
MPVisualizer: a General Tool to Debug Message
Passing Parallel Applications

Ana Paula Cláudio1, João Duarte Cunha2, and Maria Beatriz Carmo1

1 Faculdade de Ciências da Universidade de Lisboa
Departamento de Informática- Campo Grande - Edifício C5 - Piso 1 - 1700 LISBOA -

Portugal
{apc, bc}@di.fc.ul.pt

2 Laboratório Nacional de Engenharia Civil
Av. do Brasil, nº 101, 1799LISBOA CODEX - Portugal

jdc@lnec.pt

Abstract. The paper describes MPVisualizer (Message Passing Visualizer) a
general purpose tool for the debugging of message passing parallel
applications; its three components are the trace/replay mechanism, the
graphical user interface and the central component, called visualization engine.
The engine, which plays the main role during the replay phase, can be used
with different message passing environments and different graphical
environments. This is a major step to make MPVisualizer a general tool.
Additionally, the engine is able to recognize potential race conditions and can
be easily re-programmed to detect specific predicates.

1 Introduction

Performance improvement is the main goal being pursued when a parallel program
replaces a sequential one. Before determining if performance improvement was really
achieved, the parallel program has to be tested and debugged. However, debugging
parallel applications is considerably more difficult than debugging sequential
programs because the target is a set of communicating processes. It is usual to
classify communication events as external events in contrast with internal events
which involve one process only. Therefore, while debugging this kind of
applications, two sorts of bugs may be found: bugs related to internal events and bugs
related to external events.

The proposed tool, MPVisualizer -Message Passing Visualizer- uses a graphical
interface to help programmers in finding and understanding the second sort of bugs.
That is, graphically observable events are communication or external events.
However, bugs concerning internal events can be detected if a sequential debugger is
integrated with our tool. This integration is perfectly compatible with MPVisualizer
but is not implemented in the current version.

The tool includes a trace/replay mechanism and a graphical interface. Between
these two components, a central component, the visualization engine, makes the tool
easily adaptable to different message passing mechanisms and different graphical
environments [3]. Besides, the engine detects and notifies the occurrence of race
conditions, is capable of detecting predicates and permits observation both during re-
execution and post-mortem.

2 MPVisualizer

The internal work of a parallel application may be non deterministic, that is, two
successive executions of the application with the same input may exhibit different
behaviours, even though they may produce the same final output. A trace/replay
mechanism makes a particular execution of the parallel application repeatable,
allowing cyclic debugging, a frequently used technique in sequential programs. The
replay mechanism adopted is similar to the one described in [9]. The mechanism
includes two distinct phases: the trace phase and the replay phase. Although minimal,
the stored information during trace phase is enough to ensure that, during the replay
phase, each process will consume exactly the same messages, in the same order.

It should be emphasized that it is not necessary to modify the code of a parallel
application to use our debugging tool, since the monitoring code is inserted in the
standard libraries of the message passing software.

During the replay phase, the visualization engine builds an object-oriented model
of the application. This model provides the necessary semantic feedback to answer
the questions about observable events that the user may ask (using the graphical
interface). In MPVisualizer, observable events are not only communication events but
also the beginning and ending of a process. Each time an observable event occurs in a
process, during replay, a block of information containing the necessary data is sent to
a process named spy. During replay phase, there is one spy process running in each
machine that is executing processes. Each of these spies receives data blocks from its
local processes and sends them to the main process1. The main process is a sort of
one-way bridge between spy processes and the object oriented model of the
application.

The classes in the object oriented model, figure 1, can be categorized in two
groups. The first group, the kernel, includes the basic classes that do not depend on
the graphical environment and they encapsulate the data and behaviour that are
generic for any message-passing application. The second group of classes, comprises
the classes that deal with the graphical representation and that derive from the former
classes.

1 In the present implementation communication channels between spies and the main process

are sockets.

GImessage_intermediate GIEntity

GIprocess_intermediate

GIMachine

1..*

1..*

1..*

1..1

1..1 1..*

Process

1..1

1..*

Message 1..*

1..*

Machine

1..*

1..11..*

Spy

1..1

Manager

1..1 1..*

1..1

1..*

1..*

1..1

GIManager

GImessage

GIprocess

Fig. 1 Class Diagram

Predicate detection is implemented using inheritance. The kind of predicates that

can be detected depends on the granularity of the observation performed by the tool.
Since in MPVisualizer detectable predicates are those that concern communication
events, as well as beginning and ending of processes, the classes implementing the
predicate detection algorithms are derived from one of two kernel classes: “process”
or “message”.

MPVisualizer automatically signals all potential race conditions. These conditions
are responsible for the non determinism in the internal behaviour of parallel
applications. Therefore, if race conditions are detected, the programmer is notified of
all the points in the application that can be potentially responsible for variations in the
behaviour of successive executions. This is a major step in debugging. The detection
code for race conditions is encapsulated in only one kernel class named “process”.

For the graphical interface, time space diagrams [8] have been adopted. In addition
to the graphical representation of the execution, the user can obtain more detailed
information about the displayed entities: processes, messages and communication
events. This information is contained in pop-up windows that open when the
corresponding entity symbol is selected in the graphical interface.

It should be emphasized that dependencies from the message-passing software are
strictly restricted to spy processes while dependencies from the graphical software are
restricted to graphical classes of the model.

4 Present and Future Work

The trace/replay mechanism was implemented and tested on top of PVM [5]. The
visualization engine and the graphical interface were implemented and tested using

C++ and Motif. So far, MPVisualizer works only in post-mortem mode. It will be
developed in order to support also observation during re-execution. To be used in
this mode, a breakpointing mechanism should be available. The current graphical
interface is not adequate to large volumes of information. There are planes to improve
its scalability, namely using zoom in context techniques, e. g. as proposed in [2].

PVM has gained wide acceptance and Geist et al. consider it a de facto standard
[6]. This, however, does not invalidate our interest in testing MPVisualizer with other
message passing systems, such as MPI[4], P4[1] and Parmacs[7]. Description of
similar tools and comparison with the one described here would be interesting but is
outside the scope of this paper and has been made elsewhere[3].

References

1. Butler, R., Lusk, E.: User’s Guide to the p4 programming system. Tech. Rep. ANL-92/17.
Argonne National Laboratory, Mathematics and Computer Science Division (1992)

2. Carmo, M., Cunha, J., Cláudio, A.: Visualization of Geometrical and Non-geometrical Data.
In: Proceedings of the WSCG’99, Plzen (1999)

3. Cláudio, A., Cunha, J., Carmo, M.: Debugging of Message Passing Parallel Applications: a
General Tool. In: Proceedings of VECPAR ’98 - 3rd International Meeting on Vector
Parallel Processing, Porto (1998)

4. Dongarra, J., Otto, S., Snir, M., Walker, D.: An Introduction to the MPI Standard. Tech.
Rep. CS-95-274. University of Tenesse (1995)

5. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V.: PVM: Parallel
Virtual Machine. MIT Press (1994)

6. Geist, A., Kohl, J., Papodopoulos, P.: PVM and MPI: a comparison of features. In:
Calculateurs Paralleles, Volume 8(2) (1996)

7. Hempel, R., Hoppe, H.-C., Supalov, A.: PARMACS-6.0 library interface specification.
Tech. Rep., GMD, PostFach 1316, D-5205 Sankt Augustin 1, Germany (1992)

8. Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed System. In:
Communications of the ACM, Vol. 21(7) (1978) 558-565

9. Leblanc, T., Mellor-Crummey, J.: Debugging Parallel Programs with Instant Replay. In:
IEEE Transactions on Computers, Vol C-36(4) (1987)

	References

