers or
the process keeps infinitely crashing and recovering [5]. The
library operates under an eventually synchronous model for
ensuring liveness. For durability, a state transfer protocol
guarantees that state survives the failure of more than f
replicas (the number of replicas that can fail simultaneously).

Our data store is, therefore, replicated and fault-tolerant,
being up and running as long as a majority of replicas is
alive [21]. More formally, 2f+1 replicas are needed to tolerate
f simultaneous faults.

The implemented data store supports all optimizations de-
scribed in the previous section. The only noticeable limitation
of our proof-of-concept prototype is related with the support
for Micro Components. Currently, they are statically included
in the data store codebase along with the classes that each
micro component requires to operate.

VI. WORKLOADS’ ANALYSIS

To evaluate our data store design, we consider three appli-
cations in isolation and analyze how they interact with the data
store (with and without the optimizations).

Fig. 6 illustrates the scenario. Whenever a switch triggers a
message to be sent to an application, the latter executes one
or more operations on the data store. Then, as soon as the
application finishes, it can reply to the switch with a message
(named “controller reaction” in the figure). In the end, a data

2In a Byzantine fault model, processes can deviate from the protocol in any
way. Namely, they can lie, omit messages, and crash.

operation 1 (request , reply)
operation 2 (request, reply)

....
operation n (request, reply)

Data Plane event

Controller Reaction

Datastore

WORKLOAD

Controller Application

Fig. 6: Each data plane event triggers a variable number of
operations in the data store. The trace of those operations and
their characteristics is a workload.

store workload is a trace (or log) of data store requests and
replies resulting from the processing of a data plane event by
a particular application.

We selected three representative control applications for
validating our design, Learning Switch, Load Balancer and
Device Manager.

A. Workload Generation

For the first phase of our study we emulated a network envi-
ronment in Mininet [12] and connected it to our prototype. We
use Mininet to send the appropriate OF data plane messages
from the switch to the controller, triggering an access to the
data store (see Fig. 6). We record all communication between
the controller and the data store.

Our network environment consists of a single switch and
at least a pair of host devices. After the initialization of the
test environment (e.g., creation of a switch table, configuration
of the Load Balancer application, etc.) we generated ICMP
requests between two devices. The goal was to create OF
traffic (packet-in messages) from the ingress switch to the
controller. Then, for each OF request, the controller performs
a variable, application-dependent number of read and write
operations, of different sizes, in the data store (i.e., the
workload). In the controller (the data store client), each data
store interaction is recorded entirely (i.e., request and reply
size, type of operation, etc.) and associated with the data plane
event that has caused it.

Table I contains all the captured workloads for each appli-
cation we considered: Learning Switch (ls), Load Balancer
(lb), and Device Manager (dm). The initial message sizes for
each operation recorded are displayed in column init. There
is one column for each optimization described in Section IV
(Cross References - cref; Versioning - vers; Columns -
cols; Micro Components - micro).

B. Learning Switch

The Learning Switch application emulates a layer 2 switch
forwarding process based on a switch table that associates
MAC addresses to switch ports. The switch is able to populate
this table by listening to every incoming packet that, in turn,
is forwarded according to the information present in the table.

The two significant workloads we consider for this application
are related with the type of packet observed by the controller.

Broadcast Packet Workload (ls-bcast)—The opera-
tions (init column) in Table I show that for the purpose
of associating the source address of the packet to the ingress
switch-port where it was received, the Learning Switch appli-
cation performs one write (W) operation with a request size
(Request) of 113 bytes and reply size (Reply) of 1 byte.

Unicast Packet Workload (ls-ucast)—This workload
creates an additional operation to the previous one, since for
every unicast packet we must also fetch the known switch
port location of the destination address. The operations (init
column) at Table I shows that this second operation comprises
a 36-bytes request and a 77-bytes response, which contains the
known switch port.

C. Load Balancer

The Load Balancer application employs a round-robin al-
gorithm to distribute the requests addressed to a Virtual IP
(VIP) address across a set of servers. Again, we consider two
workloads for this application.

ARP Request (lb-arp)—This workload (see column
init in Table I) shows the operations that result from an
OpenFlow’ packet-in message caused by an ARP request
querying the VIP MAC address. In the first operation, the
Load Balancer application attempts to retrieve the vip-id for
the destination IP. If it succeeds, then the retrieved vip-id
is used to obtain the related VIP entity in operation #2 (we
surround the operation description with brackets to mark it
as optional—it is only executed when the first succeeds).
Although only the MAC address is required to answer the ARP
request, the VIP entity is read entirely. Notice that the size
(509 bytes) is two orders of magnitude larger than a standard
MAC address (6 bytes).

Packets to a VIP (lb-vip)—This workload (see column
init of Table I) shows the detailed operations triggered by
IP packets addressed to a VIP. The first two operations fetch
the VIP entity associated with the destination IP address of
the packet. From the VIP we obtain the pool-id used to
retrieve the Pool (operation #3). The next step is to perform the
round-robin algorithm by updating the current-member
attribute of the retrieved Pool. This is done locally. Afterwards,
the fourth operation aims to replace the data store Pool by
the newly update one. If the Pool has changed between the
retrieve and replace operation this operation fails (reply equal
to 0) and we must try again by fetching the Pool one more
time (repeating operation #3 and #4). In order to check if the
versions have changed, the replace operation contains both
the original and updated Pool to be used by the data store. In
order to succeed, the original client version must be equal to
the current data store version when processing the request. If
successful (reply equal to 1), we can move on and read the
chosen Member (server) associated with the member-id that
has been determined by the round-robin algorithm.

Workload Operation Type (Request size, Reply size)

init cref vers cols micro

ls-bcast 1) Associate source address to ingress port W (113,1) - - - -

ls-ucast 1) Associate source address to ingress port W (113,1) - - - (56,6)2) Read egress port for destination address R (36,77) - - -

lb-arp 1) Get VIP id of destination IP R (104,8) (104,509) (104,513) (62,324) -
2) [Get VIP info (pool)] R (29,509) -

1) Get VIP id of destination IP R (104,8) (104,509) (104,513) (62,324) -
2) [Get VIP info (pool)] R (29,509) -

lb-vip 3) [Get the chosen pool] R (30,369) - (30,373) -
4) [Conditionally replace pool] W (772,1) - (403, 1) - (11,4)
5) [Read the chosen Member] R (32,221) - (32,225) (44,4)

1) Get source key R (408, 8) (408,1274) (408,1278) (486,1261) (28,1414)a
2) [Get source device] R (26,1444)

dm-known 3) [Update timestamp] W (2942,0) (2602,0) (1316,1) (667,1) (36,0)
4) Get target key R (408,8) (408,1199) (408,1203) (416,474) Not needed5) [Get target device] R (26,1369)

1) Read source key R (408,0) - - (486,0) (28,201)b

2) [Increment counter] W (21,4) - - -

(476,8)
3) [Update device table] W (1395,1) (1225,1)b - (1183,1)

dm-unknown 4) [Update MAC table] W (416,0) - - -
5) [Get from IP index] R (386,0) - - -
6) [Update IP index] W (517,0) - - -
7) Get target key R (408,8) (408,1208)

c
(408,1212) (416,474) Not needed8) [Get target device] R (26,1378)

TABLE I: Learning Switch, Load Balancer and Device Manager operations and respective sizes (in bytes) across different
optimizations. Operations under brackets are executed only in certain conditions. Operations with dashed entries translate into
no improvement from the respective optimization. Legend: a) This operation also fetches the target device; b) This operation
also fetches the destination device; c) Differences in sizes caused by a marshalling improvement.

D. Device Manager

The Device Manager application tracks and stores host
device information such as the switch-ports attachment points
(ports the devices are connected to). This information is
retrieved from all OpenFlow messages the controller receives.

Known Devices Workload (dm-known)—When a packet
from a known device is received, a packet-in request
triggers the operations seen in column init of Table I on
the data store. The first two operations read the source device
information. Then an update is required to update the “last
seen” timestamp of the device generic entity. Notice that
the size of this request is nearly twice that of a device (1444
bytes). This is due to the fact that this is a standard replace
containing both the original device (fetch in step #2) and the
updated device. This operation will fail if other data store
client has changed the device. If so, the process is restarted
from the beginning. Otherwise, the last two operations can
fetch the destination device.

Unknown Device Workload (dm-unknown)—This work-
load is triggered in the specific case in which the source device
is unknown and the OF message carries an ARP reply packet.
The first operation reads the source device key. Being that it is
unknown (notice, in the table, that the reply has a size of zero
bytes corresponding to null) the application proceeds with
the creation of the device. For this, the following write (second

operation) atomically retrieves and increments a device unique
id counter. Afterwards, the third and fourth operation updates
the devices and macs tables respectively. Then, since the
ips table links an IP to several devices, we need to first
collect a set of devices (operation #5) in order to update it
(operation #6). If successful, the Device Manager has created
the new device information and can, finally, move to the last
two operations that fetch the destination device information.
If unsuccessful, the process is repeated from step #5.

VII. PERFORMANCE EVALUATION

After obtaining the workloads for each application, we
executed a series of experiments to evaluate the performance
of the data store considering all workloads (including opti-
mizations). The objective here is to shed light on the data
store performance (latency and throughput) when subject to
realistic workloads, as this is the bottleneck of our consistent
distributed control plane architecture.

A. Test environment

We execute our experiments in a four-machine cluster, one
for the data store client (responsible for simulating multiple
controllers), and three for the data store (to tolerate one crash
fault, f = 1).

0 5000 10000 15000 20000 25000
Throughput (Flows/s)

2

3

4

5

6

7

8

9

La
te

nc
y

(m
s)

ls-ucast-init
ls-ucast-micro

Fig. 7: Learning Switch performance (ls-ucast workload).

Each machine has two quad-core 2.27 GHz Intel Xeon
E5520 and 32 GB of RAM memory and were intercon-
nected with Gigabit Ethernet. The software environment was
Ubuntu 12.04.2 LTS with Java SE Runtime Environment (build
1.7.0 07-b10), 64 bits.

The data store client runs as a single Java process, but
executes multiple threads that replay a simulation of the
recorded workload with an equal number of messages and
payloads (i.e., same message type and size). We emphasize
that in order to replay a workload composed of op1, op2, ...opn
operations, a thread must first send operation op1, wait for a
reply from the data store and only after, send operation op2
(and so on until opn).

This simulation is repeated for a variable number of con-
current data store clients (representing different threads in
one controller and/or different controllers). From the measure-
ments we obtain throughput and latency benchmarks for the
data store under different realistic loads.

Each workload was run 50 thousand times, measuring both
latency and throughput. The values shown in this section are
the 90th percentile of all measurements.

B. Learning Switch

Fig. 7 shows that the unicast workload prior to being
optimized (ls-ucast-init) leads to a throughput of 12k
Flows/s, with a 6 ms latency. However, when using the
ls-ucast-micro optimized workload, the throughput in-
creases to 22k Flows/s while the latency decreases to less than
4 ms. The reason behind this improvement in both latency and
throughput is due to a decrease in the number of messages
exchanged with the data store.

C. Load Balancer

In Fig. 8 we present the results of our experiments consid-
ering different load balancer workloads.

When considering the lb-arp workload (Fig. 8a), the reduc-
tion from two to one data store interaction of the optimizations
improves the throughput by up to 60%. However, the message
size reductions from cref to cols (see row lb-arp in Table I)

6000 8000 10000 12000 14000 16000
Throughput (Flows/s)

0

1

2

3

4

5

6

7

La
te

nc
y

(m
s)

lb-arp-cols
lb-arp-cref
lb-arp-init

(a) lb-arp workload.

2000 4000 6000 8000 10000 12000 14000
Throughput (Flows/s)

0

5

10

15

20

25

La
te

nc
y

(m
s)

lb-vip-cols
lb-vip-cref
lb-vip-init
lb-vip-micro
lb-vip-vers

(b) lb-vip workload.

Fig. 8: Load Balancer performance.

have little to no effect in the performance of the system under
this workload.

For the lb-vip workload (Fig. 8b) these data store opti-
mizations are less effective, improving the peak throughput
from 5.4k Flows/sec to 6.5k Flows/sec (less than 20%). The
improvement is much more significant when microcomponents
are used (micro): the throughput more than doubles and
latency decreases by 50%, when compared with the non-
optimized data store (init).

D. Device Manager

Fig. 9 presents the performance results from the data store
when considering the two Device Manager workloads.

Our results confirm that the most significant improvement
comes from using a micro component to create a device
(dm-known-micro in Fig. 9a and dm-unknown-micro
in Fig. 9b). This optimization reduces the latency penalty
significantly while increasing the data store throughput from
5k and 3k Flows/s to more than 12k Flows/s, a three to four-
fold increase in throughput, with a significant latency reduction
in both workloads. Additionally, under adequate workloads
the data store has a significantly low latency penalty: the use

Workload Operation Type (Request,Reply) Case Throughput
(kFlows/s)

Latency
(ms)

ls-ucast 1) Associate source address to ingress port W (29,1) best ∞ 0
cache 2) Read egress port for destination address R (27,6) worst 21.5 4.7

lb-vip 1) Get VIP pool for the destination IP∗ R (62,324) best 21.4 4.8
cache 2) [Round-robin pool and read chosen Member]∗ W (21,4) worst 11.4 3.4

dm-known 1) Get source and target devices∗ R (28,1414) best 21.4 3.6
cache 2) [Update “last-seen” timestamp of source device]∗ W (36,0) worst 11.1 3.5

TABLE II: Cache optimized workloads operations and sizes (in bytes). Operations in gray background are cached.

0 2000 4000 6000 8000 10000 12000 14000
Throughput (Flows/s)

2

4

6

8

10

12

14

16

La
te

nc
y

(m
s)

dm-known-cols
dm-known-cref
dm-known-init
dm-known-micro
dm-known-vers

(a) dm-known workload.

0 2000 4000 6000 8000 10000 12000 14000
Throughput (Flows/s)

2

4

6

8

10

12

14

16

18

20

La
te

nc
y

(m
s)

dm-unknown-cols
dm-unknown-cref
dm-unknown-init
dm-unknown-micro
dm-unknown-vers

(b) dm-unknown workload.

Fig. 9: Device Manager performance.

of micro-components shows a steady latency penalty of less
than 4 ms for a throughput of more than 11k Flows/s in both
workloads.

E. Cache

In the workloads shown in the previous sections, the appli-
cations perform all operations in the data store. However, it is
possible to perform some of the operations of each workload
locally (in the controller) by integrating the applications with
our cache interface, as explained before.

In this section we show how we modified the workloads
with the cache integration, the effect that it can have on the
staleness of the data used by the clients (i.e., the applications),
and if any consistency problems can arise. We conclude
with a theoretical analysis of the performance of the cache
optimization for the considered workloads.

1) Learning Switch: The Learning Switch is a single writer,
single reader application,3 so it is possible to introduce caching
without affecting the consistency semantics or the staleness of
the data. To clarify, a cached entry in the Learning Switch
application is always consistent with the data store since no
other controller modifies that entry. Therefore, with cache we
can potentially avoid the data store while processing data plane
events, thus avoiding the two operations in the unicast packet
workload (ls-ucast).

The ls-ucast-cache workload in Table II shows the
operations that can be cached (in gray background). Note that
it was based on ls-ucast-msg workload as opposed to
ls-ucast-micro, since our current implementation of the
cache is based on the former.

First, we avoid re-writing the source address to source port
association when we already know it, because it is present in
cache (operation #1). Second, we can also avoid the read of
operation #2, which queries the egress port of the currently
processed packet, if that entry is available in cache. With
this improvement, we no longer have to read values from
the data store as long as they are available in cache, and we
still get consistent values because when we update a value we
also update the cache. Note, however, that the cache is also
limited in size, thus entries are refreshed over time. In the
case of cache misses (i.e., entry is not available in cache), the
operation is performed in the data store.

2) Load Balancer: In the Load Balancer case we use the
cache to maintain VIP entities locally. Only the first operation
can be cached since it is the only read. For the write, we must
rely on the data store to accurately perform the round-robin
algorithm and return the address of the next server chosen.
Otherwise, consistency problems may arise (i.e., conflicts). We
make use of this mandatory access to the data store to evaluate
the staleness of the VIP present in the cache. If the VIP
changed between the time it was added to the application cache
and the time the write is performed, then the data store aborts

3For each switch table only a single thread, in a particular controller (the
one responsible for the switch) reads and performs writes in the data store.

the operation and the application can restart from scratch. This
time the value is obtained from the data store.

3) Device Manager: The Device Manager workload
dm-known-cache was based on dm-known-micro from
Table II. The operation #1 reads the source and target devices
based on the IP addresses present in the packet. If any of
the two are not available in cache, the application fetches
both from the data store. Since this operation is based on
a micro component the implementation is trickier because
the client (the Device Manager application) implements the
logic to either fetch both values from the cache (source and
target devices) or invoke the micro component (through the
cache interface that knows the semantic of the reply and
updates the cache with both the source and target devices).
Also, notice that we rely on the second operation (the write
updating the timestamp) to validate the cached data, but in
our current implementation, this operation only validates the
source device. If the cached source device has been modified
in the data store, the operation fails and the process must be
repeated. If repeated then the first operation forcibly fetches
values from the data store. Of course, this validity check could
be expanded to include the destination device, thus narrowing
the inconsistency window of all the cached information used
to install flows.

4) Analysis: The last three columns of Table II show the
results of the performance analysis considering the use of
caching. The best case of each workload refers to when all the
cache-enabled operations are performed locally. In contrast,
the worst case refers to when all operations that compose the
workload are performed in the data store. Of course, these
values can only be used as a broad reference to understand
the impact of caching. The true results may be far from the
best case, since the frequency of cache-hits is dependent of
the accepted staleness, the frequency of data plane events, the
size of the cache, etc.

Regarding the results, in the ls-ucast-cache workload
we show that the best case has an infinite throughput and
zero latency since no operation is performed in the data store.
These values merely mean that the throughput and latency are
limited by the controller.

The best case results of the device manager and load
balancer are very similar since they have identical workloads.
This best case of each workload achieved a twice as high
throughput when compared to the worst case. This was
expected since the best case in each workload reduces the
number of messages sent to the data store by half.

VIII. RELATED WORK

The need for scalability and dependability has been a
motivating factor for distribution and fault-tolerance in SDN
control planes. We consider it therefore no surprise the most
successful SDN controller to date to be Onix [19], the first dis-
tributed, dependable, production-level solution that considered
these problems from the outset. As the choice of the “right”
consistency model was also perceived as fundamental by its
authors, Onix offered two data stores to maintain the network

state: an eventually consistent and a strong consistent option.
In terms of performance, the original consistent data store
supported up to 50 SQL queries per second without batching.
With batching (grouping more than one operation in a single
request), the data store increased its performance to (only)
500 operations/s. The eventual consistent data store used in
Onix could support 22 thousand “load attribute” updates/s,
considering 5 replicas (33 thousand with 3 replicas). These
values are equivalent to our data store, despite the fact that we
support a strong, consistent view of the network state, contrary
to Onix’s eventual data store. Onix distributed capabilities and
transactional data store have been subject of improvements
recently, but not much information exists to date on its current
performance [18]. The closed-source nature of Onix and lack
of information prevents us from investigating it further.

Unlike Onix, ONOS [1] is an open-source solution based
on an optimistic replication technique complemented by a
background gossip protocol to ensure eventual consistency to
manage the network state. The published performance results
show that ONOS is able to achieve a throughput of up to
18.000 path installments per second in an experiment similar
to ours. These values are on pair with the throughput results
we obtained using a strongly consistent data store. Although
our tests do not consider the overhead of the interaction
between the data and control planes, the limiting factor of our
architecture is the interaction with the data store, therefore
we are assured to achieve a level of performance of the same
order.

OpenDaylight [28] is another open, industry-backed project
that aims to devise a distributed network controller framework.
Similarly to ONOS, OpenDaylight runs on a cluster of servers
for high availability, uses a distributed data store where it em-
ploys leader election algorithms. However, the OpenDaylight
clustering architecture is still evolving and its performance is
reported to be several orders or magnitude below our results
(cf. the data store drop-test at [31]).

In previous work [4] we have proposed SMaRtlight, a fault-
tolerant SDN controller. Our design assumed a centralized
scenario where the whole network was managed by a single
controller, with one (or more) backup(s). As in the distributed
architecture we propose in this paper, the coordination was
performed via the shared data store. Another centralized, fault-
tolerant controller proposed recently is Ravana [16]. In their
work, Katta et al. propose the addition of new mechanisms
to switches and extensions to OpenFlow in order to guarantee
that the control messages are processed transactionally and
exactly once.

Recent work on SDN has explored the need for consistency
at different levels. Network programming languages such as
Frenetic [10] offer consistency when composing network
policies (automatically solving inconsistencies across network
applications’ decisions). Other related line of work proposes
per-packet and per-flow abstractions to guarantee data-plane
consistency during network configuration updates [24], [29].
As explained before, the aim of these systems is to guar-
antee consistency after the policy decision is made by the

network applications. In the same line of research, Software
Transactional Networking (STN) [6] offers an abstraction that
guarantees consistency on the data plane in a concurrent multi-
controller scenario. STN is based on the assumption that con-
trollers can perform read-modify-write atomic operations to
the switches. As their solution requires each controller to com-
municate with all other controllers, the solution does not scale.
Our architecture differentiates from these proposals by target-
ing the problem of consistency of the global network view. In
other words, our concern is in guaranteeing consistency before
the policy decisions are made by the (distributed) controllers.
The solution is also fully distributed – and therefore scalable
– with each controller communicating and controlling only
the subset of switches of its domain. Despite the differences,
this line of work on SDN consistency is complementary to
our work. We believe that the combination of our solution
with these mechanisms will enable an integrated solution that
guarantees all packets (or flows) will always follow the same
network policy and therefore avoid network anomalies in any
scenario (centralized or distributed).

IX. CONCLUSIONS

The introduction of distribution, fault tolerance and con-
sistency in the SDN control plane has a cost. Adding fault
tolerance increases the robustness of the system, while strong
consistency facilitates application design. But it is undeniable:
these mechanisms will affect system performance. By under-
standing and accepting the inevitability of this cost, our objec-
tive in this paper was to show that, for network applications
considered representative, this cost may be attainable and the
overall performance of the system can remain under acceptable
bounds.

As a first step in this direction, we proposed a distributed
SDN control plane centered on a data store that offers strong
consistency and fault tolerance for network (and applications)
state. Our data-centric approach leads to a simple and modular
architecture. As the bottleneck of our architecture is the data
store, we have proposed a set of optimization techniques
specifically tailored for SDN environment, achieving accept-
able performance.

Acknowledgments: This work was supported by FCT
through the LaSIGE Research Unit, ref. UID/CEC/00408/2013
and by EU H2020 Program, through the SUPERCLOUD
project (643964).

REFERENCES

[1] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar.
ONOS: Towards an open, distributed SDN OS. In Proceedings of the
Third Workshop on Hot Topics in Software Defined Networking, HotSDN
’14, pages 1–6, New York, NY, USA, 2014. ACM.

[2] A. Bessani, M. Santos, J. Felix, N. Neves, and M. Correia. On the
efficiency of durable state machine replication. In Proc. of the USENIX
Annual Technical Conference (ATC 2013), June 2013.

[3] A. Bessani, J. Sousa, and E. E. Alchieri. State machine replication for
the masses with bft-smart. In Dependable Systems and Networks (DSN),
2014 44th Annual IEEE/IFIP International Conference on, pages 355–
362. IEEE, 2014.

[4] F. Botelho, A. Bessani, F. M. V. Ramos, and P. Ferreira. On the design
of practical fault-tolerant SDN controllers. In Third European Workshop
on Software Defined Networks, page 6, 2014.

[5] C. Cachin, R. Guerraoui, and L. Rodrigues. Introduction to Reliable
and Secure Distributed Programming. Springer, 2nd edition. edition,
Feb. 2011.

[6] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid. A distributed
and robust sdn control plane for transactional network updates. In
Proceedings of the IEEE INFOCOM, INFOCOM ’15, 2015.

[7] M. Cavage. There’s just no getting around it: You’re building a
distributed system. Queue, 11(4):30:30–30:41, Apr. 2013.

[8] T. Distler, C. Bahn, A. Bessani, F. Fischer, and F. Junqueira. Extensible
distributed coordination. In Proc. of the 10th ACM European Systems
Conference – EuroSys’15, Apr. 2015.

[9] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, and K. van der
Merwe. The Case for Separating Routing from Routers. In ACM
SIGCOMM Workshop on Future Directions in Network Architecture
(FDNA), Portland, OR, September 2004.

[10] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker. Frenetic: A network programming language.
In Proceedings of the 16th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’11, pages 279–291, New York, NY,
USA, 2011. ACM.

[11] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker. Nox: Towards an operating system for networks. SIGCOMM
Comput. Commun. Rev., 38(3):105–110, July 2008.

[12] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown.
Reproducible network experiments using container-based emulation. In
Proceedings of the 8th International Conference on Emerging Network-
ing Experiments and Technologies, CoNEXT ’12, pages 253–264, New
York, NY, USA, 2012. ACM.

[13] M. Herlihy and J. M. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Transactions on Programing Languages and
Systems, 12(3):463–492, July 1990.

[14] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper: Wait-
free coordination for internet-scale systems. In Proceedings of the
2010 USENIX Conference on USENIX Annual Technical Conference,
USENIXATC’10, pages 11–11, Berkeley, CA, USA, 2010. USENIX
Association.

[15] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,
and A. Vahdat. B4: Experience with a globally-deployed software
defined wan. In Proceedings of the ACM SIGCOMM 2013 Conference
on SIGCOMM, SIGCOMM ’13, pages 3–14, New York, NY, USA, 2013.
ACM.

[16] N. Katta, H. Zhang, M. Freedman, and J. Rexford. Ravana: Controller
fault-tolerance in software-defined networking. In Proceedings of the 1st
ACM SIGCOMM Symposium on Software Defined Networking Research,
page 4. ACM, 2015.

[17] H. Kim, M. Schlansker, J. R. Santos, J. Tourrilhes, Y. Turner, and
N. Feamster. Coronet: Fault tolerance for software defined networks. In
Proceedings of the 2012 20th IEEE International Conference on Network
Protocols (ICNP), ICNP ’12, pages 1–2, Washington, DC, USA, 2012.
IEEE Computer Society.

[18] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B. Fulton,
I. Ganichev, J. Gross, N. Gude, P. Ingram, E. Jackson, A. Lambeth,
R. Lenglet, S.-H. Li, A. Padmanabhan, J. Pettit, B. Pfaff, R. Ramanathan,
S. Shenker, A. Shieh, J. Stribling, P. Thakkar, D. Wendlandt, A. Yip,
and R. Zhang. Network virtualization in multi-tenant datacenters. In
Proceedings of the 11th USENIX Conference on Networked Systems
Design and Implementation, NSDI’14, pages 203–216, Berkeley, CA,
USA, 2014. USENIX Association.

[19] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker. Onix:
A distributed control platform for large-scale production networks. In
Proceedings of the 9th USENIX Conference on Operating Systems
Design and Implementation, OSDI’10, pages 1–6. USENIX Association,
2010.

[20] D. Kreutz, F. M. V. Ramos, P. E. Verssimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig. Software-defined networking: A comprehensive
survey. Proceedings of the IEEE, 103(1):14–76, Jan 2015.

[21] L. Lamport. The part-time parliament. ACM Trans. Comput. Syst.,
16(2):133–169, May 1998.

[22] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann.
Logically centralized? state distribution trade-offs in software defined
networks. In Proceedings of the first workshop on Hot topics in software
defined networks, HotSDN ’12, pages 1–6, New York, NY, USA, 2012.
ACM.

[23] B. Liskov. From viewstamped replication to byzantine fault tolerance.
In B. Charron-Bost, F. Pedone, and A. Schiper, editors, Replication,
volume 5959 of Lecture Notes in Computer Science, pages 121–149.
Springer Berlin Heidelberg, 2010.

[24] J. McClurg, H. Hojjat, P. Cerny, and N. Foster. Efficient synthesis
of network updates. In Proceedings of the ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’15, 2015.

[25] D. Ongaro and J. Ousterhout. In search of an understandable consensus
algorithm. In 2014 USENIX Annual Technical Conference (USENIX ATC
14), pages 305–319, Philadelphia, PA, June 2014. USENIX Association.

[26] Open Network Foundation. OpenFlow Switch Specification (version
1.2) [opennetworking.org], Dec. 2011.

[27] F. Project. Floodlight project http://www.projectfloodlight.org/.
[28] O. Project. Opendaylight project http://www.opendaylight.org/.
[29] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker.

Abstractions for network update. In Proceedings of the ACM SIGCOMM
2012 conference on Applications, technologies, architectures, and pro-
tocols for computer communication, SIGCOMM ’12, pages 323–334,
New York, NY, USA, 2012. ACM.

[30] F. B. Schneider. Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Comput. Surv., 22(4):299–319, Dec.
1990.

[31] O. P. Tests. Opendaylight performance tests https://wiki.opendaylight.
org/view/CrossProject:Integration Group:Performance Tests#Helium
CBench Results.

