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The exponential growth of digital information is imposing increasing scale and efficiency demands on
modern storage infrastructures. As infrastructures complexity increases so does the difficulty in ensuring
quality of service, maintainability, and resource fairness, raising unprecedented performance, scalability,
and programmability challenges. Software-Defined Storage (SDS) addresses these challenges by cleanly
disentangling control and data flows, easing management, and improving control functionality of conventional
storage systems. Despite its momentum in the research community, many aspects of the paradigm are still
unclear, undefined, and unexplored, leading to misunderstandings that hamper the research and development
of novel SDS technologies. In this article, we present an in-depth study of SDS systems, providing a thorough
description and categorization of each plane of functionality. Further, we propose a taxonomy and classification
of existing SDS solutions according to different criteria. Finally, we provide key insights about the paradigm
and discuss potential future research directions for the field.
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1 INTRODUCTION
Massive amounts of digital data served by a number of different sources are generated, processed,
and stored every day in both public and private storage infrastructures. Recent reports predict that
by 2025 the global datasphere will grow to 163 Zettabytes (ZiB), representing a tenfold increase from
the data generated in 2016 [78]. Efficient large-scale storage systems will be essential for handling
this proliferation of data, which must be persisted for future processing and backup purposes.
However, efficiently storing such a deluge of data is a complex and resource-demanding task that
raises unprecedented performance, scalability, reliability, and programmability challenges.
First, as the complexity of infrastructures increases, so does the difficulty in ensuring end-to-

end Quality of Service (QoS), maintainability, and flexibility. Today’s data centers are vertically
designed and feature several layers along the I/O path providing compute, network, and storage
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functionalities, including operating systems, hypervisors, caches, schedulers, file systems, and
device drivers [99]. Each of these layers includes a predetermined set of services (e.g., caching,
queueing, data placement) with strict interfaces and isolated procedures to employ over requests,
leading to a complex, limited, and coarse-grained treatment of I/O flows. Moreover, data-centric
operations such as routing, processing, and management are, in most cases, blended as a monolithic
block hindering the enforcement of end-to-end storage policies (e.g., bandwidth aggregation, I/O
prioritization), thus limiting the scalability and flexibility of infrastructures [96].

Second, efficiently managing system resources in multi-tenant environments becomes progres-
sively harder as resources are shared across multiple processes and nodes along the I/O path (e.g.,
shared memory, schedulers, devices). Further, as tenants have different service requirements and
workload profiles, traditional resource management mechanisms fail to ensure performance isola-
tion and resource fairness due to their rigid and coarse-grained I/O management [60]. As a result,
enforcing QoS under multi-tenancy is infeasible as differentiated treatment of I/O flows, global
knowledge of system resources, and end-to-end control and coordination of the infrastructure are
not ensured [62, 97, 120].

Third, storage infrastructures have become highly heterogeneous, being subject to volatile and
bursty workloads over long periods of time [19]. Additionally, infrastructures are frequently tuned
offline with monolithic configuration setups [3]. As a result, this homogeneity has led to applications
running on general-purpose I/O stacks, competing for system resources in non-optimal fashion
and incapable of performing I/O differentiation and end-to-end system optimization [26, 96].
These pitfalls are inherent to the design of traditional large-scale storage infrastructures (e.g.,

cloud computing, high-performance computing – HPC), and reflect the absence of a true pro-
grammable I/O stack and the uncoordinated control of the distributed infrastructure [26]. Indi-
vidually fine-tuning and optimizing each layer of the I/O stack (i.e., in a non-holistic fashion) of
large-scale infrastructures increases the difficulty to scale to new levels of performance, concurrency,
fairness, and resource capacity. Such outcomes result in lack of coordination and performance
isolation, weak programmability and customization, and waste of shared system resources.

To overcome the shortcomings of traditional storage infrastructures, the Software-Defined Storage
(SDS) paradigm emerged as a compelling solution to ease data and configuration management, while
improving end-to-end control functionality of conventional storage systems [99]. By decoupling
the control and the data flows into two major components — control and data planes — it ensures
improved modularity of the storage stack, enables dynamic end-to-end policy enforcement, and
introduces differentiated I/O treatment under multi-tenancy. SDS inherits legacy concepts from
Software-Defined Networking (SDN) [50] and applies them to storage-oriented environments,
bringing new insights to storage stacks, such as improved system programmability and extensi-
bility [75, 87], fine-grained resource orchestration [60, 66], and end-to-end QoS, maintainability,
and flexibility [42, 99]. Furthermore, by breaking the vertical alignment of conventional designs,
SDS systems provide holistic orchestration of heterogeneous infrastructures, ensure system-wide
visibility of storage components, and enable straightforward enforcement of storage objectives.

Recently, SDS has gained significant traction in the research community, leading to a wide
spectrum of both academic and commercial proposals to address the drawbacks of traditional
storage infrastructures. Despite this momentum, many aspects of the paradigm are still unclear,
undefined, and unexplored, leading to an ambiguous conceptualization and a disparate formalization
between current and forthcoming solutions. Essential aspects of SDS such as design principles and
main challenges, as well as ambiguities of the field, demand detailed clarification and standardization.
There is, however, no comprehensive survey providing a complete view of the SDS paradigm. The
closest related work describes the Software-Defined Cloud paradigm and surveys other software-
defined approaches, such as networking, storage, systems, and security [38]. However, it investigates
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the possibility of a software-defined environment to handle the complexities of cloud computing
systems, providing only a superficial view of each paradigm, not addressing its internals nor existing
limitations and open questions.
In this article, we present the first comprehensive literature survey of large-scale data center

SDS systems, explaining and clarifying fundamental aspects of the field. We provide a thorough
description of each plane of functionality, and survey and classify existing SDS technologies in
both academia and industry regarding storage infrastructure type, namely cloud computing, HPC,
and application-specific storage stacks, as well as internal control and enforcement strategies. We
define application-specific infrastructures as storage stacks built from the ground up, designed for
specialized storage and processing purposes. While some of these stacks can be seen as a subfield
of cloud infrastructures, for the purpose of this article and to provide a more granular classification
of SDS systems, we classify these in a separate category. In more detail, this article provides the
following contributions:

— Provides a definition of SDS. We present a definition of the Software-Defined Storage
paradigm and outline the distinctive characteristics of an SDS-enabled infrastructure.

— Describes an abstract SDS architecture and identifies its main design principles. The
work presented in this article goes beyond reviewing existing literature and categorizes
SDS planes of functionality regarding their designs. We surveyed existing work on SDS and
distilled the key design concepts for both controllers and data plane stages.

— Proposes a taxonomy and classification for SDS systems. We propose a taxonomy and
classification of existing SDS solutions in order to organize the many approaches, bringing
significant research directions into focus. Solutions are classified and analyzed regarding
storage infrastructure, control strategy, and enforcement strategy.

— Draws lessons from and outlines future directions for SDS research. We provide key
insights about this survey and investigate the open research challenges for this field.

This survey focuses on programmable and adaptable SDS systems. Namely, we do not address the
design and limitations of either specialized storage systems (e.g., file systems, block devices, object
stores) or other fields of storage research (e.g., deduplication [73], confidentiality [20], metadata
management [94], device failures [83], non-volatile memory [45]). Autonomic computing systems
are also out of the scope of this article [33]. Furthermore, even though other software-defined
approaches share similar design principles, they are out of the scope of this article, including but not
limited to networking [7, 50], operating systems [9, 74], data center [2, 80], cloud [38], key-value
stores [4, 47], flash [72, 85], security [49, 102], and Internet of Things (IoT) [10, 37].
The remainder of this article is structured as follows. §2 presents the fundamentals of the

SDS paradigm by outlining its distinctive characteristics, and introduces a classification for SDS
systems. §3 surveys existing SDS systems grouped by storage infrastructure, control strategy,
and enforcement strategy. In §4, we discuss the current research focus, and investigate the open
challenges and future directions of SDS systems. §5 presents the final remarks of the survey.

2 SOFTWARE-DEFINED STORAGE
Software-Defined Storage is an emerging storage paradigm that breaks the vertical alignment of
conventional storage infrastructures by reorganizing the I/O stack to disentangle the control and
data flows into two planes of functionality — control and data. While the storage industry defines
SDS as a storage architecture that simply separates software from vendor lock-in hardware [30, 103],
existing SDS solutions are more comprehensive than that. As such, we define a SDS-enabled system
as a storage architecture with four main principles.
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Fig. 1. Layered view of the SDS planes of functionality, comprehending both control and data tiers.

— Storage mechanisms are decoupled from the policies that govern them. Instead of designing
monolithic custom-made services at each I/O layer, SDS decouples the control functionality
from the storage service to be employed over data.

— Storage service is moved to a programmable data plane. Services to be employed over I/O
flows are implemented over programmable structures, and fine-tuned to meet user-defined
requirements.

— Control logic is moved to an external control plane. Control logic is implemented at a logically
or physically decoupled control plane, and properly managed by applications built on top.

— Storage policies are enforced over I/O flows. Service enforcement is data-centric rather than
system-centric, being employed over arbitrary layers and resources along the I/O path.

Unlike traditional storage solutions, which require designing and implementing individual control
tasks at each I/O layer, such as coordination, metadata management, and monitoring, SDS brings a
general system abstraction where control primitives are implemented at the control platform. This
separation of concerns breaks the storage control into tractable pieces, offering the possibility to
programme I/O resources and provide end-to-end adaptive control over large-scale infrastructures.
An SDS architecture comprises two planes of functionality. Figure 1 depicts a layered view of

such an architecture. The control plane comprehends the global control building blocks used for
designing system-wide control applications. It holds the intelligence of the SDS system and consists
of a logically centralized controller (§2.2) that shares global system visibility and centralized control,
and several control applications (§2.3) built on top [26, 42, 96, 99]. The data plane (§2.1) is composed
by several stages that employ controller-defined storage operations over I/O flows [18, 60, 99].
Communication between components is established through specialized interfaces. To preserve a
common terminology between software-defined approaches, we adopt the terminology from SDN,
namely Northbound, Southbound, andWestbound/Eastbound interfaces [50].
In an SDS-enabled architecture, such as the one depicted in Figure 2, control applications are

the entry point of the control environment (Figure 2: CtrlApp1 and CtrlApp2) and the de facto
way of SDS users (e.g., system designers, administrators) to express different storage policies to be
enforced over the storage infrastructure. Policies are sets of rules that declare how the I/O flow
is managed, being defined at control applications, disseminated by controllers, and installed at
the data plane. For example, to ensure sustained performance, SDS users may define minimum
bandwidth guarantees for a particular set of tenants [99], or define request prioritization to ensure
X th percentile latency [54]. As controllers share a centralized view, applications resort to centralized
algorithms to implement the control logic, which are simpler and less error prone than designing
the corresponding decentralized versions [99]. The scope of applications (and policies enforced by
these) is broad, ranging from performance and security-related services [59, 75, 99], to resource
and data management functionalities [60, 87, 91]. These user-defined policies are shared between
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Fig. 2. SDS-enabled architecture materialized on top of a general-purpose multi-tenant storage infrastructure.
Compute servers are virtualized and host virtual machines interconnected to the hypervisor by virtual devices,
namely virtual NIC and virtual hard disk. Storage servers comprehend general network and storage elements.

applications and controllers through a Northbound interface, that defines the instruction set of the
control tier while abstracting the distributed control environment into a centralized one.
Controllers track the status of the storage infrastructure, including data plane stages, storage

devices, and other storage-related resources, and orchestrate the overall storage services holistically.
Centralized control enables an efficient enforcement of policies and simplifies storage configu-
ration [99]. Policies are handled by a planning engine that translates centralized policies into
stage-specific rules and operation logic, which are disseminated to targeted data plane stages and
synchronized with other controllers. Communication with the data plane is achieved through
a Southbound interface (illustrated in Figure 2 with gray-toned arrows), that allows controllers
to exercise direct control over data plane stages through policy dissemination and data plane
monitoring. Moreover, aWestbound/Eastbound interface establishes the communication between
controllers to ensure coordination and agreement [26, 96].
The data plane (§2.1) is a multi-stage component distributed along the I/O path (Figure 2:

Staдe1 . . .Staдe4) that holds fine-grained storage services dynamically adaptable to the infras-
tructure status. Each stage employs a distinct storage service over intercepted data flows, such
as performance management (e.g., prioritization) [54, 97], data management (e.g., compression,
encryption) [75, 77], and data routing (e.g., flow customization) [35, 96]. For all intercepted requests,
any matching policy will employ the respective service over filtered data, and redirect to the
corresponding data flow (e.g., Figure 2: data flow between File System↔ Staдe1 ↔ Block Device).
The remainder of this section characterizes planes of functionality in a bottom-up fashion,

namely data plane (§2.1), controllers (§2.2), and control applications (§2.3). Moreover, we introduce
a taxonomy for classifying SDS systems based on the design principles and features of both control
and data planes, which is used as classification criteria for the surveyed work in §3.

2.1 Data Plane
Data plane stages are multi-tiered components distributed along the I/O path that perform storage-
related operations over incoming I/O requests. Stages are the end-point of SDS systems and abstract
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complex storage services into a seamless design that allows user-defined policies to be enforced
over I/O flows. Each of these establishes a flexible enforcement point for the control plane to specify
fine-grained control instructions. As presented in Figure 2, stages can be transparently placed
between two layers of the I/O stack, acting as a middleware (Staдe1, Staдe3, and Staдe4), or within
an individual I/O layer (Staдe2). Moreover, stages comprehend I/O interfaces to handle I/O flows and
a core that encompasses the storage primitives to be enforced over such flows. To preserve I/O stack
semantics, input and output interfaces marshal and unmarshal data flows to be both enforced at the
core and correctly forwarded to the next I/O layer. For instance, SafeFS exposes a POSIX-compliant
interface to enable the transparent enforcement of policies over file systems [75]. The stage core
comprises a (i) policy store, to orchestrate enforcement rules installed by the control plane (similar
to a SDN flow table [63]); an (ii) I/O filter, that matches incoming requests with installed policies;
and (iii) an enforcement structure, that employs the respective storage features over filtered data. A
thorough description of this component is presented in §2.1.2.

Albeit overlooked in current SDS literature, the Southbound interface is the de facto component
that defines the separation of concerns in software-defined systems. This interface is the bridge
between control and data planes, and establishes the operators that can be used for direct control
(e.g., policy propagation, share monitoring information, fine-tune storage services). The control
API exhibits to the control plane the instructions a stage understands in order to configure it to
perform local decisions (e.g.,manage storage policies, fine-tune configurations). Such an API can be
represented in a variety of formats. For example, IOFlow [99] and sRoute [96] use tuples comprising
human-friendly identifiers to control stages, while Crystal [26] resorts to a system-agnostic domain-
specific language to simplify stage administration. Further, the Southbound interface acts as a
communication middleware, and defines the communication models between these two planes of
functionality (e.g., publish-subscribe, RPC, REST, RDMA-enabled channels).

Despite the SDN influence, the divergence between storage and networking areas has driven SDS
to comprehend fundamentally different design principles and system properties. First, each field
targets distinct stack components, leading to significantly different policy domains, services, and
data plane designs. Second, contrarily to an SDN data plane, whose stages are simple networking
devices specialized in packet forwarding [50], such as switches, routers, and middleboxes, SDS-
enabled stages hold a variety of storage services, leading to a more comprehensive and complex
design. Third, the simplicity of SDN stages eases the placement strategy when introducing new
functionalities to be enforced [50],while SDS ones demand accurate enforcement points, otherwise
it may disrupt the SDS environment and introduce a significant performance penalty.

2.1.1 Properties. We now define the properties that characterize SDS data tiers, namely pro-
grammability, extensibility, stage placement, transparency, and policy scope. These properties are
not mutually exclusive (i.e., a data plane can comprise several of them), and are contemplated as
part of the taxonomy for classifying SDS solutions (§3).

Programmability. Programmability refers to the ability of a data plane to adapt and programme
existing storage services provided by the stage’s enforcement structure (e.g., stacks, queues, storlets)
to develop fine-tuned and configurable storage services [87]. In SDS data tiers, programmability
is usually exploited to ensure I/O differentiation [26, 99], service isolation and customization [42,
96, 97], and development of new storage abstractions [87]. Conventional storage infrastructures
are typically tuned with monolithic setups to handle different applications with time-varying
requirements, leading them to experience the same service level [3, 19]. SDS programmability
prevents such an end by adapting the stage core to provide differentiation of I/O requests and
ensure service isolation (further description of this process in §2.2.2). Moreover, programmable
storage systems can ease service development by re-purposing existing abstractions of the storage
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stack, and exporting the configurability aspect of specialized storage systems to a more generalized
environment, i.e., expose runtime configurations (e.g., replication factor, cache size) and existing
storage subsystems of specific services (e.g., load balancing, durability, metadata management) to a
more accessible environment [87]. For example, Mantle [86] decouples cache management services
of storage systems into independent policies so they can be dynamically adapted and re-purposed.

Extensibility. Extensibility refers to how easy is for stages to support additional storage services
or customize existing ones. An extensible data plane comprises a flexible and general-purpose design
suitable for heterogeneous storage environments, and allows for a straightforward implementation
of storage services. Such a property is key for achieving a comprehensive SDS environment, capable
of attending different requirements of a variety of applications, as well as to broad the policy
spectrum supported by the SDS system. The extensibility of SDS data tiers strongly relies on
the actual implementation of the data plane architecture. In fact, as presented in the literature,
highly-extensible data plane implementations are built atop flexible and extensible by design storage
systems (e.g., FUSE [56], OpenStack Swift [71]). For instance, SafeFS [75] allows developers to extend
its design with new self-contained storage services (e.g., encryption, replication, erasure coding)
without requiring changing its core codebase. However, behind this flexible and generic design, lies a
great deal of storage complexity that if not properly assessed, can introduce significant performance
overhead. On another hand, an inextensible data plane typically holds a rigid implementation and
hard-wired storage services, tailored for a predefined subset of storage policies. Such a design bears
a more straightforward and fine-tuned system implementation, and thus comprehends a more strict
policy domain only applicable to a limited set of scenarios.

Placement. The placement of stages refers to the overall position on the I/O path a stage can be
deployed. It defines the control granularity of SDS systems and is a key enabler to ensure efficient
policy enforcement. Each stage is considered as an enforcement point. Less enforcement points lead
to a coarse-grained treatment of I/O flows, while more points allow for a fine-grained management.
Since the control plane has system-wide visibility, broadening the enforcement domain allows
controllers to accurately determine the most suitable place to enforce a specific storage policy [99].
Improper number and placement of stages may disrupt the control environment, and therefore,
introduce significant performance and scalability penalties to the overall infrastructure.
Depending on the storage context and cluster size, stages are often deployed individually i.e.,

presenting a single enforcement point to the SDS environment. This single-point placement is
often associated to local storage environments, being tightly coupled to a specific I/O layer or
storage component, as in SafeFS [75] (file system) and Mesnier et al. [64] (block layer). However,
this setting narrows the available enforcement strategies, which may lead to control inefficiencies
and conflicting policies (e.g., enforcing X th percentile latency under throughput-oriented services).

Further, a similar placement pattern can be applied in distributed settings. Distributed placement
of stages (i.e., distributed single-points) is associated to distributed storage components of an
individual I/O layer (e.g., distributed file systems [60], object stores [26, 66]). In this scenario, each
enforcement point is a data plane stage deployed at the same I/O layer as the others. In contrast to
the prior placement strategy, this design displays more enforcement points for the control plane
to decide the enforcement strategies. It is, however, still limited to a particular subset of storage
components and may suffer similar drawbacks as the single-point approach.
Another placement alternative is multi-point data plane stages, which can be placed at several

points of the I/O path, regardless the I/O layer [96, 97, 99]. This design provides a fine-grained
control over stages and is key to achieve end-to-end policy enforcement. However, it can introduce
significant complexity in data plane development, and often requires direct implementation over
I/O layers i.e., following a more intrusive approach.
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Transparency. The transparency of a data plane reflects on how seamless is its integration
with I/O layers. A transparent stage is often placed between storage components and preserves
the original I/O flow semantics [75]. For instance, Moirai [97] provides direct control over the
distributed caching infrastructure, being applicable across different layers of the I/O path. Such
an integration however may require substantial marshaling and unmarshaling activities, directly
impacting the latency of I/O requests. Contrarily, an intrusive stage implementation is tailored for
specific storage contexts and can achieve higher levels of performance since it does not require
semantic conversions [26, 99]. However, this may entail significant changes to the original codebase,
imposing major challenges in developing, deploying, and maintaining such stages, ultimately
reducing its flexibility and portability.

Scope. The policy scope of a data plane categorizes the different storage services and objectives
employed over I/O requests. SDS systems can be applied in different storage infrastructures to
achieve several purposes, namely performance, security, and resource and data management opti-
mizations. To cope with these objectives, SDS systems comprehend a large array of storage policies
categorized in three main scopes, namely performance management, data management, and data
routing. Noticeably, the support for different scopes relies on the data plane implementation and
storage context. Performance management services are associated to performance-related policies to
ensure isolation and QoS provisioning [42, 96, 97, 99] (e.g., cache management, bandwidth aggrega-
tion, I/O prioritization). Data management assembles services oriented to the management of data
requests, such data reduction [26, 66], security [75], and redundancy [8, 18]. Data routing primitives
encompass routing mechanisms that redefine the data flow, such as I/O path customization [96],
replica placement strategies [109], and data staging [35]. Even though mainly applied in networking
contexts [50], data routing services are now contemplated as another storage primitive, in order to
dynamically define the path and destination of an I/O flow at runtime [96].

As SDS systems are employed over different storage scenarios, data planes can include additional
properties (e.g., dependability, simplicity, generality), that portray other aspects of SDS [48, 99].
However, as they are not covered by the majority of systems, they are not contemplated as part of
this survey’s taxonomy. One such property is dependability, which refers to the ability of a data plane
to ensure availability and tolerate faults of the storage services implemented at stages, regardless
of employing performance management, data management, or data routing objectives [26, 99].

2.1.2 Stage design. Wenow categorize data plane stages in three main designs. Each design respects
to the internal organization of a stage’s enforcement structure, regardless of being applicable at
different points of the I/O path. Figure 3 illustrates such designs, namely (a) Stack-, (b) Queue-, and
(c) Storlet-based data plane stages. Similarly to §2.1.1, these designs are contemplated as part of the
taxonomy for classifying SDS data elements.

Stack-based stages. Stack-based data plane stages provide an interoperable layer design where
layers correspond to specific storage features and are stacked according to installed policies [75].
This design enables an independent and straightforward layer development, introducing a modular
and programmable storage environment. Layer organization is established by the control plane,
and may result in a number of stacking configurations tuned to satisfy the installed policies and
attend the I/O requirements. Figure 3-(a) depicts an abstract design of a stack-based data plane
stage. It comprehends a four-layer stacking configuration, each with a specific storage service to
be employed over I/O flows, namely malware scanning, caching, compression, and encryption. The
data flow follows a pass-through layout, ensuring that all requests traverse all layers orderly, such
that each layer only receives requests from the layer immediately on top, and only issues requests
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Fig. 3. SDS data plane stage architectures, namely (a) Stack-, (b) Queue-, and (c) Storlet-based designs.

to the layer immediately bellow. SafeFS [75], for example, provides a framework for developing
stackable storage services by re-purposing existing FUSE-based file system implementations to
employ different storage objectives over I/O flows, such as encryption and erasure coding.

Stacking flexibility is key to efficiently reusing layers and adapting to different storage environ-
ments. However, this vertical alignment may limit the ability to enforce specific storage policies
(e.g., data routing), limiting the available policy spectrum exposed to the control plane. Current
stack-based solutions are attached to specialized I/O layers, and usually deployed at lower levels of
the I/O stack, such as file systems and block devices [66, 75].

Queue-based stages. Queue-based data plane stages provide a multi-queue storage environment,
where queues are organized to employ distinct storage functionalities over I/O requests [99]. Each
queue is a programmable storage element that comprehends a set of rules to regulate traffic
differentiation and define its storage properties. Such properties govern how fast queues are served,
employ specific actions over data, and forward I/O requests to other points of the I/O path. Examples
of such properties include the use of token-buckets, priority queues, and scheduling mechanisms
(further detailed in §3.3). Figure 3-(b) depicts the design of a queue-based data plane stage. Incoming
requests are inspected, filtered, and assigned to the corresponding queue. For instance, IOFlow [99]
provides programmable queues to employ performance and routing services over virtual instances
and storage servers, enabling end-to-end differentiation and prioritization of I/O flows.
The flexible design of the queuing mechanism allows for simplified orchestration, flexibility,

and modularity of data plane stages [99]. Although, as demonstrated by complementary research
fields [27, 29], queue structures are primarily used to serve performance-oriented policies. As such,
trading customization over a more tailored design turns the integration and extension of alternative
storage services a challenging endeavor.

Storlet-based stages. Storlet-based data plane stages abstract storage functionalities into pro-
grammable storage objects (storlets) [26, 87]. Leveraging from the principles of active storage [79]
and OpenStack Swift Storlets [71], a storlet is a piece of programming logic that can be injected into
the data plane stage to perform custom storage services over incoming I/O requests. This design
promotes a flexible and straightforward storage development, and improves the modularity and
programmability of data plane stages, fostering reutilization of existing programmable objects.
Figure 3-(c) depicts the abstract architecture of a storlet-based data plane stage. Stages comprehend
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a set of pre-installed storlets that comply with initial storage policies. Policies and storlets are
kept up-to-date to ensure consistent actions over requests. Moreover, the data plane stage forms
several storlet-made pipelines to efficiently enforce storage services over data flows. At runtime,
I/O flows are intercepted, filtered, classified, and redirected to the respective pipeline. Crystal [26],
for example, provides a storlet-enabled data plane that allows system designers to deploy and run
customized performance and data management services over I/O requests.
The seamless development of storlets ensures a programmable, extensible, and reusable SDS

environment. However, as the policy scope increases, it becomes harder to efficiently manage the
storlets mechanisms at stages. Such an increase may introduce significant complexity in data plane
organization and lead to performance penalties on pipeline construction, pipeline forwarding, and
metadata and storlet management.

2.2 Control Plane — Controllers
Similarly to SDN, SDS control planes provide a logically centralized controller with system-wide
visibility that orchestrates a number of data plane instances. It shares a unified point of control,
easing both application-building and control logic development. However, even though identical
in principle, the divergence between SDN and SDS research objectives may impact the entailed
complexity on designing and implementing production-quality SDS systems. First, the introduction
of a novel functionality to employ over I/O flows cannot be arbitrarily assigned to stages, since it
may introduce significant performance penalties and compromise the enforcement of other policies.
For instance, SDN data planes are mainly composed with simple forwarding services, while SDS
data planes may comprehend performance functionalities, which are sensitive to I/O processing
along the I/O path, but also data management ones, that entail additional computation directly
impacting processing and propagation time of I/O flows. Thus, controllers require to perform extra
computations to ensure the efficient placement of storage features, preventing policy conflicts, and
ensuring a correct execution of the SDS environment. Second, since the domain of both services and
policies is broader than in SDN, ensuring transparent control and policy specification introduces
increased complexity to the design of controllers (e.g., decision making, service placement).
As depicted in Figure 1, controllers are the mid-tier of a SDS system and provide the building

blocks for orchestrating data plane stages according to the actions of control applications built on
top. Despite distributed, the control plane shares the control logic through a logically centralized
controller that comprehends system-wide visibility, eases the design and development of general-
purpose control applications, provides a simpler and less error-prone development of control
algorithms, ensures an efficient distribution and enforcement of policies, and fine-tunes SDS storage
artifacts holistically (i.e., encompassing the global storage environment) [26, 35, 96, 99, 109]. Unless
otherwise stated, a controller defines a logically centralized component, even though physically
distributed. A controller can be partitioned in three functional modules, namely a metadata store, a
systemmonitor, and a planning engine, as illustrated in Figure 4-(a). Each of these modules comprises
a particular set of control features shared between controllers or designed for a specific control
device. Moreover, these modules are programmable and allow SDS users to install, at runtime,
custom control actions to employ over the system (e.g., control algorithms for accurate policy
enforcement, collection of monitoring metrics).
The metadata store holds the essential metadata of the storage environment and ensures a

synchronized view of the storage infrastructure. As depicted in Figure 4-(a), different types of
metadata are stored in separate instances, namely topology, policies, or metrics. The topology
instance maintains a stage-level topology graph that comprehends the distribution of SDS stages,
along the assigned storage services and information about the resources of each node a stage is
deployed (e.g., available storage space, CPU usage). For instance, sRoute’s [96] controller maintains
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Fig. 4. SDS controllers architecture. (a) presents the organization of the internals of a SDS controller. (b) and
(c) depict the design of SDS control plane controllers, namely Flat and Hierarchical designs.

an up-to-date topology graph with the capacity of physical resources, and shares it with control
applications to define accurate storage policies. The policies instance holds storage policies submitted
by applications, as well as the ones installed at data plane stages. The metrics instance persists
digested monitoring metrics and statistics of both control and data flows, that are used to adapt data
plane stages to meet applications’ requirements. Further, to ensure a dependable SDS environment,
metadata is usually synchronized among controllers [96, 99].

The system monitor collects, aggregates, and transforms unstructured storage metrics and statis-
tics into general and valuable monitoring data [26, 32, 109]. It captures relevant properties of the
physical storage environment (e.g., device and network performance, available storage space, IOPS,
bandwidth usage) from SDS controllers and data plane tiers, and collects samples of I/O workloads,
in order to trace an up-to-date profile of the storage stack. Such metrics are then analyzed and
correlated, bringing significant insights about the system status that allow the controller to optimize
the infrastructure by (re)configuring SDS stages, and assist other modules in policy enforcement
and feature placement activities. For example, Mirador [109] collects device and network load and
traces workload profiles to build an accurate model of the infrastructure, in order to assist in flow
customization and data placement enforcement. Furthermore, the system monitor can also exercise
automation operations without input of applications, ranging from simple management activities
such as increasing or decreasing the number of controllers, to more complex tasks (e.g., fine-tuning
storage policies, reconfiguring data plane stages) [26].
The planning engine implements the control logic responsible for policy translation, policy

enforcement, and data plane configuration. Policies submitted by control applications are parsed,
validated, and translated into stage-specific rules, that will be installed at the respective data plane
stage. Policy enforcement is achieved through different control algorithms and strategies that
specify how the data plane handles I/O flows and define the most suitable place for policies to be
enforced [99]. Examples of such control algorithms and control strategies include proportional
sharing, isolation and priority, feedback control, and performance modeling (further detail in §3.2).
Both translation and enforcement operations may lead the controller to interact with a single
data plane stage (e.g., to install a particular rule) or a number of stages to perform distributed
enforcement, such as bandwidth aggregation and I/O prioritization [97, 99].
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To provide a seamless integration with the remainder SDS layers, the controller connects to a
northbound and a southbound interface to interact with control applications and data plane stages,
respectively. Similar to other software-defined approaches, SDS architectures comprehend a network
of controllers connected through a westbound/eastbound interface, as illustrated in Figures 1 and 4-
(a). This interface defines the instruction set and communication protocols between controllers,
being used to exchange data, synchronization, and fault tolerance; monitoring; and, depending
on the control plane architecture, assign control tasks to other controllers (further description
of this property is presented in §2.2.2). Further, this interface aims at achieving interoperability
between different controllers [50], however, despite its clear position in the SDS environment,
current literature does not explore nor details about such an interface.

2.2.1 Properties. Similarly to other software-defined approaches, designing and implementing
production-quality SDS systems requires solving important challenges at the control plane [48]. We
now define the properties that characterize SDS controllers, namely scalability, dependability, and
adaptability, which are also contemplated as part of the taxonomy for classifying SDS systems (§3).

Scalability. Scalability refers to the ability of a control plane to efficiently orchestrate and
monitor a number of data plane stages. Similarly to SDN, the control plane can either be physically
centralized or distributed [7]. A physically centralized control plane consists of a single SDS
controller that orchestrates the overall storage infrastructure, which is an attractive design choice in
terms of simplicity [69, 92, 101]. However, physical control centralization imposes severe scalability,
performance, and dependability requirements that are likely to exhaust and saturate underlying
system resources, largely dictating the end performance of the storage environment. As the amount
of stages increases so does the control traffic destined towards the centralized controller, bounding
the system performance to the processing power of this single control unit. Hence, despite the
obvious limitations in scale and reliability, such a design may be only suitable to orchestrate
small-to-medium storage infrastructures [50].
Production-grade SDS controllers must be designed to attend the scalability, performance and

dependability requirements of today’s production storage systems, meaning that any limitations
should be inherent to the storage infrastructure and not from the actual SDS implementation.
Thus, physically distributed controllers can be scaled up to attend such requirements. While
sharing a logically centralized service, multiple interconnected SDS controllers orchestrate the
storage infrastructure by sharing control responsibility, and thus alleviating overall control load.
Leveraging from existing classifications [7], distributed SDS controllers can follow a flat or a
hierarchical distribution (§2.2.2). Flat designs (Figure 4-(b)) imply horizontal control partitioning
to provide a replicated control service, forming a reliable, fault-tolerant, highly-available cluster
of controllers [26, 99, 109]. On the other hand, hierarchy-based designs (Figure 4-(c)) imply the
vertical control partitioning to provide a scalable and highly-performing SDS control plane [42, 96].

Dependability. Dependability refers to the ability of a control plane to ensure sustained avail-
ability, resiliency, and fault tolerance of the control service [6]. Physically centralized controllers
represent a single point of failure (SPOF), leading to the unavailability of the control service upon a
failure. As a result, the SDS ecosystem becomes unsupervised, incapable of regulating incoming
storage policies and orchestrate the data plane tier. The system should handle failures gracefully,
avoiding SPOF and enabling fault tolerance mechanisms. Thus, similarly to SDN [11, 16, 48], physi-
cally distributed SDS solutions provide coordination facilities for detecting and recovering from
control instance failures [26, 96, 109]. In this model, controllers are added to the system to form a
replicated, fault-tolerant, and highly-available SDS environment. Moreover, existing distributed
controllers consider the different trade-offs of performance, scalability, and state consistency, and
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provide distinct mechanisms to meet fault tolerance and reliability requirements. For instance,
controllers may assume a clustered format to achieve fault tolerance through active or passive repli-
cation strategies by resorting to Replicated State Machines built with Paxos-like techniques [51, 70],
or simply implement a primary-backup approach where one main controller orchestrates all data
plane elements while remainder control instances are used for replication of the control service [15].

While some solutions comprehend a strong consistency model to ensure correctness and robust-
ness of the control service, others resort to relaxed models where each controller is assigned to a
subset of the storage domain and holds a different view of the infrastructure. Regarding control
distribution, flat control planes are designed to ensure sustained resilience and availability [26, 99],
while hierarchical control planes focus on the scalability challenges of the SDS environment [35, 96].

Depending on the storage context, the dependability offered by the control plane can be coupled
to a specific I/O layer. Specifically, as some SDS systems are directly implemented over existing
storage systems, such as Ceph (e.g.,Mantle [86], SuperCell [101]) and OpenStack (e.g., Crystal [26]),
the control plane’s dependability is bounded by the dependability of the respective storage system.

Adaptability. Adaptability refers to the ability of a control plane to respond, adapt, and fine-tune
enforcement decisions under time-varying requirements of the storage infrastructure. The high
demand for virtualized services has driven data centers to become extremely heterogeneous, leading
storage components and data plane stages to experience volatile workloads [3, 19, 99]. Moreover,
designing heterogeneity-oblivious SDS systems with monolithic and homogeneous configurations
can severely impact the storage ecosystem, hindering the ability to accurately enforce policies [26].
Therefore, SDS controllers must comprehend a self-adaptive design, capable of dynamically

adjusting their storage artifacts (e.g., policy values, data plane stage configurations) to the sur-
rounding environment, in order to deliver responsive and accurate enforcement decisions [26].
As enforcement strategies directly impact I/O flows, employing self-adaptive and autonomous
mechanisms over SDS controllers brings a more accurate and dynamic enforcement service. More-
over, due to the fast changing requirements of the storage environment, data plane configurations
rapidly become subpar, and thus, automated optimizations of data plane resources is key to ensure
efficient policy enforcement and resource usage.

Current strategies to provide adaptable SDS control include control-theoretic mechanisms, such
as feedback controllers that orchestrate system state based on continuous monitoring and data plane
tuning [43, 59, 99], and performance modeling, such as heuristics [108], linear programming [66, 120],
and machine learning [42] techniques (further detail on these strategies is presented in §3.2).

2.2.2 Controller distribution. SDS literature classifies the distribution of controllers as logically
centralized, despite physically distributed for the obvious reasons of scale and resilience [96, 99]. We
now categorize distributed control planes regarding controller distribution. Figure 4 illustrates such
designs, namely (b) Flat and (c) Hierarchical controllers. Similarly to the properties presented in
§2.2.1, both designs are contemplated as part of the taxonomy for classifying SDS control elements.

Flat. Flat control planes provide a horizontally partitioned control environment, where a set
of interconnected controllers act as a coordinated group to ensure a reliable and highly-available
control service while preserving logical control centralization. Depending on the control plane’s
implementation, controllers may hold different organizations, being designed accounting with
the different trade-offs of performance and resiliency. For instance, some implementations may
provide a cluster-like distribution, where a single controller orchestrates the overall storage domain,
while others are used as backups that can take over in case the primary fails. In this scenario, the
centralized controller handles all stage-related events (e.g., collect reports and metrics), disseminates
policies, generates comprehensive enforcement plans, and enforces policies. Moreover, the control
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plane provides the coordination facilities to ensure fault tolerance and strong consistency by relying
on Paxos-based mechanisms [96, 109] or simple primary-backup strategies [15]. Mirador [109],
follows such an approach, by resorting to a coordination service to ensure a highly-available
control environment [34]. This design allows distributed controllers to comprise strong consistency
properties, ensure high-availability of the control service, and ease control responsibility. However,
since control remains centralized, this cluster-based distribution falls short when it comes to
scalability, limiting its applicability to small-to-medium sized storage infrastructures [99].
Other solutions, as depicted in Figure 4-(b), may provide a network-like flat control platform,

where each controller is responsible for a subset of the data plane elements [26, 48]. Namely, each
controller orchestrates a different part of the infrastructure, synchronizing its state with remainder
controllers with strong or eventual consistency mechanisms. Upon the failure of a controller,
another may assume its responsibilities until it becomes available. For instance, Crystal [26] holds a
set of autonomous controllers, each running a separate control algorithm to enforce different points
of the storage stack. This network-like design ensures an efficient and high-performance control
service, and provides a flexible consistency model that allows the SDS system to scale to larger
environments than cluster-based approaches. However, this control model hardens the control
plane’s ability to share a logical centralized setup and up-to-date visibility to control applications,
hindering its applicability to large-scale production storage infrastructures. Further, with the
emergence of novel computing paradigms composed by thousands of nodes, such a serverless
cloud computing [40] and Exascale computing [22], this design may hold severe scalability and
performance constraints.

Hierarchical. The constant dissemination of stage-related events, such as control enforcement
and metrics collection, hinders the scalability of the control plane [42, 96]. To limit the load of the
centralized controller, both control and management flows must be handled closer to data plane
resources, and minimized as possible without compromising system correctness. Thus, similarly to
distributed SDN controllers [36, 113, 114], hierarchical control plane distributions address such a
problem by organizing SDS controllers in a hierarchical disposition [35, 42, 96]. Controllers are
hierarchically ranked and grouped by control levels, each of them respecting to a cumulative set of
control services. This approach distributes the control responsibility to alleviate the load imposed
over centralized services, enabling a more scalable SDS control environment.
As depicted in Figure 4-(c), the control plane is vertically partitioned, and distinguishes its

elements between core controllers and sub-controllers. Core controllers are placed at the top-tier of
the hierarchy, and comprehend overall control power and system-wide visibility. While maintaining
a synchronized state of the SDS environment, core controllers manage control applications, and
orchestrate both data plane and sub-controller elements. Moreover, core controllers share part of
their responsibilities with underlying control tiers, propagating the control fragments hierarchically.
Sub-controllers form the lower-tiers of the control hierarchy, placed closer to data sources, and
comprehend a subset of control services. Each of these controllers manages a segment of the data
plane, as well as the control activities that do not require global knowledge nor impact the overall
state of the control environment. For example, Clarisse [35] implements a hierarchical control
plane over HPC infrastructures that groups control activity through global, application, and node
controllers. Since core controllers hold global visibility, they perform accurate and holistic control
decisions over the SDS environment. However, maintaining a consistent view is costly, causing
significant performance overhead even when performing simple and local decisions [35, 96]. On
the other hand, sub-controllers are tailored for control-specific operations, providing faster and
fine-grained local decisions over SDS stages. In case a sub-controller cannot perform certain control
actions over its elements, it passes such responsibility to higher ranking controllers.
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Table 1. Classification of SDS control applications regarding storage objectives.

Cloud HPC Application-specific

Performance
Performance guarantees [54, 92, 96, 97, 99, 117, 120] [42] [26, 43, 60, 64, 105]
Prioritization [54, 97–99, 108, 117, 119, 120] [35, 42] [60, 64, 105]
Performance control [59, 66, 91, 97–99, 119] [42] [26, 60, 87, 101, 105]

Resource
Management

Fairness [92] [60, 64]
Cache management [96, 97] [26, 86]
Device management [66] [18, 101]
Flow customization [59, 96, 108] [35] [8, 109]

Data
Management

Data redundancy [77] [8, 18, 75]
Data reduction [66, 77] [18, 26]
Data placement [66, 69, 77, 96] [35] [8, 86, 87, 101, 109]
(Meta)Data organization [69, 77] [8, 86, 87]

Security Encryption [77] [75]
Malware scanning [99]

Other Storage Objectives [66, 69, 77] [35] [8, 75, 87]

Communication between control instances is achieved through thewestbound/eastbound interface,
and is used for establishing the control power and policy dissemination, periodic state propagation
for synchronization, and health monitoring events.

2.3 Control Plane — Control Applications
Control applications are the entry point of the SDS environment and the de facto way of expressing
the control directives of I/O flows. Applications exercise direct control over controllers by defining
the control logic through policies and control algorithms, which are further translated into fine-
grained stage-specific rules to be employed over I/O requests. Examples of control algorithms
include proportional sharing, prioritization and isolation, and shares and reservations, each of
which is further detailed in §3.2. Similar to other software-defined approaches [38, 50], control
applications introduce a specification abstraction into the SDS environment, to express the desired
storage behavior without being responsible for implementing the behavior itself. Moreover, the
logical centralization of control services allows control applications to leverage from the same
control base, leading to an accurate, consistent, and efficient policy creation.

Existing control applications are designed for a variety of storage contexts and cover a wide array
of functionalities, including performance, resource and data management, security, and other storage
objectives. Performance objectives aim at enforcing performance guarantees (e.g., throughput and
latency SLOs [54]), prioritization (e.g., bandwidth allocation according to applications’ priority [99]),
and performance control (e.g., I/O isolation). On the management side, resource-centric objectives
enforce fairness between applications accessing shared storage systems, as well as caching and
device management policies (e.g., caching schemes [97], storage quotas [18]), and I/O flow cus-
tomization (e.g., modify the I/O endpoints of a layer [96]). Data-centric objectives, on the other
hand, enforce objectives directly applicable over data and metadata such as data redundancy, data
reduction, data placement, and (meta)data organization [88]. Security-based objectives enforce
encryption and malware scanning rules to ensure privacy and confidentiality of sensitive data.
Other storage objectives such as energy efficiency and elasticity control seek to provide additional
properties to storage systems. Table 1 classifies existing SDS control applications regarding storage
objectives, while organized by storage infrastructure.
Finally, a Northbound interface connects control applications and controllers by abstracting

the distributed control environment into a language-specific communication interface, hiding
unnecessary infrastructure details, while allowing straightforward application-building and policy
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specification. Such a design fosters the integration and reutilization of different control applications
between SDS technologies, enabling an interoperable control design. However, current work on
SDS lacks a standard Northbound interface, which limits the ability to combine different control
applications throughout distinct storage contexts and SDS technologies.

3 SURVEY OF SOFTWARE-DEFINED STORAGE SYSTEMS
This section presents an overview of existing SDS systems regarding storage infrastructure (§3.1),
control strategy (§3.2), and enforcement strategy (§3.3). §3.4 discusses key differences between SDS
systems. Systems are classified according to the taxonomies described in §2.1 and §2.2.

3.1 Survey by Infrastructure
Storage infrastructures comprise different requirements and restrictions, and thus, the design
and combination of SDS properties may vary significantly with the storage type being targeted.
To provide a comprehensive survey of SDS systems, we describe them in a twofold. Table 2
classifies SDS systems according to the taxonomy described in §2, while grouping them by storage
infrastructure, namely cloud, HPC, and application-specific storage stacks. This table highlights
the design space of each infrastructure and depicts current trends and unexplored aspects of the
paradigm that require further investigation. Then, the textual description presented at each section
(§3.1.1— §3.1.3) draws focus on the environment and context where each system is applied, as well as
the enforced storage objectives and other aspects that differentiate these solutions. The classification
considers systems from both academia and industry.1 Commercial solutions whose specification
is not publicly disclosed are not considered. Systems that follow the SDS design principles and
storage functionalities described in §2, targeting at least one of the planes of functionality, are
contemplated in this classification.2

3.1.1 Cloud Infrastructures. Cloud computing infrastructures offer enterprise-grade computing and
storage resources as public utilities so customers can deploy and execute general-purpose services
in a flexible pay-as-you-go model. Cloud premises consist of hundreds to thousands of compute
and storage servers. Compute servers are virtualized and abstract multiple physical servers into an
infinite pool of resources exposed through virtual machines (VMs) or containers. Resources are
shared between tenants and mediated by hypervisors. Storage servers accommodate heterogeneous
storage systems and devices with distinct levels of granularity and performance. These servers
persist all data and are exposed to VMs as virtual devices. Compute and storage servers are
connected through high-speed network links that carry all infrastructure traffic. However, behind
this virtualized environment lies complex and predefined I/O stacks, which results in increased
end-to-end complexity, and difficulty in enforcing storage requirements and end-to-end control
over storage resources [28, 99]. While several systems have been proposed to partially address
this problem (e.g., QoS provisioning and scheduling [13, 27–29, 112]), neither have considered
end-to-end enforcement nor holistic orchestration of infrastructure resources. To address such
shortcomings, SDS-enabled systems have moved towards cloud infrastructures.

The term Software-Defined Storage was first introduced by IOFlow [99]. Specifically, IOFlow en-
ables end-to-end policy enforcement under multi-tenant architectures. Queue-based stages employ
performance and routing primitives from VMs to shared storage, allowing efficient performance
isolation, differentiated I/O treatment, and end-to-end performance control. A reactive flat-based
control plane discovers stages and dynamically configures their storage services to attend the man-
ifold objectives of applications built on top (e.g., bandwidth aggregation, prioritization, throughput
1Industrial SDS systems are marked with an i in the classification table.
2Systems not originally defined as SDS but follow the same design principles are marked with ⋆ in the classification table.
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Table 2. Classification of Software-Defined Storage systems regarding storage infrastructure.
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IOFlow i [99] F G#  G# Q G# G# MP # PR ↑ ↓

Moirai [97] F G#  G# S G# G# MP  P ↓

sRoute [96] H   G# Q  G# MP # PR ↑↔↓

JoiNS [108] H  -⋅- G# Q G# # DSP # PR ↔ ↓

Façade⋆ [59], AVATAR⋆ [117] C # # G# Q G# # SP  P ↓

Pisces⋆ [92], Libra⋆ [91] C # # G# Q # # DSP # P ↓

PM⋆ [120], WC⋆ [119] F G#   Q # # DSP # P ↓

PSLO⋆ [54] C # #  Q G# # DSP # P ↑ ↓

Wisp⋆ [98] D  -⋅- G# Q G# # DSP  P ↔ ↓

Wiera-Tiera⋆ [69, 77] C # # G# St   DSP  PDR ↓

flexStore [66] F G#  G# S G# # DSP G# PD ↑ ↓

Clarisse [35] H  G# # Q G# # DSP # PR ↑↔↓

SIREN [42] H  G# G# Q G# # MP # P ↔ ↓

Retro [60] F G#  G# Q G# G# MP # P ↑ ↓

Cake⋆ [105] C # # G# Q G# # MP  P ↑ ↓

Crystal [26] F G#  G# St   DSP G# PD ↑↔↓

Coho Data i [18, 109] F G#  G# S G# # DSP  PDR ↑ ↓

Mantle [86] C # # G# St  # DSP # P ↑ ↓

SuperCell [101] C # # G# St # # DSP  PD ↓

Malacology [87] — — — — St  G# DSP # PDR ↓

SafeFS [75] — — — — S G#  SP  PD ↓

Triage⋆ [43] F G#   Q # # DSP  P ↓

PADS ⋆ [8] — # # # St   DSP # PR ↑ ↓

Mesnier et al.⋆ [64] — # # # — G# G# SP # P ↓

Properties Distribution Design Placement Scope Interfaces
# Absent C-Centralized S-Stack SP-Single-point P-Performance ↑ Northbound
G# Limited F-Flat Q-Queue DSP-Distributed SP D-Data ↔West/Eastbound
 Manifested H -Hierarchical St-Storlet MP-Multi-point R-Routing ↓ Southbound
-⋅- Unspecified D-Decentralized
— Not Applicable

and latency objectives). While originally designed to enforce policies over storage-related layers, it
was later extended to support caching and networking [96, 97]. Moirai [97] extends IOFlow’s design
to exercise direct and coordinated control over the distributed caching infrastructure to improve
resource utilization and achieve performance isolation and QoS guarantees. Stages are deployed as
stackable and programmable caching instances to employ performance services over incoming I/O
requests, such as workload aggregation and maximization of cache hit ratios. At the control plane,
a logically centralized controller built on top IOFlow’s traffic classification mechanism, orchestrates
stages in holistic fashion, and maintains (cache) consistency and coherence across the I/O stack.
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Further, it continuously monitors the infrastructure and maintains key performance metrics of
each workload running on the system (e.g., throughput, read-write proportion, hit ratio curves).

To override the rigid and predefined I/O path of cloud infrastructures, sRoute [96] goes towards
combining storage and networking primitives. It extends IOFlow’s design to employ routing
services throughout the I/O path, turning the storage stack more programmable and dynamic.
The data plane comprises programmable switches (sSwitch stages), that provide flow regulation
and customization, and queue-based stages that implement performance management and I/O
differentiation at hypervisors. Such a design allows I/O flows to be redirected to any point of the I/O
stack (e.g., controller, sSwitch-enabled stages). The control plane holds a hierarchical distribution
made of a centralized controllers and several control delegates, that are restricted control daemons
installed at sSwitches for control plane efficiency. Each of these delegates performs decisions locally,
alleviating the load of the centralized component, and thus providing a more scalable environment.
Similarly, JoiNS [108] orchestrates storage and network primitives over networked storage premises.
While sharing similar control principles, JoiNS leverages from existing SDN data planes [63] and
programmable switches to enforce routing primitives over the storage infrastructure, while storage
stages implement predetermined performance features over block device drivers.

While IOFlow-enabled systems are designed to achieve end-to-end optimization in cloud storage,
several works address specific problems and layers of the I/O stack in a SDS fashion. Façade [59] and
AVATAR [117] propose a virtualization layer that seats between clients and the storage utility of
shared storage systems and enforces throughput and latency objectives in the presence of bursty and
volatile workloads. Even though not physically decoupled, Façade provides a centralized controller
that employs a non-linear feedback loop to allocate storage shares for each workload and adjust data
stages according targeted workload latencies, and a queue-based data plane that governs the queue
depth of a storage utility. On the other hand, AVATAR proposes a two-level scheduling framework
that enforces 95th percentile latency objectives. At a high level, a centralized controller orchestrates
per-workload FIFO queues and regulates workflows to achieve isolation, while at a lower level,
a queue-based data plane rate limits requests before dispatching them to the storage utility. At
multi-tenant cloud environments, Pisces [92] and Libra [91] provide system-wide performance
isolation and fair resource allocation. In both systems, control and data are not physically decoupled.
Specifically, in Pisces, a centralized controller provides per-tenant weighted fair-shares to enforce
throughput objectives, while queue-based stages schedule per-tenant rules over network resources
of storage servers. On the other hand, while sharing the same design primitives as Pisces, Libra’s
stages enforce per-tenant app-request reservations over low-latency SSD drives.

Despite providing isolation and fairness over network and storage resources, previous systems
focus on sharing storage bandwidth, which is simpler to control than tail latency, as bandwidth is
an average over time not affected by I/O path’s cumulative interactions. Moreover, single resource
enforcement either over storage [59, 91, 117] or network [92], limits the ability to enforce end-to-end
storage policies. This led to the design of multi-resource SDS systems [119, 120]. PriorityMeister
(PM) [120] combines prioritization and rate limiting over network and storage resources to meet
tail latency at the 99.9th and 99.99th percentiles. A proactive flat-based controller automatically
orchestrates the data plane under varying degrees of workload burstiness, while queue-based stages
deployed over storage and network devices provide per-workload latency differentiation. Each stage
comprises multiple rate limiting queues, that even though improving burstiness, introduce increased
computation time and number of required computing servers. To address this, WorkloadCompactor
(WC) [119] extends the design of PM to consolidate multiple workloads onto a storage server. WC’s
controller automatically selects rate limiting and priority profiles, enforcing them over storage and
network to minimize the number of instances that cloud providers use to serve all workloads. While
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enforcing high latency percentile objectives, PM and WC cannot simultaneously serve throughput-
based services. As such, PSLO [54] provides an efficient storage environment that simultaneously
enforces tail latency and throughput objectives over consolidated VMs under shared storage
infrastructures. Deployed at the hypervisor-level, PSLO holds a centralized controller and queue-
based stages, that employ an integral feedback control loop combined with linear programming
models to govern the arrival rate of I/O requests in a per-VM basis.

Multi-tenant systems composed by hundreds of small partitioned services (e.g., Service-Oriented
Architectures (SOAs)) are often used on cloud premises to build large-scale web applications [98].
These systems comprise fine-grained and loosely coupled services, each running on a physical
or virtual machine. However, its limited visibility hinders the ability to provide efficient storage
enforcement. Wisp [98] proposes a distributed framework for building efficient and programmable
SOAs that adapt storage resources under multi-tenancy. It provides a fully decentralized design,
where each SOA accommodates a SDS tuple made of a controller and data plane stages. Each
controller gathers local information and propagates it to other peers to execute distributed control
algorithms, while queue stages enforce local performance services over SOA resources.

Cloud providers offer a wide-array of storage services with trade-offs in performance, cost, and
durability, leading to applications opt for simplicity instead of resorting to different services with
conflicting properties. The Wiera-Tiera SDS system provides a geo-distributed cloud environment
that facilitates the use and specification of multi-tiered storage across data centers. At the data plane,
Tiera [77] provides a programmable storlet-based middleware that encapsulates and re-purposes
existing services into an optimized interface that can be glued to comply with data management and
routing policies (e.g., encryption, compression, data placement). At the control plane, Wiera [69]
provides a centralized controller that enforces global storage policies across multi-tiered data
centers. It allows the combination of storage features available at different tiers of the cloud storage
hierarchy, enabling the creation of new services via composition.
Storage features besides QoS provisioning and performance isolation can be also explored in a

SDS fashion. For instance, flexStore provides a framework for dynamically adapting a data center
to cope with QoS and energy consumption objectives. At the data plane, stack-based stages are
employed over storage systems (e.g., object stores) and hypervisors. System-level stages adjust the
data layout of storage devices and collect performance metrics to enforce energy-related policies
(e.g., reduce number of storage devices), while hypervisor-level stages employ performance and
data management services, such as deduplication and caching management. On the control side,
a flat-based controller that leverages from linear programming models enforces QoS and energy-
related policies under multi-tenancy by managing the life cycle of dedicated storage volumes and
allocating them to VMs.
Cloud-based SDS has become an active research topic for improving overall performance and

resource efficiency of cloud storage infrastructures. Enterprise-grade systems such as VMware
Cloud [103] and Microsoft Windows Server [65], have been paving the way of the paradigm
in industry, fostering its adoption at a global scale. Moreover, while several storage subsystems
have been proposed to address storage-related resources of cloud premises, such as proportional
sharing [27, 29, 44] and I/O scheduling [13, 28, 57, 106, 112], these can now be re-purposed as
control algorithms or applications to be used in existing SDS systems.

3.1.2 High-Performance Computing Infrastructures. HPC infrastructures are composed by thou-
sands of nodes capable of generating hundreds of PFLOPS (1015 floating point operations per second)
at peak performance [100]. Indeed, supercomputers are the cornerstone of scientific computing
and the de facto premises for running compute-intensive applications. Modern infrastructures are
composed by compute and storage nodes. Compute nodes perform computational-related tasks
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through manycore processors that deliver massive parallelism and vectorization. Storage nodes
persist applications’ data in a shared Petabyte-scale parallel file system (e.g., Lustre [84], GPFS [82])
that offers high-performance storage and archival access on top of hundreds of storage drives. Com-
munication across nodes is made through specialized high-performance interconnects. Furthermore,
many of current Top500 supercomputers comprehend a third group of nodes, namely I/O forwarding
nodes (or I/O nodes), that act as a middleware between compute and storage instances, and are
responsible for receiving compute nodes’ requests and forward them to storage ones [14, 100]. I/O
nodes hold the intermediate results of applications, either in memory or high-speed SSDs, and
enable several optimizations over I/O flows (e.g., request ordering, aggregation, data staging).

The long and complex I/O path of HPC infrastructures make performance isolation, end-to-end
control of I/O flows, and I/O optimizations increasingly challenging [111]. The variety of access
patterns exhibited by applications has led HPC clusters to observe high levels of I/O interference
and performance degradation, inhibiting their ability to achieve predictable and controlled I/O
performance [58, 115]. While several efforts were made to prevent I/O contention and perfor-
mance degradation (e.g., QoS provisioning [110, 118], job scheduling optimization [39, 95]), neither
have considered the path of end-to-end enforcement of storage policies nor system-wide flow
optimizations. To this end, SDS systems have been recently introduced to HPC environments.
Clarisse [35] provides the building blocks for designing coordinated system-wide cross-layer

mechanisms, such as parallel I/O scheduling, load balancing, and elastic collective I/O. A queue-based
data plane stages data between applications and storage nodes, and implements performance and
routing mechanisms for transferring data between compute and storage nodes at the middleware
layer (e.g.,MPI-IO). A hierarchically distributed control plane offers themechanisms for coordinating
and controlling routing-related activities. Controllers are hierarchically deployed over compute
premises and perform different levels of control and enforcement. Similarly, SIREN [42] enforces
end-to-end performance objectives by dynamically allocating resources according to applications’
demands. It introduces the concept of SDS resource enclaves for resource management of HPC
storage settings, allowing users to specify I/O requirements via reservation and sharing of compute
and storage resources between applications. A hierarchy-based controller efficiently enforces
performance objectives over managed resources, while data plane stages deployed throughout the
I/O stack (e.g., request schedulers, parallel file systems) dispatch I/O requests through a queue-based
structure that enforces the reservations and shares specified by control instances.

The recent efforts on designing and implementing SDS-enabled HPC infrastructures have proven
its utility and feasibility on high-performance technologies. As we move closer to the Exascale
era [22], the adoption of the SDS paradigm by the scientific community is key to ensure end-to-end
enforcement, I/O differentiation, and performance isolation over large-scale supercomputers. When
compared to other infrastructures, HPC premises comprise different requirements in terms of
architecture and hardware, turning unfeasible the applicability of non HPC-based SDS systems
over such environments. First, HPC storage backends are generally composed by a shared file
system [84], that becomes a major performance bottleneck when concurrently used by hundreds to
thousands of applications competing for shared resources, leading to high-levels of I/O interference
and performance degradation [76, 111]. Second, HPC applications generate complex workflows
(e.g., scientific simulations, real-time visualizations), that translate into different storage objectives
and services to be employed over I/O flows [35].

3.1.3 Application-specific Infrastructures. Application-specific infrastructures are storage stacks
built from the ground up, designed for specialized storage and processing purposes to achieve
application-specific I/O optimizations [87]. Production-grade clusters include multi-tenant dis-
tributed storage systems such as Hadoop [93], Ceph [107], and OpenStack Swift, being mainly
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composed by proxy and storage servers. Proxy servers map application requests to the respective
data location, and provide global infrastructure visibility, system-wide management activities (e.g.,
load balancing, lease management), and high-availability. Storage servers are user-space daemons
that persist application’s data. While these systems are built to run on commodity hardware,
enterprise-grade infrastructures may hold hundreds to thousands of storage servers interconnected
with dedicated network links. Each server accommodates several multi-core processors and storage
drives hierarchically organized. Such a specialized environment leads to hard-coded designs and
predefined I/O stacks, making the programmability of such systems challenging [87]. Further, the
absence of performance guarantees and isolation leads to greedy tenants and background tasks (e.g.,
garbage collection, replication) to consume a large quota of resources, impacting the overall system
performance [60, 62]. While several mechanisms have been proposed to address different system
intricacies (e.g.,workload-awareness, availability), neither have considered end-to-end enforcement
of storage policies or improve programmability of specialized stacks. As such, several SDS-enabled
systems have been proposed to address such challenges. Even though these infrastructures can be
seen as a subfield of cloud computing (or even HPC), for the purpose of this article and to provide
a more granular classification, we classify these in a separate category.

The requirements of isolation and fairness in distributed storage systems have led researchers to
shift from hard-coded single-purpose implementations to software-defined approaches. Retro [60]
enforces performance guarantees and fairness over multi-tenant Hadoop stacks, by identifying and
rate limiting workflows bottlenecking shared resources. A reactive flat-based controller enforces
fine-tuned policies in the presence of bursty and volatile workloads, while queue-based stages ab-
stract arbitrary system resources (e.g., storage devices, CPU, thread pools) and employ performance
management features over priority queues, fair schedulers, and token-buckets implemented along
the I/O path. Further, Cake [105] introduces end-to-end enforcement of 99th percentile latency
objectives over Hadoop storage stacks. Similarly to AVATAR [117], Cake proposes a two-level
scheduling framework, where a centralized controller continuously monitors latency performance
and orchestrates queue-based stages to perform per-tenant prioritization through proportional
sharing and reservations. Stages are deployed at RPC layers, providing differentiated scheduling of
I/O requests and enabling multi-resource control throughout the storage stack.
While these systems focus on the performance and resource management of Hadoop stacks,

others focus on multi-tenant object stores. Crystal [26] provides a SDS-enabled object store that
supports resource sharing and isolation in the presence of heterogeneous workloads. Implemented
over the OpenStack Swift [71], a storlet-based data plane injects user-defined services over I/O flows,
such as compression, caching, encryption, and bandwidth control. At the control plane, flat-based
controllers dynamically adapt stages according to tenants’ requirements. Controllers are twofold,
divided in global controllers with system-wide visibility that continuously control, monitor, and
disseminate storage policies to data stages and other controllers, and automation controllers with
limited visibility that enforce dedicated control actions over selected points of the I/O path.

Commercial storage systems have also experienced a thrust towards the software-defined domain.
For instance, Coho Data [18, 109] proposes a SDS enterprise storage architecture that provides
efficient, scalable, and highly-available control over high-performance storage devices (e.g., PCIe
storage drives). At the control plane, Mirador [109] provides a flat-based dynamic storage placement
service that orchestrates heterogeneous scale-out storage systems. To enforce routing and data
management activities, the control plane continuously collects resource metrics and workload
profiles of the cluster, and uses solvers to calculate enforcement plans. At the data plane, Strata [18]
implements a stack-based network-attached object store that manages high-performance stor-
age devices under multi-tenancy. Stages are both deployed over SDN-enabled switches, for flow
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customization and data placement, and PCIe flash devices, to employ striping, replication, and
deduplication over I/O requests.

As several systems provide a rich spectrum of storage functionalities (e.g., resource sharing, dura-
bility, load balancing), some SDS systems rely on these artifacts to improve control functionality of
the storage environment [87, 88, 101]. For instance, Mantle [86, 88] decouples management-based
policies from the storage implementation, allowing users to fine-tune and adapt the storage envi-
ronment under volatile requirements. At the control plane, a heuristic-based policy engine injects
management policies into distributed storage systems, such as Ceph [107], while a storlet-based data
plane abstracts underlying storage artifacts through a data management language, allowing users to
build flexible and fine-grained policies, such as programmable caching and metadata management.
On the other hand, SuperCell [101] relies on the flexibility and availability of Ceph, and proposes
a SDS-based recommendation engine that measures and provides cluster configurations under
varied workload settings. A centralized controller measures workload characteristics (e.g., I/O size,
read/write proportion) and generates enforcement strategies tailored to meet user’s requirements in
a cost-effective manner. At the data plane, SuperCell fine-tunes storage settings and configurations
of Ceph deployments at runtime to cope with different performance and data objectives.
Differently, other systems propose novel abstractions and storage features over application-

specific stacks [75, 87]. Malacology [87] is a controllerless SDS system that provides novel storage
abstractions by exposing and re-purposing code-hardened storage artifacts (e.g., resources, services,
abstractions) into a more programmable environment. Rather than creating storage systems from
the ground up, Malacology encapsulates existing system functionalities into reusable building
blocks that enable general-purpose systems to be programmed and adapted into tailored stor-
age applications via composition. Implemented over Ceph, Malacology decouples policies from
storage mechanisms through a storlet-based data plane, that exposes commonly used services
as programmable interfaces that hold the main primitives for developing comprehensive storage
applications, namely service metadata, data I/O, resource sharing, load balancing, and durability.
Following these same principles, SafeFS [75] aims at re-purposing existing FUSE-based file system
implementations into stackable storage services to employ over I/O requests. Specifically, SafeFS
provides a flexible and extensible stack-based data plane that abstracts the file system layer to
enable the development of POSIX-compliant file systems atop FUSE. Its stackable organization
enables layer interoperability and allows system operators to simply stack independent layers to
enforce different storage objectives, such as encryption, replication, erasure coding, and caching.

Previous works on application-specific storage have already crossed the path of software-defined
principles [8, 43, 64]. Specifically, as a first attempt towards SDS, Triage [43] introduced an adaptive
control architecture to enforce throughput and latency objectives over the Lustre parallel file
system [84], in the presence of bursty and volatile workloads. Adaptive flat-based controllers
orchestrate per-client I/O flows, and regulate request queues according to user-defined performance
objectives. At the data plane, queue-based stages rate limit requests before dispatching them to
Lustre storage servers. Differently, PADS [8] provides a policy-based architecture to ease the
development of custom distributed storage systems. Control and data planes are not physically
decoupled, and part of the control logic is sharedwith a storlet-based data plane. Control applications
hold routing and blocking policies to define the logic of the correspondent storage system. Routing
policies define data flows, while blocking policies specify consistency and durability objectives. At
the data plane, stages accommodate a set of common storage services (e.g., replication, consistency,
storage interface) that allow system designers to develop tailored systems via composition, by
simply defining a set of policies rather than implementing them from the ground up. Further,
Mesnier et al. [64] proposes a classification architecture to achieve I/O differentiation at kernel-
level. As the performance of compute servers is often determined by the I/O interference and
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Table 3. Classification of SDS systems regarding control and enforcement strategies.

Control Strategy Enforcement Strategy
Feedback Modeling Algorithms T. Bucket Scheduling P. Queues Injection

IOFlow [99] Reactive PS   
Moirai [97] Reactive S
sRoute [96] Reactive PS  
JoiNS [108] H  

Façade [59], AVATAR [117] Non-linear PI EDF
Pisces [92] PS DRF, DRR
Libra [91] S DDRR

PM [120],WC [119] Proactive LP I   
PSLO [54] Integral LP  

Tiera [77], Malacology [87]  

Wisp [98] Reactive
DRF, BRF,
EDF, LSTF

flexStore [66], Mirador [109] LP S
SIREN [42] ML S  
Retro [60] Reactive P  DRF, BRF  
Cake [105] Reactive PS  
Crystal [26] Reactive P  

Mantle [86], SuperCell [101] H  
Triage [43] Adaptive LP I  

Modeling. (H)euristic, (L)inear (P)rogramming, (M)achine (L)earning. Algorithms. (P)roportional sharing, (I)solation and priority, (S)hares and reservations.

performance degradation of storage servers, it proposes a classification framework that is able to
classify I/O requests at compute instances, and differentiate them at storage servers according to
user-defined policies, thus ensuring performance isolation and resource fairness.

The introduction of software-defined principles into application-specific storage infrastructures
has led to significant improvements in terms of programmability and resource efficiency. Its design
allows users to experience sustained QoS provisioning and performance isolation in multi-tenant
settings, instead of the formerly predefined and single-purposed approaches. However, as these
infrastructures typically provide a homogeneous I/O stack, employing application-specific SDS
systems over cloud or HPC can be a challenging endeavor, due to their wide-array of storage
subsystems (that do not operate holistically [35]) and heterogeneous workloads [42, 92].

3.2 Survey by Control Strategy
As SDS systems are employed over different storage contexts, controllers may assume different
control strategies to adapt existing services to the specified objectives. We now survey SDS systems
regarding control strategy employed at the control plane, namely feedback control and performance
modeling. Table 3 highlights the control strategies and algorithms used by SDS controllers, and
depicts the current trends and unexplored aspects of the paradigm.

3.2.1 Feedback Control. Control-theoretic approaches have been widely used to provide sustained
storage performance [31]. A feedback-based controller avoids the need of accurate performance
modeling by dynamically adjusting I/O workflows to meet different storage objectives. It does so
through a control loop, that depends on input metrics, control actions, and control intervals. The
controller continuously monitors system metrics (e.g., throughput, latency), and validates them
with installed storage policies. In case of policy violation, the controller adjusts data plane stages
through control actions, which rely on the enforcement strategy employed at the stage (e.g., adjust
arrival rate of I/O, increase queue depth). Monitoring is made periodically in a predefined control

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.



1:24 R. Macedo et al.

interval. Large intervals result in longer unsupervised control periods, leading to policy violations
and performance degradation in case of burstiness or volatile workloads. Small intervals lead
the controller to react to performance outliers, resulting in fine-grained adjustments that inhibit
sustained storage efficiency.

Reactive SDS controllers employed by IOFlow and sRoute continuously collect throughput and
latency metrics of different points of the I/O path. For each stage, the controller enforces control
actions over a token-bucket that rate limits queues according to max-min fairness algorithms [12],
efficiently providing distributed and dynamic enforcement, and differentiated I/O treatment. Dif-
ferently, controllers of Wisp and Crystal rely on throughput-only observations. Wisp rate limits
request queues of micro-services according to different scheduling policies, while Crystal observes
per-tenant throughput at OpenStack Swift nodes and allocates proportional bandwidth shares to
ensure performance guarantees. In proportional sharing, processes are assigned with a notion of
weight, and resources are proportionally allocated based on it [104]. Further, Moirai uses average
latency and hit ratio curves to adjust the configurations of stack-based caching stages.

Reactive approaches are also used to enforce tail latency objectives over complex storage settings.
For instance, Cake provides a two-level scheduling framework that continuously collects latency
and resource utilization metrics over distributed storage stacks, and dynamically adjusts per-client
queues according to proportional shares and reservations. In these algorithms, shares specify the
resource allocation that a certain process receives, while reservations express the lower bound of
I/O performance reserved to a process [42]. Similarly, Retro observes per-workflow latency and
resource usage, and employs control actions over token-buckets, schedulers, and priority queues,
according to max-min fair shares. The collection of heterogeneous metrics, along the multiple
enforcement points deployed along the I/O path, allow Cake and Retro to differentiate I/O flows
and enforce 99th percentile latency objectives over Hadoop storage stacks.
Nonetheless, while able to enforce different performance objectives over varied storage stacks,

reactive controllers cannot sustain efficient performance at high latency percentiles under bursty
workloads, as they experience several policy violations before beginning a new control loop and
adjusting stages accordingly [120]. As such, several systems follow a proactive control strategy to
enforce 99th, 99.9th and 99.99th percentile latencies. For example, PM and WC provide a proactive
feedback controller that models per-workload worst-case latency, and enforces different control
actions over multiple rate limiters and priority queues, according to isolation and priority rules.
Each stage comprises per-workload token-buckets and priority queues, and efficiently enforces
services over network and storage resources.

While these systems are designed to either provide throughput or tail latency objectives, PSLO
achieves both by providing an integral feedback controller backed by a forecast model. It continu-
ously monitors per-VM X th percentile latency and throughput, and adaptively configures the level
of I/O concurrency and arrival rates, providing isolated and differentiated service levels.
Other approaches follow a non-linear feedback control to enforce proportional sharing and

isolation in the presence of bursty and volatile workloads [59, 117]. For instance, Façade collects
the average latency of requests accessing the storage utility of a shared storage system, and
dynamically adjusts the depth of the device queue. AVATAR follows a similar approach but enforces
95th percentile latency. Differently, adaptive feedback controllers backed by self-tuning estimators,
such as the one proposed by Triage, provide predictive and differentiated storage performance under
varying workloads. Triage periodically observes latency perceived by Lustre-deployed applications
and throttles per-client request queues to provide sustained throughput and latency.

3.2.2 Performance Modeling. Other strategies often used by SDS systems to efficiently control the
storage environment are heuristics, that control and adjust selected enforcement points to meet a
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specific storage objective [88, 101, 108], and performance models, that characterize the behavior of
the system and its workloads [42, 43, 54, 66, 109, 119, 120].

Heuristics. SDS controllers resort to heuristic-based mechanisms to estimate throughput or
latency performance of selected points of the I/O stack. For instance, JoiNS continuously monitors
latency and bandwidth utilization at network and storage stages, and provides a simple heuristic
that estimates network latency of networked storage systems. From this estimation, the controller
adjusts priority queues installed at programmable switches to meet average and tail latency re-
quirements. Similarly, SuperCell observes read and write latencies of Ceph storage nodes, and
implements a bandwidth-centered heuristic that calculates per-workload maximum bandwidth, to
provide adaptive configuration under read- and write-intensive workloads. Mantle, on the other
hand, supports user-defined heuristics to provide programmable metadata management and load
balancing over Ceph deployments.

Linear Programming. Linear programming mechanisms (LP) are also frequently used to sup-
port SDS control actions. For instance, flexStore resorts to an integer linear program to enforce
adaptive replica consistency under varied energy constraints, and network and disk bandwidth,
while Triage continuously collects latency measurements to serve a Recursive Least-Squares es-
timator that supports the feedback controller actions. Differently, general-purpose solvers used
by Mirador estimate the performance of network-attached storage systems according to user-
defined objectives. These solvers leverage from the continuous observations of network and storage
resources, as well as periodic workload profiles, to optimize network traffic and data placement.
Latency analysis models are also used to enforce tail latency objectives under bursty scenarios.

Leveraging from network calculus principles, PM and WC propose a model that estimates per-
workload worst-case latencies. It models multiple system endpoints and induces time, flow, rate
limit, and work conservation constraints to maximize the available time to serve a workload.
Similarly, PSLO provides a forecast model that predicts per-VM high percentile latency violations
to simultaneously enforce X th percentile latencies and throughput objectives.

Machine Learning. The use of ML to implement control strategies has just been recently
adopted by SDS controllers. Specifically, SIREN uses a ML-based algorithm (i.e., Classification
and regression trees [17]) to assign proportional shares and reservations of compute and storage
resources to HPC applications. While SIREN proposes resource enclaves for the efficient manage-
ment of HPC infrastructures, the algorithm identifies opportunities for enclave migrations, due
to workload and I/O demand variance. The introduction of such storage automation mechanisms
allows more accurate enforcement strategies and fine-grained control over storage infrastructures.

3.3 Survey by Enforcement Strategy
The need to enforce varied storage policies throughout the I/O path leads SDS systems to assume
different enforcement strategies. We now survey SDS systems regarding enforcement strategy
employed at data plane stages, namely token-buckets, scheduling, priority queues, and logic injection.
Table 3 highlights the enforcement strategies used by SDS data planes, and depicts the current
trends of the paradigm. 3

3.3.1 Token-Bucket. A token-bucket is an abstract structure used by queues to control the rate and
burstiness of I/O flows. A bucket is configured with a bucket size, that delimits the maximum token
capacity, and a bucket rate, that defines the rate at which new tokens are added. When an I/O request
arrives at the queue, it consumes tokens to proceed. If the bucket is empty, the request waits until

3Systems that enforce scheduling mechanisms but do not detail about employed policies are marked with  .

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.



1:26 R. Macedo et al.

sufficient tokens are in the bucket. Each bucket executes locally but is configured by SDS controllers
according to existing storage policies and the current system state. Several SDS systems resort to
token-buckets mechanisms for enforcing performance-oriented policies [60, 96, 99, 119, 120].
Per-queue token-buckets, such as the ones of IOFlow and sRoute, enforce max-min fair shares

over I/O flows. As stages are deployed throughout the I/O path, queues are adjusted with different
rates and sizes, providing differentiated I/O treatment and dynamic end-to-end control. Similarly,
Retro proposes multi-point per-workflow token-buckets, employed over thread pools and RPC
queues to achieve performance guarantees and resource fairness objectives in Hadoop stacks.

Per-workload token-buckets enforce tail latency objectives under bursty environments [119, 120].
To better bound the workload burstiness, PM implements multiple token-buckets per-workload
at each data plane stage, which in turn are continuously controlled and modeled by a proactive
feedback controller. On the other hand, WC optimizes the choice of bucket parameters through a
rate-bucket size curve that characterizes workload burstiness, while consolidating workloads into a
storage server, in order to both meet tail latency objectives and minimize overall resource usage.

3.3.2 Scheduling. Scheduling has been a long-term strategy of storage systems to govern how I/O
requests are served. In SDS-enabled architectures, scheduling is generally made over data plane
queues to employ proportional sharing algorithms, prioritization and isolation of requests, and
enforce performance objectives over storage and network resources. For instance, single queue
scheduling systems, such as Façade and AVATAR, manage per-workload requests to meet average
and tail latencies objectives. Requests are dispatched to a queue and served to a storage utility
following an Earliest Deadline First (EDF) policy. As latency objectives are enforced at per-workload
granularity, the deadline of a workload is the deadline of its older pending request [59].

Other solutions implement multi-point resource scheduling mechanisms to achieve fairness and
sustained latency performance. Retro, for example, orchestrates per-workflow requests, employing
a Dominant Resource Fairness (DRF) policy [25] to ensure resource fairness, and a Bottleneck Resource
Fairness (BRF) policy [60] to throttle aggressive workflows and ensure proportional use of resources.
Similarly, Pisces employs a per-node scheduler that implements DRF and Deficit (Weighted) Round
Robin (DRR) policies [90, 92] to achieve system-wide fairness in multi-tenant cloud environments.
Under a DRF policy, per-node schedulers track the resource usage of each tenant, and recompute
its resource allocation to continuously ensure max-min fair shares, while in DWRR, Pisces ensures
per-tenant weighted fair shares of throughput. Libra, on the other hand, follows a similar approach
but provides throughput reservations over disk resources through a Distributed Deficit Round Robin
(DDRR) scheduling policy [55]. Further, Wisp rate limits micro-service workflows through BRF and
DRF policies to achieve throughput objectives, and simultaneously prioritizes individual requests
through EDF and Least Slack Time First (LSTF) [98] to enforce latency-related objectives.

3.3.3 Priority Queues. A number of SDS systems ensure prioritization and performance control
through priority queues [60, 99, 108, 119, 120]. Controllers define and adjust the priority of queue-
based data planes to provide different levels of latency among workloads according to installed
storage policies. For instance, IOFlow, PM, and WC define the priority of token-bucket enabled
queues. Specifically, token-buckets serve first the highest-priority queues until no token is left,
serving next lower priority queues upon the replenish of the bucket. Moreover, PM and WC
specify per-workload priority queues over both storage and network resources. Retro, on its turn,
enforces per-workflows priority queues over multi-point data plane stages, while JoiNS provides
per-workload priority queues over programmable network switches.

3.3.4 Logic Injection. Storlet-based stages implement programmable enforcement structures to
allow system designers to inject custom control logic over I/O flows [26, 87, 88, 101]. For instance,
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Mantle and Malacology leverage from existing storage subsystems of Ceph, such as durability, load
balancing, and resource sharing, and inject control logic to enforce performance and data manage-
ment storage policies. Mantle decouples policies from storage services by letting administrators
inject metadata migration code to dynamically adjust metadata distribution of Ceph deployments.
On the other hand, Malacology encapsulates existing system functionalities into reusable building
blocks and injects Lua scripts to enable general-purpose systems to be programmed and adapted
into tailored storage applications via composition. Further, SuperCell continuously monitors read
and write requests of Ceph storage nodes and provides different storage reconfigurations to adapt
storage settings under volatile workloads.
Differently, Crystal provides a programmable framework that allows the injection of program-

ming logic to perform custom computations over object requests. This design allows administrators
to implement a wide-array of storage services to cope with different performance and data man-
agement policies, such as compression, cache optimization, and bandwidth differentiation.

3.4 Discussion
The SDS paradigm has drawn major focus on providing controlled I/O performance and fairness
over cloud and application-specific infrastructures. While generally providing centralized and flat
distributions, the next step towards scalable environments is to foster the development of hierar-
chical and decentralized control planes in such infrastructures. SDS-enabled HPC infrastructures,
which are still at an early research stage, comprise hierarchical control designs due to the increasing
scale and performance requirements of supercomputers.

The centralized control distribution assumed by several SDS systems present obvious limitations
in scale and resilience. However, systems experience such limitations at different magnitudes, as
they may provide different number of stages and enforce storage policies with different degrees
of complexity. Specifically, Façade and AVATAR enforce performance-oriented objectives over a
single enforcement point, while Pisces, Libra, PSLO, and Cake need to orchestrate multiple points
of control. Further, Wiera, SuperCell, and Mantle enforce data-oriented policies by injecting control
logic at stages, which is less demanding than continuously adjusting stages for performance policies.
Differently, other systems follow a flat control distribution, with a prevalence on performance

enforcement. While providing a more dependable design, the control centralization leads to clear
scalability limitations. Interestingly, as systems enforce different storage policies over infrastruc-
tures, they implement different control strategies to adapt data stages to specified objectives. For
instance, some systems like IOFlow resort to feedback control to continuously adjust the storage
environment, while others, such as flexStore and Mirador, employ performance modeling strate-
gies. As both folds provide a single control strategy, they are unable to provide a fully adaptable
SDS environment. On the other hand, PM, WC, Triage, and PSLO combine feedback control and
performance modeling strategies, thus providing a more adaptable storage environment, capable of
enforcing complex storage policies under volatile environments.
Regarding hierarchical controllers, while providing a scalable design, some solutions present

dependability limitations. For instance, the failure of a controller in Clarisse and SIREN systems
leads to unsupervised control points in the infrastructure. Contrarily, sRoute and JoiNS issue control
delegates to enforce policies in specific points of the I/O path, which in case of failure, can be
replaced online by another delegate.
On the data plane side, stack-based approaches focus on data management services, as data

flows follow a pass-through layout and do not employ enforcement strategies. Existing stack-based
systems may provide dedicated stacks designed for a specific objective such as flexStore and Moirai,
or multiple stacking layers as done in SafeFS and Strata to provide a variety of storage services.
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Queue-based data planes, on the other hand, are mainly designed to meet performance objectives.
Nonetheless, even though operating over similar storage structures, existing approaches may differ
from each other in several aspects. For instance, single queue systems, such as Façade and AVATAR,
enforce average performance policies and are unable to meet high latency percentiles. Differently,
Pisces and Libra provide system-wide performance isolation and fairness over multi-tenant cloud
environments by enforcing per-tenant max-min fair shares. Other systems, such as PM and WC,
provide multi-resource scheduling to enable complex storage policies to be enforced over network
and storage resources. Further, IOFlow and PSLO provide multiple enforcement queues, each
serving at different rates in a per-VM basis, providing distributed and dynamic policy enforcement.
Finally, storlet-based systems introduce novel storage abstractions and programmability to

existing storage systems. For instance, Crystal, Tiera, and SuperCell, re-purpose existing storage
subsystems and configurations to enforce data and routing activities. Malacology, Mantle, and PADS,
on the other hand, abstract underlying storage systems to ease the development of custom storage
systems. As opposed to stack-based designs, which are transparent as stacks seat between two I/O
layers, storlet-based stages introduce increased complexity to the design of storage solutions.

4 LESSONS LEARNED AND FUTURE DIRECTIONS
We now discuss the key insights provided by this survey, grouped by storage infrastructure (SIx ),
planes of functionality, namely data (Dx) and control planes (Cx), SDS interfaces (Ix), and other
aspects of the field (Ox ). We focus on the design space and characteristics of current SDS systems
and on possible future research directions of the paradigm.

SI1: SDS research is widely explored over cloud and application-specific infrastructures.
SDS research has drawn major focus on cloud and application-specific designs. However, the
former are generally composed by centralized and flat controllers and queue-based stages, while
the latter focus on storlet-based designs. With the continuous increase of data centers complexity,
as well as the emergence of serverless cloud computing [40], further research on hierarchical and
decentralized control plane distributions will be needed to employ over such infrastructures.

SI2: HPC-based SDS systems are at an early research stage. The increasing requirements of
scale and performance of supercomputers have led to the first advances towards SDS-enabled
HPC systems, being composed by hierarchical control distributions backed by high-performance
queues. Considering that few proposals address this challenge, novel contributions are expected
to foster research in the SDS-HPC field and to attend the requirements of incoming Exascale
infrastructures [1, 22], as well as to approximate HPC and cloud ecosystems [67].

SI3: SDS systems for emerging computing paradigms are unexplored. SDS-enabled systems
have been employed over modern storage infrastructures to achieve different objectives. However,
with the emergence of novel computing paradigms such as serverless cloud computing [40], IoT [5],
and Exascale computing [22], a number of challenges (e.g., scalability, performance, resiliency) need
to be addressed to ensure sustained storage efficiency. As such, the research and development of
novel decentralized SDS architectures (e.g., wide-area SDS systems, gossip-based control protocols),
as well as the convergence of different software-defined technologies (e.g., storage, networking,
security) will be essential to provide a fully programmable storage environment and attend the
requirements of emerging computing paradigms.

D1: Stage design impacts programmability and extensibility. Several SDS data planes rely on
queue-based designs, trading customization and transparency for performance. This performance-
focused development has led queue-based solutions to experience limited programmability and
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extensibility. Storlet-based solutions however, comprehend a more programmable and extensible
design, being able to serve general-purpose storage requirements.

D2: End-to-end enforcement is hard to ensure.Most SDS systems provide distributed enforce-
ment points bounded to a specific layer of the I/O stack (e.g., hypervisor, file system). Systems
that ensure efficient end-to-end policy enforcement comprehend specialized queue-based stages
fine-tuned for specific storage services, which require significant code changes to the original
codebase. As such, end-to-end enforcement is tightly coupled to the placement property and directly
influences the transparency of data plane stages.

D3: Performance management services dominate SDS systems. Performance-oriented services
have dominated the spectrum of storage policies and services supported by SDS systems. This
design has led to a large research gap for the remainder policy scopes. Nevertheless, the advent
of modern storage technologies, such as kernel-bypass [116], storage disaggregation [46, 89], and
new storage hardware [41, 45], along with the emergence of novel computing paradigms require
significant attention and further investigation in order to adapt, extend, and implement novel
storage features over SDS data planes [1]. As such, there is a great research opportunity to explore
these new technologies in SDS architectures.

D4: End-to-end storlet data planes are unexplored. Despite the acknowledged programmability
and extensibility benefits of storlet-based data planes, end-to-end enforcement has not yet been
explored with such design. In fact, there are few proposals on storlet data planes, and several
contributions and combinations of storage spaces are possible, being of utmost interest for attaining
the requirements of incoming serverless cloud computing [40] and IoT infrastructures [1, 5], as
well as on the approximation of HPC and cloud ecosystems [67].

D5: Re-purposing of existing storage subsystems is overlooked. Existing services installed at
data plane stages are mainly designed from the ground up and fine-tuned for a specific data plane
solution. While some solutions already encapsulate existing storage systems as reusable building
blocks [75, 87], there is no SDS system that leverages from existing storage subsystems (e.g., QoS
provisioning, I/O scheduling) to be re-purposed as programmable storage objects and reused in
different storage contexts throughout the I/O path (e.g., key-value stores, distributed file systems).
Such a design would open research opportunities towards programmable storage stacks and foster
reutilization of complementary works [44, 76, 112] and existing storage subsystems [23].

D6: Heterogeneous data planes are unexplored. Despite the number of possible configurations
and design flavors of SDS data planes, the combination of different stage designs has not yet been
explored. This turns the data plane domain mostly monolithic, tailored for specific storage objectives
and suboptimal enforcement efficiency. As such, following the steps of the SDN paradigm [50],
novel contributions towards heterogeneous data plane environments that explore the different
trade-offs of combining stack-, queue-, and storlet-based designs should be pursued.

C1: Current systems are unsuitable for larger environments. A large quota of SDS controllers
follow a flat distribution to serve small-to-medium sized storage infrastructures [99]. However,
the emergence of novel computing paradigms made of complex and highly heterogeneous storage
stacks (e.g., serverless computing, IoT), make current control centralization assumptions unsuitable.
As such, leveraging from the initial efforts of decentralized controllers [98], it is essential to further
investigate this topic and provide novel contributions towards control decentralization.

C2: Controllers lack programmability. Current hierarchical controllers resort to delegate func-
tions or micro-services to improve control scalability, providing limited control functionality to
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control peers. Instead, it would be interesting to follow similar design principles as SDS data planes
and make control functionality more programmable. Researching different paths of scalability and
programmability in SDS would bring major benefits for incoming storage infrastructures [1].

C3: Scalability and dependability are overlooked. SDS systems use a “logically centralized”
controller to orchestrate the storage environment [99]. However, behind this simple but ambiguous
assumption lies a great deal of practical complexity of dependability, leaving no clear definitions
on its practical challenges and actual impact in performance and scalability at the overall storage
infrastructure. Similarly to other software-defined approaches [52], these assumptions leave several
open questions regarding controllers dependability that require further investigation such as fault
tolerance and consistency [11, 15, 16, 48], load balancing and control dissemination [21], controller
synchronization [81], and concurrency [24].

C4: Controllers are self-adaptable. Several controllers resort to feedback control mechanisms to
dynamically adjust SDS settings, while few proposals rely on performance modeling techniques to
provide a more accurate and comprehensive automation model. However, the storage landscape
is changing at a fast pace, with new computing paradigms and emerging hardware technologies
vested with novel workload profiles. As such, it is essential to advance the research of autonomous
mechanisms for supporting control decisions of SDS controllers, by combining and providing novel
control strategies. For instance, exploring distributed ML techniques [53] would be of great utility
to attend the needs of both modern and emerging infrastructures, not only for the obvious reasons
of scale but also for ensuring new levels of accuracy in heterogeneous and volatile environments.

I1: Communication protocols are tightly coupled to planes of functionality. SDS interfaces
are used as simple communication APIs, making communication protocols to be tightly coupled to
either the control or data plane implementation. This design prevents the reutilization of alternative
technologies and inhibits SDS systems to be adaptable to other storage contexts without significant
code changes at the communication codebase. As such, decoupling the communication from control
and/or data plane implementations would improve the transparency between the two planes of
functionality, foster reutilization of communication protocols, and open research opportunities to
attain the communication challenges of novel storage paradigms [5, 40] and network fabrics [1].

I2: Interfaces lack standardization and interoperability. Contrarily to SDN [50], SDS literature
does not provide any standard interface to achieve interoperability between SDS technologies.
Indeed, this lack of standardization leads researchers and practitioners to implement custom
interfaces and communication protocols for each novel SDS proposal, tailored for specific software
components and storage purposes. Such a design inhibits interoperability between control and data
plane technologies, and hinders the independent development of each plane of functionality. As
such, novel contributions towards standard and interoperable SDS interfaces should be expected.

O1: Black-box and end-to-end monitoring are unexplored. Current monitoring mechanisms of
SDS controllers are predefined and static. Integrating black-box [68] and end-to-end monitoring sys-
tems [61, 111] in these would bring novel insights to the field and would allow assisting controllers
to define accurate enforcement strategies over I/O flows. Further, black-box-based approaches do
not require a priori knowledge of the I/O stack and comprehend near-zero changes to the original
codebase.

O2: SDS paradigm lacks proper methodologies and benchmarking platforms. Current eval-
uation methodology of SDS systems is mostly made through trace replaying and benchmarking of
selected points of the I/O path, either with specialized or custom-made benchmarks. Thus, there is
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no comprehensive SDS benchmarking methodology that systematically characterizes the end-to-
end performance and design trade-offs of general SDS technologies. As such, these considerations
motivate for novel contributions in SDS evaluation.

5 CONCLUSION
In recent years, the SDS paradigm has gained significant traction in the research community,
leading to a broad spectrum of academic and commercial proposals to address the shortcomings of
conventional storage infrastructures. By reorganizing the I/O stack to disentangle control and data
flows, SDS has proven to be a fundamental solution to enable end-to-end policy enforcement and
holistic storage control, and ensure performance isolation, QoS provisioning, and resource fairness.
To this end, and to the best of our knowledge, we present the first in-depth survey of the SDS

paradigm. Specifically, we explain and clarify fundamental aspects of the field, and provide a
comprehensive description of each plane of functionality, depicting the design principles, internal
organization, and storage properties. As a first contribution, we present a definition of SDS systems
and outline the distinctive characteristics of an SDS-enabled infrastructure. We define SDS as a
storage architecture that decouples storage mechanisms and policies into a control plane and a
data plane, that enforces storage policies over I/O flows.

As a second contribution, we define the SDS design principles and categorize planes of function-
ality regarding internal organization and distribution. We surveyed existing work and distilled a
number of designs for data plane stages, being categorized as stack-, queue-, or storlet-based. At the
control plane, we categorize distributed SDS controllers as being flat or hierarchically organized.
Further, we propose a taxonomy and classification of existing SDS systems to organize the

manifold approaches according to their storage infrastructure (i.e., cloud, HPC, and application-
specific), control strategy (i.e., feedback control and performance modeling), and enforcement
strategy (i.e., token-bucket, scheduling, priority queues, and logic injection). Cloud-based solutions
address the requirements of general-purpose storage stacks, mainly through flat controllers and
queue-based data plane stages. On the other hand, SDS-enabled application-specific systems target
specialized storage stacks tailored for dedicated storage and processing purposes, being particularly
focused on the SDS data elements. Lastly, even though at an early research stage, HPC-based
solutions follow hierarchical control distributions backed by high-performance queue-based stages,
in order to respond to the increasing requirements of scale and performance of supercomputers.

Finally, we provide key insights about this survey and discuss future research directions for the
field. Even though significant advances in SDS research have been made in both application-specific
and cloud computing infrastructures, several issues can still be improved, namely scalability, control
programmability, dependability, heterogeneous and alternative data plane combinations, and novel
storage policies and services of less explored scopes. Noticeably, since HPC-oriented systems are at
an early research stage, novel contributions to improve performance variability and interference
can be expected. Likewise, novel SDS solutions capable of meeting the requirements of scale and
performance of incoming infrastructures, namely serverless, IoT, and Exascale computing, can
also be expected. To conclude, due to its well-acknowledged benefits and the need for addressing
emerging storage technologies challenges, we believe that SDS research will continue to grow at an
accelerated pace in forthcoming years. Moreover, we believe the insights provided by this survey
will be of great utility to guide researchers and practitioners to foster the SDS field.
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