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IBM Research Zurich, Switzerland

Abstract—Hyperledger Fabric is a flexible operating system for
permissioned blockchains designed for business applications be-
yond the basic digital coin addressed by Bitcoin and other existing
networks. A key property of this system is its extensibility, and in
particular the support for multiple ordering services for building
the blockchain. However, version 1 was launched in 2017 without
an implementation of a Byzantine fault-tolerant (BFT) ordering
service. To overcome this limitation, we designed, implemented,
and evaluated a BFT ordering service for this system on top
of the BFT-SMART state machine replication/consensus library,
with optimizations for wide-area deployment. Our results show
that our ordering service can process up to ten thousand
transactions per second and write a transaction irrevocably in
the blockchain in half a second, even with peers spread across
different continents.

I. INTRODUCTION

The impressive growth of Bitcoin and other blockchain
platforms based on the Proof-of-Work (PoW) technique made
evident the limitations of this approach. These limitations are
mostly related to performance: existing systems are capable
of processing from 7 (Bitcoin) to 10s-100s transactions per
second and present transaction confirmation latencies of up
to one hour [1]. Several alternative blockchain platforms
proposed in the last years try to avoid these limitations by
employing traditional Byzantine Fault-Tolerant (BFT) consen-
sus protocols (e.g., [2]) for establishing consensus on the order
of blocks [3].

Hyperledger Fabric (or simply, Fabric) is a system for
deploying and operating permissioned blockchains that targets
business applications [4]. It is built with flexibility and gen-
erality as key design concerns, supporting thus a wide variety
of non-deterministic smart contracts (here called chaincodes)
and pluggable services. The support for pluggable components
gives Fabric an unprecedented level of extensibility and, in
particular, enables it to use multiple ordering services for
managing the blockchain. Despite this, version 1.0 (launched
in June 2017) comes without any Byzantine fault-tolerant
(BFT) ordering service implementation, providing only a crash
fault-tolerant ordering service.

In this paper, we describe our efforts in overcoming this
limitation, by presenting the design, implementation, and
evaluation of a new BFT ordering service for Fabric v1.1

This service is based on the well-know BFT-SMART state
machine replication/consensus library [5], and its extension
for WANs [6]. Our evaluation, conducted both on a local

1Source code available at https://github.com/jcs47/hyperledger-bftsmart.

cluster and in a geo-distributed setting, shows that BFT-
SMART ordering service can achieve up to 10k representative
transactions per second and write a transaction irrevocably in
the blockchain in half a second, even with ordering nodes
spread through different continents.

Besides presenting our BFT ordering service, this paper
also discusses the key concerns that need to be addressed
to apply existing BFT state machine replication protocols
to blockchain platforms and systems like Fabric. The huge
interest of industry in permissioned blockchains has reinvig-
orate BFT research (e.g., [7]), and spawned many efforts
to integrate (new or existing) BFT protocols in blockchain
platforms (see [3] for a survey). Nonetheless, to the best of our
knowledge, there are still no other works discussing a practical
integration of a classical state machine replication library with
a blockchain platform. In particular, we detail the service
model and workload of interest in this kind of systems, which
are substantially different from the microbenchmarks [2] and
the Zookeeper-like client-server model [8] still used to evaluate
BFT protocols.

The rest of this paper is organized as follows. We start by
presenting the fundamentals of blockchain technology (Section
II) and Hyperdeger Fabric (Section III). After that, the BFT-
SMART and WHEAT protocols are briefly described (Section
IV), and we proceed to present the BFT-SMART ordering
service (Section V) and its experimental evaluation (Section
VI). We propose some improvements to Fabric in Section VII,
discuss some related work in Sections VIII and conclude the
paper in Section IX.

II. BLOCKCHAIN TECHNOLOGY

A blockchain is an open database that maintains a dis-
tributed ledger typically deployed within a peer-to-peer net-
work. It is comprised by a continuously growing list of records
called blocks that contain transactions [9]. Blocks are protected
from tampering by cryptographic hashes and a consensus
mechanism.

The structure of a blockchain – illustrated in Figure 1 –
consists of a sequence of blocks in which each one contains
the cryptographic hash of the previous block in the chain. This
introduces the property that block j cannot be forged without
also forging all subsequent blocks j + 1...i. Furthermore, the
consensus mechanism is used to (1) prevent the whole chain
from being modified; and to (2) decide which block is to be
appended to the ledger.
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The blockchain may abide by either the permissionless or
permissioned models [1]. Permissionless ledgers are main-
tained across peer-to-peer networks in a totally decentralized
and anonymous manner [9], [10]. In order to determine which
block to append to the ledger next, peers need to execute a
Proof-of-Work (PoW) consensus [11]. The key idea behind
PoW consensus is to limit the rate of new blocks by solving
a cryptographic puzzle, i.e., execute a CPU intensive compu-
tation that takes time to solve, but can be verified quickly.
This is achieved by forcing peers to find a nonce N such that
given their block B and a limit L, the cryptographic hash of
B ||N is lower than L [12], [13]. The first peer that presents
such solution gets its block appended to the ledger. Roughly
speaking, as long as the adversary controls less than half of the
total computing power present in the network, PoW consensus
prevents the adversary from creating new blocks faster than
honest participants.

Permissionless blockchains have the benefit of enabling the
ledger to be managed in a completely open way, i.e., any peer
willing to hold a copy of the ledger can try to create new
blocks for it. On the other hand, the computational effort asso-
ciated to PoW consensus is both energy- and time-consuming;
even if specialized hardware is used to find a Proof-of-Work,
this mechanism still imposes a limit on transaction latency.

By contrast, permissioned blockchains employ a closed
consortium of nodes tasked with creating new blocks and
executing a traditional Byzantine consensus protocol to decide
the order by which the blocks are inserted to the ledger [3],
[14], [15]. Hence, permissioned blockchains do not expend the
amount of resources that open blockchains do and are able to
reach better transaction latency and throughput. In addition, it
makes possible to control the set of participants tasked with
maintaining the ledger – rendering this type of blockchain a
more attractive solution for larger corporations, since it can be
separated from the dark web or illegal activities.

III. HYPERLEDGER FABRIC

Hyperledger Fabric (Fabric) [4] is an open-source project
within the Hyperledger collaborative effort.2 It is a modular
permissioned blockchain system designed to support pluggable
implementations of different components, such as the ordering
and membership services. Fabric enables clients to manage
transactions by using chaincodes, endorsing peers and an
ordering service.

2https://www.hyperledger.org/

Chaincode is Fabric’s counterpart for smart contracts [16].
It consists of code deployed on the Fabric’s network, where
it is executed and validated by the endorsing peers, who
maintain the ledger, the state of a database (modeled as a
versioned key/value store), and abide by endorsement policies.
The ordering service is responsible for creating blocks for the
distributed ledger, as well as the order by which each blocks
is appended to the ledger.

a) Fabric protocol: The Fabric general transaction pro-
cessing protocol [4] – depicted in Figure 2 – works as follows:

1) Clients create a transaction and send it to endorsing
peers. This message is a signed request to invoke a
chaincode function. It must include the chaincode ID,
timestamp and the transaction’s payload.

2) Endorsing peers simulate transactions and produce an
endorsement signature. They must verify if the client
is properly authorized to perform the transaction by
evaluating access control policies of a chaincode. Trans-
actions are then executed against the current state. Peers
transmit to the client the result of this execution (read
and write sets associated to their current state) alongside
the endorsing peer’s signature. No updates are made to
the ledger at this point.

3) Clients collect and assemble endorsements into a trans-
action. The client verifies the endorsing peers signatures,
determine if the responses have the matching read/write
set and checks if the endorsement policies has been
fulfilled. If these conditions are met, the client cre-
ates a signed envelope with the peers’ read and write
sets, signatures and the Channel ID. A channel is a
private blockchain on a Fabric network, providing data
partition. Each peers of the channel share a channel-
specific ledger. The aforementioned envelope represents
a transaction proposal.

4) Clients broadcast the transaction proposal to the or-
dering service. The ordering service does not read the
contents of the envelope; it only gathers envelopes from
all channels in the network, orders them using atomic
broadcast, and creates signed chain blocks containing
these envelopes.

5) The blocks of envelopes are delivered to the peers on
the channel. The envelopes within the block are again
validated to (1) ensure the endorsement policies were
fulfilled, and (2) to check if there were changes to the
peers’ state for read set variables (since the read set was
generated by the transaction execution). To this end, the
read set contains a set of versioned keys that endorsing
peers read at the time of simulating a transaction (step
2). Depending on the success of these validations, the
transaction proposal contained in envelopes are marked
as either being valid or invalid.

6) Peers append the received block to the channel’s
blockchain. For each valid transaction, the write sets
are committed to the peers’ current state. An event is
triggered to notify the client that the transaction has
been immutably appended to the channel’s blockchain,
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Fig. 2: Hyperledger Fabric transaction processing protocol [4].

as well as notification of whether the transaction were
deemed valid or invalid. Notice that invalid transactions
are also added to the ledger, but they are not executed at
the peers. This also has the added benefit of making it
possible to identify malicious clients, since their actions
are also recorded.

An important aspect of the Fabric protocol is that endorse-
ment (step 2) and validation (step 5) can be done at different
peers. Furthermore, contrary to the chaincode execution during
endorsement, the validation code needs to be deterministic,
i.e., the same transaction validated by different peers in the
same state produces the same output [4].

b) Pluggable consensus: As mentioned before, Fabric is
a modular blockchain system. In particular, one of the com-
ponents that support plug-and-play capability is the ordering
service. Currently, Fabric’s codebase includes the following
ordering service modules: (1) a centralized, non-replicated
ordering service that does not execute any distributed protocol
that is used mostly for testing the system; and (2) a repli-
cated ordering service capable of withstanding crash faults,
consisting of an Apache Kafka cluster3 and its respective
ZooKeeper ensemble [8]. At the time of this writing, both
modules have limitations. The non-replicated module requires
very few hardware resources, but it is also a single point of
failure. The Kafka-based module is both decentralized and
robust, but can only withstand crash faults.

IV. BFT-SMART & WHEAT

The ordering service presented in this paper was designed
on top of existing BFT systems, namely BFT-SMART [5] and
WHEAT [6]. In this section we present a brief description of
these works.

BFT-SMART implements a modular state machine replica-
tion protocol on top of a Byzantine consensus algorithm [17].
Under favourable network conditions and the absence of faulty
replicas, BFT-SMART executes the message pattern depicted
in Figure 3, which is similar to the PBFT protocol [2].

Clients send their requests to all replicas, triggering the
execution of the consensus protocol. Each consensus instance
i begins with one replica – the leader – proposing a batch of
requests to be decided within that consensus. This is done by
sending a PROPOSE message containing the aforementioned
batch to the other replicas. All replicas that receive the

3https://kafka.apache.org/

PROPOSE message verify if its sender is the leader and if the
batch proposed is valid. If this is the case, they register the
batch being proposed and send a WRITE message to all other
replicas containing a cryptographic hash of the proposed batch.
If a replica receives dn+f+1

2 eWRITE messages with the same
hash, it sends an ACCEPT message to all other replicas con-
taining this hash. If some replica receives dn+f+1

2 e ACCEPT
messages for the same hash, it deliver its correspondent batch
as the decision for its respective consensus instance.

The message pattern just described is executed if the leader
is correct and the system is synchronous. If these conditions
do not hold, the protocol needs to elect a new leader and force
all replicas to converge to the same consensus execution. This
procedure is described in detail in [17].

Our ordering service also employs WHEAT, a variant of
BFT-SMART optimized for geo-replicated environments. It
differs from the aforementioned protocol in the following way:
it employs the tentative executions proposed by Castro and
Liskov [2] and uses a vote assignment scheme for efficient
quorum usage [6]. The vote assignment scheme integrates
classical ideas from weighted replication [18] to state machine
replication protocols. The idea is to build small quorums with
fastest replicas without endangering the safety and liveness of
the underlying consensus protocol. This mechanism improves
latency by allowing more choice: if there is a spare replica
in the system that is faster than the rest, the optimal quorum
will contain this replica. It works by being given parameters f
(number of assumed faults) and ∆ (amount of extra replicas),
then based on this input, compute values Vmax and u. Vmax

is the weight value to be given to the u fastest replicas in the
system. All other n − u replicas are given value Vmin. For
instance, when using five replicas (f = 1 and ∆ = 1), two
of them will have weight Vmax = 2 and the remaining three
will have Vmin = 1.

V. BFT-SMART ORDERING SERVICE

The BFT-SMaRt module for Fabric’s ordering service con-
sists of an ordering cluster and a set of frontends. The ordering
cluster is composed by a set of 3f + 1 nodes that collect
envelopes from the frontends and execute the BFT-SMART’s
replication protocol with the purpose of totally ordering these
envelopes among them. Once a node gathers a predetermined
number of envelopes, it creates a new block containing these
envelopes and a hash of the previously created block, generates
a digital signature for the block, and disseminates it to all
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known frontends, which collect 2f + 1 matching blocks from
ordering nodes. The 2f + 1 blocks are necessary because
frontends do not verify signatures. However, this number
guarantees a minimum of f + 1 valid signatures to peers
and clients.4 Frontends are part of the peer trust domain and
are responsible for (1) relaying the envelope to the ordering
cluster on behalf of the client, and (2) receiving the blocks
generated by the ordering cluster and relaying them to the
peers responsible for maintaining the distributed ledger.

a) Architecture: BFT-SMaRt’s ordering service architec-
ture is illustrated in Figure 4. The frontend is composed by
the Fabric codebase and a BFT shim. The Fabric codebase
(implemented in Go) provides an interface for Fabric clients
to submit envelopes. These envelopes are relayed to the BFT
shim using UNIX sockets. This shim is implemented in Java
and maintains (1) a client thread pool that receive envelopes
and relays them to the ordering cluster, and (2) a receiver
thread that collects blocks from the cluster. Envelopes (resp.
blocks) are sent to (resp. received from) the cluster through
the BFT-SMaRt proxy. The proxy does that by issuing an
asynchronous invocation request to the BFT-SMART client-
side library, ensuring it does not block waiting for replies.
To ensure that the shim performs computations on equivalent
data structures to the Fabric codebase, the ordering service
uses the Hyperledger Fabric Java SDK to parse and assemble
data structures used in Fabric.

b) Batching: The ordering nodes are implemented on top
of the BFT-SMaRt service replica, thus receiving a stream
of totally ordered envelopes. Each node maintains an object
named blockcutter, where the envelopes received from the
service replica are stored before being assembled into a block.
The blockcutter is responsible for managing the envelopes
associated to each Fabric channel and creating a batch of
envelopes to be included in a block for the ledger associated
to that channel. We implement this batching mechanism in-
stead of relying on BFT-SMART’s native batching because
(1) each BFT-SMART’s batch may contain envelopes that
are not associated to the same channel, which means the
envelopes cannot be all assembled into the same block; (2)
Fabric supports configuration envelopes, which are supposed
to remain isolated from regular envelopes; and (3) Fabric’s
native batching policies are not equivalent to BFT-SMART’s
(for instance, Fabric imposes a batching limit based on its
size in terms of bytes, whereas BFT-SMART limit is based
on number of requests per batch). Once the blockcutter holds a

4If the frontends are programmed to perform signature verification, only
f + 1 matching blocks suffice.
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Fig. 4: BFT-SMaRt ordering service architecture.

pre-determined number of envelopes for a channel (the block
size), it notifies the node thread that it is time to drain its
envelopes and create the next block.

c) Parallelization: After the blockcutter is drained, a
sequence number is assigned to the future block and submitted
to the signing/sending thread pool alongside with the respec-
tive block header. This header contains the aforementioned
sequence number and the cryptographic hashes from the
previous header and the hash for the block’s envelopes. Notice
that this thread pool does not cause non-determinism across
the nodes because (1) the block header and envelopes to be
assigned to new blocks are generated sequentially within the
node thread, and (2) the only structures that each node needs
to maintain as part of the application state is the block header
from the previous iteration of the node thread. Similarly to
the frontend, the Fabric Java SDK is used to correctly handle
and create the data structures used by the system. In addition,
this SDK is also used to generate cryptographic hashes and
ECDSA (Elliptic Curve DSA) signatures [19] that can be
validated by other components of Fabric. Once the block is
created and signed, it is transmitted to all active frontends. This
is done through a custom replier (supported by the extensible
API of BFT-SMART) that, instead of sending the operation
result (i.e., the generated block) to the invoking client, sends it
to a set of registered BFT-SMART clients (i.e., the frontends).

d) Durability and Node Membership: Besides the trans-
action ordering and execution, the BFT-SMART replica also
provides additional capabilities that are fundamental for prac-
tical state machine replication, such as durability (of state,
in case all ordering nodes fail) and reconfiguration of the
group of ordering nodes. The state is comprised by the headers
for the last block associated to each channel, information
about the current configuration of channels, and the envelopes
currently stored at the blockcutter. Since the headers have a
constant size and the envelopes are periodically drained from
the blockcutter, the state maintained at the ordering nodes will
always be bounded and remain smaller than the size of the
ledger maintained by Fabric peers.

e) Validation and Reconfiguration: One last aspect of
this service relates to channel reconfiguration and transaction
validation. Fabric’s architecture is resilient to blocks contained
junk transactions, hence ordering services can avoid perform-
ing transaction validation. In the particular case of our ordering
service, transactions can be validated by the signing/sending
threads prior to generating block signatures. Transactions can



then be removed from the block if the validation fails. The
exception to this is a special category of transactions that are
used to perform channel reconfiguration. These transactions
need to be validated and executed prior to submitting them to
a blockcutter.

VI. EVALUATION

In this section we describe the experiments conducted to
evaluate BFT-SMART’s ordering service and discuss the ob-
served results. Our aim here is not to evaluate the whole Fabric
system, but only the ordering service, which may typically be
the bottleneck of the system.

A. Parameters affecting the Ordering Performance

The throughput of the ordering service (i.e., the rate at
which envelopes are added to the blockchain TPos ) is
bounded by one of three factors: a) the rate at which en-
velopes are ordered by BFT-SMART (TPbftsmart ) for a given
envelope size, number of envelopes per block and number of
receivers; b) the number of blocks signed per second (TP sign );
or c) the size of the generated blocks. These parameters are
illustrated in Figure 5.

Given an envelope size es , block sizes bs , and a number
of receivers r (i.e., the peer frontends to which the ordering
nodes transmit the generated blocks), the peak throughput of
the ordering service is bounded as follows:

TPbs,es,r
os ≤ min(TP sign × bs,TPbs,es,r

bftsmart) (1)

An important remark is that this equation considers that a
block is signed only once by each ordering node, however,
in Fabric 1.0 a block need to be signed twice. The second
signature is needed to attach the block transaction to an
execution context (details are out of the scope of this paper).
If this is the case for the considered application, the TPsign

term used in the equation must be replaced by TPsign

2 .

B. Signature Generation

In order to estimate TP sign , we run a very simple signature
benchmark program written in Java in a Dell PowerEdge
R410 server, which possesses two quad-core 2.27 GHz Intel
Xeon E5520 processor with hyper-threading (thus having 16
hardware threads) and 32 GB of memory. The server runs
Ubuntu 14.04 with JVM 1.8.0. Our program spawns a number
of threads to create ECDSA signatures for blocks of fixed size
and calculates how many of such signatures are generated per
second.

Our results show that our server can generate up to 8.4k
signatures/sec, when running with 16 threads. Furthermore,
the effect of the block size is mostly negligible as the ECDSA
signature is computed over the hash of the block. These results,
together with the fact that a blocks are expected to contain
10+ envelopes in Fabric, lead us to conclude that signature
generation is not expected to be a bottleneck in our setup.5

5For example, by using blocks with bs = 100 envelopes, we can sign up
to TPsign × bs = 840k envelopes/sec.
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Fig. 5: Ordering service performance model.

C. Ordering Cluster in a LAN

The experiments aims to evaluate the BFT-SMART or-
dering service by using clients that emulate the behavior of
multiple ordering service frontends. They were executed with
clusters of 4, 7, and 10 nodes, withstanding 1, 2, and 3
Byzantine faults, respectively. Furthermore, we also fiddled
with the block size, by configuring each cluster configuration
to assemble blocks containing either 10 or 100 envelopes
(i.e., transactions). This is meant to observe the behaviour of
each cluster when throughput is bound by either the rate of
signature generation or by the rate of envelope reception. The
environment is comprised by Dell PowerEdge R410 servers,
like the one described before, connected through a Gigabit
ethernet.

For each micro-benchmark configured to have x nodes and
y envelopes/block, we gathered results for (1) envelopes with
different sizes, and (2) a variable number of receivers. More
precisely, each envelope size is representative of submitting
to the ordering cluster: (1) a SHA-256 hash (40 bytes); (2)
three ECDSA endorsement signatures (200 bytes); and (3)
transaction messages of 1 and 4 kbytes. In practice, and
considering the way Fabric 1.0 operates, the values related
with (3) are more representative of the size of a transaction.
In particular, our limited experience shows that transactions
compressed with gzip tend to be usually close to 1 kbyte.
Nonetheless, measurements for (1) and (2) are important to
show the potential of the ordering service if different design
choices were taken in future versions of Fabric.

Measurements for the throughput associated to block gen-
eration were gathered at ordering node 0 (the leader replica
of BFT-SMART’s replication protocol). To reach the system’s
peak throughput, each execution was performed using 16 to
32 clients distributed across 2 additional machines. We also
repeated the micro-benchmark with 4 nodes with blocks of
100 envelopes. All experiments used 16 signing threads (to
match the number of available cores) and were repeated 3
times taking 5 minutes each.

The obtained results for local-area are presented in Figure 6.
Even though throughput drops when increasing the number of
receivers, the impact of the number of receivers is considerably
smaller for larger transactions (1k and 4 kbytes). This is be-
cause for these envelope sizes, the overhead of the replication
protocol is greater than the overhead of transmitting blocks
of 10 and 40 kbytes. In particular, since the batch limit of
the BFT-SMART is set to 400 requests (default value), the
PROPOSE message of the underlying replication protocol can
have up to 0.4-1.6MBs with these envelope sizes.
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Fig. 6: BFT-SMART Ordering Service throughput for different envelope, block and cluster sizes.

It can be observed that when using 10 envelopes/block
(Figures 6a, 6b, and 6c), the maximum throughput observed
is approximately 50k transactions/second (when there exists
only 1 to 2 receivers in the system), which is way below the
8.4k × 10 = 84k envelopes/sec capacity of only signatures
are considered (Section VI-B). This can be explained by
the fact that signature generation needs to share CPU power
with the replication protocol, hence creating a thug-of-war
between the application’s worker threads and BFT-SMART’s
I/O threads and queues – in particular, BFT-SMART alone
can take up to 60% of CPU usage when executing a void
service with asynchronous clients. Hence, the performance
drops when compared to the micro-benchmark from Section
VI-B, which was executed in a single machine, stripped of
the overhead associated with BFT-SMART. Moreover, for up
to 2 receivers and envelope sizes of 1 and 4 kbytes, the peak
throughput becomes similar to the results observed in [5]. This
is because for these request sizes BFT-SMART is unable to
order envelopes at a rate equal to the rate at which the system
is able to produce signatures.

Figures 6d, 6e, and 6f show the results obtained for 100
envelopes/block, when each node is not subject to CPU
exhaustion. It can be observed that, across all cluster sizes,
throughput is significantly higher for smaller envelope sizes
and up to 8 receivers. This happens because even though
each node creates blocks at a lower rate – approximately
1100 blocks per seconds – each block contains 100 envelopes
instead of only 10. Moreover, this configuration makes the
rate at which envelopes are ordered to become similar to the

rate at which blocks are created. This means that for smaller
envelope sizes, it is better to adjust the nodes’ configuration
to avoid consuming all the CPU time and rely on the rate of
envelope arrival. However, for envelopes of 1 and 4 kbytes the
behavior is similar to using 10 envelopes/block, specially from
7 nodes onward. This is because for larger envelope sizes –
as discussed previously – the predominant overhead becomes
the replication protocol. Interestingly, for a larger number
of receivers (16 and 32), throughput converges to similar
values across all combinations of envelope/cluster/block sizes.
Whereas for larger envelope sizes this is due to the overhead
of the replication protocol, for smaller envelope sizes this
happens because the transmission of blocks to the receivers
becomes the predominant overhead.

D. Geo-distributed Ordering Cluster

In addition to the aforementioned micro-benchmarks de-
ployed in a local datacenter, we also conducted a geo-
distributed experiment focused on collecting latency measure-
ments at 3 frontends scattered across the Americas, with the
nodes of the ordering service distributed all around the world:
Oregon, Ireland, Sydney, and São Paulo (four BFT-SMART
replicas), with Virginia standing as WHEAT’s additional
replica (five replicas). Since signatures generation requires
considerable CPU power, we used instances of the type
m4.4xlarge, with 16 virtual CPUs each. The frontends were
deployed in Oregon (collocated with leader node weighting
Vmax in WHEAT), Virginia (collocated with non-leader node,
but still weighting Vmax ) and São Paulo. Each frontend was
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(a) Oregon (weighted Vmax , leader node).
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(b) Virginia (weighted Vmax ).
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(c) São Paulo (weighted Vmin ).

Fig. 7: Amazon EC2 latency results (4 receivers, blocks with 100 envelopes).

configured to launch enough client threads to keep node
throughput always above 1000 transactions/second.

Figure 7 presents the results for the geo-distributed micro-
benchmark with a a block size of 100 envelopes. As expected,
WHEAT’s latency is consistently lower than BFT-SMART’s
across all frontends – always below 500 miliseconds and up
to 45% less than BFT-SMART. It is worth pointing out that
envelope size has a relatively modest impact on latency: across
all regions, the difference between a 4k and a 400k bytes
block was never above 61 milliseconds for any percentile or
protocol. By contrast, the placement of the frontends when
using WHEAT exhibited a larger impact on latency: the
difference between Virginia (weighted Vmax ) and São Paulo
(weighted Vmin ) is above 90 milliseconds. In addition, the
difference between São Paulo and Oregon is even larger, in
the order of 120 miliseconds.

VII. POSSIBLE IMPROVEMENTS ON FABRIC

In the following we list some improvements that could be
made on the Fabric codebase to facilitate the implementation
and improve the performance of ordering services.

The implementation of our ordering service produces a
single signature per block, aimed at protecting its integrity.
By contrast, as pointed out in Section VI-A, Fabric expects
each block to contain two signatures associated with it. While
one signature is meant to protect the integrity of its associated
block, the other is intended to bind the block transactions to
an execution context. However, this can lead to a significant
performance penalty when the bounding factor is the rate of
signature generation, i.e., small transactions with few fron-
tends. By inspecting the code and talking to Fabric developers,
we found no good reason to have this second signature,
as it basically covers the regular payload plus the id of a
block storing the last reconfiguration envelope. It appears that
producing only this second signature suffices to protect the
integrity of the blockchain.

To withstand malicious behavior from ordering nodes, each
one locally assembles blocks and produces their respective
signatures. This results in a stream of blocks that are appended
to the local copy of the ledger that is maintained at the
frontends. However, the Fabric codebase is better suited for
crash-only ordering services such as Kafka, which generates
a stream of envelopes rather than a stream of blocks. For

instance, upon receiving a stream of envelopes, Fabric uses
methods to both generate blocks and append them to the chain.
Moreover, the methods that append the blocks to the chain
also produce the signatures discussed previously. This is not
only unnecessary in the case of our ordering service, but also
does not provide any additional protection to the block in a
scenario in which Byzantine faults are considered. This forced
us to augment the Fabric with support for receiving pre-signed
blocks and strictly appending them to the chain.

As mentioned in Section V, we use UNIX sockets to com-
municate between the Fabric process that receives transactions
from clients (Go) and BFT-SMART’s process that relays
envelopes to ordering nodes (Java). This adds an overhead
that could be avoided if we had a single Java process receiving
envelopes directly from clients and relaying them to ordering
nodes. While this overhead could potentially be mitigated with
a proper Go wrapper for BFT-SMART,6 we believe it would
be worth to augment the Fabric Java SDK (that we also use)
with support for reception and parsing of client requests.

Finally, due to BFT-SMART native support of view recon-
figuration, our ordering service can fully support reconfigura-
tion of the set of ordering nodes. However, this does not extend
to the set of frontends, specifically at Fabric’s Go process. In
order to support reconfiguration on this set of nodes, Fabric
needs to be augmented with the capacity to transfer the ledger
between these Fabric processes.

VIII. RELATED WORK

The concept of blockchain was originally introduced by
Bitcoin to solve the double spending problem associated with
crypto-currency in permissionless peer-to-peer networks [9].
Since Bitcoin’s inception and widespread adoption, other
platforms based on Proof-of-Work blockchain have emerged.
Within these new platforms, Ethereum is particularly relevant
for its support of smart contracts [10].

Because of the known performance penalty associated
with Proof-of-Work creation and the fact that Blockchain
technology is gaining the attention of many industries, the
idea of permissioned blockchains are quickly gaining trac-
tion. Examples of other permissioned blockchain platforms
include Chain, which uses the Federated Consensus algorithm
[21]. Tendermint implements the BFT protocol designed by

6Such wrapper is already available for C++ and Python [20].



Buchman et. al. [14]. Kadena [15] uses a variant of the
Raft consensus protocol [22] adapted to Byzantine faults
[23]. Finally, Symbiont Assembly7 uses a Go implementation
of the Mod-SMaRt algorithm [17] and heavily follows the
design of BFT-SMART. A recent survey [3] compares all
these permissioned protocols and points BFT-SMART as a
prominent candidate for implementing this type of ledgers.

Many services have been implemented on top of BFT-
SMART over the years.8 The one that most closely resembles
the architecture of the ordering service presented here is
SieveQ [24]. This system is a hybrid between a publish-
subscribe service and an application-level firewall that also
orders messages before sending them to targetted receivers.
Among many differences, SieveQ focus on the robustness
against DoS attacks and recovery of faulty replicas, while our
service focuses on the specifics of block generation for Fabric.

IX. CONCLUSION

In this paper we described the design, implementation, and
evaluation of a BFT ordering service for Hyperledger Fabric
using the BFT-SMART replication library. Our experimental
evaluation shows that peak throughput is bound either by the
rate at which block signatures are generated by a replica,
or the rate of envelopes ordered by the total order protocol.
Moreover, the results also suggest that, for smaller envelope
sizes, increasing the block size while decreasing the rate of
signature generation can yield higher throughput than to sim-
ply rely on the maximum possible rate of signature generation.
Nonetheless, for a higher number of repliers, throughput tends
to converge to similar values across all micro-benchmarks.
Even when transmitting blocks of 400 kbytes to 32 receivers
in a cluster of 10 nodes, the ordering service still reaches a sus-
tained throughput of approximately 2200 transactions/second
– which is more than twice of Ethereum’s theoretical peak
of 1000 transactions/second [25], and vastly superior than
Bitcoin’s peak of 7 transaction/second [1]. Finally, latency
measurements taken from a geo-replicated setting are also
shown attractive, with values within half a second under
moderate workload using WHEAT, even when accounting for
large block sizes.
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