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Byzan&ne Fault Tolerance Protocols

• Performance
• The racehorses: PBFT, Zyzzyva, Alyph, …

• Robustness
• Slow but steady: Prime, Aardvark, RBFT, …

• Resource efficiency 
• Strong assumptions: MinBFT, CheapBFT, XFT, …

• Scalability
• Blockchainers: HoneyBadger, FastBFT, SBFT, …



BFT-SMaRt
Sousa, Bessani. From Byzantine Consensus to BFT State Machine Replication: A 
Latency-optimal Transformation. EDCC’12.

Bessani, Sousa, Alchieri. State Machine Replication for the Masses with BFT-SMaRt. 
IEEE/IFIP DSN’14.



BFT-SMaRt
• Byzan7ne/Crash fault tolerant state machine replica7on library

• WriNen in Java, maintained and evolved during more than 10 years
• Available under Apache license: h"p://b'-smart.github.io/library/

• Key features: modularity, reconfigura7ons, robustness, performance
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Some Facts about BFT Consensus in WANs

• There’s not much experience with BFT consensus in produc7on on the 
internet

• Permissionless blockchains solve eventual consensus
• (as far as I know) There’s no BFT consensus in produc7on on the Internet

• Stellar and Ripple is the closest we have…
• Even CFT systems (Paxos, RAFT) are rarely used in this context

• Decentraliza7on and fault independence requires BFT consensus peers 
to be deployed on different sites

• Otherwise, it is difficult to jus7fy the use of BFT?



Some Facts about BFT Consensus

• Node-scalability is not always required for BFT
• Current consor7ums typically are small (10s of peers)

• Libra implements classical state machine replica7on
• It aims to 100 validators at launch

• Most permissioned systems tend to isolate consensus in a subset of peers

ConsensusValidator

Client
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• Open-source blockchain project targe7ng (at least 
ini7ally) the financial market

• Key idea: there is no shared global ledger
• Instead, there are many distributed ledgers
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“Facts” shared by
Alice and Bob

“Fact” shared by Ed, 
Carl and Demi



Notary

• Notary implements a key-value store that register all state 
“consumptions” 

• Some specific transaction validation might be executed
• Multiple notaries might be used
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Geographically-Scalable BFT



Issues with Geo-Replication

• Different administra7ve domains
• Performance diversity

• Across replicas
• Across 7me

• Throughput can be improved with 
beNer networks

• Latency requires protocol 
opImizaIons

• Speed of light is the network limit
• Latency propor7onal to the roundtrip 

to a fast quorum

Quorum Replica7on



Classic vs Fast Paxos

Flavio Junqueira, Yanhua Mao, and Keith Marzullo. Classic Paxos vs. fast Paxos: caveat emptor. 
Proc. of the 3rd workshop on on Hot Topics in System Dependability (HotDep'07). 2007.

Classic Paxos Fast Paxos
Comm. steps 3 2

Number of replicas 2t + 1 3t + 1
Quorum size t + 1 2t + 1

Table 1. Summary of the Paxos protocols.
The number of communication steps con-
sider the case with no leader changes. As-
suming that at most t processes can fail,
the number of replicas corresponds to the
minimum degree of replication to guaran-
tee correctness, and the quorum size cor-
responds to the size of minimum subsets
of acceptors necessary for progress.

tors can then accept the proposed value (they may
not, for example, if there are multiple leaders). If
a learner learns that a majority of acceptors has
accepted the same value, it learns that the value
is chosen and it knows that consensus is reached.
In the steady state, it takes three communication
steps (client ! leader ! acceptor ! learner) for
a learner in Classic Paxos to learn the value.

Fast Paxos saves one communication step by al-
lowing clients to propose values directly to the ac-
ceptors (client ! acceptor ! learner). However,
to preserve safety, a larger quorum of acceptors is
necessary. Assuming a threshold model that a max-
imum of t servers can fail, a learner needs to know
that 2t + 1 acceptors have accepted the same value
for it to know consensus has been reached, while in
Classic Paxos the quorum size is t+1. This implies
that Fast Paxos requires at least 3t + 1 acceptors
while Classic Paxos requires only 2t + 1 acceptors.
In addition, Fast Paxos can su↵er from collisions,
which can happen when two or more clients send
proposals at nearly the same time, and acceptors re-
ceive these proposals in di↵erent orders. We do not
discuss collisions in this short paper, even though
the additional latency that arises from them can be
large. Table 2 summarizes these facts on Classic
and Fast Paxos.

3 Protocol analysis

Fast Paxos enables a learner to learn a new client
request in two communication steps, whereas Clas-
sic Paxos requires three. In this section, we analyze
the message latency of both flavors of Paxos, and we
only discuss the case in which at most one server is

faulty at any time. In this case, Classic Paxos re-
quires a minimal of three servers while Fast Paxos
requires four. We first introduce some notation. Let
lt(p1, p2) be the latency of a message sent from p1 to
p2 and pc(p1) be the processing time of an operation
in process p1. We also use smin{A,B,C} to denote
the second smallest value among A,B, and C, and
tmin{A,B,C, D} to denote the third smallest value
among A,B,C, and D.

We use the expression learning latency to denote
the time for a given learner to learn a new request.
For Classic Paxos, the learning latency is given by
the following expression:

learncp = lt(Client ,Leader) + pc(Leader)

+ smin{A1, A2, A3}

Ai = lt(Leader,Acceptor i) + pc(Acceptor i)

+ lt(Acceptor i,Learner), i 2 {1, 2, 3}

If we assume that the processing times are neg-
ligible, then we can simplify the previous equation
to the following:

learncp = lt(Client ,Leader) + smin{A1, A2, A3}

Ai = lt(Leader,Acceptor i)

+ lt(Acceptor i,Learner), i 2 {1, 2, 3}

For Fast Paxos, the equivalent expression is as
follows:

learnfp = tmin{A1, A2, A3, A4}

Ai = lt(Client,Acceptor i) + pc(Acceptor i)

+ lt(Acceptor i,Learner), i 2 {1, 2, 3, 4}

If we assume that the processing times are negli-
gible compared to message latencies, then we have
the following:

learnfp = tmin{A1, A2, A3, A4}

Ai = lt(Client,Acceptor i)

+ lt(Acceptor i,Learner), i 2 {1, 2, 3, 4}

To give an example in which Fast Paxos has a sig-
nificant probability of having a higher latency com-
pared to Classic Paxos, suppose that all servers are
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livers messages to receivers. Their relative perfor-
mance depends strongly on the variance of message
latency. In many real networks, the variance in mes-
sage latency is high due to tra�c variations and
non-deterministic scheduling of processes in a sin-
gle computer. Informally, this observation implies
that most of the time messages are delivered fast,
but occasionally messages take one or two orders of
magnitude more to be delivered.

In this section, we present simulation results on
the latency of Classic Paxos and Fast Paxos. The
simulator we use assumes that processing time is
negligible compared to message latencies, and con-
sequently the learning latency is the sum of the
message latencies. To simulate message latencies,
we considered traces obtained with NWS (Network
Weather Service [8]) in the GrADS testbed [2] over
the period between August and October of 2002.
These are traces of TCP connections between pairs
of machines. Each trace contains the time to estab-
lish a TCP connection, send four bytes, receive four
bytes, and close the connection.

Our simulator is trace-driven. We associate the
history between two computers in our dataset with
a channel of our simulator, and for every message
that crosses the channel, we obtain the latency for
this message from the associated history. Also, we
consider failure-free runs only, and we assume no
conflicts between di↵erent clients. Failure-free runs
should be the common case in many systems, and
collisions introduce extra complexity into our envi-
ronment not necessary to make our point. In fact,
had we considered collisions for Fast Paxos, the la-
tency for Fast Paxos would have been higher.

The case we present consists of a client and a set
of servers implementing Paxos, where the client is in
one site and all the servers are in another site. That
is, only the communication between the client and
the servers crosses a wide-area network. For this
scenario, we have selected two di↵erent sites A and
B from our dataset, and used the traces between
two machines in di↵erent sites, one in A and one in
B, and between pairs of machines in site B.

Figures 1 and 2 shows the cumulative fraction of
requests (y-axis) with a given latency (x-axis). The
latency of Figure 1 includes the time for a client to
send a request to the servers implementing Paxos,
the time for servers to exchange messages, and the
time for a learner to learn this request by receiving
accept messages from a quorum of acceptors. In
addition to the latency mentioned for the case of

Figure 1, the latency of Figure 2 also includes the
time to send a response back to the client.

In these figures, if we draw a vertical line at some
value of x0, then the two y values of the two points
in which this line crosses the curves correspond to
the fraction of instances that Classic Paxos and Fast
Paxos obtain a latency value x  x0. From the
learning curves, for values of x0 < 90ms, the frac-
tion of instances for which Classic Paxos obtain this
latency is larger compared to the same fraction for
Fast Paxos. The curves cross roughly at 90ms and,
for values of x0 > 90ms, the roles change, and the
fraction of instances that have latency x or smaller
is higher for Fast Paxos. The intuition for this re-
sult is as follows. Suppose we pick an instance of
Classic Paxos as a reference, and consider the la-
tency for a client request to reach the proposer. If
the latency for this message is low, then there is a
high probability that an instance of Fast Paxos us-
ing the same latency distribution is higher. This is
due to the variance in message latency. As there are
more messages from the client to the acceptors, the
probability that at least two messages have a higher
latency is significant compared to the request mes-
sage to the proposer in Classic Paxos. If the request
latency in Classic Paxos is high, then there is a high
probability that Fast Paxos is faster because it can
discard one message among all four sent to the ac-
ceptors if this message is too slow.
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Figure 1. Cumulative distribution compar-
ing Classic Paxos and Fast Paxos, learn-
ing latency.
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Comparison is made through 
trace-driven simula7ons using
latencies from 2002 obtained from 
the internet weather service.

Classic Paxos is faster than
Fast Paxos 60% of times



Quorum sizeLeader location

Experimental study conducted with BFT-
SMaRt on Planetlab and Amazon EC2
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(a) BFT Mode. (b) CFT Mode.

Fig. 6. Client latencies’ 50th/90th percentile when the leader is placed across
PlanetLab hosts.

The rationale behind these techniques is to make client-leader
communication faster, bringing down the end-to-end SMR
latency (see Fig. 1).

Setting: We deployed BFT-SMART in PlanetLab and
conducted several experiments considering different replicas
assuming the role of the leader. The hosts used were located
in Wroclaw, Madrid, Munich and London (not used in CFT
mode). Moreover, the experiment was repeated across Amazon
EC2, using replicas in Ireland, Oregon, São Paulo and Sydney
regions (Sydney was only used in BFT mode).

Results: Before launching this experiment, we expected
that, for any client, its latency would be the lowest when its co-
located replica were the protocol’s leader. However, as seen in
Fig. 6, the median and 90th percentiles of the latency observed
by the different clients do not change significantly when
the leader location changes. In particular, the 90th percentile
latency is, in general, lower when the leader was either in
Madrid or Wroclaw.

Since these results appeared to contradict the intuition of
[23], [24], [30], we repeated this experiment in Amazon EC2,
to find if this phenomenon is due to our choice of testbed.
Fig. 7 shows the results observed in each Amazon EC2 region.
As with the PlanetLab results, the latency observed by the
different clients do not present any significant change as we
change the leader location. However, having the leader in
Oregon results in a slightly lower 90th percentile for all clients,
both for BFT and CFT modes.

Main conclusion: Since the obtained results depict a
similar trend in the two different testbeds, we can assert that
co-locating clients with the leader does not necessarily improve
the latency of replicated state machines. On the other hand,
placing the leader in the host with better connectivity with the
remaining replicas can yield more consistent improvements.
More precisely, the benefit of reaching the leader faster is not
as important as hosting the leader in the replica with faster
links with others.

F. Discussion

The results presented in §III-B indicate that, as expected,
bypassing communication steps reduces client latency in BFT
SMR protocols. However, even though read-only (resp. specu-
lative) executions are up to 63% (resp. 35%) faster than stan-
dard executions, the benefits of tentative and fast executions
are not so impressive: about 20% and 10%, respectively. The
difference, as explained before, is due to the fact that fast
executions requires larger quorums than tentative execution,
which requires waiting for more messages (that can be slow

(a) BFT Mode. (b) CFT Mode.

Fig. 7. Client latencies’ 50th/90th percentile when the leader is placed across
Amazon EC2 regions.

in an heterogeneous environment such as a WAN). In the end,
tentative execution matches the theoretically expected benefits:
by avoiding 20% of the communication steps (see Fig. 2), we
did reduce latency to approximately 20%.

The results of §III-C and §III-D show that decreasing
the ratio between the number of expected messages and the
total number of replicas can decrease latency significantly,
especially for CFT replication. More specifically, clients that
wait less replies had a 90th percentile latency improvement
of up to 36% (resp. 11%) in CFT (resp. BFT) mode; and
adding more replicas to the system while maintaining the
same quorum size brings improvements of up to 72% (resp.
17%) in CFT (resp. BFT) mode. These results are mainly due
to the performance-heterogeneity of hosts and links in real
wide area networks: if the latency between all replicas were
similar and network delivery variance were small, the observed
improvements would be much more modest. Furthermore, they
are in accordance with other studies showing that using smaller
quorums may bring better latency than decreasing the number
of communication steps (e.g., [18]).

The results of §III-E indicates that having the leader close
to a client will not significantly reduce the SMR latency for
this client. This result is unexpected since several protocols
implement mechanisms such as rotating coordinator [23], [30]
and multiple proposers [24] to make each client submit its
requests to the closest replica. We found two main explanations
for this apparent contradiction. First, the heterogeneity of
real environments such as PlanetLab and Amazon EC2 make
optimizations for reducing latency less effective. In fact, the
authors of Mencius acknowledge that the protocol achieves
lower latency than Paxos only in networks with small latency
variances [23]. Second, in CFT mode, BFT-SMART clients
wait for replies from a majority of replicas to ensure lineariz-
ability due to the use of the read-only optimization. EPaxos,
Mencius and Paxos clients wait only for a single reply from
the leader. This means that client-leader co-location in these
protocols potentially reduce the latency in two communication
steps, while in BFT-SMART this reduction is in only one
(clients still need to wait for at least one additional reply).
Consequently, having a client co-located with the leader should
decrease the number of communication steps 25% in CFT
mode and 20% in BFT mode, while in Mencius and EPaxos
such theoretical improvement can reach 50%. Moreover, its
worth to point out that these benefits appear only in favorable
conditions. For example, EPaxos presents almost the same
latency of Paxos when under high request interference [24].

As a final remark, it is worth noting that our results show
that having a leader in a well-connected replica brings, in
general, more benefits than having clients co-located with

Summary:
- Leader in the best-connected site yields 

better results than employing a rotating 
or multiple leader(s) strategy

- Smaller quorums create opportunities 
for improving latency

Planetlab

AWS EC2

Planetlab



Our solution: WHEAT + AWARE
Sousa, Bessani. Separating the WHEAT from the Chaff: An Empirical Design for Geo-replicated 
State Machines. IEEE SRDS’15. 

Berger, Reiser, Sousa, Bessani. Resilient Wide-area Byzantine Consensus using Adaptive 
Weighted Replication. IEEE SRDS’19.



Classical BFT Replica&on

leader

N=4, f=1
Egalitarian quorums,
Any 3 out-of 4 replica



WHEAT: WeigHt-Enabled Ac&ve replicaTion

• Use optimizations that lead to significant latency reduction:
• Single leader in the best-connected site
• Tentative executions (from PBFT)
• Employs smaller quorums (weighted replication)

• Weighted replication: safe voting assignment scheme for SMR
• Uses Δ extra replica(s) for quorum formation
• Improves latency by enabling more choice upon quorum formation
• Needs a to preserve quorum intersection and tolerance to f faulty replicas



Weighted BFT Replica&on

2

1

2

1

1

5 votes, 3 replicas

N=4, f=1, Δ=1 (extra) Weighted quorums,
One set of 3 out-of 5 
and any set 4 out-of 55 votes, 4 replicas



Weighted BFT Replica&on

• Consistency: All quorums that hold Q votes intersect by at least one 
correct replica

• Availability: There is always a quorum available in the system that 
holds Q votes

• Safe minimality: There exists at least one minimal quorum in the 
system



CFT mode BFT mode

Input:
f and Δ

Output:
u and Vmax

Define the number of replicas u that 
hold Vmax > 1 votes, without violaIng f

Weighted BFT Replica&on



Size of fast quorums with different f and Δ
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AWARE: Adaptive Wide-Area REplication

• The environment of the system (i.e., network characteris7cs) may change at 
runIme (e.g., due to a DDoS aNack)

AWARE enables a geo-replicated consensus-based system 
to adapt to its environment!

The benefit of weighted replica7on 
depends on choosing an opImal 
weight configuraIon



AWARE Approach

• Self-Monitoring
• AWARE uses reliable self-monitoring as decision-making basis for adapting 

replicas‘ voting weights and leader position at runtime

• Self-Optimization
• AWARE continuously strives for consensus latency gains at runtime
• Changes weights and leader location to minimize consensus latency

Self-Monitoring Self-Optimization



Self-Monitoring: Measuring Latency

• Non-Leader’s Propose
• Periodically an alternately 

selected dummy leader 
broadcasts a dummy proposal

• Write-Response
• Replicas immediately respond by 

sending acknowledgments

• Each replica measures its point-to-point latency to other replicas for 
consensus protocol messages

ACCEPTACCEPT(DUMMY-)
PROPOSE

WRITE

P0

P1

P2

P3

Client

P4

Figure 4: Message flow of BFT AWARE (f = 1;� = 1).

B. AWARE Approach
Following a systematic approach, we develop customizable

variants of AWARE. In the following, we give a brief summary
of design decisions and configurable options.

Response to WRITE. In our approach, we expect each
correct replica i to measure the latencies of its point-to-
point links to every other replica and maintain a latency
vector Li = hli,0, ..., li,n�1i. We use the WRITE-RESPONSE1

messages to measure latencies between replicas. Further, the
response message needs to include a challenge, e.g., a number
which was beforehand randomly generated by the sender and
attached to the original protocol message. This way we can
guarantee that a replica has received the WRITE and that
Byzantine replicas cannot send responses to messages before
actually having received them.

Non-Leaders’ PROPOSE. The DUMMY-PROPOSE allows
measuring precisely the time non-leaders need to PROPOSE
batches of possibly large size to the rest of the system, where
we expect a difference in cases where the network becomes
the bottleneck. Non-leaders do not simultaneously propose
to avoid creating a high overhead to the system, degrading
its performance and counter-acting our goal of improving
the performance. We use a rotation scheme in which only
one additional replica simultaneously broadcasts a DUMMY-
PROPOSE along with the leader, proposing a dummy batch
in the same way as the leader does, but without starting a
new consensus instance and all replicas disregard the proposal.
Replicas reply with a PROPOSE-RESPONSE and include the
proposed batch in the response message. Using the DUMMY-
PROPOSE is optional as it introduces overhead to the system
(see §V-E) and it is also possible to approximate these latencies
using the measurements of WRITE-RESPONSE.

Figure 4 shows the message flow2 of AWARE utilizing all
monitoring messages. This yields the variant of AWARE with
the highest accuracy in leader selection. Furthermore, AWARE
defines the number of recent monitoring messages to be used
for computation of the latencies for each connected replica in
a configurable monitoring window.

Moreover, in AWARE each correct replica i periodically
reports its latency vector Li to all other replicas. Replicas do

1We do not need to use an ACCEPT-RESPONSE because the ACCEPT
phase has the same message pattern as the WRITE phase

2The message pattern of WHEAT/AWARE differs from BFT-SMaRt in the
use of tentative executions, an optimization that was introduced in PBFT [2].

this after some configurable synchronization period by dissem-
inating these measurements with total order (thus running con-
sensus on them) so that all replicas maintain the same latency
matrix after some specific consensus instance. We employ a
deterministic procedure for deciding a reconfiguration and use
the same monitoring data in all correct replicas (while it would
also be possible for replicas to have distinct views on the
measurements and then run consensus on possible actions).

Once replicas have synchronized measurements after a given
consensus instance, they employ the model we explain in
§IV-C to predict the best weight distribution and leader.
Replicas use a calculation interval defining the number of
consensus instances after which a calculation and possibly a
reconfiguration is being triggered.

Bounding monitoring overhead. We can arbitrarily de-
crease the monitoring overhead by specifying a parameter
! 2 [0, 1] that determines the maximum overhead induced by
the monitoring procedure. Implementation-level details such
as the frequency of sending specific monitoring messages
(e.g., DUMMY-PROPOSE) are automatically derived from !.
Frequent measurements provide more up-to-date monitoring
data and allow for faster reaction to environmental changes but
also negatively impact the maximum throughput (see §V-E).

C. Sanitization
All replicas maintain synchronized latency matrices MP

and MW for keeping measurements of PROPOSE and WRITE
latencies, both initially filled with entries

M [i, j] 
(
+1, if i 6= j

0, otherwise
(5)

M [i, j] expresses the latency of replica i to j as measured by
i. Further, replica i can update a row of these matrices with
its measurements LP

i and LW
i with total order by using the

invoke interface of BFT-SMaRt:

invokeOrdered(MEASURE, LP
i , L

W
i );

The updating process yields a matrix M , with M [i, j] = Li[j]
if replica i sent its measurements within the last calculation
interval c of measurement rounds, or a missing value (+1)
if it did not send any measurements within the last c rounds.
We sanitize both matrices immediately before the calculations
happen to mitigate the influence of malicious replicas.

We do that by exploiting the symmetry characteristic of
replica-to-replica latencies and let replicas have a pessimistic
standpoint on measurements. They use the pairwise larger
delay in calculations so that replicas cannot make themselves
appear faster. This procedure yields

M̂ [i, j] = max (M [i, j],M [j, i]) (6)

Figure 5 presents an example. This way, Byzantine replicas
cannot fraudulently improve their link latency to any correct
replica, and they also cannot blame (worsen a link latency
to) a correct replica without being contributed a bad latency
themselves. Still, in case of f > 1, Byzantine replicas may

4



Self-Monitoring: Consolidating Measurements

• Replicas periodically disseminate their measurements to others with 
total order un7l they have the same latency matrices

• AWARE maintains synchronized matrices for both PROPOSE and 
WRITE latencies MH P and MH W used for decisions later



Self-Op&miza&on

• With the same matrices MH P and MH W the replicas can solve
determinisIcally the following op7miza7on problem:

• All correct replicas reach the same, op7mal weight 
distribu7on and invoke a reconfigura7on in the system



Evalua&on of WHEAT and AWARE



Setup

• AWARE is implemented on top of 
WHEAT, which is based on BFT-SMaRt

• For evalua7on, we use the Amazon 
AWS cloud, using EC2 instances of 
t2.micro type with 1 vCPU, 1 GB RAM 
and 8 GB SSD volume

• We select regions Oregon, Ireland, 
Sydney, São Paulo and Virginia for 
instances (1 client and 1 replica on 
each instance)

• Clients simultaneously send 1kB-
requests across all sites



Clients’ Request Latency

Observations
• The best configuration (<4,0>) performs about 39% faster than the median 

(<3,4>), 64% faster than the worst (<2,1>)
• Tuning voting weights can reduce latency (see configs. with the same leader)
• Leader relocation may be necessary for achieving optimal consensus latency

Average latencies of all clients and 20 configurations
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Figure 7: Measured average request latency of 11th to 90th percentile across clients in different regions.

Figure 8: Comparison between predicted consensus latency, measured consensus latency and clients’ observed request latency.

do not have high hardware requirements for our latency exper-
iments, we use the t2.micro instance type, which is equipped
with 1 vCPU, 1 GB of RAM and 8 GB standard SSD volume
(gp2). We use WHEAT in the Byzantine fault model with
f = 1 and � = 1 additional spare replicas. Further, we select
the (numbered) regions (0) Oregon, (1) Ireland, (2) Sydney, (3)
São Paulo and (4) Virginia. In each region we start one virtual
machine (VM) to construct our world-spanning replicated
system. Every VM carries a replica and a client which conduct
latency measurements. Consensus latency defines the time
between a leader sending a proposal and it being decided.
Request latency is the time between a client sending a request
and receiving enough replicas’ responses to accept the result.
Replicas measure the average consensus latency of a 1000
consensus instances sample. Clients simultaneously send at
least 1000 requests each and continue sending requests until
each client has finished its measurements. A client request
arriving at the leader replica may wait for some time until it
gets included in a batch when there is currently a consensus
instance running. We use synchronous clients that wait for the
result and send the next request after waiting for a random time
interval between 0 and 150 ms. Further, clients compute the
average latency from the 11th to 90th percentile (to mitigate
the influence of outliers) of perceived request latencies.

A. Margin of Latency Variations of Different Configurations

We start by justifying the question whether a dynamic ap-
proach to self-reliantly finding a well-performing configuration
is needed by showing the gap between different WHEAT
configurations. Figure 7 illustrates the observed client latencies
for different regions. Each configuration is represented by a
tuple hL,RVmaxi where L is the leader and RVmax is the
other replica (besides the leader) that has a voting weight of
Vmax = 2. Each number corresponds to a region as explained
in the setup and Figure 7. We notice a big difference between

the configurations. The best configuration is h4, 0i showing a
latency (avg. across all clients) of 359.78 ms, the left median
configuration h3, 4i performs in 499.06 ms and the worst
configuration h2, 1i requires 589, 56 ms. The best WHEAT
configuration is 38.7% faster than the median and 63.9% faster
than the worst configuration. Further, we make four important
observations:

(1) Tuning voting weights can reduce latency: the adjust-
ment of weights is a promising optimization to reduce the
latency even if the leader is fixed (see different configurations
with the same leader).

(2) Leader selection may be necessary for optimal latency:
a leader in Sydney or São Paulo is not well connected enough
to the rest of the system. Relocation can improve the latency
observed by all clients.

(3) Co-located clients achieve slightly better latency: a
client co-located with the leader tends to observe lower request
latencies than other clients within a specific configuration.
Still, this does not necessarily imply a pareto-optimum: a
client in Sydney observes 492.19 ms in h2, 1i (co-located
with the leader) while it achieves its best results (among all
configurations) in h0, 4i with 403.46 ms.

(4) A global optimum does not exist but a few pareto-optimal
configurations dominate poorer performing configurations.

B. Accuracy of Consensus Latency Prediction
Our approach aims at finding a configuration with minimal

leader consensus latency. Our prediction model (Algorithm 1)
lets us compute these latencies for all configurations.

We compare our model prediction with the actual consensus
latency of the leader that we measured for every configuration
during our experiment (see Figure 8). For these configurations,
our predictions are off by 1.08% on average. The highest
prediction error is for h4, 0i (3.22%). Since our prediction
relies on latency measurements which are subject to smaller

7
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Figure 9: Runtime behavior of AWARE.

variations, we argue that these results are reasonable for
choosing a well-performing configuration – however, AWARE
might not always choose the actual best configuration but
decide for some configuration that is close to the optimum.

In our example, AWARE will pick any configuration of
h0, 1i, h0, 4i, h1, 0i, h1, 4i, h4, 0i or h4, 1i for which it predicts
a leader consensus latency of 143.52 ms amortized over 1000
consensus rounds. In our experiment, the measured latencies
for these optimal candidates are between 141.30 ms (h1, 0i)
and 148.31 ms (h4, 0i). If there is an optimal configuration
containing the current leader, AWARE preferably chooses it
over configurations where a leader change is necessary. On a
side note, the median predicted leader’s consensus latency is
202.26 ms (h3, 4i) and the worst is 270.50 ms (h2, 1i).
C. Clients’ Observed Request Latency

Figure 8 also shows the clients’ observed request latency
(average across all sites) for all configurations and compares
them with both model predictions and measurements for
consensus latency.

As expected, consensus speed contributes to total latency.
We notice a positive correlation ⇢(LMP , LCR) = 0.961 be-
tween our series (over all configurations) of model predictions
for leader consensus latency LMP and the measurement series
of average clients’ request latency LCR, indicating that faster
consensus is beneficial for geographically distributed clients.

D. Runtime Behavior of AWARE
We deploy AWARE in our usual setting and observe its

behavior during the system’s lifespan. Overall, the clients’
request latencies show high variations which is caused by
a waiting time of a request at the leader: since all clients
simultaneously send requests and the leader batches these, a
client request may wait until the current consensus finishes to
get into the next batch, which takes a varying time depending
on how shortly the request arrived before the next consensus
can be started3. We induce events to evaluate AWARE’s
reactions (see Figure 9) to certain conditions, in particular:

3This is the reason the clients’ observed average request latencies are a
little more than twice as high as the consensus latency in Figure 8.

1) Action: We start AWARE in a low-performance configu-
ration h2, 3i with Sydney being the leader and Sydney and
São Paulo having maximum voting power.

2) Reaction: After a calculation interval of c = 500, AWARE
decides that Oregon and Ireland are faster and changes its
configuration to h0, 1i leading to latency gains observed
by all clients across all sites.

3) Action: We create network perturbations, in particular we
add an outgoing delay of 120 ms and 20 ms jitter to the
Ireland replica, thus making it slower (the client and replica
of Ireland are not co-located on the same VM).

4) Reaction: AWARE attributes one of the Vmax to São Paulo
while Ireland’s weight is reduced to Vmin. Clients observe
a small improvement in request latencies.

5) Action: We end the network delay for Ireland, thus the
network stabilizes and the communication links of Ireland
become just as fast as in the beginning of our experiment.

6) Reaction: AWARE notices this improvement and assigns
the Vmax of São Paulo back to Ireland since it predicts
latency gains for this configuration. After the reconfigu-
ration, clients observe faster request latencies identical to
what happened after the first reconfiguration (Event 2).

7) Action: We crash the leader Oregon (which has Vmax).
8) Reaction: Replicas’ request timers expire and BFT-SMaRt

triggers the leader change protocol: Ireland becomes the
next leader. Since fVmax voting power becomes unavail-
able, all remaining correct replicas are forced to use the
same quorum Qv (all 3 Vmin replicas and the leader).
Accordingly, clients observe higher request latencies.

9) Reaction: AWARE redistributes the Vmax to a former
Vmin replica, São Paulo, hence restoring some degree of
variability in quorum formation. Replicas now can form
smaller quorums. This leads to clients observing latency
improvements across all regions.

E. Maximum Throughput

For measuring maximum throughput, we change the instance
types to c5.xlarge (4 vCPU, 8 GB of RAM, 8 GB SSD)
and use 5 VMs in our usual regions to place replicas, and

8
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(b) Latency across clients before and after optimization*.

Figure 13: AWARE as self-adapting ordering service for Hyperledger Fabric leads to latency gains observed by frontends.

succession of the blocks and (3) validating a transaction, e.g.,
against application specific trust assumptions.

Integration of AWARE. Sousa and Bessani designed and
implemented a BFT ordering service for HLF on top of
BFT-SMaRt [5] that we also employ to integrate AWARE,
which, being an extension to BFT-SMaRt, assumes the same
interfaces. HLF provides a client interface to submit en-
velopes to an external ordering service (HLF consenter).
These are submitted to an Java frontend, which consists of a
client thread pool, receiver thread and an asynchronous BFT
Proxy (which is part of the client-side BFT-SMaRt library),
that invokes these envelopes: they are being broadcasted
to the ordering nodes and subsequently, ordered as they
pass through the total order mutlicast layer of BFT-SMaRt.
The ordering nodes extend BFT-SMaRt’s ServiceReplica class.
They receive a stream of totally ordered envelops and use a
blockcutter to aggregate them into blocks. Created and signed
blocks are distributed back to the BFT Proxy of all receiving
(listening) frontends by utilizing the Replier interface of
BFT-SMaRt. Once the BFT Proxy has gathered sufficiently
enough, equal and verified messages for a block, it can be
passed to HLF to be appended to the ledger.

Experimental Setup. In our experiments, we want to eval-
uate the AWARE ordering service for HLF, in particular,
the latencies for ordering envelopes, generating blocks and
receiving them back as observed by frontends located in
different AWS regions. We use a BFT f = 1 and � = 1
configuration and choose the regions Sydney (leader, V=2),
São Paulo (V=2), California (V=1), Tokio (V=1) and Stockholm
(V=1) to place a t2.micro instance. Each instance runs both
an ordering node and a frontend. An extra frontend runs
in Seoul. Frontends send sufficiently enough envelops (with
transaction message payload of size 100 Bytes) to satisfy a
throughput of at least 100 envelops/s in the system. The
ordering service is configured to create blocks containing 10
envelops and distribute created blocks to all frontends.

Observations. We show the envelope latencies as ob-
served by all of the frontends in Figure 13b. Roughly at
around block #900, AWARE reconfigures the system, shift-
ing the maximum voting power Vmax from São Paulo to
California. The runtime behavior from California’s perspec-
tive is shown in Figure 13a. This optimization results in a
latency improvement observed by all frontends (see Fig. 13b
for median and 90th percentile request latencies), e.g. the
median latency observed by Sydney (where the replica stays
leader) decreases from 830ms to 579ms which corresponds

to a speedup of 1.43. AWARE predicts the improvement
of the consensus latency from 323 ms to 180 ms after
the reconfiguration. Note, that latency gains that frontends
observe are actually higher than this 143 ms consensus
latency decrease. This is because an envelope received by
the ordering service might not immediately be proposed by
the leader, since the currently running consensus instance
needs to be finished first. This results in a random waiting
time of the envelope at the leader, whereby the expected
waiting time is roughly half of the consensus latency.

8 RELATED WORK

A variety of research touches the fields of SMR optimiza-
tions in WAN environments [14], [15], [19], [20], [21], [22]
and dynamic approaches for latency awareness [17], [23],
[24], [25]. Further, recent research efforts develop and refine
BFT consensus protocols for blockchains [26], [27], [28], [29],
[30], [31], [32], [33], [34] or researches on their integration
into an existing blockchain platform such as Hyperledger
Fabric [5], [6], [35].

WAN optimizations. Steward [15] is a hierarchical ar-
chitecture for scaling BFT replication in WANs. Multiple
replication groups (each group is located at a site and
runs Byzantine agreement) are geographically distributed
and groups are connected over a CFT protocol. Like our
approach, it uses additional spare replicas but with much
higher replication costs (4 replicas are needed at each site).
Mencius [19] is an approach for building efficient SMR
for WANs by employing a rotating coordinator scheme
where clients choose their geographically closest replica as
the coordinator. However, Mencius only supports the CFT
model because of its skipping technique. The idea of a
rotating leader in Mencius is later enhanced in the RAM
protocol [20] which additionally employs attested append-
only memory and assumes mutually suspicious domains to
achieve low latency SMR for uncivil WANs. In our work,
we assume the BFT model where clients do not trust their
local leaders. EBAWA [14] is a protocol that improves SMR
in WANs under a hybrid fault model. A trusted component
on the replicas allows reducing the number of replicas in
the system to 2f + 1 and the communications steps needed
for agreement to 2. It also uses a rotating leader technique
where clients send their requests to their local server. In
contrast, Egalitarian Paxos [21] allows all replicas to propose
and employs a mechanism for solving conflicts if operations
interfere. Clients choose a well-connected replica to propose
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Figure 13: AWARE as self-adapting ordering service for Hyperledger Fabric leads to latency gains observed by frontends.

succession of the blocks and (3) validating a transaction, e.g.,
against application specific trust assumptions.

Integration of AWARE. Sousa and Bessani designed and
implemented a BFT ordering service for HLF on top of
BFT-SMaRt [5] that we also employ to integrate AWARE,
which, being an extension to BFT-SMaRt, assumes the same
interfaces. HLF provides a client interface to submit en-
velopes to an external ordering service (HLF consenter).
These are submitted to an Java frontend, which consists of a
client thread pool, receiver thread and an asynchronous BFT
Proxy (which is part of the client-side BFT-SMaRt library),
that invokes these envelopes: they are being broadcasted
to the ordering nodes and subsequently, ordered as they
pass through the total order mutlicast layer of BFT-SMaRt.
The ordering nodes extend BFT-SMaRt’s ServiceReplica class.
They receive a stream of totally ordered envelops and use a
blockcutter to aggregate them into blocks. Created and signed
blocks are distributed back to the BFT Proxy of all receiving
(listening) frontends by utilizing the Replier interface of
BFT-SMaRt. Once the BFT Proxy has gathered sufficiently
enough, equal and verified messages for a block, it can be
passed to HLF to be appended to the ledger.

Experimental Setup. In our experiments, we want to eval-
uate the AWARE ordering service for HLF, in particular,
the latencies for ordering envelopes, generating blocks and
receiving them back as observed by frontends located in
different AWS regions. We use a BFT f = 1 and � = 1
configuration and choose the regions Sydney (leader, V=2),
São Paulo (V=2), California (V=1), Tokio (V=1) and Stockholm
(V=1) to place a t2.micro instance. Each instance runs both
an ordering node and a frontend. An extra frontend runs
in Seoul. Frontends send sufficiently enough envelops (with
transaction message payload of size 100 Bytes) to satisfy a
throughput of at least 100 envelops/s in the system. The
ordering service is configured to create blocks containing 10
envelops and distribute created blocks to all frontends.

Observations. We show the envelope latencies as ob-
served by all of the frontends in Figure 13b. Roughly at
around block #900, AWARE reconfigures the system, shift-
ing the maximum voting power Vmax from São Paulo to
California. The runtime behavior from California’s perspec-
tive is shown in Figure 13a. This optimization results in a
latency improvement observed by all frontends (see Fig. 13b
for median and 90th percentile request latencies), e.g. the
median latency observed by Sydney (where the replica stays
leader) decreases from 830ms to 579ms which corresponds

to a speedup of 1.43. AWARE predicts the improvement
of the consensus latency from 323 ms to 180 ms after
the reconfiguration. Note, that latency gains that frontends
observe are actually higher than this 143 ms consensus
latency decrease. This is because an envelope received by
the ordering service might not immediately be proposed by
the leader, since the currently running consensus instance
needs to be finished first. This results in a random waiting
time of the envelope at the leader, whereby the expected
waiting time is roughly half of the consensus latency.

8 RELATED WORK

A variety of research touches the fields of SMR optimiza-
tions in WAN environments [14], [15], [19], [20], [21], [22]
and dynamic approaches for latency awareness [17], [23],
[24], [25]. Further, recent research efforts develop and refine
BFT consensus protocols for blockchains [26], [27], [28], [29],
[30], [31], [32], [33], [34] or researches on their integration
into an existing blockchain platform such as Hyperledger
Fabric [5], [6], [35].

WAN optimizations. Steward [15] is a hierarchical ar-
chitecture for scaling BFT replication in WANs. Multiple
replication groups (each group is located at a site and
runs Byzantine agreement) are geographically distributed
and groups are connected over a CFT protocol. Like our
approach, it uses additional spare replicas but with much
higher replication costs (4 replicas are needed at each site).
Mencius [19] is an approach for building efficient SMR
for WANs by employing a rotating coordinator scheme
where clients choose their geographically closest replica as
the coordinator. However, Mencius only supports the CFT
model because of its skipping technique. The idea of a
rotating leader in Mencius is later enhanced in the RAM
protocol [20] which additionally employs attested append-
only memory and assumes mutually suspicious domains to
achieve low latency SMR for uncivil WANs. In our work,
we assume the BFT model where clients do not trust their
local leaders. EBAWA [14] is a protocol that improves SMR
in WANs under a hybrid fault model. A trusted component
on the replicas allows reducing the number of replicas in
the system to 2f + 1 and the communications steps needed
for agreement to 2. It also uses a rotating leader technique
where clients send their requests to their local server. In
contrast, Egalitarian Paxos [21] allows all replicas to propose
and employs a mechanism for solving conflicts if operations
interfere. Clients choose a well-connected replica to propose
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Figure 11: An heuristic can help to efficiently traverse the configuration space to find a good solution.

Algorithm 3: SimulatedAnnealing is a heuristic for
efficiently traversing the search space of configs D

Data: replica set I , system sizes n, f , u, �, latency matrices for
PROPOSE M̂P and WRITE M̂W , consensus id cid, start
temperature t0, cooling rate ✓, temperature threshold

Result: best (approx.) performing configuration found
1 c some c0 2 D
2 c.prediction predictLatency(I, x, M̂P , M̂W , n, f,�);
3 capprox  c
4 temp t0
5 random new Random(cid)
6 while temp > threshold do
7 /* Assign a Vmax to another replica */
8 replicaFrom c.Rmax[random.nextInt(u)]
9 replicaTo c.Rmin[random.nextInt(n� u)]

10 c0  c.swap(replicaFrom, replicaTo)
11 if replicaFrom is leader then
12 c0.setLeader(replicaTo)

13 c0.prediction predictLatency(I, y, M̂P , M̂W , n, f,�);
14 /* If new solution is better, accept it */
15 if c’.prediction < c.prediction then
16 c c0

17 else
18 /* Compute an acceptance probability */
19 rand random.nextDouble()

20 if exp(�(c0.prediction�c.prediction)
temp

) > rand then
21 c c0

22 if c0.prediction < capprox.prediction then
23 capprox  c0

24 /* Cool down the system */
25 temp temp · (1� ✓)

26 return xapprox

n 8 9 10 11 12 13 14 15 16 17
f 2 2 2 3 3 3 4 4 4 4
� 1 2 3 1 2 3 1 2 3 4

Table 1: Examplary system sizes.

simulated annealing algorithm uses c0 to proceed with its
search. However, if c0 worsens the function output, it can
still be used to proceed with some acceptance probability
which depends on the current temperature (a monotonous
decreasing value) and the energy of the solution, which is
essentially the difference between the predicted latency of
c0 and c. By accepting a temporary worsening, simulated
annealing can jump, that is, escape from a local optimum to
find the global optimum. However, these jumps become less
frequently with decreasing temperature. The exit condition
for these kind of search can be implemented, e.g., by using
a temperature threshold. This guarantees termination if

the temperature decreases at a fixed rate. Since simulated
annealing is a probabilistic algorithm, it needs to generate a
sequence of random numbers during its execution. Because
we want to guarantee that replicas deterministically find a
consistent solution, we need to employ a pseudo random
number generator PRNG(s) which generates the same se-
quence of random numbers in all replicas given the same
input seed s. We let replicas use the consensus id (replicas
decide on a possible reconfiguration at specific consensus
instances) as seed for generating these numbers.

Computation time. We evaluated the average time a
replica needs to find a solution on an Intel i7-4790 @3.60
Ghz processor using 1000 randomly generated setups for
simulation for each system size n. Figure 12c compares the
time needed to find a solution between two strategies, Sim-
ulated Annealing (SA) and Exhaustive Search (ES) for different
system sizes (see Table 1). As expected the time needed by
ES grows exponentially if n increases. SA only computes
through a constant number of configurations, however the
time still increases as the PredictLatency function needs
more time so predict the latency of larger systems since it
essentially is a simulation of the consensus protocol run.
To be precise, the time complexity of PredictLatency is
O(n2log(n)) because every replica maintains an priority
queue of messages (ordered by ascending arrival time) as
a min heap which takes O(nlog(n)) time to construct and
we need to consider each of the n replicas during the
simulation. The constant number of configurations that SA
examines, depends on the chosen parameters for start tem-
perature, temperature threshold and the cooling schedule.
In total, the time complexity of SA is in O(n2log(n)).

Approximation quality. Further, we validate the quality
of our heuristic SA by comparing the predicted latency of
the approximate solution it finds to the optimum found by
ES and a third strategy, PickSample, which samples through
the configuration space in equal steps and probes the same
number of configurations as SA does. We compute the
average deviation from the optimum by simulating a set of
1000 randomly generated setups. Figure 12c shows that the
predicted latencies of solutions found by SA are on average
less than 1.02 higher than the optimum found by ES. It is
noteworthy, that a generic algorithm like SA performs better
than naive sampling as solutions found by PickSample have
higher derivation from the optimum (up to 1.05).

In the next step, we conduct experiments on the Ama-
zon AWS cloud infrastructure to evaluate how adaptive
weighted replication behaves for systems with larger replica
sizes than the f = 1, n = 5 setup which was evaluated in
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Algorithm 1: formQV computes the times replicas
form weighted quorums of Qv = 2fVmax+1 votes.

Data: replica set I , latency matrix M̂W , times T current

i2I
and

voting weights Vi2I

Result: times Tnext

i2I
replicas advance to next protocol stage

1 for i 2 I do
2 receivedi  new PriorityQueue()
3 for j 2 I do
4 receivedi.add(hT current

j
+ M̂W [j, i], Vji)

5 for i 2 I do
6 votes 0
7 while votes < Qv do
8 hTnext, Vnexti  receivedi.poll()
9 votes votes+ Vnext

10 Tnext

i
 Tnext

11 return Tnext

i2I

then computes for every replica the time it has gathered
enough voting power Qv to, e.g., proceed from WRITE
to ACCEPT phase (lines 5-10). This works by letting each
replica pull from a priority queue, in which incoming mes-
sages are sorted by ascending arrival time and accumulate
the voting weights until Qv is reached. The arrival time
of the last message, necessary to reach this quorum, deter-
mines the time a replica can proceed to the next protocol
stage.

Algorithm 2 is used to predict the leader’s consensus
latency for a given configuration by simulating the consen-
sus protocol run. It first computes the times each replica
receives the leader’s proposal (line 3-4), then it uses Al-
gorithm 1 as building block to compute the times replicas
complete the WRITE (line 5) and ACCEPT (line 6) stage,
respectively. Further, this algorithm computes the amortized
leader consensus latency over multiple rounds r. Note that
replicas achieve consensus at different times (as can be seen
in Figure 6) and if the difference between the time leader
p decides and the time replica i decides is greater than
the propose latency M̂P [p, i], then replica i might receive
a PROPOSE for the next consensus instance but wait for
its last consensus to finish before broadcasting its WRITE.
This might throttle the leader but only if he uses i in its
quorum as the Qvth quorum formation speed determining vote.
We consider this in our calculations for a sequence of rounds
by computing offsets (additive times other replicas need to
finish their consensus relative to the leader).

An AWARE configuration defines the weight configu-
ration and selects a leader. Hence, the number of possible
configurations is the number of weight configurations mul-
tiplied with the number of possible leaders (Vmax replicas):

 
3f + 1 +�

2f

!

· 2f =

Q3f+1+�
i=2f i

(f + 1 +�)!
(8)

This yields 20 possibilities for a n = 5, f = 1,� = 1 system
and 504 possibilities for a n = 9, f = 2,� = 2 system.
Traversing the entire search space of possible configurations
becomes unfeasible for large f . However, (1) BFT systems
typically run with tens of nodes and (2) if larger systems
are needed, we can employ heuristics for approximating the
optimum (e.g., simulated annealing) using PredictLatency to
determine the goodness of a found solution. Since we want

Figure 6: Computing the latency of a WHEAT consensus
(here: BFT mode, f = 1,� = 1) for a given configuration.

Algorithm 2: PredictLatency computes the consen-
sus latency (amortized over multiple rounds)

Data: replica set I , leader p, system sizes n, f , �, weight
config. W = hRmax , Rmin i, latency matrices for
PROPOSE M̂P and WRITE M̂W , consensus rounds r

Result: consensus latency of the AWARE leader

1 Vmax  1 + �
f

Vmin  1 Vi  
(
Vmax, if i 2 Rmax

Vmin, otherwise
2 while r > 0 do
3 for i 2 I do
4 TPROPOSED

i
 max(M̂P [p, i], oSeti)

5 TWRITTEN

i2I
 formQV (I, M̂W , TPROPOSED

i2I
, Vi2I)

6 TACCEPTED

i2I
 formQV (I, M̂W , TWRITTEN

i2I
, Vi2I)

7 for i 2 I do
8 oSeti  TACCEPTED

i
� TACCEPTED

p

9 consensusLatenciesr  TACCEPTED
p

10 r  r � 1

11 return average of consensusLatencies

AWARE to be practical in systems of larger sizes, we explain,
implement and validate such an approach in Section 6.

5 EVALUATION

Throughout this section, we (1) experimentally quantify
the margin of latency variations among different WHEAT
configurations, (2) compare our model prediction for con-
sensus latency with real-world measurements in terms of
accuracy, (3) determine the correlation between consensus
latency and measured request latency observed by clients
across multiple regions, (4) evaluate the run-time behavior
of AWARE when carrying out self-optimizations, (5) evalu-
ate the maximum throughput of AWARE and investigate the
monitoring overhead induced by the DUMMY-PROPOSE,
and (6) reason about the system behavior in the presence of
faulty replicas.

Number of weight distribution possibilities

Possible leader locaIon
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Figure 11: An heuristic can help to efficiently traverse the configuration space to find a good solution.

Algorithm 3: SimulatedAnnealing is a heuristic for
efficiently traversing the search space of configs D

Data: replica set I , system sizes n, f , u, �, latency matrices for
PROPOSE M̂P and WRITE M̂W , consensus id cid, start
temperature t0, cooling rate ✓, temperature threshold

Result: best (approx.) performing configuration found
1 c some c0 2 D
2 c.prediction predictLatency(I, x, M̂P , M̂W , n, f,�);
3 capprox  c
4 temp t0
5 random new Random(cid)
6 while temp > threshold do
7 /* Assign a Vmax to another replica */
8 replicaFrom c.Rmax[random.nextInt(u)]
9 replicaTo c.Rmin[random.nextInt(n� u)]

10 c0  c.swap(replicaFrom, replicaTo)
11 if replicaFrom is leader then
12 c0.setLeader(replicaTo)

13 c0.prediction predictLatency(I, y, M̂P , M̂W , n, f,�);
14 /* If new solution is better, accept it */
15 if c’.prediction < c.prediction then
16 c c0

17 else
18 /* Compute an acceptance probability */
19 rand random.nextDouble()

20 if exp(�(c0.prediction�c.prediction)
temp

) > rand then
21 c c0

22 if c0.prediction < capprox.prediction then
23 capprox  c0

24 /* Cool down the system */
25 temp temp · (1� ✓)

26 return xapprox

n 8 9 10 11 12 13 14 15 16 17
f 2 2 2 3 3 3 4 4 4 4
� 1 2 3 1 2 3 1 2 3 4

Table 1: Examplary system sizes.

simulated annealing algorithm uses c0 to proceed with its
search. However, if c0 worsens the function output, it can
still be used to proceed with some acceptance probability
which depends on the current temperature (a monotonous
decreasing value) and the energy of the solution, which is
essentially the difference between the predicted latency of
c0 and c. By accepting a temporary worsening, simulated
annealing can jump, that is, escape from a local optimum to
find the global optimum. However, these jumps become less
frequently with decreasing temperature. The exit condition
for these kind of search can be implemented, e.g., by using
a temperature threshold. This guarantees termination if

the temperature decreases at a fixed rate. Since simulated
annealing is a probabilistic algorithm, it needs to generate a
sequence of random numbers during its execution. Because
we want to guarantee that replicas deterministically find a
consistent solution, we need to employ a pseudo random
number generator PRNG(s) which generates the same se-
quence of random numbers in all replicas given the same
input seed s. We let replicas use the consensus id (replicas
decide on a possible reconfiguration at specific consensus
instances) as seed for generating these numbers.

Computation time. We evaluated the average time a
replica needs to find a solution on an Intel i7-4790 @3.60
Ghz processor using 1000 randomly generated setups for
simulation for each system size n. Figure 12c compares the
time needed to find a solution between two strategies, Sim-
ulated Annealing (SA) and Exhaustive Search (ES) for different
system sizes (see Table 1). As expected the time needed by
ES grows exponentially if n increases. SA only computes
through a constant number of configurations, however the
time still increases as the PredictLatency function needs
more time so predict the latency of larger systems since it
essentially is a simulation of the consensus protocol run.
To be precise, the time complexity of PredictLatency is
O(n2log(n)) because every replica maintains an priority
queue of messages (ordered by ascending arrival time) as
a min heap which takes O(nlog(n)) time to construct and
we need to consider each of the n replicas during the
simulation. The constant number of configurations that SA
examines, depends on the chosen parameters for start tem-
perature, temperature threshold and the cooling schedule.
In total, the time complexity of SA is in O(n2log(n)).

Approximation quality. Further, we validate the quality
of our heuristic SA by comparing the predicted latency of
the approximate solution it finds to the optimum found by
ES and a third strategy, PickSample, which samples through
the configuration space in equal steps and probes the same
number of configurations as SA does. We compute the
average deviation from the optimum by simulating a set of
1000 randomly generated setups. Figure 12c shows that the
predicted latencies of solutions found by SA are on average
less than 1.02 higher than the optimum found by ES. It is
noteworthy, that a generic algorithm like SA performs better
than naive sampling as solutions found by PickSample have
higher derivation from the optimum (up to 1.05).

In the next step, we conduct experiments on the Ama-
zon AWS cloud infrastructure to evaluate how adaptive
weighted replication behaves for systems with larger replica
sizes than the f = 1, n = 5 setup which was evaluated in

0.2 secs

37 secs

2%
worse
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(c) f = 3 configuration.

Figure 12: Latency results of AWARE experimentally tested in larger scale setups.

Section 5. In particular, we want to investigate if for a fixed
size of f , adding additional spare replicas can actually lead
to latency gains observed by clients across the world.

Setup. We use the Amazon AWS infrastructure and the
same overall setup as in Section 5 to do our measurements
but add more regions to place our replicas (see Table 12a).
Here, for both f = 2 and f = 3 we start with an initial
replica set and then repeat the experiment with increased
system sizes where the additionally added spare replicas
serve as �-replicas used to improve the consensus latency
of the system. These replicas are added to the system con-
figuration in the order in which they appear in Table 12a.
Replicas use AWARE to self-optimize. Even for a � = 0
configuration, where all replicas have equal weight, AWARE
still automates the selection of the leader position, hence
choosing the best leader for the given environment. AWARE
is configured to self-optimize after every 500 consensus
instances. Moreover, we locate 5 clients in different regions
across the globe, namely in Mumbai, São Paulo, Paris, Ohio
and Sydney. Each system environment is tested by clients
first sending 500 requests for a warm-up phase to make sure
AWARE has adapted to a fast-performing configuration.
Then, clients measure request latency as the median of 1000
observed requests which they simultaneously send.

Observations. Figure 12b and Figure 12c show the results
for the f = 2 experiments with system sizes between 7
and 11 replicas and the f = 3 experiments with system
sizes between 10 and 14 replicas respectively. For the f = 2
experiments we observe that after adding Virgina as addi-
tional replica, the average of request latencies over all clients
improves from 553.3 ms to 504.5 ms, and further adding
Ireland to the system results in an average of 336.9 ms.
Adding even more replicas (� = 3 or � = 4) does not yield
further substantial gains. Moreover, for the f = 3 experi-
ments we observe that after adding Frankfurt, the average
latency of all clients improves from 619.3 ms to 540.9 ms.
Interestingly, the latency which the client in Mumbai ob-
serves slightly increases. This is due to the fact that Mumbai
is leader in the � = 0 configuration but another replica
becomes leader in the � = 1 configuration and co-residency
with the leader is beneficial for a client. As we add more
replicas, the average latency of clients improves further,
in particular 536.8 ms (adding Virginia), 419.3 ms (adding
Ireland) and 401.7 ms (adding Frankfurt). We conclude that
adaptive weighted replication can improve the latency of
geographically-scalable BFT consensus as assigning high
voting power to fast replicas supports the emergence of

fast quorums in the system. Fast consensus generally is
beneficial for clients, however other factors exist, e.g., being
located near the protocol leader.

7 INTEGRATION OF AWARE INTO THE HYPER-
LEDGER FABRIC BLOCKCHAIN PLATFORM

To illustrate a practical use case for the AWARE protocol,
we show that it can be employed as a building block for dis-
tributed ledger infrastructures. As an example, we implant
AWARE into the Hyperledger Fabric (HLF) [6] blockchain
platform as a self-adapting ordering service. Specifically, its
task is to repetitively achieve agreement on which block
is appended next to the blockchain. Our protocol is par-
ticularly tailored as consensus substrate for blockchain in-
frastructures that (1) are geographically decentralized with
ordering nodes being spread across different regions in the
wide-area network, (2) adopt Byzantine fault-tolerance and
(3) want to achieve adaptivness to their environments.

Hyplerledger Fabric. Hyperledger Fabric [6] is a modular
and extensible open-source4 blockchain platform which as-
sumes the permissioned blockchain model. Its core innova-
tion is to provide an abstraction and separation of different
concerns, which manifest in distinct building blocks. The
ledger is a totally ordered, append-only blockchain main-
tained by the endorsing peers that execute transactions, thus
generating endorsements (result of an execution against the
current state, specifically the read and write sets). Clients
verify and assemble endorsements into signed envelopes,
which contain the endorsing peers’ read and write sets
and submit these envelopes to a separate ordering service.
The stateless ordering service is used to atomically broadcast
blocks to endorsement peers. This service creates a total or-
der of transactions by running consensus among the ordering
nodes which create a sequence of blocks of ordered envelops.
Each newly created block is then disseminated to the receiv-
ing endorsing peers which appended it to the ledger. In HLF,
the notion of membership is flexible: a membership service
provider manages the mapping of node identities to their
public keys. Smart contracts are called chaincodes in HLF.
They run isolated in an container environment and can’t
directly access the ledger state. Fabric introduces the execute-
order-validate pardigm which seperates the transaction flow
into (1) confirming the correctness of a transaction, execut-
ing it, and outputing an endorsement, (2) using a consensus
protocol to order transactions by reaching agreement on the

4. https://gerrit.hyperledger.org/r/admin/repos/fabric



Summary: WHEAT + AWARE

• Ease of deployment
• AWARE provides the needed automation for finding an optimal configuration 

by tuning voting weights and/or relocating the leader

• Adjust to varying conditions
• AWARE dynamically adjusts to changing conditions by shifting high voting 

power to replicas that are the fastest in a recent time frame

• Compensate for faults
• AWARE detects (non-malicious) high-weight replicas failures and restores the 

availability of up to f (Vmax− Vmin) voting power by redistributing high weights

• Ultimately, it is a way to deal with heterogeneity
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