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Summary	
•  Part 1: The Basics 

o  State machine replication 
o  Potential applications 
o  5 fundamental results on distributed systems 
o  Paxos/Viewstamped replication 
o  Castro & Liskov’ PBFT 

•  Part 2: BFT Literature Review 
o  Improving performance 
o  Improving resource efficiency 
o  Improving robustness 

•  Part 3: Applications, Open Problems & Practice 
o  BFT Applications 
o  Open problems on BFT 
o  BFT-SMaRt 
o  Practice: a BFT KV (in memory) Store 
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Part  I	
The Basics 
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EuroSys 2012 

Replication	
•  Replication is a technique used for  performance 

and/or fault tolerance 

•  Each replica is a state machine:  
o  A deterministic program that receives an input, change its state and 

produces an output 
o  State transitions are atomic 

•  Replication can be passive or active 
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Passive  Replication	
•  Also called Primary-Backup (PB) or master-slave 
•  Clients talk with the primary, that sends the 

operations and checkpoints to the backups 
o  Sometimes backup replicas answer read-only operations 

•  If the primary crashes, one of the backups takeover 

PRIMARY	

CLIENTS	
op1	

op2	

op1,  op2	

checkpoint  |  op1,  op2	

state  +  log	state  +  log	

BACKUPS	
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Active  Replication	
•  Also called State Machine Replication – SMR  

(Schneider, ACM CS 1990) 
•  All servers execute the same set of operations in the 

same order (servers are always “synchronized”) 
•  Clients wait for the first reply (crash faults) 

SERVERS	CLIENTS	
op1	

op2	

op1,  op2	

op1,  op2	

op1,  op2	

Waits  for  the  first  reply	
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Byzantine  Fault  Tolerance	
•  A component that suffers an arbitrary (or Byzantine) 

failure can exhibit any behavior 
o  Stay silent, delay messages, change messages 
o  It can model intrusions 

•  PB is hard to use with this fault model 
o  How to know if the reply/delta checkpoint produced by 

the primary is correct? 

•  SMR is the way to go: 
o  All replicas execute the operations and send replies 
o  Clients can vote for the correct reply 
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BFT  State  Machine  
Replication	

•  All servers execute the same sequence of operations 
•  Requires total order multicast 

SERVERS	CLIENTS	
op1	

op2	 Total  Order  Multicast	

op1,  op2	

op1,  op2	

op1,  op2	

op1,  op2	

Waits  f+1  equal  replies	
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SMR  Requirements	
•  Initial state: All replicas start on the same state 

•  Coordination: All replicas receive the same 
sequence of inputs 

•  Determinism: all replicas receiving the same input 
on the state produce the same output and resulting 
state 

Easy! 

Total Order 
Multicast 

Easy? 
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System  Properties	
•  Safety: all servers execute the same sequence of 

requests 

•  Liveness: all correct clients requests are executed 
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System  Models:  
BFT  SMR  Assumptions	

•  Faults: 
o  How many faulty servers and clients the system tolerate? Of what type 

(e.g., crash, crash-recovery, Byzantine)? 

•  Time 
o  Do I need time assumptions (e.g., upper bound on message and 

execution times, synchronized clocks)? 

•  Connectivity 
o  All processes are connected? 
o  The communication links are reliable? Authenticated? 

•  Cryptography 
o  What cryptography assumptions are needed? 

•  Architecture 
o  Homogeneous or heterogeneous? 
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Five  Distributed  Computing  
Fundamental  Results  	

•  Impossibility of reliable communication 
•  Equivalence between total order and consensus 
•  Impossibility of fault-tolerant consensus 
•  Minimum synchrony required for FT consensus 
•  Fault thresholds: f+1, 2f+1, 3f+1 … 
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Impossibility  of  Reliable  
Communication	

•  How can we implement reliable channels on 
unreliable networks? 
o  We can’t! We need some weak reliability guarantee in 

order to build them… 
•  Fair channels: 

o  If a message is sent infinitely many times through a channel, it will be received 
infinitely by its receiver 

•  A practical interpretation: 
o  a channel can lose messages for some time 
o  eventually, some of these messages will reach the destination 

•  Reliability can now be implemented: 
o  Send a message repeatedly until an ACK is received  
o  For BFT, a HMAC should be added to each message, and when it is not valid 

the message is discarded 
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Total  Order  Multicast  and  
Consensus  Equivalence	

•  Total order multicast is equivalent to consensus: 
o  A consensus protocol can be used to solve atomic broadcast 

•  Why it works? every process decide the same set 
o  An atomic broadcast protocol can be used to solve consensus 

•  Why it works? The decision will be the first message delivered first to 
every process 

•  This equivalence holds in most system models 

Total	
Order	

Multicast	
p4	

p1	
p2	
p3	

Reliable	
Multicast	

p4	

p1	
p2	
p3	

Consensus	
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Impossibility  of  Fault-‐‑
Tolerant  Consensus	

•  Result:  
 Consensus is not solvable in asynchronous systems with reliable channels 
(or reliable shared memory) even with one crash fault 

•  Why? 
o  Cannot differentiate faulty from slow processes 

v  =  ?	

v  =  0	

v  =  1	

p1	

p2	

p3	

p1 and p2 does not 
receive  anything  

from  p3 
p1 and p2 cannot 
decide between 

0 or 1 
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Minimum  Synchrony  
required  for  FT  Consensus	

•  Result: 
 Fault-tolerant consensus can be solved in the eventually synchronous 
system model 

•  Why? 
o  The system is asynchronous but has the notion of time 
o  After some point, the system will become synchronous (bounded but 

unknown communication and processing delays) 
o  If the algorithm keeps trying (always ensuring safety) and increasing the 

timeout values, it will be able to solve consensus 

Round  0	 New	
Round	

p4	

Round  1	 New	
Round	

p0  have  T  seconds	
to  enforce  its  value	

p1  have  1.5T  seconds	
to  enforce  its  value	

p1	
p2	
p3	
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Fault  Thresholds	
•  State Machine Replication has two phases 

o  Ordering è consensus requirements 

  * using signatures 

o  Execution è voting requirements 

o  The required number of replicas is the maximum required among these 
two phases. 

Crash	 Byzantine	
f+1	 2f+1	

Crash	 Byzantine	
Synchronous	 f+1	 3f+1/f+1*	
Non-‐‑Synchronous	2f+1	 3f+1	
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(Non-‐‑Byzantine)  FT  State  
Machine  Replication	

•  Paxos (Lamport, TOCS 1998) 
o  Agreement framework 
o  Can be instantiated as a consensus primitive or a SMR algorithm 
o  Three roles: proposer, acceptor and learner 

•  Viewstamped Replication (Oki & Liskov, PODC’88) 
o  Similar to Paxos as a SMR algorithm 
o  System model (also similar to Paxos): 

•  Unbounded number of crash-prone clients 
•  2f+1 replicas 
•  Stable storage 
•  Partially synchronous system 

o  Safety is always ensured, but Liveness requires synchrony  
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Viewstamped  Replication	

•  Requests are executed only after the majority of the 
replicas have it on its log 

•  It ensures the request will be visible even if the leader fails 

2 

0 

1 

c 
Request	

(leader)	

Prepare	

Reply	

PrepareOk	
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Viewstamped  Replication	

•  If a replica suspects the leader, it sends a message 
to the next leader 

•  If the next leader receives f+1 messages, it 
synchronizes replica logs and start a new view 

2 

0 

1 

(old  leader)	

DoViewChange	 StartView	

Request	

(new  leader)	
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Some  Industrial  Applications  
of  Paxos/VR	

•  Oracle’ Berkley DB 
o  At least for leader election 

•  Google’ Chubby (Burrows, OSDI’06) 
•  Google Megastore (Baker et al, CIDR’11) 

o  Uses in a different way… 

•  Yahoo!/Apache Zookeeper (Hunt et al, USENIX’10) 
o  Zab is a protocol similar to Paxos 

•  IBM’ Spinnaker (Rao et al, VLDB’11) 
•  MS’ Gaios (Bolosky et al, NSDI’11)  
•  MS’ Windows Azure Storage (Calder et al, SOSP’11) 

o  Paxos for intra-datacenter replication  
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Practical  Byzantine  Fault  
Tolerance  (PBFT)	

•  The paper (Castro & Liskov, OSDI’99) 
sparkled the interest in BFT replication 
o  It shows BFT can be fast through the avoidance of public-key 

crypto (using HMAC vectors instead) 
o  Other BFT papers both extend and use the PBFT protocol (and 

implementation) as a baseline 
o  Several versions published: OSDI’99, TOCS’02, Liskov’ 2010 book 

chapter 
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PBFT:  System  Model	
•  Asynchronous distributed system 

o  Needs partial synchrony for Liveness 

•  Network can lose, delay, reorder and duplicate 
messages; but cannot do that indefinitely 
o  i.e., they require fair links to implement reliable channels 

•  Byzantine fault model 
o  Fault independence (i.e., no common mode faults) 
o  N = 3f+1 servers, being at most f faulty 
o  An unbounded number of clients, all of them can be faulty 

•  Cryptography 
o  PK signatures to simplify the protocol presentation 
o  MAC (each pair of processes share a key) 
o  Digests (hashes) 
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PBFT:  Normal  Operation	

•  Algorithm outline: 
o  System evolves in views, numbered sequentially. In each view v, one 

server is the primary, the others are the backups: primaryv = v mod N 
o  Client multicasts a signed request to all servers  
o  Servers reach agreement about the sequence number of the request 

•  The primary proposes the sequence number for each request 
•  The backups confirm that the primary follows the protocol 

o  If the primary fails, there is a view change 
o  Client waits for at least f+1 replies with the same result (at least one 

correct server executed the operation and produced the result) 
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PBFT:  Normal  Operation  I	

•  Pre-prepare phase:  
o  primary receives a correctly signed request m 
o  It assigns a sequence number n to the message and sends this number, a 

digest of request D(m) and its current view number to all backups (other 
replicas) in a PRE-PREPARE message 

o  backup replicas receive the message and test its validity, i.e., if n was not 
assigned to another request and if it is in view v  

o  If a replica has m and a valid PRE-PREPARE for it, it proceeds to the  prepare 
phase (m is pre-prepared) 

v  is  the  view  number;  n  is  the  sequence  number  of  m	
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PBFT:  Normal  Operation  II	

•  Prepare phase: 
o  replicas store the received PRE-PREPARE message  
o  each replica sends a PREPARE message to other replicas containing v, n and 

the digest D(m) of the message  
o  all servers that receive 2f PREPARE message from other replicas with the same 

v, n and D(m), proceed to the commit phase 
o  when a replica finishes the prepare phase for m, we say that m is prepared on 

this replica 

v  is  the  view  number;  n  is  the  sequence  number  of  m	
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PBFT:  Normal  Operation  III	

•  Commit phase: 
o  each replica multicasts a COMMIT message containing v and n 
o  the request m for which n was assigned is executed when: 

•  a replica receives 2f COMMIT messages with the same v and n from 
other replicas 

•  all requests with sequence number lower than n are executed 
o  when the replica i finishes the commit phase we say that m is committed in i 

v  is  the  view  number;  n  is  the  sequence  number  of  m	
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PBFT:  Protocol  Invariants	
•  <m,n,v> is prepared in a correct replica → 

 2f+1 replicas pre-prepared <m,n,v> →  
 at least f+1 of them are correct → 
 (f+1) + (2f+1) > 3f+1 (any 2f+1 quorum of the system will contain at least 
one of these correct replicas) → 
 it is impossible to have <m’,n,v> prepared (m’ ≠ m) on some correct 
replica (a correct replica will not pre-prepare two messages with the 
same n and v) 

•  <m,n,v> is committed in a correct replica → 
 2f+1 replicas prepared <m,n,v> → 
 at least f+1 of them are correct → 
 any 2f+1 quorum of this system will contain at least one of these correct 
replicas (that can show that <m,n,v> is prepared) 
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PBFT:  Checkpoint  and  
View  Change	

•  Checkpoints 
o  All prepared and committed messages are logged in memory 
o  Periodically, replicas exchange messages to save a stable checkpoint 

and truncate the log 

•  View Change Protocol 

o  If 2f+1 replicas suspect the primary of view v, a new view is started 
o  The objective of this protocol is to make the correct replicas agree about 

a new primary and the state of the log 
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PBFT:  Checkpoint	
•  Every protocol message is only accepted (and logged) if the 

assigned sequence number falls on a certain interval marked 
by two values: h and H = h + L (maximum log size) 

•  Periodically (every K request executions), the replicas 
exchange CHECKPOINT messages to advance h and H by K 

•  CHECKPOINT messages contain a digest of system’ state 
before the checkpoint and the sequence number n of the last 
executed request to reach this state (n mod K = 0) 

•  Replicas store 2f+1 CHECKPOINT messages as a proof that no 
other checkpoint for n is possible 
o  (2f+1) + (2f+1) = 4f+2; even with f Byzantine 4f+2 – f > 3f+1 

•  All messages regarding requests with sequence number small 
than n can be discarded from the log 

•  Late replicas can update themselves fetching states that can 
be proved correct with 2f+1 CHECKPOINT messages 
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PBFT:  View  Change  I	

•  A backup replica triggers the view change protocol if it stays with some 
pending message m for more than a certain time limit (request timeout expires) 

•  At this point, the replica stops accepting messages for v and sends a VIEW-
CHANGE message containing: 
o  the next view number v+1 
o  the sequence number n of the last stable checkpoint 
o  a set C of 2f+1 signed CHECKPOINT messages that validate n 
o  a set P of messages prepared in i on views v’ ≤ v 
o  a set Q of messages pre-prepared in i on views v’ ≤ v 
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PBFT:  View  Change  II	

•  VIEW-CHANGE messages are accepted if C validates n and all messages in P and Q 
are from views ≤ v 

•  for each accepted VIEW-CHANGE message, a replica sends a VIEW-CHANGE-ACK 
to the primary of the next view (v+1) 

•  the new primary only accept a VIEW-CHANGE from a replica if it receives 2f-1 VIEW-
CHANGE-ACKs for it from other replicas 
 (the conference paper you read on assignment 2 does not contain this phase, but it 
requires PK signatures on view changes) 
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PBFT:  View  Change  III	

•  the new primary uses the information on accepted VIEW-CHANGE messages 
to define new view’s h as the highest sequence number found on a valid 
checkpoint 

•  for each sequence number n such that h < n ≤ h + L 
o  if there is some message m prepared with n in 2f+1 replicas (possibly commited in some of them), 

the sequence number n must be assigned to m 
o  otherwise, n must be assigned to a null operation (this only fill gaps)  

•  these assignments must be sent to other replicas in a NEW-VIEW message 
together with a digest from each accepted VIEW-CHANGE message used to 
define them 
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PBFT:  View  Change  IV	

•  each backup replica that receive the NEW-VIEW obtains the VIEW-
CHANGE messages used to build it 
o  they can have it already or they can fetch them from other replicas 

•  with these messages, each <message, sequence number> assignment 
contained on the NEW-VIEW message can be verified (with the same 
procedure used by the primary used to choose these assignments) 
o  if there some assignment is invalid, a VIEW-CHANGE for v+2 is sent to all replicas 
o  otherwise, a PREPARE message is sent for each assignment and the protocol resumes to its normal 

behavior, as if the assignment was a PRE-PREPARE message 

What  	
happens  	
now?	
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Why  PBFT  works?    
(Safety)	

•  A Byzantine primary can not “create” its own requests: 
o  Backup replicas only process authenticated requests from clients 

•  A Byzantine primary can not assign the same sequence 
number to different messages: 
o  A correct backup sends a PREPARE message only for the first request it 

receives for a certain sequence number n 

o  A correct backup sends a COMMIT message only if it receives PREPARE 
messages from 2f other replicas 

o  There can not be two different quorums of 2f+1 out-of 3f+1 replicas that 
send PREPARE messages for the same n and different requests 

•  These quorums overlap on at least f+1 replicas 
•  Thus, one correct replica should have send contradictory messages, 

which is not possible. 

•  Consequently, all replicas execute the same sequence of 
requests created by clients 
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Why  PBFT  works?    
(Liveness)	

•  A Byzantine primary can decide not to send PRE-
PREPARE messages for some requests or to skip 
sequence numbers: 
o  However, when a backup replica receives a request from a client it starts a 

timer, which is stopped when the request is executed 
o  If the timer expires, the backup trigger the view change protocol 
o  When enough backup replicas trigger a view change, a new primary is 

defined and a new view is installed 

•  For each timer expiration, the timer value is doubled 
•  Liveness is ensured as long as eventually a timer 

value suffices to finish the protocol execution with a 
correct primary 
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PBFT:  Optimizations  I	
•  One of the key contributions of PBFT are its 

optimizations 

•  Rationale for optimizations: 
 “Faults, concurrency and asynchrony are very rare” 
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PBFT:  Optimizations  II	
•  MAC vectors instead of digital signatures 

o  The use of PK signatures were the main reason for the poor performance 
of previous protocols 

o  MAC vectors are weaker than digital signatures, so the former cannot 
always be used to substitute the later 

•  Digest replies 
o  Instead of all replicas sending the reply of a request, the client can 

choose just one replica to send the reply, the others only send a digest of 
the reply to allow voting 

o  If the received reply is wrong, the client can ask for a (full) reply from other 
replicas  

•  Batching 
o  Instead of running the agreement protocol for every request to be 

executed, it can be done for request sets (batches) 
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PBFT:  Optimizations  III	
•  Read-only requests 

o  Read-only requests generally does not require ordering because they do 
not change the system’ state 

o  All replicas can immediately reply to the client and it can finishes the read 
if there are 2f+1 matching replies - instead of f+1, to ensure Linearizability 

o  Otherwise (due to faulty replicas or concurrency), the client retries the 
request using the normal protocol  

No  2f+1  matching  replies!	
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PBFT:  Optimizations  IV	
•  Tentative execution 

o  Replicas can tentatively execute a request when it is prepared and they 
have committed all requests with lower sequence number 

o  This reduces the protocol latency from 5 to 4 communication steps 
o  The client needs to wait for 2f+1 matching replies from different replicas to 

be sure that the execution order will eventually commit 
o  If the client do not receive these replies and a timer expires, it resends the 

request without asking for tentative execution 
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Part  II	
BFT Literature Review 

© Alysson Bessani. All rights reserved. 43 

EuroSys 2012 

Outline	
•  Improving BFT performance 
•  Robust BFT protocols 
•  Architectural hybridization 
•  Implementation techniques 
•  Complementary techniques for BFT 

Note: there are other papers and other aspects, but this is my 
selection given the time constraints we have 
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Improving  BFT  
Performance	

•  PBFT performance is competitive with crash fault-
tolerant systems, and in some cases even with non-
replicated systems 

•  However, in the expected common situation where 
o  There are no faults 

o  The system is synchronous 
o  There is no concurrency 

•  PBFT still requires 2(n-1)2+(n-1) messages and 5 
communication steps (without optimizations)  

Can  we  do  be\er?	
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Improving  BFT  
Performance	

•  Since PBFT publication, several works tried to 
improve its performance 

•  Q/U – Query/Update (Abd-El-Malek et al, SOSP’05) 
o  “Pure” quorum-based protocol that works on asynchronous system 
o  Advantages: 

•  Improves the fault scalability of the system, i.e., the throughput of the 
system does not drop dramatically when f increases 

•  Operations require only two communication steps (best case) 
o  Drawbacks: 

•  Sacrifices Liveness (Obstruction-freedom instead of Wait-freedom): 
operations only terminate if there is no write contention on the object  

•  Requires n ≥ 5f +1 
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Improving  BFT  
Performance	

•  HQ-Replication (Cowling et al, OSDI’06) 
o  Combines quorum-based protocols with PBFT 

•  If there is no concurrency, executes a (f-dissemination BQS) write 
protocol to change the system state 

•  If concurrency is detected, start PBFT to order concurrent requests 
o  Same advantages of Q/U, with the same Liveness guarantees of PBFT and 

using only 3f+1 replicas 

1  or  2	
comm.	
steps	
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Zyzzyva:  Speculative  BFT  
(Kotla  et  al,  TOCS  2009)	

•  The “final word” on high-performance BFT protocols 
•  Main idea: PBFT with speculative execution 

o  Each replica (speculatively) executes a request just after receiving the 
sequence number of this request by the primary 

o  After executing the request they send a reply to the client 
o  The consistent state of the replicas only matter to clients, so let them verify 

if all replicas are on the same state 
o  If there is some problem (e.g., the primary sends different operations to 

different replicas), a correct client will detect it 

o  This client will inform the replicas, which must rollback to a safe state and 
change the primary 

•  Improves latency and throughput on the best case 
o  Zyzzyva requires only 3 communication steps 
o  Zyzzyva requires only 2n message exchanges 
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Zyzzyva:  Speculative  BFT	
•  Best-case execution (synchronous and fault-free) 

2	

3	

4	

1	

REQUEST	

ORDER-‐‑REQ	

SPEC-‐‑RESPONSE	

timeout	

Replicas  speculatively	
execute  the  requests  in  the  	
order  given  by  the  primary	

Client  waits  for  3f+1  matching	
replies  that  reflect  the  same	

history	
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Zyzzyva:  Speculative  BFT	
•  Asynchrony or faulty replica 

2	

3	

4	

1	

REQUEST	

ORDER-‐‑REQ	

SPEC-‐‑RESPONSE	

timeout	

Client  receives  less  than  3f+1	
matching  replies  before  the	

timer    expires	

COMMIT	

LOCAL-‐‑COMMIT	

Replicas  see  that  there  are	
2f+1  replicas  that  matches	
some  history  and  commits  it	
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Zyzzyva:  Speculative  BFT	
•  Malicious primary 

2	

3	

4	

1	

REQUEST	

ORDER-‐‑REQ	

SPEC-‐‑RESPONSE	

timeout	

POM	

LOCAL-‐‑COMMIT	View	
change	

Malicious  primary  send	
different  ORDER-‐‑REQ  to	

different  replicas	

Client  receives  non-‐‑matching	
replies  and  sends  a  POM  (Proof-‐‑	
Of-‐‑Misbehavior)  message	

Correct  replicas  see  that  their	
histories  are  different  and	
start  view  change  to  elect	

a  new  primary.	
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Zyzzyva:  Speculative  BFT	
•  Comparison with other protocols (theory) 
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Zyzzyva:  Speculative  BFT	
•  Comparison with other protocols (experimental) 

Q/U  and  HQ:  23Kops/s	
(quorum-‐‑based  protocol	
cannot  batch  messages)	

PBFT  (batch):  60Kops/s	

Zyzzyva  (batch):  84Kops/s	

-‐‑  n  =  4	
-‐‑  no  faults	
-‐‑   0  byte  requests	
-‐‑   null  operations	
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Zyzzyva:  Speculative  BFT	
•  Zyzzyva is the fastest protocol one can devise for 

ordering requests under the Byzantine fault model 
•  However, it is not perfect 

o  Speculative execution on servers might not be a good idea 
•  You need to be able to rollback to a committed state if a view 

change is triggered 
•  This makes your server code much more complicated 

o  If you wait for replies from all replicas, you will always be waiting for the 
slower one 

•  In non-synchronous networks you will have to calibrate your timeout 
value carefully 

o  Zyzzyva is vulnerable to several attacks, just like PBFT 
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The  Next  700  BFT  
Protocols	

•  HQ and Zyzzyva are protocols with fast and slow 
paths, being the slow path similar to PBFT 

•  Guerraoui et al (EuroSys’10) generalized this idea 
with the ABSTRACT abstraction 
o  An ABSTRACT instance is just like a state machine replication, but abortale 
o  ABSTRACT instances are composable, i.e., if one instance aborts, it returns 

enough information for clients to start another 
o  This allows the development of optimistic protocols that can revert to 

more conservative approaches if the expected conditions are not meet  

•  Aliph BFT SMR protocol: 

Quorum	

p4	

Backup  (PBFT)	
p1	
p2	
p3	

Chain	

c	

Aborts  if	
contention	
is  detected	

Aborts  if	
asynchronous	 Never  aborts	
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The  Next  700  BFT  
Protocols	

Chain	
(throughput-‐‑optimal)	

Quorum	
(latency-‐‑optimal)	

ABSTRACT  is  a  nice  idea  that  really  simplifies  the	
design  of  optimistic  state  machine  replication.	
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4. Putting Abstract to Work: Aliph
In this section, we demonstrate how we can build novel,
very efficient BFT protocols, using Abstract. Our new pro-
tocol, called Aliph, achieves up to 30% lower latency and up
to 360% higher throughput than state-of-the-art protocols.
The development of Aliph consisted in building two new in-
stances of Abstract, each requiring less than 25% of the code
of state-of-the-art protocols, and reusing Backup (Sec. 3.3).
In the following, we first describe Aliph and then we evaluate
its performance.

4.1 Protocol overview
The characteristics of Aliph are summarized in Table 2,
considering the metrics of [20]. In short, Aliph is the first
optimally resilient protocol that achieves a latency of 2 one-
way message delays when there is no contention. It is also
the first protocol for which the number of MAC operations at
the bottleneck replica tends to 1 (under high contention when
batching of messages is enabled): 50% less than required by
state-of-the-art protocols.

Aliph uses three Abstract implementations: Backup (in-
troduced in Sec. 4.3), Quorum and Chain (both described
below). A Quorum instance commits requests as long as
there are no: (a) server/link failures, (b) client Byzantine fail-
ures, and (c) contention. Quorum implements a very simple
communication pattern and gives Aliph the low latency fla-
vor when its progress conditions are satisfied. On the other
hand, Chain provides exactly the same progress guarantees
as ZLight (Sec. 3.2), i.e., it commits requests as long as there
are no server/link failures or Byzantine clients. Chain im-
plements a pipeline pattern and, as we show below, allows
Aliph to achieve better peak throughput than all existing pro-
tocols. Both Quorum and Chain share the panicking mech-
anism with ZLight, which is invoked by the client when it
fails to commit the request.

Aliph uses the following static switching ordering to or-
chestrate its underlying protocols: Quorum-Chain-Backup-
Quorum-Chain-Backup−etc. Initially, Quorum is active. As
soon as it aborts (e.g., due to contention), it switches to
Chain. Chain commits requests until it aborts (e.g., due to
asynchrony). Aliph then switches to Backup, which executes
k requests (see Sec. 3.3). When Backup commits k requests,
it aborts, switches back to Quorum, and so on.

In the following, we first describe Quorum (Sec. 4.1.1)
and Chain (Sec. 4.1.2) (full details and correctness proofs
can be found in [17]). Then, we discuss some system-level
optimizations of Aliph (Sec. 4.1.3).

4.1.1 Quorum
Quorum implements a very simple communication pattern
(see Fig. 4); it requires only one round-trip of message ex-
change between a client and replicas to commit a request.
Namely, the client sends the request to all replicas that spec-
ulatively execute it and send a reply to the client. As in

ZLight, replies sent by replicas contain a digest of their his-
tory. The client checks that the histories sent by the 3f + 1
replicas match. If that is not the case, or if the client does
not receive 3f + 1 replies, the client invokes a panicking
mechanism. This is the same as in ZLight (Sec. 3.2): (i) the
client sends a PANIC message to replicas, (ii) replicas stop
executing requests on reception of a PANIC message, (iii)
replicas send back a signed message containing their his-
tory. The client collects 2f + 1 signed messages containing
replica histories and generates an abort history. Note that,
unlike ZLight, Quorum does not tolerate contention: concur-
rent requests can be executed in different orders by different
replicas. This is not the case in ZLight, as requests are or-
dered by the primary.

r1

r2

r3

r4

client
Number of MAC 

operations per process

Number of MACs 
carried by a message

3f+1 2 3f+1

1 1

Figure 4. Communication pattern of Quorum.

The implementation of Quorum is very simple. It requires
3200 lines of C code (including panicking and checkpoint
libraries). Quorum makes Aliph the first BFT protocol to
achieve a latency of 2 one-way message delays, while only
requiring 3f + 1 replicas (Q/U [1] has the same latency but
requires 5f +1 replicas). Given its simplicity and efficiency,
it might seem surprising not to have seen it published earlier.
We believe that Abstract made that possible because we
could focus on weaker (and hence easier to implement)
Abstract specifications, without caring about (numerous)
difficulties outside the Quorum “common-case”.

4.1.2 Chain
Chain organizes replicas in a pipeline (see Fig. 5). All repli-
cas know the fixed ordering of replica IDs (called chain or-
der); the first (resp., last) replica is called the head (resp.,
the tail). Without loss of generality we assume an ascending
ordering by replica IDs, where the head (resp., tail) is replica
r1 (resp., r3f+1).

In Chain, a client invokes a request by sending it to the
head, who assigns sequence numbers to requests. Then, each
replica ri forwards the message to its successor −→ri , where
−→ri = ri+1. The exception is the tail whose successor is the
client: upon receiving the message, the tail sends the reply to
the client. Similarly, replica ri in Chain accepts a message
only if sent by its predecessor ←−ri , where ←−ri = ri−1; the
exception is the head, which accepts requests only from the
client.
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PBFT Q/U HQ Zyzzyva Aliph
Number of replicas 3f+1 5f+1 3f+1 3f+1 3f+1
Throughput (MAC ops at bottleneck server) 2+8f

b 2+4f 2+4f 2+3f
b 1+ f+1

b
Latency (1-way messages in the critical path) 4 2 4 3 2

Table 2. Characteristics of state-of-the-art BFT protocols. Row 1 is the number of replicas. Row 2 is the throughput in terms of
number of MAC operations at the bottleneck replica (assuming batches of b requests). Row 3 is the latency in terms of number
of 1-way messages in the critical path. Bold entries denote protocols with the lowest known cost.

r1

r2

r3

r4

client

Number of MAC 
operations per process

Number of MACs 
carried by a message

f+1 f+2 2(f+1)

f+1 2f+1 (f+1)(f+2)

2

2f+1 f+1

2(f+1) f+2 f+1

Figure 5. Communication pattern of Chain.

The behavior of Chain, as described so far, is very sim-
ilar to the crash-tolerant protocol described in [29]. We tol-
erate Byzantine failures by ensuring: (1) that the content of
a message is not modified by a malicious replica, (2) that no
replica in the chain is bypassed, and (3) that the reply sent by
the tail is correct. To provide those guarantees, our Chain re-
lies on a novel authentication method we call chain authen-
ticators (CAs). CAs are lightweight MAC authenticators, re-
quiring processes to generate (at most) f +1 MACs (in con-
trast to 3f + 1 in traditional authenticators). CAs guarantee
that, if a client commits request req, every correct replica
executed req. CAs, along with the inherent throughput ad-
vantages of a pipeline pattern, are key to Chain’s dramatic
throughput improvements over other BFT protocols. We de-
scribe below how CAs are used in Chain.

Processes generate CAs in order to authenticate the mes-
sages they send. Each CA contains MACs for a set of pro-
cesses called successor set. The successor set of clients con-
sists of the f + 1 first replicas in the chain. The successor
set of replica ri depends on its position i: (a) for the first 2f
replicas, the successor set comprises the next f + 1 replicas
in the chain, whereas (b) for other replicas (i > 2f ), the suc-
cessor set comprises all subsequent replicas in the chain, as
well as the client. Dually, when a process receives a message
m it verifies m, i.e., it checks whether m contains a correct
MAC from the processes it is in the successor set of. For in-
stance, process p1 verifies that the message contains a valid
MAC from process p0 and the client, whereas the client ver-
ifies that the reply it gets contains a valid MAC from the last
f+1 replicas in the chain. Finally, to make sure that the reply
sent by the tail is correct, f processes that precede the tail in
the chain append a digest of the response to the message.

When the client receives a correct reply, it commits it. On
the other hand, when the reply is not correct, or when it does
not receive any reply (e.g., due to the Byzantine tail which
discards the request), the client broadcasts a PANIC message
to replicas. As in ZLight and Quorum, when replicas receive
a PANIC message, they stop executing requests and send
back a signed message containing their history. The client
collects 2f + 1 signed messages containing replica histories
and generates an abort history.

Chain’s implementation requires 3300 lines of code (with
panic and checkpoint libraries). Moreover, it is the first pro-
tocol in which the number of MAC operations at the bottle-
neck replica tends to 1. This comes from the fact that, under
contention, the head of the chain can batch requests. Head
and tail do thus need to read (resp. write) a MAC from (resp.
to) the client, and write (resp. read) f + 1 MACs for a batch
of requests. Thus for a single request, head and tail perform
1+ f+1

b MAC operations. Note that all other replicas process
requests in batch, and have thus a lower number of MAC op-
erations per request. State-of-the-art protocols [7, 20] do all
require at least 2 MAC operations at the bottleneck server
(with the same assumption on batching). The reason why
this number tends to 1 in Chain can be intuitively explained
by the fact that these are two distinct replicas that receive the
request (the head) and send the reply (the tail).

4.1.3 Optimizations
When a Chain instance is executing in Aliph, it commits
requests as long as there are no server or link failures. In
the Aliph implementation we benchmark in the evaluation,
we slightly modified the progress property of Chain so that
it aborts requests as soon as replicas detect that there is no
contention (i.e. there is only one active client since at least
2s). Moreover, Chain replicas add an information in their
abort history to specify that they aborted because of the lack
of contention. We slightly modified Backup, so that in such
case, it only executes one request and aborts. Consequently,
Aliph switches to Quorum, which is very efficient when there
is no contention. Finally, in Chain and Quorum we use the
same checkpoint protocol as in ZLight.

4.2 Evaluation
This section evaluates the performance of Aliph. For lack
of space, we focus on experiments without failures (of pro-
cesses or links), since we compare to protocols that are
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Robust  BFT  Protocols	
•  All distributed protocols can have their 

performance hurt by (Distributed) DoS attacks 
o  There is nothing we can do about that… we need communication and 

timing assumptions in order to solve BFT consensus 

•  However, the quest for optimizing these protocols 
for the “expected common case” made them 
even more fragile to malicious behavior 
o  E.g., malicious clients can try to execute operations continuously on 

systems like HQ and Q/U to make their operation extremely slow 

•  However, there are two attacks (≠ (D)DoS) that can 
really hurt the performance of systems like PBFT and 
Zyzzyva (Amir et al., DSN’ 08, TDSC 2011) 
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BFT  Under  A\ack	
•  Attack #1: causing view change with a malicious 

client without using DoS 
o  On PBFT, clients need to send a request “signed” with an authenticator (a 

MAC vector) 
•  Correct authenticator:  

o  A malicious client can send a corrupted authenticator that is valid for all 
backup replicas but not for the primary 

•  Malicious authenticator: 
•  The primary will ignore the client’s request 
•  Other replicas will accept it and, after their timer expires, will relay it to 

the primary 
o  Since the primary will never accept this request, other replicas will start a 

view change after a second timeout 
o  Conclusion: the use of authenticators allow faulty clients to force view 

changes as they wish 

MAC(c,0)	MAC(c,1)	MAC(c,2)	MAC(c,3)	

?!#@$	 MAC(c,1)	MAC(c,2)	MAC(c,3)	

© Alysson Bessani. All rights reserved. 58 



4/10/12	  

30	  

BFT  Under  A\ack	
•  How to “patch” attack #1’ vulnerability? 

o  Make clients sign (not with MAC vectors) their messages 
o  Digital signatures (like RSA) ensure that if some correct server authenticate 

the message, then all correct servers will authenticate the message 
o  Performance issues:  

•  Clients generate signatures, servers only verify one signature per 
request 

•  Operation’ latency increases by a signature (~5 ms on standard 
hardware) plus a verification (~0.5 ms) 

•  Throughput becomes limited by the amount of signatures each server 
can verify per second 
o  The mentioned single core machine cannot do more than 2Kops/s 
o  But a 4-year-old quad-core machine can do ~40Kops/s 
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BFT  Under  A\ack	
•  Attack #2: degrading performance with a faulty 

primary 
o  A faulty primary must order a request before other replicas timer expires 

for this request 
o  Assuming Ttimeout = 100 ms, if a faulty primary delays the ordering of each 

request by 90 ms, a view-change will not be triggered 
o  Nonetheless, the performance of the system will drop dramatically 
o  This attack can be even more devastating if combined with attack #1, 

since for each view change Ttimeout  is doubled 
o  Conclusion: a faulty primary can inject a delay of almost Ttimeout ms on 

each request processing, making the end-to-end performance of the 
system orders of magnitude worse than expected 
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BFT  Under  A\ack	
•  How to mitigate attack #2? 

o  Solution 1: use decentralized (leader-free) protocols 
•  The request’ sequence number is not defined by a primary  
•  Replicas will propose their set of pending requests for ordering in a 

decentralized consensus (Moniz et al, TDSC 2011) 

•  Whether or not this approach works depends on how similar the 
proposals are, i.e., if all replicas receive client’s requests on the same 
order (which happens very often on HUB-based networks) 

o  Solution 2: monitor the primary’s performance and start a view change if 
it’s too low 

•  Problem is “how to define the threshold between an unstable network 
and a faulty primary” 

•  A wrong view change can hurt the protocol’ performance 
o  Solution 3: rotate the primary periodically 
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Protocols  Solving  these  Issues	
•  Prime (Amir et al, DSN’08, TDSC 2011) 

o  Identified these problems for the first time in their DSN’08 paper 
o  The Prime protocol adds a pre-order phase to PBFT 

•  Aardvark (Clement et al, NSDI’09) 
o  PBFT made robust 

•  Spinning (Veronese et al, SRDS’09) 
o  Rotating-coordinator BFT SMR 

Summary of normal-case operation. To summarize the
Preordering and Global Ordering subprotocols, Fig. 2 follows
the path of a client operation through the system during
normal-case operation. The operation is first preordered in
two rounds (PO-REQUEST and PO-ACK), after which its
preordering is cumulatively acknowledged (PO-SUMMARY).
When the leader is correct, it includes, in its next PRE-

PREPARE, the set of at least 2f þ 1 PO-SUMMARY messages
that prove that at least 2f þ 1 servers have preordered the
operation. The PRE-PREPARE flooding step (not shown) runs
in parallel with the PREPARE step. The client operation will be
executed once the PRE-PREPARE is globally ordered. Note
that in general, many operations are being preordered in
parallel, and globally ordering a PRE-PREPARE will make
many operations eligible for execution.

5.3 The Reconciliation Subprotocol

The Reconciliation subprotocol ensures that all correct
servers will eventually receive any operation that becomes
eligible for execution. Conceptually, the protocol operates on
the totally ordered sequence of operations defined by the
total order C ¼ C1kC2k . . . kCx. Recall that each Cj is a
sequence of preordered operations that became eligible for
execution with the global ordering of ppj, the PRE-PREPARE

globally ordered with global sequence number j. From the
wayCj is created, for each preordered operation ði; seqÞ inCj,
there exists a set, Ri;seq, of at least 2f þ 1 servers whose PO-

SUMMARY messages cumulatively acknowledged ði; seqÞ in
ppj. The protocol operates by having 2f þ 1 deterministically
chosen servers in Ri;seq send erasure encoded parts of the PO-

REQUEST containing ði; seqÞ to those servers that have not
cumulatively acknowledged preordering it.

Prime uses a Maximum Distance Separable erasure-
resilient coding scheme [19], in which the PO-REQUEST is
encoded into 2f þ 1 parts, each 1=ðf þ 1Þ the size of the
original message, such that any f þ 1 parts are sufficient
to decode. Each of the 2f þ 1 servers in Ri;seq sends one
part. Since at most f servers are faulty, this guarantees
that a correct server will receive enough parts to be able
to decode the PO-REQUEST. The servers run the reconci-
liation procedure speculatively, when they first receive a
PRE-PREPARE message, rather than when they globally
order it. This proactive approach allows operations to be
recovered in parallel with the remainder of the Global
Ordering subprotocol.

Analysis. Since a correct server will not send a
reconciliation message unless at least 2f þ 1 servers have
cumulatively acknowledged the corresponding PO-RE-

QUEST, reconciliation messages for a given operation are
sent to a maximum of f servers. Assuming an operation size
of sop, the 2f þ 1 erasure encoded parts have a total size of
ð2f þ 1Þsop=ðf þ 1Þ. Since these parts are sent to at most
f servers, the amount of reconciliation data sent per

operation across all links is at most fð2f þ 1Þsop=ðf þ 1Þ <
ð2f þ 1Þsop. During the Preordering subprotocol, an opera-
tion is sent to between 2f and 3f servers, which requires at
least 2fsop. Therefore, reconciliation uses approximately the
same amount of aggregate bandwidth as operation dis-
semination. Note that a single server needs to send at most
one reconciliation part per operation, which guarantees that
at least f þ 1 correct servers share the cost of reconciliation.

5.4 The Suspect-Leader Subprotocol
There are two types of performance attacks that can be
mounted by a malicious leader. First, it can send PRE-
PREPARE messages at a rate slower than the one specified
by the protocol. Second, even if the leader sends PRE-
PREPARE messages at the correct rate, it can intentionally
include a summary matrix that does not contain the most
up-to-date PO-SUMMARY messages that it has received.
This can prevent or delay preordered operations from
becoming eligible for execution.

The Suspect-Leader subprotocol is designed to defend
against these attacks. The protocol consists of three mechan-
isms that work together to enforce timely behavior from the
leader. The first provides a means by which nonleader
servers can tell the leader which PO-SUMMARY messages
they expect the leader to include in a subsequent PRE-

PREPARE message. The second mechanism allows the
nonleader servers to periodically measure how long it takes
for the leader to send a PRE-PREPARE containing PO-

SUMMARY messages at least as up-to-date as those being
reported. We call this time the turnaround time provided by
the leader. The third mechanism is a distributed monitoring
protocol in which the nonleader servers can dynamically
determine, based on the current network conditions, how
quickly the leader should be sending up-to-date PRE-

PREPARE messages and decide, based on each server’s
measurements of the leader’s performance, whether to
suspect the leader. We now describe each mechanism in
more detail.

5.4.1 Reporting the Latest PO-SUMMARY Messages

If the leader is to be expected to send PRE-PREPARE

messages with the most up-to-date PO-SUMMARY mes-
sages, then each correct server must tell the leader which
PO-SUMMARY messages it believes are the most up-to-date.
This explicit notification is necessary because the reception
of a particular PO-SUMMARY by a correct server does not
imply that the leader will receive the same message—the
server that originally sent the message may be faulty.
Therefore, each correct server, i, periodically sends the
leader the complete contents of its LastPreorderSummaries
vector in a hSUMMARY-MATRIX; sm; ii!i message.

Upon receiving a SUMMARY-MATRIX, a correct leader
updates its LastPreorderSummaries vector by adopting any of
the PO-SUMMARY messages in the SUMMARY-MATRIX that
are more up-to-date than what the leader currently has in
its data structure. Since SUMMARY-MATRIX messages have
a bounded size-dependent only on the number of servers in
the system, the leader requires a small, bounded amount of
incoming bandwidth and processing resources to learn
about the most up-to-date PO-SUMMARY messages in the
system. Furthermore, since PRE-PREPARE messages also

AMIR ET AL.: PRIME: BYZANTINE REPLICATION UNDER ATTACK 571

Fig. 2. Fault-free operation of Prime (f ¼ 1).
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Robust  BFT  SMR	
•  Clement et al. (NSDI’09) proposes a variation of PBFT 

that implements robust state machine replication 
o  The name of the protocol is Aardvark J 

•  By robust, it means: 
o  Maintains a stable performance even when under attack by f malicious 

replicas and an unbounded number of clients 

•  Three main differences (when compared with PBFT): 
o  Clients must sign requests 

•  to avoid malicious clients provoking view changes 
o  Resource Isolation 

•  to resist denial of service attacks against network interfaces 
o  Regular view changes 

•  to avoid performance degradation attacks 
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Robust  BFT  SMR:  
Replica  Architecture	

•  Every replica needs n 
NICs (one to each other 
replica plus one to 
clients) 

•  This makes the system 
resilient to DoS network 
attacks from faulty 
replicas and clients 

•  To help resist DoS attacks, 
there are specific 
algorithms to verify client 
requests and process 
replica messages 
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Robust  BFT  SMR  
(client  request  verification)	

•  Client messages have 
both a MAC and a 
signature 
o  Why? 

•  Each reply is cached to 
deal with retransmissions 

•  Clients that misbehave 
are blacklisted 

•  ”Redundancy” and 
”once per view checks” 
take care of replay 
attacks 
o  Clients need to sign 

different requests to make 
them valid 
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Robust  BFT  SMR  
(replica  msg  processing)	

•  If some replica is 
sending 20 times more 
messages than the 
others, blacklist it 

•  To avoid resource 
exhaustion, messages 
are processed on a 
round robin fashion 

•  Only process catch up 
messages if the system 
is idle 
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Spinning	
•  A protocol build upon PBFT, but with a modification 

based on a simple idea: 
o  PBFT’s problem is that a malicious primary can keep ordering requests very 

slowly without triggering view changes 
o  So, why not change view after each message commit? 
o  in this way, the sequence number of a message matches exactly the view 

number of its delivery 

•  Potential problem: 
o  The view change protocol is complex and costly 
o  But it is not a problem: the view change will deterministically happen after 

every committed message, so it is not necessary to have a special 
protocol to change primary 

•  The resulting protocol (Spinning) makes the primary 
role rotates to all servers 
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Spinning	
•  Example execution of Spinning: 

o  first request is ordered by s1, which is the primary of view v 
o  second request is ordered by s2, which is the primary of v+1 
o  … 
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Spinning:  Performance	
•  Changing primary improves or degrades 

performance in fault-free executions? 

No,  the  performance	
is  be\er!	

The  primary  extra	
load  is  evenly  
distributed  between  
all  replicas	

-‐‑  n  =  4	
-‐‑  no  faults	
-‐‑   0  byte  requests	
-‐‑   null  operations	
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Spinning:  Performance	
•  What happens when a latency is injected by a 

faulty primary? 

Malicious  primaries  
can  only  degrade  the  
performance  of  the  
system  in  f  out-‐‑of  n  
protocol  executions	

No  delay	

Amount  of  delay  injected	

Spinning  
performance  
degrades  much  
slower  than  PBFT	
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Spinning:  Issues	
•  Without the repair procedure of view changes, how 

replicas recover from a malicious primary on some view? 
o  Merge operation: joins one or more faulty views (i.e., with faulty primaries) with 

a correct view (i.e., with correct primary) 
o  The idea is very similar to PBFT’s view change: the new correct primary will read 

the state of the system and proceed ordering requests ensuring the protocol 
invariants 

•  Faulty replicas can force merge operations periodically 
o  To avoid that, after a merge operation, the primary of the most recent merged 

view is put on a blacklist 
o  Every time a replica goes to a black list, it stays there for a number of turns (n 

views) equal to the number of times it was blacklisted 
•  First time, loses 1 turn; second time, loses 2 turns, and so on… 

o  Blacklisted replicas cannot be primary on their views, but otherwise can 
participate on the protocol as a backup  
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•  Motivation: BFT in Homogeneous Systems is Expensive 

•  At least 3f+1 replicas 
•  At least 3 communication steps for establish agreement 

(non-speculative normal case operation) 

Architectural  
Hybridization	

PBFT	

Zyzzyva	
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Architectural  
Hybridization	

•  Is it possible to do better? 
1- Less than 3f+1 replicas to tolerate f Byzantine faults? 

•  Homogeneous non-synchronous systems require 3f+1 replicas 

 (and, at the same time) 
2- Less than 3 communication steps to establish agreement 

•  It is possible to solve consensus with 2 communication steps if there 
are 5f+1 replicas (Martin & Alvisi, TDSC 2007) 

•  Hybrid distributed systems (Veríssimo, SIGACT News 
2006) with local trusted components can do that!  

© Alysson Bessani. All rights reserved. 73 

History:  Trusted  
Components  and  BFT	

•  (Correia et al, SRDS’02) BFT Reliable Multicast using TTCB, 
a distributed real-time trusted component 

•  (Correia et al, SRDS’04) BFT SMR with 2f+1 replicas using a 
distributed trusted component 

•  (Chun et al, SOSP’07) PBFT with 2f+1 replicas using a 
complex local trusted component (A2M) 

•  (Levin et al, NSDI’09) A2M reduced to a simple secure 
counter (TrInc), that can be build using a TPM chip 

•  (Veronese et al, DI-FCUL TR 2008, TC 2011) MinBFT shows 
that with a trusted counter one can reduces BFT SMR to 
viewstamped replication/Paxos 

•  (Kapitza et al, EuroSys’12) BFT SMR with only f+1 active 
replicas using a trusted counter efficiently implemented 
in FPGA 
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MinBFT:  System  Model	

§ Eventually synchronous system  

§ Authenticated and reliable channels 

§  Local Trusted Component (can only crash) 

§  Secure hash function 

§ n ≥ 2f+1 replicas, at most f can suffer Byzantine faults 
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MinBFT  Trusted  Component  
(USIG  -‐‑  Unique  Sequential  Identifier  Generator)	

•  A minimal local trusted component containing 
o  A cryptosystem for authenticating its outputs 

o  A monotonic counter 

•  Storage (on the USIG of process i): 
o  A private-key PrKi 

o  An unbounded counter count 

•  Operations: 
o  createUI(m) 

•  Assigns a counter value c_val to a message m 
•  Increments the counter: count++ 
•  Outputs UI = <c_val, i, H(m), SignPrKi> 

o  verifyUI(j, PuKj, UI, m) 
•  Verifies if UI was generated by createUI(m) on the USIG of process j. This 

verification uses j’s USIG public key PuKj 
•  Outputs true or false  
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Client	

Replica  0	

Replica  1	

Replica  2	

Replica  3	

request	
pre-‐‑	

prepare	prepare	commit	 reply	
request	prepare	commit	 reply	

PBFT  x  MinBFT	

Benefits of MinBFT 
•  2f+1 instead of 3f+1 replicas (minimal for general SMR) 
•  2 steps instead of 3 on the normal case (minimal for consensus) 
•  USIG is arguably a minimal trusted component 

PBFT	
MinBFT	
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MinBFT:  Normal  Case	
§  Primary defines the order 

§  The sequence number is 
the USIG counter value 
assigned to the message 

§  Servers accepted f+1 
commits 
§  Each one should have a 

valid UI from its sender 
USIG 

§  Execution follows the 
order on PREPARE’ UI 

§  Client waits for f+1 
matching replies 

Client	

Replica  0	

Replica  1	

Replica  2	

REQUEST	PREPARE	COMMIT	 REPLY	
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Replica  0	

Replica  1	

Replica  2	

REQ-‐‑VIEW-‐‑
CHANGE	

VIEW-‐‑CHANGE	 NEW-‐‑VIEW	

primary  v  	

primary  v+1  	

§   When  a  request  is  received,  
a  timer  Texec  is  started	

§   f+1  REQ-‐‑VIEW-‐‑CHANGE	

§   f+1  VIEW-‐‑CHANGE	

< Clast,  UI  >	 <  V,    UI  >	<  V +  1  >	

MinBFT:  View  Change	
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MinBFT:  Why  it  Works?	
•  Uses 2f+1 replicas with quorums of size f+1  
•  One replica in the intersection of any two quorums 

•  What if this replica is faulty? 
o  It cannot lie because every value is associated with a UI 
o  Different messages will have different UIs 

•  Practical effects: 
o  A primary replica cannot send two PREPARE messages with different 

messages and the same sequence number (UI) 
o  A backup replica cannot lie about the value proposed by the primary  

write	
set	

read	
set	
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USIG  Implementation:  VM	

•  The BFT protocol + application runs on a untrusted virtual 
machine that have access to the outside network 

•  The USIG is implemented as a daemon on a trusted 
virtual machine (e.g., Xen’s Dom0) 

•  They communicate by TCP sockets 

Virtual  Machine  Monitor	

Hardware	

BFT  Rep.  Alg.	

State  Machine	
Code	 USIG	

Daemon	

OS	 OS	

Replica	
Architecture	
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USIG  Implementation:  VM	
Public-key USIG 
(RSA or ESIGN) 
•  Only createUI 

requires trusted 
component 
access 

HMAC USIG 
•  Both createUI and 

verifyUI requires 
trusted 
component 
access 

 

PrK0	 PrK1	

PrK2	

PuK1	
PuK2	

PuK0	
PuK2	

PuK0	
PuK1	

0	 1	

2	

m,S(m)	

SK	 SK	

SK	

0	 1	

2	

m,HMAC(m)	
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USIG  Implementation:  VM	
•  MinBFT can be implemented with both variants, but 

the HMAC version, albeit potentially more efficient, 
can be more difficult to manage 
o  Symmetric keys have a short life-cycle than PK keys 
o  How to refresh them without interrupting the protocol? 

•  MinZyzzyva requires clients to verify UIs, meaning 
that clients need to have a trusted component with 
the shared secret key 
o  This is infeasible in practice 
o  Conclusion: MInZyzzyva only works with PK USIG 
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USIG  Implementation:  TPM	

•  A public-key (2048-bit RSA) implementation of the USIG 
service 

•  The private key and the counter are stored in the TPM 
(version 1.2 or higher) 

•  BFT protocol access a TPM driver to issue commands  

Hardware	

BFT  Rep.  Alg.	

State  Machine	
Code	

TPM	
OS	

Replica	
Architecture	
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USIG  Implementation:  TPM	
 
createUI(m), as called by replica i 
•  First, calculate hm = H(m) 
•  Send the following commands to the TPM (details omitted) 

1.  TPM_EstablishTransport 
2.  TPM_ExecuteTransport(TPM_IncrementCounter) 
3.  TPM_ReleaseTransportSigned(hm) 

•  The last command returns: 
o  A 2048-bit RSA signature S of <TPM_IncrementCounter; c_val; hm > 

•  This UI value is <<TPM_IncrementCounter; c_val; hm>, S> 
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Association  of  a  counter	
value  with  the  message	

Proves  that  it  was  generated	
by  TPM  on  replica  i	

Proves  that  the  counter  was  incremented	
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USIG  Implementation:  TPM	
 
verifyUI(j, PKj , UI, m) 
•  Verify the format of the data structure (e.g., there is an 

increment on the TPM counter) 
•  Verify if hm = H(m) is on the UI 
•  Verify the signature using the public key PKj 

•  If all these checks are passed, return true, otherwise, return 
false  

Important Remark: This function don’t need to access the TPM 
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USIG  Performance:  
VM  x  TPM	

•  TPM USIG 
o  Signature: 797 ms  
o  One increment by 3.5 seconds 
o  32-bit monotonic counter 

•  VM USIG 
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Implementation  
Techniques	

•  BASE (Castro et al, TOCS 2003) 
o  Define useful abstractions to implement diverse BFT services 

•  Parallel execution of requests (Kotla & Dahlin, DSN’04) 
o  Some service requests do not require total order execution (writes on different files of 

a file system), and can be executed in parallel 
o  May improves the throughput of certain services (e.g., distributed FS) 

•  On-Demand Replica Consistency (Distler & Kapitza, EuroSys’11) 
o  Breaks the service state in partitions 

o  Each partition executes a subset of the submitted requests 
o  Specially useful if executing a request require a lot of resources 

•  Separating Agreement from Execution (Yin et al, SOSP’03) 
•  UpRight (Clement et al, SOSP’09) 
•  ZZ (Wood et al, EuroSys’11) 
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Classical  BFT  SMR  
Architecture	

•  Clients sign requests and sent them to the replicas 
•  Replicas verify client signature and run an agreement protocol 

to establish total order 
•  Replicas execute the request and send the reply to the client 

sign	
verify	 agreement	

execute	
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Separating  Agreement/
Execution  Architecture	

•  Separate servers in two layers: agreement and execution 
•  Clients sign requests, agreement replicas verify it 
•  3f+1 replicas to agree on requests sequence number and 2f+1 

for executing the requests 

sign	
verify	

execute	

ordered  request	

reply	

agreement	
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Agreement/Exectuion  
Problem	

•  In data centers, clients usually are also servers… they have to 
be fast (generating signatures is very costly) 
o  E.g.: web services (BFT clients) access a BFT database (execution) 

•  These web service hosts need to serve lots of clients (high 
throughput) and they are paid by the service provider 
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Datacenter	
execution	
agreement	BFT  clients	

Internet	

clients	
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UpRight  Architecture	
•  A new layer need to be deployed 

to avoid client signatures: request 
quorum (RQ) 

•  Servers on this layer store the 
request and generate a matrix 
signature to be ordered by the 
agreement layer 

•  The execution layer fetches the 
request after ordered from RQ, 
execute it and send a reply 

sign	
verify	

agreement	

execute	

1.  Requests  are  sent	

2.  Request  hash  +	
  matrix  signature	

3.  Request  hash	
+  sequence	
number	

4.  Exec.  replicas  fetch	
ordered  request	

5.  Req.  is  obtained	

6.  Reply  is  sent	
7.  Reply  is  received	
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UpRight  Remarks	
•  Number of faults tolerated: 

o  Request quorum: nr ≥ 2u + r + 1 
o  Ordering: no ≥ 2u + r + 1 
o  Execution: ne ≥ u + r + 1 

•  Clients only do MACs, not signatures… it is more 
aligned with cloud applications (clients are also 
servers of application services) 

•  Speculative execution is not employed in the 
service, but only on order assignment (execution 
servers are just like clients receiving replies from 
Zyzzyva) 
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ZZ  Architecture	
•  Key observation: In fault free executions, f+1 execution 

replicas are enough for the execution layer 
•  In server consolidation scenarios, these extra f execution 

replicas can be dormant VMs 

sign	
verify	

execute	

ordered  request	

reply	

agreement	

ZZZ	
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Complementary  Techniques  
for  BFT:  Fault  Recovery	

•  Problem with tolerating f faults: 
o  If an intelligent adversary is able to compromises f machines, given 

enough time, he/she will compromise f+1 (or more)  
o  Solution: Proactive Recovery (Castro & Liskov, TOCS 2002) 

•  Replicas (compromised or not) are cleaned periodically 

•  PR requires a local trusted real-time component 
o  Otherwise, it may be vulnerable to certain attacks (Sousa et al, DSN’05) 
o  Most proactive recovery systems are vulnerable (Sousa et al, HotDep’06) 

•  To ensure availability you may also need 2k extra 
replicas if at most k recover at the same time 

Outdated  …	
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Complementary  Techniques  
for  BFT:  Diversity	

•  f-fault-tolerant replicated systems are useful only 
if faults are not correlated 

•  It usually requires diverse replicas 
o  Different administrative domains 
o  N-version programming (effective?) 
o  Obfuscation, Memory randomization (effective?) 
o  Use of different components like databases (Gashi et 

al, TDSC 2007), file systems (Castro et al, TOCS 2003) 
and operating systems (Garcia et al, DSN’11) is 
effective! 

•  What about deploying and managing diversity? 
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Part  III	
Applications, Open Problems & Practice 
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BFT  Applications	
•  Distributed File Systems 

o  BFS (Castro & Liskov, TOCS 2002), BASEFS (Castro et al, TOCS 2003) 
o  Oceanstore (Kubiatowicz et al, ASPLOS’00), Farsite (Adya et al, OSDI’02) 
o  UR-HDFS (Celement et al, SOSP’09) 

•  Database replication 
o  Commit Barrier Scheduling (Vandiver et al, SOSP’07) 
o  Byzantium (Garcia et al, EuroSys’11) 

•  Coordination Service 
o  DepSpace (Bessani et al, EuroSys’08) 
o  UR-Zookeeper (Clement et al, SOSP’09) 

•  Naming Services 
o  DNS (Cachin & Samar, DSN’04) 
o  LDAP (FCUL, unpublished) 
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BFT  Real  Applications?	
•  Tolerating non-malicious Byzantine faults 

o  Memory and disk corruptions are relatively common at large scale 
o  These problems are detected and corrected using end-to-end integrity 

checks (i.e., crypto hashes stored separately)  

o  Can we use BFT SMR to tolerate this? 
•  Where these faults happen? 
•  Are there simple techniques? 

o  What about software (heisen)bugs? 

•  General fault tolerance 
o  BFT is a general technique for fault tolerance 
o  The next step on fault tolerance evolution 

•  Malicious Byzantine faults 
o  What if Byzantine faults are the result of successful attacks? 
o  BFT is not enough, we need Intrusion tolerance 
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Intrusion  Tolerance  (InTol)	
•  Coined by Joni Fraga and David Powell 

“A Fault- and Intrusion-Tolerant File System”, IFIP SEC,1985 

•  An intrusion-tolerant system can maintain its 
security properties (confidentiality, integrity 
and availability) despite some of its 
components being compromised 

•  Appeal: since it’s impossible to prove that a 
system has no vulnerabilities, it is more safe 
to assume that intrusions can happen 
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The  Promise  of  BFT	
•  From PBFT’ abstract (Castro & Liskov, OSDI’99): 

 “We believe that Byzantine fault-tolerant 
algorithms will be increasingly important in 
the future because malicious attacks and 
software errors are increasingly common 
and can cause faulty nodes to exhibit 
arbitrary behavior.” 
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InTol  vs  BFT	
•  BFT replication protocols are a key 

mechanism for intrusion-tolerant systems 
o However, I/T systems assume faults may be 

caused by malicious and intelligent adversaries 

•  Differences and I/T added requirements: 
o  Unfavorable executions 
o Diversity 
o  Recovery and Self-healing 
o Confidentiality 
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Intrusion-‐‑tolerant  Systems	
•  Definition 

 An intrusion-tolerant system is a replicated system 
in which a malicious adversary needs to 
compromise more than f out-of n components in 
less than T time units in order to make it fail. 

Comments:  
•  Similar to BFT with proactive recovery 
•  T and f make little sense without previous requirements 
•  Other definitions are possible 
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Problems  of  Intrusion  
Tolerance	

•  Originally described in (Bessani, WRAITS’11) 

•  3 Solved 
•  2 Half-solved 
•  5 Open 

© Alysson Bessani. All rights reserved. 109 

Solved  Problem:  
Performance	

1990s: first implementations appeared with 
useful performance (Rampart, SecureRing) 

1999: Castro & Liskov’ PBFT 
2000s: PBFT-like protocols with better 

performance in certain favorable conditions 

PBFT  (1999)	 Zyzzyva  (2007)	 Next  700  BFT  (2010)	

Minimal 
Latency 

Maximal 
Throughput 
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Solved  Problem:  
Resource  Efficiency	

•  Separating agreement from execution 
o  3f+1 replicas for ordering requests 
o  2f+1 replicas for executing requests 
o  f+1 exec. replicas may be sufficient with VMs 

•  Trusted components (e.g., TPM) 
o Agreement with 2f+1 replicas (instead of 3f+1) 

MinBFT	PBFT	

Minimal:	
-‐‑  Number  of  replicas	
-‐‑  Communication  steps	
-‐‑  Trusted  component	
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Solved  Problem:  
Recovery	

•  Problem with tolerating f faults: 
o  If an intelligent adversary is able to compromises f machines, given 

enough time, he/she will compromise f+1 (or more)  

•  Solution: Periodic (Proactive) Recovery 
o  Replicas (compromised or not) are cleaned periodically 

•  Requires a trusted real-time component 
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Half-‐‑solved  Problem:  
Diversity	

•  f-fault-tolerant replicated systems are 
useful only if faults are not correlated 

•  It usually requires diverse replicas 
o Different administrative domains 
o N-version programming (effective?) 
o Obfuscation, Memory randomization 

(effective?) 
o  Use of different components like databases, 

file systems, operating systems is effective! 

•  What about deploying diversity? 
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Half-‐‑solved  Problem:  
Robust  Performance  of  BFT	

•  BFT replication is 
o  very efficient in favorable conditions 
o  very inefficient in unfavorable conditions  

•  What about a balance? 
o  efficient enough in most conditions 

•  Design principles (Prime, Aardvark, AQS) 
o No complex optimizations 
o  Use public-key crypto if needed 
o  Exploit application semantics for optimizations 
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Open  Problems:  
Intrusion  Reaction	

•  Most BFT protocols only tolerate faults and 
don’t take actions against malicious replicas  
(others than what is required for correctness) 

•  In practice, replica behavior needs to be 
monitored and recovery actions need to be 
executed if intrusions are detected 

•  Research question: Given the specification 
of a protocol, how to automatically detect 
misbehaviors and react to them? 

© Alysson Bessani. All rights reserved. 115 

Open  Problems:  
Time-‐‑bounded  State  Transfer	

•  Recall that the window of vulnerability of an 
intrusion-tolerant system is bounded by T 
o  Every T time units all replicas are rejuvenated 
o  Every replica must take no more than T/n time units to 

recover itself, i.e., take the following steps: 
•  Shutdown 
•  Chose a clean (and different) OS image 
•  Boot 
•  Fetch and validate service state 

•  Research question: How to bound the last step? 
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Open  Problems:  
Diversity  Management	

•  Research question: Assume we have a pool 
of diverse configurations for the system 
replicas, how to choose the best set? 
o  The idea is to minimize the number of shared 

vulnerabilities/bugs among any two replicas 
o  This is even more complicated if replicas change 

at runtime 

•  Besides that, diversity means management 
of complexity. How to deal with it? 
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Open  Problems:  
Confidential  Operation	

•  One intrusion → Data leaked 
•  Threshold crypto/secret sharing help in some cases, 

e.g., storage systems (Bessani et al, EuroSys’08) 
•  Homomorphic crypto can be solution  

SERVERS	CLIENTS	
store(k,v)	

read(k)	
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Open  Problems:  
Graceful  Degradation	

•  Our intrusion tolerance definition is very strict (all-or-
nothing) 

•  Research question: How to specify degraded 
behaviors for intrusion tolerant systems in general? 

•  Examples: What if … 
o  … there are more than f faulty replicas? 
o  … the system is completely asynchronous? 
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SMR  Programming  Model	
•  Basic client-server synchronous RPC 

reply  =  invoke(command);	

execute(command){	
        //change  state	
        return  reply;	
}	
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SMR  Programming  Model	
•  What about server-initiated communication? 

o  Client needs to poll the server for updates 

•  What about asynchronous RPC? 
o  Do a synchronous RPC at the client-side on a separated thread 

•  What about nested calls? 
o  Requires special support for the API 

•  What about multithreading? 
o  Remove it! 
o  The replication library provides nonces and timestamps for dealing 

with other sources of non-determinism 
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BFT-‐‑SMaRt	
•  Started in 2006, as a Byzantine Paxos 

implementation on the Neko simulator 
•  Later extended to be the replication layer of 

DepSpace (Bessani et al, EuroSys’08) 
•  Currently used/maintained by researchers in 

Portugal, Brazil and Germany 
•  Sponsored by: 
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FCT Fundação para a Ciência e a Tecnologia 



4/10/12	  

62	  

•  BFT-SMaRt design principles: 
o  Java-based (for security and correctness reasons) 
o  No optimizations that bring complexity 
o  Modularity 
o  Features: Extensible API, State Management, Reconfiguration 

 
•  Implements a protocol very similar to PBFT, but modular; 

Mod-SMaRt (Sousa & Bessani, EDCC’12) 

BFT-‐‑SMaRt	
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Dealing  with  Complexity	
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Features  X  Complexity	

SMR  Complexity	
(LoCs  &  Module	
dependencies)	

We  are  here!	

-‐‑  Java  instead  of  C++	
-‐‑  Avoid  overcomplicated  optimizations	
-‐‑   Number  of  lines  of  code:  8399	
    (PBFT:  ~20K  LoCC;  UpRight:  ~22K  LoJC)	
-‐‑  Number  of  classes/interfaces:  90	
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Modularity	
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BFT-‐‑SMaRt  Replica  
Architecture	

126 

Signature  are	
verified  here	

Send  to	
secure  sockets	

Receive  from	
secure  sockets	

Execute	
operation	

Protocol	
Core	

Timers  to  trigger	
regency  change	

1	

2	

3	

4	 5	

6	

7	

8	
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BFT-‐‑SMaRt  Software	
•  It is a library (.jar file) that must be linked with the 

client and the servers… 
•  There is no service/component that must be 

deployed or managed besides the BFT client and 
server 

•  Available at http://code.google.com/p/bft-smart/  
•  Current version: 0.7 

o  Many disruptive features are being integrated in the code 
o  API changes will happen 
o  Bugs remain 

o  Any help is welcome! 
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BFT-‐‑SMaRt  Software	

CounterClient 
+main() 

CounterServer 
+main() 

ServiceReplica 
+constructor() 

ServiceProxy 
+invoke() 

uses 

Config. 

Config. 

BFT-SMaRt.jar 

uses 
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Configuration	
•  A directory containing three things 

o  The keys directory with the process i privatekeyi file and publickeyj for 
every other process j 

•  In the future these keys will go to keystores/trustores 

o  hosts.config: IP:port of the n replicas 

  #id address port (0 to n-1 are replicas)  
  0 127.0.0.1 11000 
  1 127.0.0.1 11010 
  2 127.0.0.1 11020 
  3 127.0.0.1 11030 

o  Do not use consecutive ports (each replica uses its port p, plus p+1) 
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Configuration	
•  system.config: a Java properties file containing the 

system parameters 
 system.authentication.hmacAlgorithm = HmacSHA1 
 system.servers.num = 4 
 system.servers.f = 1   
 system.totalordermulticast.timeout = 12000000 
 system.totalordermulticast.highMark = 10000 
 system.totalordermulticast.maxbatchsize = 400   
 system.totalordermulticast.verifyTimestamps = false 
 system.totalordermulticast.state_transfer = true 
 system.totalordermulticast.checkpoint_period = 50 
 system.totalordermulticast.revival_highMark = 10 
 system.communication.useSignatures = 0 
 system.communication.useMACs = 1 
 system.initial.view = 0,1,2,3 
 system.debug = 0 
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BFT-‐‑SMaRt  Programming	
•  Client-side:  

o  ServiceProxy is the main class to be used 
o  Requests and replies are byte arrays (to avoid unnecessary overheads) 

 
    public class ServiceProxy extends ... {!

! !public ServiceProxy(int processId) ...!
!public ServiceProxy(int processId, !
! !String configHome,!
! !Comparator<byte[]> replyComparator, !
! !Extractor replyExtractor) ...!

!
!public byte[] invokeOrdered(byte[] request) ...!
!public byte[] invokeUnordered(byte[] request) ...!
!public void invokeAsynchronous(byte[] request, !
! !ReplyListener listener, int[] targets) ...!

    }!
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BFT-‐‑SMaRt  Programming	
•  Server-side: 

o  ServiceReplica is the main class 
o  It needs an implementation of Executable and Recoverable to work 

 
    public class ServiceReplica extends ... {!

!public ServiceReplica(int id,!
! !Executable executor, !
! !Recoverable recover) ...!
!public ServiceReplica(int id, String configHome,!
! !boolean isToJoin, Executable executor,!
! !Recoverable recover) ...!

!
!public void leave() ...!
!public ReplicaContext getReplicaContext () ...!

    }!
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BFT-‐‑SMaRt  Programming	
•  Server-side (cont.): 
 
    public interface Executable {!

!public byte[] executeUnordered(byte[] command,!
! !MessageContext msgCtx);!

    }!
    public interface SingleExecutable extends Executable {!

!public byte[] executeOrdered(byte[] command,!
! !MessageContext msgCtx);!

    }!
    public interface BatchExecutable extends Executable {!

!public byte[][] executeBatch(byte[][] command,!
! !MessageContext[] msgCtx);!

    }!
    public interface Recoverable {!

!public byte[] getState();!
!public void setState(byte[] state);!

    }!
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Creating  an  In-‐‑Memory  
KV-‐‑Store  with  BFT-‐‑SMaRt  	
•  Download BFT-SMaRt 0.7 from 

http://code.google.com/p/bft-smart  
•  (optional) Create a project in your favorite Java IDE 

and add dist/BFT-SMaRt.jar and other lib/*.jar to it 
•  Create a KVMessage class to represent the 

messages exchanged between clients and the 
replicas 

•  Create a KVServer class implementing the 
SingleExecutable and Recoverable interfaces, and 
using ServiceReplica 

•  Create a KVClient class using ServiceProxy 
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