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A view of permissioned blockchains

• Decentralized trusted networked services
• Blockchains are instances of that…

• Distributed trust on the Internet (Cachin’01)
• Systems that don’t trust any single entity

• Intrusion-tolerant systems (Fraga & Powell’85)
• Requires Byzantine Fault-Tolerant (BFT) consensus
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• Open-source, modular, permissioned
• Architecture: not all “peers” are equal
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• Ordering node state: 
• the ordered transactions not yet in a block,
• header of the last generated block, and 
• latest configuration block
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…Workload
by Clients

Tx size

Cluster size

Block size
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Receiving
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Ordering Service

• Open-source blockchain project targeting (at least initially) 
the financial market

• Key idea: there is no shared global ledger
• Instead, there are many distributed ledgers
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“Facts” shared by
Alice and Bob

“Fact” shared by
Ed, Carl and Demi
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• Only participants of a transaction have to execute and validate it
• A transaction is committed only if it achieve

• Validity consensus: all involved participants need to 
validate and sign the transaction

• Uniqueness consensus: requires a notary service
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Notary

• Notary implements an key-value store that register all state 
“consumptions” 

• Some specific transaction validation might be executed
• Multiple notaries might be used
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NotaryNotary

NotaryNotary

Consensus
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Consensus

Validator

Client

State Machine Replication

Safety: all replicas execute the same sequence of transactions
Liveness: transactions issued by correct clients are answered
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Total Order Multicast
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BFT-SMaRt [DSN’14] (http://bft-smart.github.io/library/)
• State machine replication middleware written in Java 

(“seriously” developed and maintained since 2010)
• Can be configured to tolerate only crashes
• Available under Apache license
• Similar to PBFT in normal case, but it isn’t PBFT
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Other protocols: MinBFT [IEEE TC’13]
(https://github.com/hyperledger-labs/minbft)

• Leverages trusted computing to constraint adversarial 
behaviour (i.e., requires TPM or SGX)

• Requires the same number of replicas, comm. steps and 
message complexity than crash protocols (e.g., Paxos, Raft)
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http://bft-smart.github.io/library/
https://github.com/hyperledger-labs/minbft
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Other protocols: HotStuff [PODC’19] (Libra)
• Linear message/authenticator complexity
• Responsiveness (as all ”classical” BFT protocols)

• It’s possibly simpler than other BFT protocols
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BFT-SMaRt Performance (gigabit LAN, no disks)

Experimental Setup: Unless stated otherwise, all ex-
periments ran with three (CFT) and four (BFT) replicas
hosted in separate machines. Up to 1600 client processes
were distributed uniformly across another four machines.

Clients and replicas were deployed in JRE 1.7.0_21
on Ubuntu Linux 10.04, hosted in Dell PowerEdge R410
servers. Each machine has 32 GB of memory and two quad-
core 2.27 GHz Intel Xeon E5520 processor with hyper-
threading, i.e., supporting 16 hardware threads. All machines
communicate through an isolated gigabit Ethernet network.

Micro-benchmarks: We start by reporting the results of
a set of micro-benchmarks commonly used to evaluate state
machine replication systems. Such benchmarks consist of an
“empty” service implemented with BFT-SMART to perform
raw throughput calculations at the server side and latency
measurements at the client side. Throughput measurements
were gathered from the leader replica, while latency results
from one of the clients (always the same).

Figure 4 presents results for both BFT and CFT setups
of BFT-SMART considering different request/reply sizes:
0/0, 100/100, 1024/1024 and 4096/4096 bytes. In the figure
it is possible to see that the CFT protocol consistently
outperforms its BFT counterpart. This happens due to the
smaller number of messages exchanged in the CFT setup,
which results in less work per client request for the replicas.
Furthermore, as expected, as the payload size increases,
BFT-SMART overall performance decreases.

Figure 4. Latency vs. throughput configured for f = 1.

Fault-scalability: Our next experiment considers the
impact of the number of replicas on the throughput of the
system with different payloads. Figure 5 reports the results.

For all configurations, the results show that the perfor-
mance of BFT-SMART degrades graciously as f increases,
both for CFT and BFT setups. This happens because: (1) it
exploits the many cores of the replicas (which our machines
have plenty) to calculate MACs; (2) only the n� 1 PRO-
POSE messages of the consensus protocol contain batches
of messages (the other 2n(n�1) messages exchanged during
consensus only contain the hash of the batches); and (3)

we avoid the use of IP multicast, which is know to cause
problems with many senders (e.g., multicast storms) [17].

It is also interesting to see that, with relatively big requests
(1024 bytes), the difference between BFT and CFT tends to
be very small, regardless of the number of tolerated faults.
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Figure 5. Throughput of BFT-SMART (Kops/s) for CFT (n =
2 f +1) and BFT (n= 3 f +1) for different workloads and f = 1...3.

Signatures and Multi-core Awareness: Our next exper-
iment considers the performance of the system when client
signatures are enabled. In this setup, the clients sign every
request to the replicas that first verify its authenticity before
ordering it. There are two fundamental service-throughput
overheads associated with 1024-bit RSA signatures. First,
the messages are 112 bytes bigger than when SHA-1 MACs
are used. Second, the replicas need to verify the signatures,
which is a relatively costly computational operation.

Figure 6 shows the throughput of BFT-SMART with
different number of hardware threads being used to verify
signatures. As the results show, the architecture of BFT-
SMART exploits the existence of multiple cores with hyper-
threading. This happens because the signatures are verified
by the Netty thread pool, which uses a number of threads
proportional to the number of hardware threads in the
machine (see Figure 3).

Figure 6. Throughput of BFT-SMART (in Kops/sec) using 1024-
bit RSA signatures for 0/0 payload and n = 4.

Comparison with others: We compared BFT-SMART
against some representative SMR systems considering the
0/0 benchmark. More precisely, we compared BFT-SMART
(both in BFT and CFT setups) with PBFT [2], UpRight [4]
and JPaxos [16] (a modern multi-core CFT replication
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Furthermore, as expected, as the payload size increases,
BFT-SMART overall performance decreases.

Figure 4. Latency vs. throughput configured for f = 1.
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impact of the number of replicas on the throughput of the
system with different payloads. Figure 5 reports the results.

For all configurations, the results show that the perfor-
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both for CFT and BFT setups. This happens because: (1) it
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consensus only contain the hash of the batches); and (3)

we avoid the use of IP multicast, which is know to cause
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(1024 bytes), the difference between BFT and CFT tends to
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Signatures and Multi-core Awareness: Our next exper-
iment considers the performance of the system when client
signatures are enabled. In this setup, the clients sign every
request to the replicas that first verify its authenticity before
ordering it. There are two fundamental service-throughput
overheads associated with 1024-bit RSA signatures. First,
the messages are 112 bytes bigger than when SHA-1 MACs
are used. Second, the replicas need to verify the signatures,
which is a relatively costly computational operation.

Figure 6 shows the throughput of BFT-SMART with
different number of hardware threads being used to verify
signatures. As the results show, the architecture of BFT-
SMART exploits the existence of multiple cores with hyper-
threading. This happens because the signatures are verified
by the Netty thread pool, which uses a number of threads
proportional to the number of hardware threads in the
machine (see Figure 3).

Figure 6. Throughput of BFT-SMART (in Kops/sec) using 1024-
bit RSA signatures for 0/0 payload and n = 4.

Comparison with others: We compared BFT-SMART
against some representative SMR systems considering the
0/0 benchmark. More precisely, we compared BFT-SMART
(both in BFT and CFT setups) with PBFT [2], UpRight [4]
and JPaxos [16] (a modern multi-core CFT replication
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1B transactions 1kB transactions

f = number of tolerated failures
Crash: n = 2f+1, Byzantine: n = 3f+1

(1000x
tx/sec)

(1000x
tx/sec)
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Consensus is not enough
• A consensus engine also needs:

• Durability: any request completed at a client is reflected in the service 
after a recovery (more than f replicas can be faulty, but not Byzantine)

• Crash recovery: recovered replicas need to be synched

• Reconfiguration: replica group changes

17

Durability = Stable Logging
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More features = More Complexity 

20

SMR Complexity
(LoCs & Module
dependencies)

Reconfigurations

Rejected paper

Accepted paper

Decent PhD-level prototype

Production-level system

Recoveries
Leader change

High performance

Fault-free execution

Blockchain (?)

BFT-SMaRt
• Techniques for efficient durability

• Parallel Logging
• Sequential checkpoints
• Collaborative state transfer

21

invoke
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Stable
Storage
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Service

logBatch
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Dura-Coordinator

SMR Server Side

SMR Client Side

Client App. setState
getState

execute Keeper

durability
layer

execBatch
invokeST
handlerST



6/26/19

10

BFT-SMaRt Performance under “sporadic” events 

25

New replica 
enters the 
group

Leader 
crashes

New leader 
takes over

Old leader 
recovers

Replica 
removed 
from the 
group

BFT-SMaRt as a Blockchain
• Recently, we’ve been building SMaRtChain, an experimental, feature-

minimal blockchain “platform” based on BFT-SMaRt
• Stable logs as blockchains
• Improved durability guarantees
• Fully distributed reconfiguration protocols

• Performance (preliminary numbers):
Platform Throughput (tx/s)

SMaRtChain ~ 13k

Tendermint ~ 2k

Fabric (not BFT) < 1k (3k in the paper)

1kB transactions
and networks tolerating
a single Byzantine failure
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BFT-SMaRt on other Blockchains

• Symbiont Assembly (rewrote BFT-SMaRt in Go)
• Experimental Corda BFT notary

• BFT orderer for Hyperledger Fabric [DSN’18]

Consensus & 
Block CreationOrdering service

Peers

Client

28

E
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BFT-SMaRt
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Fabric codebase (Go)

Java 
SDK

Recv Thread

BFT-SMaRt Proxy

Client
ThreadsClient

ThreadsClient
Threads

Frontend Ordering Nodes

Java SDK

Blockcutter

Node Thread

BFT-SMaRt Replica

Block
Creation
Threads

BFT-SMaRt Ordering

29

Same as interacting w/ Kafka or Solo

3f+1 nodes to
tolerate Byzantines
OR
2f+1 nodes to 
tolerate crashes

Entry points to
the Byzantine
world

f+1 frontends

BFT-SMaRt Ordering Evaluation (LAN)

30

(a) 4 orderers, 10 envelopes/block. (b) 7 orderers, 10 envelopes/block. (c) 10 orderers, 10 envelopes/block.
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Fig. 6: BFT-SMART Ordering Service throughput for different envelope, block and cluster sizes.

It can be observed that when using 10 envelopes/block
(Figures 6a, 6b, and 6c), the maximum throughput observed
is approximately 50k transactions/second (when there exists
only 1 to 2 receivers in the system), which is way below the
8.4k ⇥ 10 = 84k envelopes/sec capacity of only signatures
are considered (Section VI-B). This can be explained by
the fact that signature generation needs to share CPU power
with the replication protocol, hence creating a thug-of-war
between the application’s worker threads and BFT-SMART’s
I/O threads and queues – in particular, BFT-SMART alone
can take up to 60% of CPU usage when executing a void
service with asynchronous clients. Hence, the performance
drops when compared to the micro-benchmark from Section
VI-B, which was executed in a single machine, stripped of
the overhead associated with BFT-SMART. Moreover, for up
to 2 receivers and envelope sizes of 1 and 4 kbytes, the peak
throughput becomes similar to the results observed in [5]. This
is because for these request sizes BFT-SMART is unable to
order envelopes at a rate equal to the rate at which the system
is able to produce signatures.

Figures 6d, 6e, and 6f show the results obtained for 100
envelopes/block, when each node is not subject to CPU
exhaustion. It can be observed that, across all cluster sizes,
throughput is significantly higher for smaller envelope sizes
and up to 8 receivers. This happens because even though
each node creates blocks at a lower rate – approximately
1100 blocks per seconds – each block contains 100 envelopes
instead of only 10. Moreover, this configuration makes the
rate at which envelopes are ordered to become similar to the

rate at which blocks are created. This means that for smaller
envelope sizes, it is better to adjust the nodes’ configuration
to avoid consuming all the CPU time and rely on the rate of
envelope arrival. However, for envelopes of 1 and 4 kbytes the
behavior is similar to using 10 envelopes/block, specially from
7 nodes onward. This is because for larger envelope sizes –
as discussed previously – the predominant overhead becomes
the replication protocol. Interestingly, for a larger number
of receivers (16 and 32), throughput converges to similar
values across all combinations of envelope/cluster/block sizes.
Whereas for larger envelope sizes this is due to the overhead
of the replication protocol, for smaller envelope sizes this
happens because the transmission of blocks to the receivers
becomes the predominant overhead.

D. Geo-distributed Ordering Cluster

In addition to the aforementioned micro-benchmarks de-
ployed in a local datacenter, we also conducted a geo-
distributed experiment focused on collecting latency measure-
ments at 3 frontends scattered across the Americas, with the
nodes of the ordering service distributed all around the world:
Oregon, Ireland, Sydney, and São Paulo (four BFT-SMART
replicas), with Virginia standing as WHEAT’s additional
replica (five replicas). Since signatures generation requires
considerable CPU power, we used instances of the type
m4.4xlarge, with 16 virtual CPUs each. The frontends were
deployed in Oregon (collocated with leader node weighting
Vmax in WHEAT), Virginia (collocated with non-leader node,
but still weighting Vmax ) and São Paulo. Each frontend was

(a) 4 orderers, 10 envelopes/block. (b) 7 orderers, 10 envelopes/block. (c) 10 orderers, 10 envelopes/block.

(d) 4 orderers, 100 envelopes/block. (e) 7 orderers, 100 envelopes/block.
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Fig. 6: BFT-SMART Ordering Service throughput for different envelope, block and cluster sizes.

It can be observed that when using 10 envelopes/block
(Figures 6a, 6b, and 6c), the maximum throughput observed
is approximately 50k transactions/second (when there exists
only 1 to 2 receivers in the system), which is way below the
8.4k ⇥ 10 = 84k envelopes/sec capacity of only signatures
are considered (Section VI-B). This can be explained by
the fact that signature generation needs to share CPU power
with the replication protocol, hence creating a thug-of-war
between the application’s worker threads and BFT-SMART’s
I/O threads and queues – in particular, BFT-SMART alone
can take up to 60% of CPU usage when executing a void
service with asynchronous clients. Hence, the performance
drops when compared to the micro-benchmark from Section
VI-B, which was executed in a single machine, stripped of
the overhead associated with BFT-SMART. Moreover, for up
to 2 receivers and envelope sizes of 1 and 4 kbytes, the peak
throughput becomes similar to the results observed in [5]. This
is because for these request sizes BFT-SMART is unable to
order envelopes at a rate equal to the rate at which the system
is able to produce signatures.

Figures 6d, 6e, and 6f show the results obtained for 100
envelopes/block, when each node is not subject to CPU
exhaustion. It can be observed that, across all cluster sizes,
throughput is significantly higher for smaller envelope sizes
and up to 8 receivers. This happens because even though
each node creates blocks at a lower rate – approximately
1100 blocks per seconds – each block contains 100 envelopes
instead of only 10. Moreover, this configuration makes the
rate at which envelopes are ordered to become similar to the

rate at which blocks are created. This means that for smaller
envelope sizes, it is better to adjust the nodes’ configuration
to avoid consuming all the CPU time and rely on the rate of
envelope arrival. However, for envelopes of 1 and 4 kbytes the
behavior is similar to using 10 envelopes/block, specially from
7 nodes onward. This is because for larger envelope sizes –
as discussed previously – the predominant overhead becomes
the replication protocol. Interestingly, for a larger number
of receivers (16 and 32), throughput converges to similar
values across all combinations of envelope/cluster/block sizes.
Whereas for larger envelope sizes this is due to the overhead
of the replication protocol, for smaller envelope sizes this
happens because the transmission of blocks to the receivers
becomes the predominant overhead.

D. Geo-distributed Ordering Cluster

In addition to the aforementioned micro-benchmarks de-
ployed in a local datacenter, we also conducted a geo-
distributed experiment focused on collecting latency measure-
ments at 3 frontends scattered across the Americas, with the
nodes of the ordering service distributed all around the world:
Oregon, Ireland, Sydney, and São Paulo (four BFT-SMART
replicas), with Virginia standing as WHEAT’s additional
replica (five replicas). Since signatures generation requires
considerable CPU power, we used instances of the type
m4.4xlarge, with 16 virtual CPUs each. The frontends were
deployed in Oregon (collocated with leader node weighting
Vmax in WHEAT), Virginia (collocated with non-leader node,
but still weighting Vmax ) and São Paulo. Each frontend was

10 ordering
nodes (f=3)

4 ordering
nodes (f=1)
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Integration with Hyperledger Fabric 1.3

• Check it out: https://github.com/bft-smart/fabric-orderingservice
• Already dockerized; includes recovery, reconfiguration, etc.

• Lessons learned:
• Redundant signatures during block creation
• Too many validations on the ordering service
• Orderer framework is mostly designed for crash fault tolerance
• It would be great if Fabric (as a project) curates a list of extensions 

and orderers developed by the community

A R&D Agenda (for BFT SMR)

• Scalability & Elasticity
• Increase performance dynamically w/ additional replicas

• Geo-replication
• distributed trust

• Diversity and Fault Independence
• How to withstand f malicious faults?

32

https://github.com/bft-smart/fabric-orderingservice


6/26/19

14

Geo-replication: WHEAT & AWARE [SRDS’15,’19]
• Employs a single, well-connected leader (better than multiple leaders)
• Safe weighted replication (to not violate the resilience bound f)

• Reliable self-measurements to adapt the weights at runtime

(a) Egalitarian n � f majority
quorums

2 2 1 1 1

(b) Weighted quorums contain
min. 2f + 1 replicas’ votes

Figure 2: Possible quorums for n = 5, f = 1, � = 1 (BFT).

f + 1 hosts [15]. To ensure quorum formation, BFT systems
typically probe a Byzantine majority of hosts, as depicted
Figure 2a. As we can see, using a Byzantine majority, the
extra hosts makes the quorum size increase from 3/4 to 4/5
across all possible combinations. However, it is also possible to
enforce quorum formation by relying on weighted replication,
as depicted in Figure 2b. In this case, by probing a majority of
votes rather than a majority of hosts, we can see that there exist
combinations of hosts that still intersect by f + 1 hosts, thus
forming quorums of size of 3/5 and other of size 4/5. Now
imagine that this is a geo-replicated environment where the
two best-connected hosts are assigned the highest weight with
value 2. In spite of having five hosts in the system, progress
is made by typically probing three hosts to form a smaller
quorum. If for some reason any of these two fastest hosts is
not available – either due to a period of asynchrony or a crash
– progress can still be made by falling back to a quorum size
of four hosts. Moreover, we can also re-distribute weights if
any of the preferred hosts become slower. This approach is
preferable to replacing hosts, since that would require new
hosts to retrieve the state from others.

Further, generalizing the above insight to any number of
replicas, WHEAT employs the following safe weight distribu-
tion scheme [7]: Lets assume a system of n replicas, tolerating
f Byzantine faults and containing � additional replicas. The
relation between these variables is as follows:

n = 3f + 1 +� (1)

Moreover, to account for weighted replication, WHEAT de-
mands each replica to wait for Qv votes, computed as follows:

Qv = 2(f +�) + 1 (2)

In order to correctly form quorums, WHEAT adopts a binary
weight distribution in which a replica can have a value of
either Vmin or Vmax. These values are computed as follows:

Vmin = 1 (3)

Vmax = 1 +
�

f
(4)

Finally, Vmax is attributed to the 2f best-connected replicas in
the system. All other replicas are attributed Vmin. Using this
distribution scheme, any quorum will contain between 2f +1
replicas and n � f replicas, instead of the fixed number of
dn+f+1

2 e replicas as in traditional systems [2], [4].

Figure 3: Problem with timestamps and Byzantine replicas.

III. MONITORING STRATEGY

AWARE’s self-optimization approach relies on sound self-
monitoring capabilities of the system, which in turn require
reliable measurements.

A. Monitoring BFT Consensus

Problem. Quorum-based measurements (e.g., measuring the
time between replica R1 sending a WRITE to R2 to R1

receiving an ACCEPT back from R2) do not allow reason-
ing about link latencies because both message types do not
casually depend on each other. Replica R2 might form a
WRITE quorum without R1 and the WRITE from R1 might
even arrive at R2 after R2’s ACCEPT arrives at R1. In a
non-malicious setting, we could piggyback responses carrying
timestamps T2 and T3 in WRITE messages of subsequent
protocol runs and thus compute link latencies using times-
tamps generated by both parties, e.g., by approximating the
latency using ((T4�T1)� (T3�T2))/2 as shown in Figure 3.
However, malicious replicas can attach corrupt timestamps,
e.g., malicious replica R2 might try to shift T2 closer to T1

and T3 closer to T4, while correct replica R1 has no means
to detect this lying behavior and thus attributes R2 a better
latency. Byzantine replicas could try to abuse such behavior
to increase their voting power.

WRITE and ACCEPT. To prevent this, we favor one-sided
measurements, which only require the measuring replica to
be correct. In this method, we employ additional response
messages for monitoring the consensus pattern: Replicas will
immediately respond to a protocol message by directly sending
WRITE-RESPONSE after receiving WRITE. Thus, the mea-
suring replica can use (T4 � T1)/2 as one-way link latency.
However, this introduces monitoring overhead into the system.
These latencies allow us to reason about times replicas form
weighted quorums to proceed to subsequent protocol stages.

PROPOSE. PROPOSE messages are larger than other mes-
sages because they carry the actual consensus value (a batch of
client requests) instead of just a cryptographic hash, thus they
may have a higher latency. This is also relevant for predicting
the consensus latency, because every replica can only start
broadcasting its WRITE message after having received a
PROPOSE first. Further, we also use a response message for
the latency measurement of this phase.

The PROPOSE latency is also relevant for automated leader
location optimization. Therefore, we measure the latencies of
non-leaders proposing to other replicas in order to determine

3

ACCEPTACCEPT(DUMMY-)
PROPOSE

WRITE

P0

P1

P2

P3

Client

P4

Figure 4: Message flow of BFT AWARE (f = 1;� = 1).

hypothetical latency gains for the system when using a differ-
ent replica as the protocol leader.

B. AWARE Approach

Following a systematic approach, we develop customizable
variants of AWARE. In the following, we give a brief summary
of design decisions and configurable options.

Response to WRITE. In our approach, we expect each
correct replica i to measure the latencies of its point-to-
point links to every other replica and maintain a latency
vector Li = hli,0, ..., li,n�1i. We use the WRITE-RESPONSE1

messages to measure latencies between replicas. Further, the
response message needs to include a challenge, e.g. a number
which was beforehand randomly generated by the sender and
attached to the original protocol message. This way we can
guarantee that a replica has received the WRITE and that
Byzantine replicas can not send responses to messages before
actually having received them.

Non-Leaders’ PROPOSE. The DUMMY-PROPOSE allows
measuring precisely the time non-leaders need to PROPOSE
batches of possibly large size to the rest of the system, where
we expect a difference in cases where the network becomes
the bottleneck. Non-leaders do not propose simultaneously to
avoid an high overhead to the system, degrading performance
and counter-acting our goal of improving the performance. We
use a rotation scheme in which only one additional replica
simultaneously broadcasts a DUMMY-PROPOSE along with
the leader, proposing a dummy batch in the same way as the
leader does, but without starting a new consensus instance
and all replicas disregard the proposal. Replicas reply with a
PROPOSE-RESPONSE including the proposed batch in the
response message. Using the DUMMY-PROPOSE is optional
as it introduces overhead to the system (see §V-E) and it
is also possible to approximate these latencies using the
measurements of WRITE-RESPONSE.

Figure 4 shows the message flow2 of AWARE utilizing all
monitoring messages. This yields the variant of AWARE with
the highest accuracy in leader selection. Furthermore, AWARE
defines the number of recent monitoring messages to be used

1We do not need to use an ACCEPT-RESPONSE because the ACCEPT
phase has the same message pattern as the WRITE phase

2The message pattern of WHEAT/AWARE differs from BFT-SMaRt in the
use of tentative executions, an optimization that was introduced in PBFT [2].

for computation of the latencies for each connected replica in
a configurable monitoring window.

Moreover, in AWARE each correct replica i periodically
reports its latency vector Li to all other replicas. Replicas do
this after some configurable synchronization period by dis-
seminating these measurements with total order (thus running
consensus on them) so that all replicas maintain the same
latency matrix after some specific consensus instance. It is
configurable how frequently replicas do this. We employ a
deterministic procedure for deciding a reconfiguration and use
the same monitoring data in all correct replicas (while it would
also be possible for replicas to have distinct views on the
measurements and then run consensus on possible actions).

Once replicas have synchronized measurements after a given
consensus instance, they employ the model we explain in
§IV-C to predict the best weight distribution and leader.
Replicas use a calculation interval defining the number of
consensus instances after which a calculation and possibly a
reconfiguration is being triggered.

Bounding monitoring overhead. We can arbitrarily de-
crease the monitoring overhead by specifying a parameter
! 2 [0, 1] that determines the frequency of sending monitor-
ing messages (DUMMY-PROPOSE, PROPOSE-RESPONSE).
Frequent measurements provide more up-to-date monitoring
data and allow for faster reaction to environmental changes but
also negatively impact the maximum throughput (see §V-E).

C. Sanitization
All replicas maintain synchronized latency matrices MP

and MW for keeping measurements of PROPOSE and WRITE
latencies, both initially filled with entries

M [i, j] 
(
+1, if i 6= j

0, otherwise
(5)

M [i, j] expresses the latency of replica i to j measured by i.
Further, replica i can update a column of this matrices with
its measurements LP

i
and LW

i
with total order by using the

invoke interface of BFT-SMaRt:

invokeOrdered(MEASURE, LP

i
, LW

i
);

The updating process yields a matrix M , with M [i, j] = Li[j]
if replica i sent its measurements within the last calculation
interval c of measurement rounds, or a missing value (+1) if
it did not send any measurements within the last c consensus.
We sanitize both matrices immediately before the calculations
happens to mitigate the influence of malicious replicas.

We do that by exploiting the symmetry characteristic of
replica-to-replica latencies and let replicas have a pessimistic
standpoint on measurements. They use the pairwise larger
delay in calculations so that replicas can not make themselves
appear faster. This procedure yields

M̂ [i, j] = max (M [i, j],M [j, i]) (6)

An example (for simplicity in millisecond accuracy) is il-
lustrated in Figure 5. This way, Byzantine replicas can not
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Figure 9: Runtime behavior of AWARE.

choosing a well performing configuration – however, AWARE
might not always choose the actual best configuration but
decide for some configuration that is close to the optimum.

In our example, AWARE will pick any configuration of
h0, 1i, h0, 4i, h1, 4i, h4, 0i or h4, 1i for which it predicts a
leader consensus latency of 143.52 ms amortized over 1000
consensus rounds. In our experiment, the measured latencies
for these optimal candidates were between 141.30 ms (h1, 0i)
and 148.31 ms (h4, 0i). If there is an optimal configuration
containing the current leader, AWARE preferably chooses it
over configurations where a leader change is necessary. On a
side note, the median predicted leader’s consensus latency was
202.26 ms (h3, 4i) and the worst was 270.50 ms (h2, 1i).

C. Clients’ Observed Request Latency
Figure 8 also shows the clients’ observed request latency

(average across all sites) for all configurations and compares
them with both model predictions and measurements for
consensus latency.

As expected, consensus speed contributes to total latency.
We notice a positive correlation ⇢(LMP , LCR) = 0.961 be-
tween our series (over all configurations) of model predictions
for leader consensus latency LMP and the measurement series
of average clients’ request latency LCR, indicating that faster
consensus is beneficial for geographically distributed clients.

D. Runtime Behavior of AWARE
We deploy AWARE in our usual setting and observe its

behavior during the system’s lifespan. Overall, the clients’
request latencies show high variations which is caused by a
waiting time of a request at the leader: Since all clients simul-
taneously send requests and the leader batches these, a client
request may wait until the current consensus finishes to get
into the next batch, which takes a varying time depending on
how shortly the request arrived before the next consensus can
be started. We induce events to evaluate AWARE’s reactions
(see Figure 9) to certain conditions, in particular:
1) Action: We start AWARE in a low-performance configu-

ration h2, 3i with Sydney being the leader and Sydney and
São Paulo having maximum voting power.

2) Reaction: After a calculation interval of c = 500, AWARE
decides that Oregon and Ireland are faster and changes its
configuration to h0, 1i leading to latency gains observed
by all clients across all sites.

3) Action: We create network perturbations, in particular we
add an outgoing delay of 120 ms and 20 ms jitter to the
Ireland replica, thus making it slower (the client and replica
of Ireland are not co-located on the same VM).

4) Reaction: AWARE adopts and attributes the Vmax to São
Paulo while Ireland’s weight is reduced to Vmin. Clients
observe a small improvement in request latencies.

5) Action: We end the network delay for Ireland, thus the
network stabilizes and the communication links of Ireland
become just as fast as in the beginning of our experiment.

6) Reaction: AWARE notices this improvement and assigns
the Vmax of São Paulo back to Ireland since it predicts
latency gains for this configuration. After the reconfigu-
ration, clients observe faster request latencies identical to
what happened after the first reconfiguration (2).

7) Action: We crash the leader Oregon (which has Vmax).
8) Reaction: Replicas’ request timers expire and BFT-SMaRt

triggers the leader change protocol: Ireland becomes the
next leader. Since fVmax voting power becomes unavail-
able, all remaining correct replicas are forced to use the
same quorum Qv (all 3 Vmin replicas and the leader).
Accordingly, clients observe higher request latencies.

9) Reaction: AWARE redistributes the Vmax to a former
Vmin replica, São Paulo, hence restoring some degree
of variability in quorum formation. Replicas now can
form smaller quorums, leading clients to observe latency
improvements across all regions.

E. Maximum Throughput

For measuring maximum throughput, we change the instance
types to c5.xlarge (4 vCPU, 8 GB of RAM, 8 GB SSD)
and use 5 VMs in our usual regions to place replicas, and
5 other VMs to launch as many clients as necessary to
saturate the system. Asynchronous clients send requests of size
1 kB after randomly waiting between 0 ms and 10 ms and

8
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