
A Flexible Agent-Based Framework to Control
Virtual Characters

Lúıs Moniz, Graça Gaspar, Ricardo Abreu, Ana Paula Cláudio, and Maria
Beatriz Carmo

Department of Informatics, University of Lisbon, Portugal
{hal,gg}@di.fc.ul.pt ricardolafabreu@gmail.com {apc,bc}@di.fc.ul.pt

Abstract. We present a generic platform, called IViHumans, for mate-
rializing a system of multiple intelligent agents into virtual humans. It
is intended to be flexible and applicable to diverse realistic simulation
environments. The platform is composed of two layers: the Graphical
Layer, and the Artificial Intelligence Layer, that can run autonomously.
The architecture of our platform was conceived in order to allow the two
layers to control the virtual agents at different detail levels.

1 Introduction

The simulation of virtual humans (VHs) is an immense challenge that requires
the resolution of many problems in various areas. In order to simulate virtual
humans in virtual worlds we have to combine realistic representations of hu-
mans, including the capability of expressing emotions, along with mechanisms
to simulate the behaviour [1].

In 1987, Craig Reynolds was responsible for bridging the gap between artifi-
cial life and computer animation, introducing behavioural animation techniques
[2]. Since then, intensive research in this area has been performed giving rise
to several techniques widely used with many different purposes. Entertainment
industry has been exploring and using these techniques in games like ”The Sims”
and films like ”The Lord of the Rings”. A different context of application, cov-
ered by an important number of approaches, allows the exploration of stressful
social situations in the safety of the virtual world [3–5] and, fully or partially,
covers a number of technical areas in Artificial Intelligence.

Research in VHs needs to use the results from Artificial Intelligence in or-
der to achieve believable characters, while research in Multi-Agent intelligent
systems can profit from virtual humans frameworks for evaluation and increas-
ing the usability of the applications. Believable characters require that agents’
behaviour should not be scripted, but should rather emerge as a result of au-
tonomous agents’ interaction, in a shared environment.

We have been developing a graphical visualization platform, called IViHu-
mans, for multi-agent system execution with the intention of applying it to the
development of realistic and compelling simulation environments for some real-
world situations, such as training, education and entertainment. However it is



2

intended to be a generic platform, not specialized in a particular problem or
domain.

To pursuit this goal, the IViHumans platform is composed of two separate
layers, one for Graphical Processing (GP) and one for the Artificial Intelligence
(AI) computation. A special concern then is the interconnection between these
two layers. They must be able to express the control of the embodied virtual
agents at different detail levels. Support for relevant aspects such as sensory
honesty, as described in [6], or the attention focusing needed for effective planning
must be distributed among the two layers, maintaining a clear separation of
concerns and responsibilities. Also, the interconnection between the two layers
must accommodate their potentially different response speeds and account for
delays of communication between them, without compromising the believability
of the virtual human characters.

In the last decade some other authors have presented work integrating multi-
agent systems with graphics components. In [7] a game-oriented multi-agent
framework, built over the JADE multi-Agent System platform is presented. That
approach is similar to ours, in that the MAS module and the visualization module
work independently of each other. However in their system the simulation is
centralized in the MAS, having the visualization module with the sole duty of
exhibiting the world without allowing interaction.

Several other authors have used BDI agent platforms together with game
engines or specific visualization platforms. Some of those works concentrate on
particular types of applications and agents. For instance, in [8] an environment
based on the Unreal Tournament game engine and the Soar AI engine is de-
scribed, concentrating in the development of complex AI agents for interactive
drama applications. In [9] BDI agents that model expert players of Quake 2 are
developed.

In [10, 11] the BDI model is also used to control animated characters in virtual
worlds. In their work, 3D articulated characters are controlled in real time by
cognitive agents that are clients of the environment which, in its turn, acts as
a server and is responsible for managing the information that can be perceived
by the agents. However their architecture is limited in that everything an agent
can perceive must be listed a priori in a list of boolean statements.

In [12] the JACK agent language is extended with a specific perceptual/motor
system that allows the agents to interact with a graphical interface. Our approach
is instead to make the GP layer responsible for the perception and basic motion
of the agents, thus decoupling the perceptual/motor system from the cognitive
part of the agents and making it more independent of the agents implementation.
In [13] a military simulation tool, ROE3, is presented where the agents are also
implemented using JACK. In ROE3, an Integration Layer translates messages
between the agent and the synthetic environment, being able to aggregate raw
percepts into higher level percepts. In this respect, our platform incorporates a
similar translation mechanism, as part of the AI Layer, in the form of interface
agents.



3

In the following section we present the general architecture of the IViHumans
platform. In section 3 a brief general description of the GP Layer is presented
followed by some detail of the implementation of the movement of the synthetic
characters. In section 4 we present the AI Layer, describing the several types
of agents that constitute the MAS system, namely the interface agents, the
intelligent agents and the monitoring agents. The last section summarizes this
work and discusses some future work.

2 Architecture

The IViHumans platform separates the GP layer from the AI layer, an approach
that was already found in works such as the JGOMAS system and the ROE3
architecture. However our proposal differs from them by having the amount of
responsibility of each layer well balanced. For instance, in what regards sensory
honesty, the physical limits to what can be perceived by a character are controlled
by the GP layer while the cognitive restrictions reside on the AI layer. Also, the
GP layer is responsible for quickly handling low-level aspects, such as collision
response, while the AI layer deals with the more complex cognitive behavior,
using symbolic representations. As a side effect, this architecture also reduces
considerably the communication overhead.

The GP layer is built on top of the rendering engine OGRE (www.ogre3d.org)
and relies on the rigid body dynamics engine ODE (www.ode.org). The Multi-
Agent system – the core of the AI layer – is built upon the JADE (jade.tilab.com)
platform. The choice of all the underlying software for the platform obeyed well
defined criteria, such as the quality of the provided features, the price or the
existence of an active community of users.

Fig. 1: The Graphical Processing and Artificial Intelligence Layers.

The communication between the two layers (figure 1) is performed by means
of TCP sockets. Two reasons underlie this option: first, each layer uses a different
implementation language (C++ for the GP layer and Java for the AI layer);
second, we intend to use the platform in a distributed environment. The GP
Layer is responsible for the representation of all the elements contained in the
virtual world, among which the virtual humans are the most important. Because
the environments are dynamic, the GP layer must reproduce the appropriate
animations that carry the flow of occurrences, consistently enacting the evolution
of the world and its components.



4

3 Graphical Layer

The GP layer is responsible for exhibiting the evolution of the virtual world,
representing all the elements contained in it (among which the VHs are the most
important) constantly updating their state, and reproducing the appropriate
animations.

The IViHumans platform handles VHs whose actions rely, for the time be-
ing, on three main skills: perception, movement, and emotion expression. A VH
perceives its environment through a ray-casting synthetic vision algorithm [14].
Besides the effects of emotions on their behavior – something that the AI layer
may take care of – the VHs can show composite facial expressions to immediately
convey their internal emotional state. An explanation of the techniques used to
accomplish emotional expression of the VHs can be found at [15].

The motion of the VHs is supported by the concept of steering behavior,
according to what was introduced by Craig Reynolds at [16]. We also follow his
proposal for hierarchically categorizing movement in three layers: locomotion,
steering and action selection (in order of growing abstraction). The former two
are under the domain of the GP layer, while the last and topmost layer can
either be included in the AI layer – which happens for virtual humans – or be
absent – so that human users can directly control avatars. The action selection
layer operates by activating and parameterizing steering behaviors to achieve
the desired goals, according to agents’ planning. Locomotion corresponds to the
choice of the appropriate animations on the basis of speed and according to rules
that are unique for each VH model. In the remainder of this section we detail
how steering behaviors are integrated in the GP layer, as a sample grounding
base for the explanation of the activity of the AI layer.

3.1 Movement of Characters

To implement the steering of the virtual humans, we closely follow Reynolds’
proposals, although we introduce a few ideas of our own. Because movement
through steering behaviors could be applied to a myriad of entities, we decided
to bring it apart from the implementation of any particular entity. This way,
we created a class that models any moving entity as a point mass, as Reynolds
did with his vehicle model. This MovingCharacter class is not associated with
OGRE, except in that it uses some basic data types provided by this library
(e.g. vectors).

A MovingCharacter is essentially characterized by a mass, a position, a ve-
locity and a vector that specifies his facing direction. This facing vector may be
automatically updated when the character moves so that it is always tangent
to the path the MovingCharacter follows. When the character is still, it is left
unchanged. However, we did not want to restrict the movement of a virtual hu-
man in this way and so the automatic update of this vector is not mandatory.
It should be deactivated if one intends to have the character moving in any way
that requires his local depth axis not to be collinear with the velocity vector,
that is, if the character must move in one direction while facing other way.



5

The movement of the MovingCharacter is ruled by steering behaviors that
specify the forces he should apply on himself. The movement produced by these
forces is computed according to the basic laws of classical physics, except for
the fact that it is restricted by maximum values for force and velocity. These, as
well as some other values that do not vary, are loaded upon construction from a
configuration file that is unique for each character.

Steering behaviours are sometimes criticised for being hard-wired into the
code [17]. In an attempt to overcome this problem, we separate the character
from the actual behaviors, employing polymorphism and object oriented design
in general. A MovingCharacter may have one instance of SteeringBehavior, which
is the common interface to all the steering behaviors that may be defined (see
figure 2). Any instance of SteeringBehavior can be plugged in and out of the
MovingCharacter at run-time.

Fig. 2: Conceptual model of the main portion of the GP layer that deals with steering

The behaviors SeekBehavior and ArriveBehavior are directly inspired in the
corresponding behaviors explained in [16]. The former returns a force that fully
accelerates the character towards a target point, while the later does the same
thing only until the character’s distance to the target becomes lower than some
predefined threshold. At this point, it will start to produce a force that is opposed
to the movement and the character will decelerate until he eventually stops.

The behavior WalkBehavior does the same as one of the three rules that
underlie the flocking behavior in [2]: it tries to match the velocity of the character
with a given target velocity. This behavior is useful to have the AI control a
virtual human at a lower level, as well as to have a user directly “piloting” an
avatar. We also introduced the behavior FollowPointsBehavior that guides the
character through a sequence of n targets by making him seek the first n − 1
targets and arrive at the nth target. This last behavior is useful, for instance, to
make the character follow a path plan. Besides these steering behaviors, many
more may be implemented.

Although the MovingCharacter can only be associated with one SteeringBe-
havior, there is a special SteeringBehavior for combining more than one. It is
called CombineBehavior and it is an abstract class that has the general func-
tionality for coupling other SteeringBehaviors. This class can be extended to
implement different ways of combining the forces calculated by encapsulated



6

behaviors. Currently, we have just one such implementation – which lies in
SimpleCombineBehavior – that simply adds the forces returned by contained
behaviors, returning the net force. In the future, we intend to add other ways
of combining SteeringBehaviors (e. g. with priorities). This design follows the
Composite Pattern. In what concerns locomotion, the IViHuman objects map

Fig. 3: VHs moving independently

the abstract movement functionality of the class MovingCharacter into actual
observable movement, by applying the correct transformations to the model that
represents the corresponding VH and animating it accordingly (figure 3).

4 Artificial Intelligence Layer

While the GP layer hosts the bodies of the virtual humans, the AI layer manages
their minds. Each virtual human is controlled by one or more agents that entitle
him with intelligent behavior. The evolution of the world is due to the effects
induced by both layers.

In our architecture the AI layer comprises two main categories of agents:
interface agents and cognitive agents. The cognitive agents, together with the
service agents and meta agents, are the intelligent components.

In order to give some degree of control over the agents, we include another
class of agents: monitor agents. These agents act as supervisors, providing a
mechanism to manipulate the cognitive agents directly, forcing their behaviour
and consequently interfering in the simulation.

4.1 Interface Agents

The interface agents, one for each virtual entity, manage the communication
with the virtual entities, receiving sensory information and sending commands
(figure 4). Although these agents can act as a raw connection between both
layers, they have two additional functions: to provide a sensing/acting cycle
that further separates the communication aspects of the control of the virtual



7

humans from the more complex, and possibly slower, cognitive aspects; and
to offer a translation/filtering mechanism between crude data and symbolical
representation. We can split these functions in four main components:

– Sense: requests sensory information from the GP layer at a defined rate,
saving it into a buffer. The various requests from the cognitive agent compo-
nent for sensor data are obtained from this buffer (the sensor data buffer).
This isolates the sensor particulars (refresh rate and cycling) from the higher
cognitive levels.

– Act: reads the next command from a buffer (the command buffer) and sends
it to the GP layer. This feature detaches the agent cognitive level from the
physical details, for instance, the number of commands that the GP layer is
capable of processing in a time slot.

– Sensor data translator/filter: translates raw sensor information in sym-
bolic equivalents or more abstract and constrained representations. This is
achieved by splitting the information into clusters of similar data. For in-
stance, a color name can correspond to an interval of values in the rgb
gamma.

– Command translator: translates the higher level commands used by the
cognitive components of the agent into the lower level commands used by
the GP layer and saves them in the command buffer. The translation can
be achieved by using predefined schemas for action decomposition. Another
alternative is to incorporate a planner that produces in real time the desired
action sequence.

Fig. 4: Artificial Intelligence Layer detailed.

The GP layer, on the other hand, has its own interfacing component, com-
posed by two unique objects: one that deals with the routing of messages to the



8

adequate recipients and another one that acts as a special receiver for messages
that are not directed to any particular entity, being instead targeted at a global
manager, capable of operating global changes over the environment.

The concrete entities that must be able to receive orders from the AI layer,
such as the virtual humans, will do so through an adapter component that
manages to unravel the meaning of messages, translating them to the appropriate
method calls.

4.2 Intelligent components

The objective of these components is to provide an intelligent control over the
virtual entities. We can classify these components according to their main func-
tion into three categories: cognitive agents; service agents; and meta agents. As
stated before, each entity in the virtual world is controlled by the intelligent
component; this control is performed by a cognitive agent that acts as its mind
(figure 4). Each of these agents has access to the interface agent to request sen-
sory information and issue commands. Our architecture does not impose any
restriction on how these agents are organized internally. The system designer is
in charge of creating the control and coordination mechanisms to achieve the
desired behaviours. Although we view a cognitive agent as a single entity, our
system allows this agent to act as a representative of an agency, where a group
of heterogeneous agents interact in the support of the virtual entity. Our base
architectural template for these groups is a centralized society, with a central
coordinator, and one external interface agent. In the example of figure 4 the
agent main block corresponds to the reason structure, in this case a layered
organization of progressively more complex behaviours.

Service agents, as the name suggests, provide extra services to the commu-
nity. They can be shared by various cognitive agents, providing common facil-
ities, available to all, instead of having each agent support its own version of
the commodity. We group these services into three classes: core, aggregation and
external services. Core services correspond to simple tasks that a single provider
can solve. For instance, a path planner service, from which an agent can request a
sequence of actions to reach a desired location. Aggregation services correspond
to functionalities that support formation and cohesion of agencies. For instance,
an internal message service that allows the agents to communicate. This fea-
ture should be carefully used; it allows building virtual communities without
regarding the spacial location of the represented entities. In order to prevent
undesirable use, we propose to develop this service on top of the platform mes-
saging system incorporating adequate restriction mechanisms. Finally, external
services provide agents with links to outside sources. For instance, it could be
possible to create a remote web page that controls a virtual entity.

Meta agents act as invisible entities tracking, observing and controlling other
agents’ performance and behaviour. This kind of agent is not perceived by cog-
nitive and service agents, it can act as an external observer that obtains infor-
mation data and extracts conclusions. These agents have to be incorporated into
the cognitive agency architecture in order to access private data, also they could



9

provide a direct control mechanism over the other agents. For instance, if the
user needs to guide the simulation into a specific track, he has a tool that can
be used to directly modify the internal state of an agent, to add information or
even to force some desired behaviour.

4.3 Monitoring Agents

We also propose the inclusion of other agents; these provide the user with custom
interfaces to the MAS and give him some degree of control over the simulation.
These agents use the meta agents in order to access the inner information of the
cognitive agencies. An example is a monitor agent acting as an agency supervisor,
allowing the user to inspect and control the behaviour of a group of agents, that
control a virtual character. Another subgroup of monitoring agents corresponds
to automatic triggers in the simulation; if a threshold is passed they can start
an action. We could extrapolate some application scenarios: the action can have
a direct effect in the simulation itself, for instance, if a new entity is created or
a new scenario area is opened, several actions can be initiated; a process of data
collection is started to measure some parameters; and the migration of agents
to other machines if the overall performance is degraded.

We conclude this section by pointing out some key points of our architecture:
independency from the graphical layer — although designed for this particular
scenario, it can be used in other graphical environments; distributed character-
istics (due to the JADE framework) that allow the simultaneous use different
computers; and scalability by adding new agents/features/services and control
facilities, tuning the system to a particular simulation.

5 Conclusions

The prevailing opinion of people working in the domain of virtual environments
inhabited by virtual humans appears to be that there is still a field for subse-
quent research, despite the number of existing contributions. This judgment is
primarily sustained by the fact that current results are still far from honestly
mimicking human behavior in its interaction with the environment and with its
peers.

In this paper we present a framework for construction and management of
artificial characters in a virtual environment. We have focused mainly on the
overall architecture of our system and we have presented, in a shallow form, a
number of aspects that deserved to be treated in more depth. These include a
complete description of the framework and its internal details of functioning, the
methodology to design intelligent behavior and all the available modules built in
our system. We also expose features that were so far included on the IViHumans
platform as well as other possible approaches to its extension.

Our goal is to develop a general graphical visualization platform for multi-
agent system execution and to apply it to the development of realistic and com-
pelling simulation environments, and to incorporate results obtained in the area



10

of emotion modeling. In the current stage of development the educational char-
acteristics of the framework are not fully developed. We do believe the platform
IViHumans is becoming a valuable tool for training and simulation based design
purposes. It will be a working tool in post-graduation courses, used to learn basic
concepts on animation and virtual environments. Moreover, it will be used as a
growing kernel that is prepared to incorporate new functionalities implemented
by students.

References

1. N. Magnenat-Thalmann and D. Thalmann. Handbook of Virtual Humans. John
Wiley & Sons, 2004.

2. Craig W. Reynolds. Flocks, Herds, and Schools: A Distributed Behavioral Model.
Computer Graphics, 21(4):25–34, 1987.

3. W. Swartout, J. Gratch, R. W. Hill, E. Hovy, S. Marsella, J. Rickel, and D. Traum.
Toward virtual humans. AI Mag., 27(2):96–108, 2006.

4. S. Marsella, L. W. Johnson, and C. LaBore. Interactive Pedagogical Drama, pages
301–308. ACM Press, Barcelona, Catalonia, Spain, 2000.

5. Jeff Rickel and W. Lewis Johnson. Integrating Pedagogical Capabilities in a Vir-
tual Environment Agent. In Proc. of the First Int. Conf. on Autonomous Agents
(Agents’97), pages 30–38, New York, 1997. ACM Press.

6. D. Isla and B. Blumberg. New Challenges for Character-Based AI for Games. In
AAAI Spring Symposium on AI and Interactive Entertainment, 2002, 2002.

7. A. Barella, C. Carrascosa, and V. J. Botti. JGOMAS: game-oriented multi-agent
system based on JADE. In Adv. in Comp. Entertainment Technology. ACM, 2006.

8. Brian Magerko, John E. Laird, Mazin Assanie, Alex Kerfoot, and Devvan Stokes.
AI Characters and Directors for Interactive Computer Games. In 16th Innovative
Applications of Artificial Intelligence Conference, pages 877–883, 2004.

9. Emma Norling and Liz Sonenberg. Creating Interactive Characters with BDI
Agents. In Australian Workshop on Interactive Entertainment, 2004.

10. J. A. Torres, L. P. Nedel, and R. H. Bordini. Using the BDI Architecture to Produce
Autonomous Characters in Virtual Worlds. In IVA, pages 197–201. Springer, 2003.

11. J. A. Torres, L. P. Nedel, and R. H. Bordini. Autonomous Agents with Multiple
Foci of Attention in Virtual Environments. In Int. Conf. on Computer Animation
and Social Agents, pages 197–201, 2004.

12. Emma Norling and Frank E. Ritter. Embodying the JACK Agent Architecture. In
Brooks M., Corbett D., and Stumptner M., editors, AI 2001: Advances in Artificial
Intelligence, volume 2256 of LNCS, pages 368–377, 2001.

13. R. Evertsz, F. E. Ritter, S. Russell, and D. Shepherdson. Modeling rules of en-
gagement in computer-generated forces. In Proc. of the 16th Conf. on Behavior
Representation in Modeling and Simulation, pages 123–134, 2007.

14. P. M. Semião, M. B. Carmo, and A. P. Cláudio. Implementing Vision in the
IViHumans Platform. In Ibero-American Symp. in Computer Graphics, SIACG
2006, pages 56–59, 2006.

15. Ricardo Abreu, Ana Paula Cláudio, Maria Beatriz Carmo, Lúıs Moniz, and Graça
Gaspar. Virtual Humans in the IViHumans Platform. In Dimitri Plemenos, editor,
11th International Conference 3IA 2008, the International Conference on Com-
puter Graphics and Artificial Intelligence, pages 157–162, 2008.



11

16. Craig W. Reynolds. Steering Behaviors for Autonomous Characters. In Game
Developers Conf., 1999.

17. John Funge, Xiaoyuan Tu, and Demetri Terzopoulos. Cognitive Modeling: Knowl-
edge, Reasoning and Planning for Intelligent Characters. In Siggraph 1999, Com-
puter Graphics Proceedings, pages 29–38. Addison Wesley Longman, 1999.


