
Theoretical Computer Science 897 (2022) 23–48
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Mixed sessions

Filipe Casal ∗, Andreia Mordido, Vasco T. Vasconcelos

LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 July 2020
Received in revised form 2 August 2021
Accepted 5 August 2021
Available online 12 August 2021
Communicated by D. Sands

Keywords:
Type systems
Session types
Mixed choice

Session types describe patterns of interaction on communicating channels. Traditional
session types include a form of choice whereby servers offer a collection of options, of
which each client selects exactly one. Mixed choices blur the distinction between servers
and clients (that is, external and internal choice) by allowing options to be both offered and
selected in the same choice. We introduce mixed choices in the context of session types
and argue that they increase the flexibility of program development at the same time that
they reduce the number of synchronisation primitives down to exactly one. We present
a type system incorporating subtyping and prove preservation and absence of runtime
errors for well-typed processes. We further show that classical (conventional) sessions
can be faithfully and tightly embedded in mixed choices, and conversely that there is a
minimal encoding from mixed choices to classical sessions. Finally, we discuss algorithmic
type checking and a runtime system built on top of a conventional (choice-less) message-
passing architecture.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Session types provide for describing series of continuous interactions on communication channels [1–5]. When used in
type systems for programming languages, session type systems statically verify that programs follow protocols, and hence
that they do not engage in communication mismatches.

In order to motivate mixed sessions, suppose that we want to describe a process that asks for a fixed but unbounded
number of integer values from some producer. The consumer may be in two states: happy with the values received so far,
or ready to ask the producer for a new value. In the former case it must notify the producer so that this may stop sending
numbers. In the latter case, the client must ask the producer for another integer, after which it “goes back to the beginning”.
Using classical sessions, and looking from the consumer side, the communication channel can be described by a (recursive)
session type T of the form

⊕{ enough : end , more : ? i n t . T }

where ⊕ denotes internal choice (the consumer decides), the two branches in the choice are labelled with enough and more,
type end denotes a channel on which no further interaction is possible, and ?int denotes the reception of an integer value.
Reception is a prefix to a type, the continuation is T (in this case the “goes back to the beginning” part). The code for the
consumer (and the producer as well) features parts that exchange messages in both directions: enough and more selections

* Corresponding author.
E-mail address: fmrcasal@ciencias.ulisboa.pt (F. Casal).
https://doi.org/10.1016/j.tcs.2021.08.005
0304-3975/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.tcs.2021.08.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2021.08.005&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:fmrcasal@ciencias.ulisboa.pt
https://doi.org/10.1016/j.tcs.2021.08.005
http://creativecommons.org/licenses/by/4.0/

F. Casal, A. Mordido and V.T. Vasconcelos Theoretical Computer Science 897 (2022) 23–48
from the consumer to the producer, and int messages from the producer to the consumer. In particular, the consumer must
first select option enough (outgoing) and then receive an integer (incoming).

Using mixed sessions one can invert the direction of the more selection and write the type of the channel (again as seen
from the side of the consumer) as

⊕{ enough ! unit . end , more? i n t . T }

The changes seem merely cosmetic, but now labels are followed by a mandatory polarity (! or ?) and label-polarity pairs
constitute the keys of the choice type when seen as a map. The integer value is piggybacked on top of selection more.
As a result, the classical session primitive operations: selection and branching (that is, internal and external choice) and
communication (output and input) become one only: mixed choice. The producer can be safely written as a recursive
process whose body is

x (enough?z . 0 + more ! n . produce ! (x , n+1))

offering a choice on channel end x featuring mixed branches with labels enough? and more!, where 0 denotes the terminated
process and produce(x, n+1) a recursive call to the producer. The example is further developed in Section 2.

Mixed sessions build on Vasconcelos presentation of session types which we call classical sessions [3], by adapting choice
and input/output as needed, but keeping everything else unchanged as much as possible. The result is a language with

• a single synchronisation/communication primitive: mixed choice on a given channel that
• allows for duplicated labels in choice processes, leading to non-determinism in a pure linear setting, and
• replicated output processes arising naturally from replicated mixed choices, and that
• enjoys preservation and absence of runtime errors for typable processes,
• provides for embedding classical sessions in a tight type and operational correspondence, and
• that can be embedded in classical sessions up to a minimal encoding [6].

The present paper gathers material from previous work presented at ESOP 2020 and PLACES 2020 [7,8]. The former
paper introduces mixed sessions together with an embedding of classical into mixed sessions. The latter paper presents an
encoding of a sublanguage of mixed choices into classical sessions; here we address the full language.

The rest of the paper is organised as follows: the next section shows mixed sessions in action; Section 3 introduces the
technical development of the language, and Section 4 proves the main results (preservation and absence of runtime errors
for typable processes). Section 5 recalls classical session types and the encoding criteria. Section 6 presents the classical-
to-mixed and Section 7 presents the mixed-to-classical encoding. Section 8 discusses implementation details, and Section 9
explores related work. Section 10 concludes the paper.

2. There is room for mixed sessions

This section introduces the main ideas behind mixed sessions via examples. We address mixed choices, duplicated labels in
choices, and unrestricted output, in this order.

2.1. Mixed choices

Consider the producer-consumer problem where the producer produces only insofar as so requested by the consumer.
Here is the code for a producer that writes numbers starting from n on channel end x.

def produce (x , n) =
l i n x (enough?z . 0 +

more ! n . produce ! (x , n+1)
)

Syntax qx(M+N) introduces a choice between M and N on channel end x. Qualifier q is either un or lin and controls whether
the process is persistent (remains after reduction) or is ephemeral (is consumed in the reduction process). Each branch
in a choice is composed of a label (enough or more), a polarity mark (input ? or output !), a variable or a value (z or n),
and a continuation process (the syntax after the dot). The terminated process is represented by 0; notation def introduces
a recursive process. The def syntax and its encoding in the base language is from the Pict programming language [9] and
taken up by Sepi [10].

A consumer that requests n integer values on channel end y can be written as follows, where () represents the only value
of type unit.

def consume (y , n) =
i f n == 0
then l i n y (enough ! () . 0)
else l i n y (more?z . consume ! (x , n−1))
24

F. Casal, A. Mordido and V.T. Vasconcelos Theoretical Computer Science 897 (2022) 23–48
Suppose that x and y are two ends of the same channel. When choices on x and on y get together, a pair of matching
label-polarities pairs is selected and a value transmitted from the output continuation to the input continuation.

Types for the two channel ends ensure that synchronisation succeeds. The type of x is rec a. lin&{enough?unit.end, more!int.a}

where the qualifier lin says that the channel end must be used in exactly one process, & denotes external choice, and each
branch is composed of a label, a polarity mark, the type of the communication, and that of the continuation. The type end
states that no further interaction is possible at the channel and rec introduces a recursive type. The type of y is obtained
from that of x by inverting views (⊕ and &) and polarities (! and ?), yielding rec b. lin⊕{enough!unit.end, more?int.b}. The choice
at x in the produce process contains all branches in the type and so we select an external choice view & for x. The choices
at y contain only part of the branches, hence the internal choice view ⊕. This type discipline ensures that processes do not
engage in runtime errors when trying to find a match for two choices at the two ends of a same channel.

A few type and process abbreviations simplify coding: i) the lin qualifier can be omitted, ii) the terminated process 0
together with the trailing dot can be omitted; iii) the terminated type end together with the trailing dot can be omitted;
and iv) we introduce wildcards (_) in variable binding positions (in input branches).

2.2. Duplicated labels in choices for types and for processes

Classical session types require distinct identifiers to label distinct branches. Mixed sessions relax this restriction by
allowing duplicated labels whenever paired with distinct polarities. The next example describes two processes—countDown

and collect —that bidirectionally exchange a fixed number of msg-labelled messages. The number of messages that flow
in each direction is not fixed a priori, but instead decided by the non-deterministic operational semantics. The type that
describes channel x in the code of process countDown below is rec a.⊕{msg!unit.a, msg?unit.a, done!unit}, where one can see the
msg label in two distinct branches, but with different polarities.

Process countDown features a parameter n that controls the number of messages exchanged (sent or received). The end of
the interaction (when n reaches 0) is signalled by a done message.

countDown : (rec a .⊕{msg ! unit . a , msg?unit . a , done ! unit } , i n t)
def countDown (x , n) =

i f n == 0
then x (done ! ())
else x (msg ! () . countDown ! (x , n−1) +

msg?_ . countDown ! (x , n−1))

Process collect sees the channel from the dual viewpoint, obtained by exchanging ? with ! and ⊕ with &. Parameter n in
this case denotes the number of messages received. When done, the process writes the result on channel end r, global to
the collect process.

c o l l e c t : (rec b .&{msg ! unit . b , msg?unit . b , done?unit } , i n t)
def c o l l e c t (y , n) =

y (msg ! () . c o l l e c t ! (y , n+1) +
msg?_ . c o l l e c t ! (y , n) +
done?_ . r (r e s u l t ! n))

Mixed sessions allow for duplicated message-polarity pairs permitting a new form of non-determinism that uses exclu-
sively linear channels. A process of the form (νxy)P declares a channel with end points x and y to be used in process P. The
process

(νxy) (
x (msg ! ()) |
y (msg?_ . z (m! true) + msg?_ . z (m! fa lse))

)

featuring two linear choices may reduce to either z (m!true) or to z (m!false). Non-determinism in the π -calculus without
choice ([11,12] for example) can only be achieved by introducing race conditions on un channels. For example, the π -
calculus process

(νxy) (x ! () | y?_ . z ! true | y?_ . z ! fa lse))

reduces either to (z!true | (νxy)y?_.z!false)) or to (z!false | (νxy)y?_.z!true)), leaving for the runtime the garbage collection of
the inert residuals. Also note that in this case, channel y cannot remain linear.

Duplicated message-polarities in choices lead to elegant and concise code. A random number generator with a given
number n of bits can be written with two processes. The first process sends n messages on channel end x. The contents of
the messages are irrelevant (we use value () of type unit); what is important is that n more messages are sent, followed by
a done message, followed by silence.

w r i t e : (rec a .⊕{ done ! unit , more ! unit . a } , i n t)
def w r i t e (x , n) =
25

F. Casal, A. Mordido and V.T. Vasconcelos Theoretical Computer Science 897 (2022) 23–48
i f n == 0
then x (done ! ())
else x (more ! () . w r i t e ! (x , n−1))

The reader process reads the more messages in two distinct branches and interprets the messages received on one branch
as bit 0, and on the other as 1. Upon the reception of a done message, the accumulated random number is conveyed on
channel end r, a variable global to the read process.

read : (rec b .&{ done?unit , more?unit . b } , i n t)
def read (y , n) =

y (done?_ . r (r e s u l t ! n) +
more?_ . read ! (y , 2∗n) +
more?_ . read ! (y , 2∗n+1)

)

Notice that mixed sessions allow duplicated label-polarity pairs in processes but not in types. This point is further
discussed in Section 3. Also note that duplicated message labels could be easily added to traditional session types.

2.3. Unrestricted output

Mixed sessions allow for replicated output processes. The original version of the π -calculus [13,14] features recursion
on arbitrary processes. Subsequent versions [12] introduce replication but restricted to input processes. When compared to
languages with unrestricted input only, unrestricted output allows for more concise programs and fewer message exchanges
for the same effect. Here is a process (call it P) containing a pair of processes that exchange msg-labelled messages ad-
aeternum,

(νxy) (un y (msg ! ()) | un x (msg?_))

where x is of type rec a.un &{msg?unit.a}. The un prefix denotes replication: an un choice survives reduction. Because none
of the two sub-processes features a continuation, process P reduces to P in one step. The behaviour of un y (msg!()) can be
mimicked by a process without output replication, namely,

(νwz) w (� ! ()) | un z (�?_ . y (msg ! () . w (� ! ())))

Even if unrestricted output can be simulated with unrestricted input, the encoding requires one extra channel (wz) and an
extra message exchange (on channel wz) in order to reestablish the output on channel end y.

It is a fact that unrestricted output can be added to any flavour of the π -calculus (session-typed or not). In the case of
mixed sessions it arises naturally: there is only one communication primitive—choice—and this can be classified as lin or
un. If an un-choice happens to behave in “output mode”, then we have an un-output. It is not obvious how to design the
language of mixed choices without allowing unrestricted output, while still allowing unrestricted input (which is mandatory
for unbounded behaviour).

3. The syntax and semantics of mixed sessions

This section introduces the syntax and the semantics of mixed sessions. Inspired in Vasconcelos’ formulation of session
types for the π -calculus [3,4], mixed sessions replace input and output, selection and branching (internal and external
choice), with a single construct which we call choice.

3.1. Syntax

Fig. 1 presents the syntax of values and processes. Let x, y, z range over a (countable) set of variables, and let l range over
a set of labels. Metavariable v ranges over values. Following the tradition of the π -calculus set up by Milner et al. [13,14],
variables are used both as placeholders for channels and for incoming values in communication. Linearity constraints, central
to session types but absent in the π -calculus, dictate that the two ends of a channel must be syntactically distinguished;
we use one variable for each end [3]. Even if values can be faithfully encoded in the π -calculus, they become quite handy
as primitive constructs. Here we pick the boolean values (so that we may have a conditional process) and unit that plays its
role in the embeddings (Sections 6 and 7).

Metavariables P and Q range over processes. Choices are processes of the form qx
∑

i∈I Mi offering a choice of Mi
alternatives on channel end x, where I denotes a finite, non-empty, set of indices. Qualifier q describes how choice behaves
with respect to reduction. If q is lin, then the choice is consumed in reduction, otherwise q must be un, and in this case the
choice persists after reduction. The type system in Fig. 9 rejects nullary (empty) choices. Choices are composed of two kinds
of branches: output l!v.P and input l?x.P . An output branch sends value v and continues as P . An input branch receives a
value and continues as P with the value replacing variable x. The type system in Fig. 9 makes sure that value v in l?v.P is
a variable.
26

F. Casal, A. Mordido and V.T. Vasconcelos Theoretical Computer Science 897 (2022) 23–48
v ::= Values:

x variable

true | false boolean values

() unit value

P ::= Processes:

qx
∑
i∈I

Mi choice

P | P parallel composition

(νxx)P scope restriction

if v then P else P conditional

0 inaction

M ::= Branches:

l�v.P branch

� ::= Polarities:

! | ? out and in

q ::= Qualifiers:

lin | un linear and unrestricted

Fig. 1. The syntax of processes.

The remaining process constructors are standard in the π -calculus. Processes of the form P | Q denote the parallel
composition of processes P and Q . Scope restriction (νxy)P binds together the two channel ends x and y of a same
channel in process P . The conditional process if v then P else Q behaves as process P if v is true and as process Q otherwise.
Since we do not have nullary choices, we include 0—called inaction—as primitive to denote the terminated process.

3.2. Operational semantics

The variable bindings in the language are as follows: variables x and y are bound in P in a process of the form (νxy)P ;
variable x is bound in P in a choice of the form l?x.P . The sets of bound and free variables, as well as substitution, P [v/x],
are defined accordingly. We take processes “up to renaming of bound variables”, in the sense that we identify processes that
differ only in the names of bound variables. In other words, we follow Barendregt variable convention: the bound variables
of processes that occur in a mathematical context are taken to be different from the free variables [15].

Fig. 2 summarizes the operational semantics of mixed sessions. Following the tradition of the π -calculus, a binary re-
lation on processes—structural congruence—rearranges processes when preparing these for reduction. Such an arrangement
reduces the number of rules to be included in the operational semantics. Structural congruence was introduced by Mil-
ner [11,12]. It is defined as the least congruence relation closed under the axioms in Fig. 2. The first three rules state that
parallel composition is commutative, associative, and takes inaction as the neutral element. The fourth rule allows exchang-
ing the two channel ends in channel creation; this rule is absent in Vasconcelos [3] but allows reducing the number of
otherwise necessary communication axioms in reduction. The fifth rule is commonly known as scope extrusion [13,14] and
allows extending the scope of channel ends x, y to process Q . The side-condition “x and y not free in Q ” is redundant in
face of the variable convention. The penultimate rule allows collecting channel bindings no longer in use, and the last rule
allows for rearranging the order of channel bindings in a process.

Reduction includes six axioms, two for the destruction of boolean values (via a conditional process), and four for commu-
nication. The axioms for communication take processes of a similar nature. Scope restriction (νxy) identifies the two ends
of the channel engaged in communication. Under the scope of the channel one finds three processes: the first contains an
output process on channel end x, the second contains an input process on channel end y, and the third (R) is an arbitrary
process that may contain other references to x and y (the witness process). Communication proceeds by identifying a pair
of compatible branches, namely l!v.P and l?z.Q . The result contains the continuation process P and the continuation pro-
cess Q with occurrences of the bound variable z replaced by value v (together with the witness process). The four axioms
differ in the treatment of the process qualifiers: lin (ephemeral) and un (persistent). Ephemeral processes are consumed in
reduction, persistent processes remain in the contractum.

Choices apart, rules R-LinLin and R-LinUn are already present in the works of Milner and Vasconcelos [12,3]. Rules
R-UnLin and R-UnUn are absent on the grounds of economy: replicated output can be simulated with a new channel and
27

F. Casal, A. Mordido and V.T. Vasconcelos Theoretical Computer Science 897 (2022) 23–48
Structural congruence, P ≡ P

P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R) P | 0 ≡ P (νxy)P ≡ (ν yx)P

(νxy)P | Q ≡ (νxy)(P | Q) (νxy)0 ≡ 0 (νwx)(ν yz)P ≡ (ν yz)(νwx)P

Reduction, P → P

if true then P else Q → P if false then P else Q → Q (R-IfT,R-IfF)

(νxy)(lin x(l!v.P + M) | lin y(l?z.Q + N) | R) → (R-LinLin)

(νxy)(P | Q [v/z] | R)

(νxy)(lin x(l!v.P + M) | un y(l?z.Q + N) | R) → (R-LinUn)

(νxy)(P | Q [v/z] | un y(l?z.Q + N) | R)

(νxy)(un x(l!v.P + M) | lin y(l?z.Q + N) | R) → (R-UnLin)

(νxy)(P | Q [v/z] | un x(l!v.P + M) | R)

(νxy)(un x(l!v.P + M) | un y(l?z.Q + N) | R) → (R-UnUn)

(νxy)(P | Q [v/z] | un x(l!v.P + M) | un y(l?z.Q + N) | R)

P → Q

(νxy)P → (νxy)Q

P → Q

P | R → Q | R

P ≡ P ′ P ′ → Q ′ Q ′ ≡ Q

P → Q
(R-Res,R-Par,R-Struct)

Fig. 2. Operational semantics.

a replicated input. In mixed choices these rules cannot be omitted for there is no distinction between input and output:
choice is the only (symmetrical) communication primitive.

We have designed mixed choices in such a way that labels may be duplicated in choices; more: label-polarity pairs may
be also duplicated. This allows for non-determinism in a linear setting. For example, process

(νxy)(lin x(l!true.0 + l!false.0) | lin y(l?z.lin w(m!z.0)))

reduces in one step to either lin w(m!true.0) or lin w(m!false.0).
The examples in Section 2 take advantage of a def notation, a derived process construct inspired in the SePi [10] and the

Pict languages [9]. A process of the form def x(z) = P in Q is understood as

(νxy)(un y(�?z.P) | Q))

and calls to the recursive procedure, of the form x!v , are interpreted as lin x(�!v), for � an arbitrarily chosen label. The derived
syntax hides channel end y and simplifies the syntax of calls to the procedure. Procedures with more than one parameter
require tuple passing, a notion that is not primitive to mixed sessions but that is easy to encode; see Vasconcelos [3].

3.3. Typing

Fig. 3 summarises the syntax of types. We rely on an extra set, that of type variables, a, b, . . . Types describe values,
including boolean and unit values, and channel ends. A type of the form q�{Ui}i∈I denotes a channel end. Qualifier q
states the number of processes that may contain references to the channel end: exactly one for lin, zero or more for un.
View � distinguishes internal (⊕) from external (&) choice. This distinction is not present in processes but is of paramount
importance for typing purposes, as we shall see. The branches are either of output—l!T .U —or of input—l?T .U —nature. In
either case, T denotes the object of communication and U describes the subsequent behaviour of the channel end. Type end

denotes the channel end on which no more interaction is possible. Types μa.T and a cater for recursive types.
Types are subject to a few syntactic restrictions: i) choices must have at least one branch; ii) label-polarity pairs—l�—are

pairwise distinct in the branches of a choice type (unlike in processes); iii) recursive types are assumed contractive (that is,
containing no subterm of the form μa0.μa1 . . .μan.a0 with n ≥ 0). New variables, new bindings: type variable a is bound
in T in type μa.T . Again the definitions of bound and free names as well as that of substitution—T [U/a]—are defined
accordingly.

The coinductive rules for type equivalence are presented in Fig. 4. By coinductive rules, we are stating that, in fact, the type
equivalence relation is defined via a fixed-point construction in the following manner: two types T , U are equivalent—T 	
U —if the pair (T , U) belongs to the greatest fixed-point of the monotone operator F	 defined from the rules as

F	(R) ={(end, end)}
∪{(unit, unit)}
28

F. Casal, A. Mordido and V.T. Vasconcelos Theoretical Computer Science 897 (2022) 23–48
T ::= Types:

q�{Bi}i∈I choice

end termination

unit unit

bool boolean

μa.T recursive type

a type variable

B ::= Branches:

l�T .T branch

� ::= Views:

⊕ | & internal and external

� ::= Contexts:

· empty

�, x : T entry

Fig. 3. The syntax of types.

Coinductive type equivalence, T 	 T

end 	 end unit 	 unit bool 	 bool
Ti 	 T ′

i U i 	 U ′
i

q�{l�i T i .Ui}i∈I 	 q�{l�i T ′
i .U

′
i}i∈I

T [μa.T /a] 	 U

μa.T 	 U

T 	 U [μa.U/a]
T 	 μa.U

Fig. 4. Coinductive type equivalence.

Polarity duality and view duality, � ⊥ � and � ⊥ �

!⊥ ? ?⊥! ⊕ ⊥ & &⊥⊕
Coinductive type duality, T ⊥ T

end ⊥ end

�⊥ � �i ⊥ •i T i 	 T ′
i U i ⊥ U ′

i

q�{l�i T i .Ui}i∈I ⊥ q�{l•i T ′
i .U

′
i}i∈I

T [μa.T /a] ⊥ U

μa.T ⊥ U

T ⊥ U [μa.U/a]
T ⊥ μa.U

Fig. 5. Coinductive type duality.

∪{(bool, bool)}
∪{(q�{l�i T i .Ui}i∈I ,q�{l�i T

′
i .U

′
i}i∈I) | (Ui, U ′

i), (Ti, T ′
i) ∈ R}

∪{(μa.T , U) | (T [μa.T /a], U) ∈ R}
∪{(T ,μa.U) | (T , U [μa.U/a]) ∈ R}

Similarly to type equivalence, duality and subtyping are also defined coinductively. We refrain from presenting the mono-
tone operator for it can be readily extracted from the rules in Figs. 5 and 6.

Duality is a notion central to session types. In order for channel communication to proceed smoothly, the types for the
two channel ends must be compatible: if one end says input, the other must say output; if one end says external choice,
the other must say internal choice. In presence of recursive types, the problem of building the dual of a given type has been
elusive, as works by Bernardi and Hennessy, Bono and Padovani, Gay et al., and Lindley and Morris suggest [16–19]. Here
we eschew the problem by working with a duality relation, as in Gay et al. [18,20] and other works, such as Kouzapas et
al. [6].

We define what it means for two types to be dual using a fixed point construction and present the coinductive rules in
Fig. 5. Type end is the dual of itself. The rule for choice types requires dual views (& is the dual of ⊕, and vice-versa) and
dual polarities (? is the dual of !, and vice-versa). Furthermore, the objects of communication must be equivalent and the
29

F. Casal, A. Mordido and V.T. Vasconcelos Theoretical Computer Science 897 (2022) 23–48
Branch subtyping, B <: B

T2 <: T1 U1 <: U2

l!T1.U1 <: l!T2.U2

T1 <: T2 U1 <: U2

l?T1.U1 <: l?T2.U2

Coinductive subtyping, T <: T

end <: end unit <: unit bool <: bool
J ⊆ I B j <: C j

q⊕{Bi}i∈I <: q⊕{C j} j∈ J

I ⊆ J Bi <: Ci

q&{Bi}i∈I <: q&{C j} j∈ J

T [μa.T /a] <: U

μa.T <: U

T <: U [μa.U/a]
T <: μa.U

Fig. 6. Coinductive subtyping.

continuations must be again dual. The other two rules unfold a recursive type on the left and on the right. As an example,
we can establish that

μa.lin⊕{l!bool.lin&{m?unit.a}} ⊥ lin&{l?bool.μb.lin⊕{m!unit.lin&{l?bool.b}}}

Lemma 1 (Properties of duality).

1. Duality is symmetric, that is, if T ⊥ U , then U ⊥ T .
2. Duality is an involution, that is, if S ⊥ T and T ⊥ U , then S 	 U .

Proof. We sketch the first case. Consider the operator F⊥ defined from the rules of Fig. 5 and the set S = {(U , T) | T ⊥ U }.
We need to show that S ⊆ F⊥(S) to conclude the result using the coinduction principle. We show the choice case: when
T is q�{l�i T i .Ui}i∈I then U is q�{l•i T ′

i .U
′
i}i∈I , which from the duality rule we know that � ⊥ �, �i⊥•i, Ti 	 T ′

i , Ui ⊥ U ′
i .

Given that the view and polarity dualities are symmetric, and the type equivalence is also symmetric, we conclude
that � ⊥ �, •i⊥�i, T ′

i 	 Ti . Furthermore, given that Ui ⊥ U ′
i , by definition of S , (U ′

i, Ui) ∈ S . Thus, by definition of F⊥ ,
(q�{l•i T ′

i .U
′
i}i∈I , q�{l�i T i .Ui}i∈I) ∈ F⊥(S). �

Mixed sessions come equipped with a notion of subtyping. We define both type and branch subtyping simultaneously,
using the coinductive rules in Fig. 6. These are essentially the rules of Gay and Hole [20] for algorithmic subtyping. Base
types (end, unit, bool) are subtypes to themselves. Subtyping behaves differently in presence of external or internal choice.
For external choice we require the branches in the supertype to contain those in the subtype: exercising less options
cannot cause difficulties on the receiving side. For internal choice we require the opposite: here offering more choices can
not cause runtime errors. For branches we distinguish output from input: output is contravariant on the contents of the
message, input is covariant. In either case, the continuation is covariant. Choices, input/output, and recursive types receive
no different treatment than those in classical sessions [20]. The operator handles recursion in the exact same way as the
operator F⊥ . We can show that subtyping is a preorder.

Lemma 2 (Subtyping is a pre-order). For X, Y , Z either all types or all branches,

1. X <: X.
2. If X <: Y and Y <: Z , then X <: Z .

Proof. Item 1. Consider the operator F<: defined from the rules of Fig. 6 and the set

I = {(T , T), (μa.T , T [μa.T /a]) | T is a type} ∪ {(B, B) | B is a branch},
we need to show that I ⊆ F<:(I), which via the coinduction principle allows to conclude that I ⊆ ν X .F<:(X), the greatest
fixed-point of F<: . Let P = (T , T) ∈ I and consider the possible cases: if T is end, unit or bool, then P ∈ F<:(I) by defini-
tion of F<:; if T is q�{Bi}i∈I , since (B, B) ∈ I for any branch, we have (q�{Bi}i∈I , q�{Bi}i∈I) ∈ F<:(I); if T is μa.T , since
(μa.T , T [μa.T /a]) ∈ I , by definition of F<: , we have P = (μa.T , μa.T) ∈ F<:(I). Finally, since (T [μa.T /a], T [μa.T /a]) ∈ I ,
by definition of F<: , (μa.T , T [μa.T /a]) ∈ F<:(I). The case of branches is also direct. This concludes that I ⊆ F<:(I), which
by the coinduction principle shows that the elements in I are indeed in the greatest fixed point of F<: .

Item 2. Consider the set T = {(X, Z) | ∃Y : X <: Y and Y <: Z}. We sketch the external choice case: consider that Y is a
type of the form q&{Y j} j∈ J , which makes X of the form q&{Xi}i∈I and Z as q&{Zk}k∈K . Furthermore, from the subtyping
rules we know that I ⊆ J , Xi <: Yi and J ⊆ K , Y j <: Z j . Thus, we conclude that I ⊆ K and Xi <: Zi , which from the
definition of F<: , follows that (X, Z) ∈ F<:(T). �
30

F. Casal, A. Mordido and V.T. Vasconcelos Theoretical Computer Science 897 (2022) 23–48
The un predicate, T un

end un unit un bool un un�{Bi}i∈I un

T un

μa.T un

Fig. 7. The un predicate on types.

Context split, � = � ◦ �

· = · ◦ ·
�1 ◦ �2 = � T un

�, x : T = (�1, x : T) ◦ (�2, x : T)

� = �1 ◦ �2

�, x : lin p = (�1, x : lin p) ◦ �2

� = �1 ◦ �2

�, x : lin p = �1 ◦ (�2, x : lin p)

Context update, � + x : T = �

x : U /∈ �

� + x : T = �, x : T

T un

(�, x : T) + x : T = (�, x : T)

Fig. 8. Context split and context update.

Typing rules for values, � � v : T

� un

� � () : unit

� un

� � true, false : bool

�1,�2 un

�1, x : T ,�2 � x : T

� � v : T T <: U

� � v : U
(T-Unit,T-True,T-False,T-Var,T-Sub)

Typing rules for branches, � � M : B

�1 � v : T �2 � P

�1 ◦ �2 � l!v.P : l!T .U

�, x : T � P

� � l?x.P : l?T .U
(T-Out,T-In)

Typing rules for processes, � � P

� un

� � 0

�1 � P1 �2 � P2

�1 ◦ �2 � P1 | P2
(T-Inact,T-Par)

�1 � v : bool �2 � P �2 � Q

�1 ◦ �2 � if v then P else Q

�, x : T , y : U � P T ⊥ U

� � (νxy)P
(T-If,T-Res)

(�1 ◦ �2)q1 �1 � x : q2�{l�i T i .Ui}i∈I

�2 + x : U j � l� j v j .P j : l� j T j .U j {l� j} j∈ J = {l�i}i∈I

�1 ◦ �2 � q1x
∑

j∈ J l� j v j .P j
(T-Choice)

Fig. 9. Typing.

A similar reasoning shows that 	⊆<:.
The meaning of the un predicate is defined by the rules in Fig. 7. Basic types—unit, bool, end—are unrestricted; un-

annotated choices are unrestricted; μa.T is unrestricted if T is. Contractivity ensures that the predicate is total.
Before presenting the type system, we need to introduce two operations that manipulate typing contexts. The rules in

Fig. 8 define the meaning of context split and context update. These two relations are taken verbatim from Vasconcelos [3];
context split is originally from Walker [21] (cf. Kobayashi et al. [22,23]). Context split is used when type checking processes
with two sub-processes. In this case we split the context in two, by copying unrestricted entries to both contexts and linear
entries to one only. Context update is used to add to a given context an entry representing the continuation (after a choice
operation) of a channel. If the variable in the entry is not in the context, then we add the entry to the context. Otherwise
we require the entry to be present in the context and the type to be unrestricted.

The rules in Fig. 9 introduce the typing system for mixed sessions. We require all instances of the axioms to be built
from unrestricted contexts, thus ensuring that linear resources (channel ends) are fully consumed in typing derivations.

The typing rules for values should be straightforward: constants have their own types, the type for a variable is read
from the context, and T-Sub is the subsumption rule, allowing a type for a value to be replaced by a supertype.

The rules for branches—T-Out and T-In—follow those for output and input in classical session types. To type an output
branch we split the context in two: one part for the value, the other for the continuation process. To type an input branch
we add an entry with the bound variable x to the context under which we type the continuation process. Rule T-In rejects
branches of the form l?v.P when v not a variable. The continuation type T is not used in neither rule; instead it is
incorporated in � via the type for the channel of the choice process (cf. rule T-Choice below).

The rules for inaction, parallel composition, and conditional are from Vasconcelos [3]. That for scope restriction is adapted
from Gay and Hole [20]. Rule T-Inact follows the general pattern for axioms, requiring an un context. Rule T-Par splits the
context in two, providing each subprocess with one part. Rule T-If splits the context and uses one part to type guard v .
Because v is unrestricted, we know that �1 contains exactly the un entries in �1 ◦ �2 and that �2 is equal to �1 ◦ �2.
Context �2 is used to type both branches of the conditional, for only one of them will ever execute. Rule T-Res introduces
in the typing context entries for the two channel ends, x and y, at dual types.
31

F. Casal, A. Mordido and V.T. Vasconcelos Theoretical Computer Science 897 (2022) 23–48
The rule for choice, T-Choice, is new. We first introduce predicates � q on contexts, for q = un, lin. Predicate � un is the
pointwise extension of the predicate with the same name for types, in Fig. 7. Predicate � lin is true of all �. Hence, all
contexts are linear and only some contexts are unrestricted.

The incoming context is split in two: one for the subject x of the choice, the other for the various branches in the choice.
The process qualifier, q1, dictates the nature of the incoming context—un or lin—as witnessed by the first premise to the
rule. This allows for a linear choice to contain channels of an arbitrary nature, but limits unrestricted choices to unrestricted
channels only (for one cannot predict how many times such choices will be exercised). The second premise extracts a type
q2�{li�Ti .Ui} for x. The third premise types each branch in turn: type T j is used to type values v j in the branches and each
type U j is used to type the corresponding continuation. The rule updates context �2 with the continuation type of x: if q2
is lin, then x is not in �2 and the update operation simply adds the entry to the context. If, on the other hand, q2 is un, then
x is in �2 and the context update operation (together with rule T-Sub) insists that type U j is a subtype of un�{l j�T j .U j} ,
meaning that U j is a recursive type.

The last premise to rule T-Choice dictates that the set of labels in the choice type coincides with that in the choice
process. That does not mean that the label-polarity pairs are in a one-to-one correspondence: label-polarity pairs are
pairwise distinct in types (see the syntactic restrictions in Section 3.3), but not in processes. For example, process
linx(l?y.0 + l?z.0) can be typed against context x : lin ⊕{l?bool.end}. Furthermore, from the fact that the two sets must
coincide does not follow that the label-polarity pairs type in the context must coincide with those in the process. Tak-
ing advantage of subtyping, the above process can still be typed against context x : lin ⊕{l?bool.end, m!unit.end} because
lin⊕{l?bool.end,m!unit.end} <: lin⊕{l?bool.end}. The opposite phenomenon happens with external choice, where one may re-
move branches by virtue of subtyping.

We complete this section by discussing examples that illustrate options taken while building the typing system (we
postpone the formal justification to Section 4). Suppose we allow empty choices in the syntax of types. Then process

(νxy)(x() | y())

would be typable by taking x : ⊕(), y : &(), yet the process would not reduce. We could add an extra reduction rule for the
effect

(νxy)(x() | y() | R) → (νxy)R

which would satisfy preservation (Theorem 7). We decided not to include it in the reduction rules as we felt no need for
the extra complexity. Including the rule also does not bring any apparent benefit.

The syntax of processes places no restrictions on the label-polarity pairs in choices; yet that of types does. What if we
relax the restriction that label-polarities pairs in choice types must be pairwise distinct? Then process

(νxy)(x(l!true + l!()) | y(l?z.if z then 0 else 0))

could be typed under the empty context, yet the process might reduce to if () then 0 else 0 which is a runtime error.

4. Well-typed mixed sessions do not lead to runtime errors

This section introduces the main results of mixed choices: absence of runtime errors and preservation, both for well-
typed processes.

We say that a process is a runtime error if it is structurally congruent to:

• a process of the form

(νx1 y1) . . . (νxn yn)(νxy)(qx
∑
i∈I

l�i vi .Pi | q′ y
∑
j∈ J

l� j w j.Q j | R)

where {l•i}i∈I ∩ {l� j} j∈ J = ∅ with each •i is obtained by dualising �i , or
• a process of the form qz(M + l?v.P + N) and v is not a variable, or
• a process of the form if v then P else Q and v is neither true nor false.

Examples of processes which are runtime errors include:

(νxy)(lin x(l!true.0) | lin y(l!true.0))

(νxy)(un x(l!true.0) | lin y(m?z.0))

un x(l?false.0)

if () then 0 else 0
32

F. Casal, A. Mordido and V.T. Vasconcelos Theoretical Computer Science 897 (2022) 23–48
Notice that processes of the form (νxy)lin x
∑

i∈I Mi cannot be classified as runtime errors for they may be typed. Just
think of (νxy)lin x(l?z.lin y(l!true.0)), typable under the empty context. Unlike the interpretations of session types in linear
logic by Caires, Pfenning and Wadler [24–27], typable mixed session processes can easily deadlock. Similarly, processes with
more than one lin-choice on the same channel end can be typed. For example process lin x(l!true.0) | lin x(l?z.0)) can be typed
under context x : μa.un ⊕ {l!bool.a, l?bool.a}. Recall the relationship between qualifiers in processes q1 and those in types q2
in the discussion of the rules for choice in Section 3.

Theorem 3 (Well-typed processes are not runtime errors). If · � P , then P is not a runtime error.

Proof. In view of a contradiction, assume that · � P with P of the form

(νx1 y1) . . . (νxn yn)(q1xn

∑
i∈I

l�i vi .Pi | q2 yn

∑
j∈ J

l� j w j.Q j | R)

and that {l�i}i∈I ∩ {l• j} j∈ J = ∅ with �k⊥•k . From the typing derivation for P , using T-Par and T-Res, we obtain a context
� = �1 ◦ �2 ◦ �3 = x1 : T1, y1 : U1, . . . , xn : Tn, yn : Un with Ti ⊥ Ui for all i = 1, . . . , n and that �1 � q1xn

∑
i∈I l�i vi .Pi and

�2 � q2 yn
∑

j∈ J l� j w j .Q j and �3 � R . From the premises of rule T-Choice we know that �′
1 � xn : q′

1�1{l�i′ T ′
i′ .T

′′
i′ }i′∈I ′ with

{l�i}i∈I = {l�i′ }i′∈I ′ , and �′
2 � yn : q′

2�2{l• j′ U ′
j′ .U

′′
j′ } j′∈ J ′ with {l� j} j∈ J = {l� j′ } j′∈ J ′ , for some �′

1 and �′
2. Given that xn and yn

have dual types, we know that �1 ⊥ �2. Assume that �1 = & (the other case is similar) and that set of labels in Tn is {l�k}k∈K .
Then, the set of labels for Un is {l•k}k∈K . Subtyping gives {l�i}i∈I ⊆ {l�k}k∈K and {l•k}k∈K ⊆ {l• j} j∈ J . Because the sets of
labels are nonempty, there is a label in {l�i}i∈I ∩ {l• j} j∈ J contradicting the assumption.

When P is qz(M + l?v.P + N) and v is not a variable, the contradiction is with rule T-Out, which can only be applied
when the value v is a variable.

When P is if v then P else Q and v is not a boolean value, then v must be a variable, but P is typed in the empty context,
hence v cannot be a variable. �

In order to prepare for the preservation result we introduce a few lemmas.

Lemma 4 (Unrestricted weakening). Let T un.

1. If � � v : U , then �, x : T � v : U .
2. If � � M : B, then �, x : T � M : B.
3. If � � P , then �, x : T � P .

Proof. Item 1 by rule induction; Items 2 and 3 by mutual rule induction. �
Lemma 5 (Preservation for ≡). If � � P and P ≡ Q , then � � Q .

Proof. As in Vasconcelos [3, Lemma 7.4] since we share most of the structural congruence axioms. For (νxy)P ≡ (ν yx)P
use the fact that duality is symmetric (Lemma 1). �
Lemma 6 (Substitution). Let � = �1 ◦ �2 and �1 � v : T .

1. If �2, x : T � u : U , then � � u : U [v/x].
2. If �2, x : T � M : B, then � � M : B[v/x].
3. If �2, x : T � P , then � � P [v/x].

Proof. Item 1 by rule induction; Items 2 and 3 by mutal rule induction. �
Theorem 7 (Preservation). If � � P and P → Q , then � � Q .

Proof. By rule induction on the hypothesis on reduction, making use of weakening, preservation for structural congruence,
and substitution (Lemmas 4 to 6). We sketch a couple of cases.

When reduction ends with rule R-Par, the premises to rule T-Par (the only rule that applies) read �1 � P and �2 � R .
Then induction gives �1 � Q and we conclude the case with rule T-Par.

When reduction ends with rule R-LinLin, we know that rule T-Res introduces x : T , y : U with T ⊥U in the context �.
From there, with applications of T-Par and T-Choice, we have � = �1 ◦ �2 ◦ �3 and �1 � lin x(M + l!v.P + M ′) and �2 �
lin y(N + l?z.Q + N ′) and �3 � R . Furthermore, �1 = �′

1 ◦ �′′
1 and �′

1 � x : lin ⊕ {B, l!T ′.T ′′, B ′} and �′′
1, x : T ′′ � l!v.P : l!T ′.T ′′ .

From the T-Out rule, �v � v : T ′ and �4 � P . For the y side, �′
2 � y : lin&{N, l?U ′.U ′′, N ′} and �′′

2, y : U ′′ � l?z.Q : l?U ′.U ′′ .
From the T-In rule, �z, y : U ′′, z : U ′ � Q . We also have that T ′ = U ′ from the duality of T and U . Using the substitution
lemma, we get �z, y : U ′′,�v � Q [v/z]. Using T-Par and T-Res we build a derivation for the conclusion of R-LinLin. �
33

F. Casal, A. Mordido and V.T. Vasconcelos Theoretical Computer Science 897 (2022) 23–48
5. Classical session types and the encoding criteria

This section introduces the syntax and semantics of classical session types and the Kouzapas et al. [6] correctness criteria
for typed encodings.

5.1. Classical session types

The syntax and semantics of classical session types are in Fig. 10; we follow Vasconcelos [3]. The syntax and the rules
for the various judgements extend those of Figs. 1 to 9, where we remove choice both from grammar productions (for
processes and types) and from the various judgements (operational semantics, subtyping, duality, and typing). On what
concerns the syntax of processes, the choice construct of Fig. 1 is replaced by new process constructors: output, linear (lin)
and replicated (un) input, selection (internal choice) and branching (external choice). The four reduction axioms in Fig. 2
that pertain to choice (R-LinLin, R-LinUn, R-UnLin, R-UnUn) are replaced by the three axioms in Fig. 10. Rule R-LinCom

describes the output against ephemeral-input interaction, rule R-UnCom the output against replicated-input interaction, and
rule R-Case selects a label in the menu at the other channel end.

Typing for classical session types is in Fig. 11. The syntax of types features new constructs—linear and unrestricted
input and output, and linear and unrestricted external and internal choice—replacing the choice construct in Fig. 3. The
un predicate for the classical types is true of un qualified types. The lin predicate is as in mixed choices (Fig. 7). The
subtyping and duality rules for the new type constructors are taken from Gay and Hole [20]. The new rules for type
equivalence—T 	 U —should be easy to extract from the new syntax in Fig. 11 and are therefore omitted.

The typing rule for choice in Fig. 9 is replaced by the four typing rules in Fig. 11. All rules but T-OutC are taken
verbatim from Vasconcelos [3]. Rule T-OutC increases typability and ensures proper alignment with the translation from
mixed sessions to classical sessions discussed in Section 7. Let T be the type μa.lin!a.a, hence T = lin!T .T . Process x!x is not
typable under context x : T using the original rule for output [3], but becomes typable with rule T-OutC, as the following
derivation shows.

x : T � x : lin!T .T
T-Var

x : T � x : T
T-Var · � end

T-Inact

x : T � x!x.0 T-OutC

5.2. Minimal encodings

A typed calculus is a five tuple composed of a set of types T , a set of processes P , a reduction relation → on processes,
an equivalence relation ≈ on processes, and a typing relation �. Given two typed calculi 〈Ti, Pi, →i, ≈i, �i〉, i = 1, 2, a typed
encoding is a pair of maps, one on types �·�T : T1 → T2, the other on processes �·�P : P1 →P2. We assume that both calculi
include the inaction process 0, parallel composition P | Q , scope restriction (νxy)P and that typing contexts are equipped
with a context splitting operation. We denote by ⇒ the reflexive and transitive closure of the reduction relation →. A barb
P ↓x is an observable on an output or selection prefix with subject x in process P [28]. A weak barb P ⇓x is a barb after
zero or more reduction steps.

Given two typed calculi L1, L2, and a typed encoding from L1 to L2, we say that the encoding is:

Syntax preserving: If it is

Homomorphic wrt parallel composition: If �� ◦ �′� �2 �P | P ′�, then ��� ◦ ��′� �2 �P� | �P ′�.
Compositional wrt channel restriction: If ��� �2 �(νxy)P�, then ��� �2 (νxy)�P�.
Name invariant: If �σ(�)� �2 �σ(P)�, then σ(���) �2 σ(�P�), for any injective renaming of variables σ .

Type sound: If � �1 P , then ��� �2 �P�.
Barb preserving: If � �1 P ↓x , then ��� �2 �P� ⇓x .
Operationally complete: If � �1 P and P →1 P ′ , then �P� ⇒2≈2 �P ′�.
Operationally sound: If ��� �2 �P� and �P� →2 Q , then P →1 P ′ and Q ⇒2≈2 �P ′�.
Minimal: If it is syntax preserving, barb preserving, and operationally complete.

5.3. The classical and the mixed typed calculi

The mixed typed calculus M is composed of the type language in Fig. 3, the process language in Fig. 1, the reduction
relation in Fig. 2, syntactic equality as the equivalence relation, and the typing relation in Fig. 9.

The classical typed calculus C is composed of the type language in Fig. 11, the process language and the reduction
relation Fig. 10, the equivalence relation defined below, and the typing relation in Fig. 11.

The behavioural equivalence ≈C for classical sessions we are interested in extends structural congruence ≡ with the
following rule
34

F. Casal, A. Mordido and V.T. Vasconcelos Theoretical Computer Science 897 (2022) 23–48
Classical syntactic forms (replaces some productions in Fig. 1)

P ::= . . . Processes:

x!v.P output

qx?x.P input

x � l.P selection

x � {li : Pi}i∈I branching

Classical reduction rules, P → P , (plus R-Res, R-Par, and R-Struct from Fig. 2)

(νxy)(x!v.P | lin y?z.Q | R) → (νxy)(P | Q [v/z] | R) (R-LinCom)

(νxy)(x!v.P | un y?z.Q | R) → (νxy)(P | Q [v/z] | un y?z.Q | R) (R-UnCom)

j ∈ I

(νxy)(x � l j .P | y � {li : Q i}i∈I | R) → (νxy)(P | Q j | R)
(R-Case)

Fig. 10. Classical session types: syntax and reduction.

Classical syntactic forms (replaces some productions in Fig. 3)

T ::= . . . Types:

q � T .T communication

q�{li : Ti}i∈I choice

Classical un predicate, T un (replaces some of the rules in Fig. 7)

un � T .U un un�{li : Ti}i∈I un

Classical coinductive subtyping rules, T <: T

U <: T T ′ <: U ′

q!T .T ′ <: q!U .U ′
T <: U T ′ <: U ′

q?T .T ′ <: q?U .U ′
J ⊆ I T j <: U j (∀ j ∈ J)

q⊕{li : Ti}i∈I <: q⊕{l j : U j} j∈ J

I ⊆ J T i <: Ui (∀i ∈ I)

q&{li : Ti}i∈I <: q&{l j : U j} j∈ J

Classical coinductive type duality rules, T ⊥ T

• ⊥ � T1 	 T2 U1 ⊥ U2

q•T1.U1 ⊥ q�T2.U2

� ⊥ � Ti ⊥ Ui (∀i ∈ I)

q�{li : Ti}i∈I ⊥ q�{li : Ui}i∈I

Classical typing rules, � � P (replaces some of the rules in Fig. 9)

�1 � x : q !T .U �2 + x : U = �3 ◦ �4 �3 � v : T �4 � P

�1 ◦ �2 � x!v.P
(T-OutC)

(�1 ◦ �2)q1 �1 � x : q2?T .U (�2 + x : U), y : T � P

�1 ◦ �2 � q1x?y.P
(T-InC)

�1 � x : q&{li : Ti}i∈I �2 + x : Ti � Pi (∀i ∈ I)

�1 ◦ �2 � x � {li : Pi}i∈I
(T-Branch)

�1 � x : q⊕{l : T } �2 + x : T � P

�1 ◦ �2 � x � l.P
(T-Sel)

Fig. 11. Classical session types: typing.

(νxy)
∏
i∈I

x � li .0 ≈C 0. (C-Equiv)

The new rule allows collecting processes that are left by the encoding of non-deterministic choice. We call it extended
structural congruence. This equation could be an axiom in a suitable strong bisimulation (cf. Honda [29]), but extended
structural congruence suffices for our purposes. It should be easy to see that the axiom preserves typability by choosing a
type μa.un⊕{li : a}i∈I for channel end x, and that ≈C is an equivalence relation, given that ≡ is.

We now turn our attention to barbs. A typed mixed session process P has a barb in x, notation � �M P ↓x , if � �M P
and

• P ≡ (νxn yn) . . . (νx1 y1)(qx
∑

i∈I Mi | R) where x /∈ {xi, yi}n and � �M x : q⊕{Bi}i∈I .
i=1

35

F. Casal, A. Mordido and V.T. Vasconcelos Theoretical Computer Science 897 (2022) 23–48
Notice that only types can reveal barbs in processes since internal choice is indistinguishable from external choice at the
process level in M.

On the other hand, a typed classical session process P has a barb in x, written � �C P ↓x , if � �C P and

• either P ≡ (νxn yn) . . . (νx1 y1)(x!v.Q | R) where x /∈ {xi, yi}n
i=1• or P ≡ (νxn yn) . . . (νx1 y1)(x � l.Q | R) where x /∈ {xi, yi}n

i=1.

Similarly to Kouzapas et al. [6], we consider selections as barbs.

6. Classical sessions as mixed sessions

This section shows that the language of classical sessions can be embedded in that of mixed sessions. The embedding is
defined in Fig. 12. It consists of two maps, one for processes, the other for types. These maps act as homomorphisms on all
process and type constructors not explicitly shown. For example �P | Q � = �P� | �Q �. We distinguish one fresh label, denoted
by msg, and use it to encode input and output (both in processes and types). Input and output processes are encoded in
choices with one only msg-labelled branch. The output process is qualified as lin (it does not survive reduction) and the
input process reads its qualifier q from the incoming process. Choice processes in classical sessions are encoded as choices
in mixed sessions. The value transmitted on the mixed session is irrelevant: we pick () of type unit for the output side, and
a fresh variable yi on the input side. Both types are linear.

Input and output types are translated into choice types. For output we arbitrarily pick an external choice (⊕), and
conversely for the input. The label in the only branch is msg in order to match our pick for processes, and the qualifier is
read from the incoming type. For classical choices, we read the qualifier and the view from the incoming type. The type of
the communication in the branches of the mixed choice is unit, again so that it matches our pick for processes.

The rest of this section discusses the properties of classical-to-mixed encoding, based on the criteria discussed in Sec-
tion 5.2.

Theorem 8 (Syntax Preservation). The classical-to-mixed encoding is

1. Homomorphic wrt parallel composition: if �� ◦ �′� �M �P | P ′�, then ��� ◦ ��′� �M �P� | �P ′�.
2. Compositional wrt channel restriction: if ��� �M �(νxy)P�, then ��� �M (νxy)�P�.
3. Name invariant: if �σ(�)� �M �σ(P)�, then σ(���) �M σ(�P�), for any injective renaming of variables σ .

Proof. Items 1 and 2: immediate from the definition of the translation of processes in Fig. 12. Item 3: the encoding trans-
forms each channel in itself, hence is trivially name invariant. �

The type soundness result for the classical-to-mixed encoding is the Item 9 of Theorem 9 below. The remaining items
are intermediate results necessary to prove type soundness.

Theorem 9 (Type Soundness).

1. If T unC , then �T �unM .
2. If � unC , then ���unM .
3. If T <: U , then �T � <: �U�
4. If � �C v : T , then ��� �M v : �T �.
5. If � = �1 ◦C �2 , then ��� = ��1� ◦M ��2�.
6. If � = �1 + x : T , then ��� = ��1� + x : �T �.
7. If T 	 U , then �T � 	 �U�.
8. If T ⊥ U , then �T � ⊥ �U�.
9. If � �C P , then ��� �M �P�.

Proof. Item 1: Immediate from Fig. 12; the encoding preserves the qualifiers.
Item 2 By rule induction on the hypothesis using Item 1.
Item 3: By coinduction using the set T = {(�T �, �U�) | T <: U }.
Item 4: By rule induction on the hypothesis, using Items 2 and 3.
Items 5 and 6: By rule induction on the hypothesis.
Item 7: By coinduction using the set E = {(�T �, �U�) | T 	 U }.
Item 8: By coinduction using the set D = {(�T �, �U�) | T ⊥ U } and Item 7.
Item 9: By rule induction on the hypothesis. We sketch a few cases. When the derivation ends with T-InC, we use

Item 1, Item 6, and induction. When the derivation ends with T-Branch, we obtain (��2� + x : �Ti�), yi : unit � �Pi� from the
induction hypothesis ��2� + x : �Ti� � �Pi� using Item 6 and weakening (Lemma 4). �
36

F. Casal, A. Mordido and V.T. Vasconcelos Theoretical Computer Science 897 (2022) 23–48
Process translation

�x!v.P� = lin x(msg!v.�P�)

�qx?y.P� = q x(msg?y.�P�)

�x � l.P� = lin x(l!().�P�)

�x � {li : Pi}i∈I� = lin x
∑
i∈I

li?yi .�Pi� (yi /∈ fv(Pi))

(Homomorphic for 0, P | Q , (νxy)P , and if v then P else Q)
Type translation

�q!S.T � = q⊕{msg!�S�.�T �}
�q?S.T � = q&{msg?�S�.�T �}

�q⊕{li : Ti}i∈I� = q⊕{li !unit.�Ti�}i∈I

�q&{li : Ti}i∈I� = q&{li?unit.�Ti�}i∈I

(Homomorphic for end, unit, bool, μa.T , and a)

Fig. 12. The translation of classical sessions into mixed sessions.

Theorem 10 (Barb Preservation). The typed encoding �·� : C −→M preserves barbs, that is, if � �C P ↓x, then ��� �M �P� ⇓x.

Proof. By case analysis for a classical typed barb.
Case P ≡ (νxn yn) . . . (νx1 y1)(x!v.Q | R) where x /∈ {xi, yi}n

i=1. Then, �P� = (νxn yn) . . . (νx1 y1)(lin x(msg!v.�Q �) | �R�)
where ��� �M x : q ⊕ {msg!�S�.�T �} from type soundness, and x /∈ {xi, yi}n

i=1, which makes �P� a typed mixed barb.
Case P ≡ (νxn yn) . . . (νx1 y1)(x � l.Q | R) where x /∈ {xi, yi}n

i=1. Then �P� = (νxn yn) . . . (νx1 y1)(lin x(l!().�Q �) | �R�) where
��� �M x : q⊕{li !unit.�Ti�}i∈I and x /∈ {xi, yi}n

i=1, which makes �P� a typed mixed barb. �
Operational correspondence states that the embedding preserves and reflects reduction. In our case, the embedding is

quite tight: one reduction step in classical sessions corresponds to one reduction step in mixed sessions. There is no runtime
penalty in running classical sessions on a mixed sessions machine. Further notice that we do not rely on any equivalence
relation on mixed sessions to establish the result: mixed-sessions images leave no “junk” in the process of simulating
classical sessions.

Theorem 11 (Operational correspondence). Let P , P ′ be classical session processes and Q a mixed session process.

Completeness If P →C P ′ , then �P� →M �P ′�.
Soundness If �P� →M Q , then P →C P ′ and �P ′� = Q , for some P ′.

Proof. Straightforward rule induction on the hypotheses, relying on the fact that �P�[v/x] = �P [v/x]� and xi /∈ fv(Pi) in the
translation of x � {li : Pi}i∈I . �
7. Mixed sessions as classical sessions

This section shows that the language of mixed sessions can be embedded in that of classical sessions.

7.1. Motivation

One of the novelties in mixed sessions is the possible presence of duplicated label-polarity pairs in choices. This in-
troduces a form of non-determinism that can be easily captured in classical sessions. Adapted from the non-deterministic
summation of Honda [29], the NDChoice classical session process creates a race condition on a new channel with endpoints
s, t featuring multiple selections on the s endpoint, for only one branch on the t endpoint. This guarantees that exactly
one of the branches is non-deterministically selected. The remaining selections must eventually be garbage collected. We
assume that

∏
1≤i≤n Q i denotes the process Q 1 | . . . | Q n for n > 0, and that
 binds tighter than the parallel composition

operator.

NDChoice{Pi}i∈I = (νst)

(∏
s � li .0 | t � {li : Pi}i∈I

)

i∈I

37

F. Casal, A. Mordido and V.T. Vasconcelos Theoretical Computer Science 897 (2022) 23–48
type Tx = l i n &{m: ! i n t . end ,
n : ?bool . end }

new x y : Tx

/ / l i n x (m! 3 . 0 + n?w. 0)
case x of

m → new s1 t 1 : ∗+{� }
s1 select � |
case t 1 of

� → x !3
n → new s2 t 2 : ∗+{� }

s2 select � |
case t 2 of

� → x?w

|

/ / l i n y (m?z . 0)
new s3 t 3 : ∗+{� }
s3 select � |
case t 3 of

� → y select m .
new s4 t 4 : ∗+{� }
s4 select � |
case t 4 of

� → y?z

Fig. 13. Translation of (new xy)(lin x (m!3.0 + n?w.0) | lin y (m?z.0)).

The type of channel end s is μa.un⊕{li : a}i∈I . The qualifier must be un because s occurs in multiple threads in NDChoice;
recursion arises because of the typing rules for processes reading or writing in unrestricted channels.

Equipped with the NDChoice operator we describe the translation of mixed sessions to classical sessions via a few
examples, all of which fully type check and run in SePi [10]. To handle duplicated label-polarity pairs in choices, we organize
choice processes by label-polarity fragments. Each such fragment represents a part of a choice operation where all possible
outcomes have the same label and polarity. When a reduction occurs, one of the branches is taken, non-deterministically,
using the NDChoice operator. After a non-deterministic choice of the branch, and depending on the polarity of the fragment,
the process continues by either writing on or reading from the original channel.

The translation of choice processes is guided by their types. For each choice we need to know its qualifier (lin, un) and
its view (⊕, &), and this information is present in types alone.

Fig. 13 shows the translation of the mixed process (new xy)(lin x (m!3.0 + n?w.0) | lin y (m?z.0)), where x is of type lin&{m!

int.end, n?bool.end}. The corresponding type in classical sessions is lin&{m:!int.end, n:?bool.end}, which should not come as a
surprise. Because channel end x is of an external choice type (&), the choice on x is encoded as a case process. The other
end of the channel, y, is typed as an internal choice (⊕) and is hence translated as a select process. Occurrences of the
NDChoice process appear in a degenerate form, always applied to a single branch. We have four of them: three for each of
the branches in case processes (s1t1 , s2 t2 , and s4 t4) and one for the external choice in the mixed session process (s3t3).

In general, an external choice is translated into a classical branching (case) over the unique labels of the fragments
of the process, but where the polarity of each label is inverted. The internal choice, in turn, is translated as (possibly
nondeterministic collection of) classical select process but keeps the label polarity. This preserves the behaviour of the
original process: in mixed choices, a reduction occurs when a branch l!v.P matches against another branch l?z.Q with
the same label but with dual polarity (l! against l?), while in a classical session the labels alone must match (l against l).
Needless to say, we could have followed the strategy of dualizing internal choices rather than external.

If we label reduction steps with the names of the channel ends on which they occur, we can see that, in this case a
xy−→ reduction step in mixed sessions is mimicked by a long series of classical reductions, namely

s3t3−→ xy−→ s1t1−→ s4t4−→ xy−→
or

s3t3−→ xy−→ s4t4−→ s1t1−→ xy−→. Notice the three reductions to resolve non-determinism (on siti) and the two reductions on xy to
encode branching followed by message passing, an atomic operation in mixed sessions.

Fig. 14 shows an example of a mixed choice process with a duplicated label-polarity pair, m!. If we assign type lin&{m!int}
to x, then we know that the choice on x is encoded as case and that on y as select. In this case, the NDChoice operator is
applied in a non-degenerate manner to decide whether to send the values 3 or 5 on x channel end, by means of channel
s1 t1 . Again we can see that the one step reduction on channel xy in the original mixed session process originates a sequence
of five reduction steps in classical sessions, namely s2t2−→ xy−→ s1t1−→ s3t3−→ xy−→ or s2t2−→ xy−→ s3t3−→ s1t1−→ xy−→. In this case, however, the
computation is non-deterministic: the last reduction step may carry integer 3 or 5. The select branch which is not taken
persists on the process, but is (extended) structurally congruent to 0 due to rule C-Equiv.

Fig. 15 shows the encoding of mixed choices on unrestricted channels. The mixed choice process is that of Fig. 14 only
that the two ephemeral choices (lin) have been replaced by their persistent counterparts (un). The novelty in this case is
the loops that have been created around the case and the select process. Loops in classical sessions can be implemented
with a replicated input: a process of the form v∗?x.P is a persistent process that, when invoked with a value w becomes the
parallel composition P[w/x] | v∗?x.P. The general form of the loops we are interested in are (new uv : ∗!()) (u !() | v∗?x.P), where
continue calls in process P are of the form u !() . The contents of the messages that control the loop are not of interest and so
we use the unit type () , so that u is of type ∗!() . We can see the calls u1 !() and u2 !() in the last lines in Fig. 15, reinstating the
unrestricted choice process. In this case, one step reduction in mixed sessions corresponds to a long sequence of transitions
in their encodings.
38

F. Casal, A. Mordido and V.T. Vasconcelos Theoretical Computer Science 897 (2022) 23–48
type Tx = l i n &{m: ! i n t . end }

new x y : Tx

/ / l i n x (m! 3 . 0 + m! 5 . 0)
case x of

m → new s1 t 1 : ∗+{�1 ,�2 }
s1 select �1 |
s1 select �2 |
case t 1 of

�1 → x !3
�2 → x !5

|
/ / l i n y (m?z . 0)
new s2 t 2 : ∗+{� }
s2 select � |
case t 2 of

� → y select m.
new s3 t 3 : ∗+{� }
s3 select � |
case t 3 of

� → y?z

Fig. 14. Translation of (new xy)(lin x (m!3.0 + m!5.0) | lin y (m?z.0)).

type Unr = l i n &{m: ! i n t . end }
new x y : ∗?Unr

/ / un x (m! 3 . 0 + m! 5 . 0)
new u1 v1 : ∗ ! ()
u1 ! () |
v1 ∗?() . x?c .
case c of

m → new s1 t 1 : ∗+{�1 ,�2 }
s1 select �1 |
s1 select �2 |
case t 1 of

�1 → c ! 3 . u1 ! ()
�2 → c ! 5 . u1 ! ()

|

/ / un y (m?z . 0)
new u2 v2 : ∗ ! ()
u2 ! () |
v2 ∗?() .
new s t : ∗+{� }
s select � |
case t of

� → new c d : Unr
y ! c . d select m.
new s2 t 2 : ∗+{� }
s2 select � |
case t 2 of

� → d?z . u2 ! ()

Fig. 15. Translation of (new xy)(un x (m!3.0 + m!5.0) | un y (m?z.0)).

�lin⊕{l�i T i .Ui}i∈I� = lin⊕{l�i : lin �i �Ti�.�Ui�}i∈I

�lin&{l�i T i .Ui}i∈I� = lin&{l•i : lin �i �Ti�.�Ui�}i∈I

�μa.un⊕{l�i T i .a}i∈I� = μa.un!(lin&{l�i : lin �i �Ti�.end}i∈I).a

�μa.un&{l�i T i .a}i∈I� = μa.un?(lin&{l•i : lin �i �Ti�.end}i∈I).a

where �i ⊥ •i . Homomorphic for end, unit, bool, a, and μa.T with
T �= un�{l�i T i .Ui}.

Fig. 16. Translation of mixed session types into classical session types.

7.2. The mixed-to-classical encoding

We now present translations for types and processes in general. The translation of mixed choice session types into
classical session types is in Fig. 16. The (atomic) branch-communicate nature of mixed session types, {l �i Si}, is broken in
its two parts, {li : � Si}: branch first, communicate after. In mixed sessions, choice types are labelled by label-polarity pairs
(l! or l?); in classical session choices are labelled by labels alone. Because we want the encoding of a label l! to match the
encoding of l?, we must dualize one of them. We arbitrarily chose to dualize the labels in the & type. The typing rules for
classical unrestricted processes of type S = un �{li�Si .Ti}i∈I require Ti to be equivalent () to S itself. We take advantage of
this restriction when translating un types. When compared to their lin counterparts, un processes feature an extra indirection
inflicted by the (un) loop under which they operate.

The translation of mixed choice processes is in Figs. 17 and 18. Since the translation is guided by the type of the process
to be translated, we also provide the typing context to the translation function, hence the notation �� � P�. Because label-
polarity pairs may be duplicated in choice processes, we organize such processes in label-polarity fragments, so that a
process of the form qx

∑
h∈H Mh is written as

qx
∑

(
∑

l!i vi j .Pij +
∑

l?i yik.P
′
ik) .
i∈I j∈ J i k∈Ki

39

F. Casal, A. Mordido and V.T. Vasconcelos Theoretical Computer Science 897 (2022) 23–48
�� � lin x
∑
i∈I

(
∑
j∈ J i

l!i vi j .Pij +
∑
k∈Ki

l?i yik.P
′
ik)� = NDChoice{

x � l!i .NDChoice{x!vij .��4 � Pij�} j∈ J i ,

x � l?i .NDChoice{lin x?yik.�(�2 + x : U ′
i), yik : T ′

i � P ′
ik�}k∈Ki }i∈I

where � = �1 ◦ �2 and �1 �M x : lin⊕{l!i T i .Ui , l?i T ′
i .U

′
i}i∈I and �2 + x : Ui = �3 ◦ �4 and �3 � vij : Ti .

�� � lin x
∑
i∈I

(
∑
j∈ J i

l!i vi j .Pij +
∑
k∈Ki

l?i yik.P
′
ik)� = x � {

l?i : NDChoice{x!vij .��4 � Pij�} j∈ J i ,

l!i : NDChoice{lin x?yik.�(�2 + x : Ui), yik : Ti � P ′
ik�}k∈Ki }i∈I

where � = �1 ◦ �2 and �1 �M x : lin&{l!i T i .Ui, l?i T ′
i .U

′
i}i∈I and �2 + x : U ′

i = �3 ◦ �4 and �3 � vij : T ′
i .

�� � lin x
∑
i∈I

(
∑
j∈ J i

l!i vi j .Pij +
∑
k∈Ki

l?i yik.P
′
ik)� = NDChoice{

(νcd)x!c.d � l!i .NDChoice{d!vij .�� � Pij�} j∈ J i ,

(νcd)x!c.d � l?i .NDChoice{lind?yik.��, yik : T ′
i � P ′

ik�}k∈Ki }i∈I

where � un and � �M x : μa.un⊕{l!i T i .a, l?i T ′
i .a}i∈I and � �M vij : Ti .

�� � lin x
∑
i∈I

(
∑
j∈ J i

l!i vi j .Pij +
∑
k∈Ki

l?i yik.P
′
ik)� = lin x?c.c � {

l?i : NDChoice{c!vij .�� � Pij�} j∈ J i ,

l!i : NDChoice{lin c?yik.��, yik : Ti � P ′
ik�}k∈Ki }i∈I

where � un and � �M x : μa.un&{l!i T i .a, l?i T ′
i .a}i∈I and � �M vij : T ′

i .

�� � un x
∑
i∈I

(
∑
j∈ J i

l!i vi j .Pij +
∑
k∈Ki

l?i yik.P
′
ik)� = (νuv)(u!() | un v?_.NDChoice{

(νcd)x!c.d � l!i .NDChoice{d!vij .(u!() | �� � Pij�)} j∈ J i ,

(νcd)x!c.d � l?i .NDChoice{lind?yik.(u!() | ��, yik : T ′
i � P ′

ik�)}k∈Ki }i∈I)

where � un and � �M x : μa.un⊕{l!i T i .a, l?i T ′
i .a}i∈I and � �M vij : Ti .

�� � un x
∑
i∈I

(
∑
j∈ J i

l!i vi j .Pij +
∑
k∈Ki

l?i yik.P
′
ik)� = (νuv)(u!() | un v?_.lin x?c.c � {

l?i : NDChoice{c!vij .(u!() | �� � Pij�)} j∈ J i ,

l!i : NDChoice{lin c?yik.(u!() | ��, yik : Ti � P ′
ik�)}k∈Ki }i∈I)

where � un and � �M x : μa.un&{l!i T i .a, l?i T ′
i .a}i∈I and � �M vij : T ′

i .

Fig. 17. Translation of mixed choice processes into classical processes (1/2).

��1 ◦ �2 � P1 | P2� = ��1 � P1� | ��2 � P2�

�� � (νxy)P� = (νxy)��, x : T , y : U � P�

��1 ◦ �2 � if v then P1 else P2� = if v then ��2 � P1� else ��2 � P2�

�� � 0� = 0

where T ⊥ U and �1 � v : bool.

Fig. 18. Translation of mixed choice processes into classical processes (2/2).

Each label-polarity fragment (l!i or l?i) groups together branches with the same label and the same polarity. Such fragments
may be empty for external choices, for not all label-polarity pairs in an external choice type need to be covered in the
corresponding process (internal choice processes do not need to cover all choices offered by the external counterpart). The
essence of the translation is discussed in the three examples above.

We distinguish six cases for choices, according to qualifiers (lin or un) and views (⊕ or &) in types, but also to the
qualifiers (lin or un) in processes. In all of them an NDChoice process takes care of duplicated label-polarity pairs in branches.
The six cases cover all possible cases, making the translation function total. Internal choice types feature an extra occurrence
of NDChoice to non-deterministically select between output and input on the same label. Notice that external choice must
40

F. Casal, A. Mordido and V.T. Vasconcelos Theoretical Computer Science 897 (2022) 23–48
still accept both choices, so that it is not equipped with an NDChoice. Finally, unrestricted processes with unrestricted
types require the encoding of a loop, accomplished by creating a new channel for the effect (νuv), installing a replicated
input—un v?_.P —at one end of the channel, and invoking—u!()—the input once to “start” the loop and again at the end of
the interaction on channel end x. The contents of the messages are of no interest and so we use the unit value (). However,
linear processes with unrestricted types do not require the new channel (uv) to encode a loop. This case is similar to the
case with linear types, but uses channel (cd) to enable communication with unrestricted processes.

Following the encoding for types, the encoding for external choice processes exchanges the polarities of choice labels: a
label l!i in mixed sessions is translated into l?i , and vice-versa, in the cases for lin& and un& choices. This allows reduction
to happen in classical sessions, where we require an exact match between the label of the select process and that of the
case process.

Take for T the type μa.lin ⊕ {l!a.a}, that is T = lin⊕{l!T .T }. We can show that x : T � lin x(l!x.0). The encoding of this
process includes the classical process x!x.0 as a subterm, which cannot be typed under a linear type with the original T-Out

rule [3]. The new T-OutC rule in Fig. 11 allows typing such a process.

7.3. The mixed-to-classical encoding is minimal

This section covers typing and operational correspondences; we aim at a minimal encoding according to the definition
in Section 5. The pair of maps �·� in Figs. 16 to 18 constitutes the typed encoding that translates types and processes from
M to C .

Theorem 12 (Syntax Preservation). The mixed-to-classical encoding is

1. Homomorphic wrt parallel composition: if �� ◦ �′� �C �� ◦ �′ �M (P | P ′)�, then ��� ◦ ��′� �C �� �M P� | ��′ �M P ′�;
2. Compositional wrt channel restriction: if ��� �C �� �M (νxy)P�, then ��� �C (νxy)��, x : S, y : T �M P�, where S ⊥ T ;
3. Name invariant: if �σ(�)� �C �σ(�) �M σ(P)�, then σ(���) �C σ(�� �M P�), for any injective renaming of variables σ .

Proof. Items 1 and 2: immediate from Figs. 17 and 18. Item 3: our encoding transforms each channel in itself, so is name
invariant. �

We now move to type soundness, but before we need to type the NDChoice operator.

Lemma 13. The following is an admissible typing rule for NDChoice.

� �M Pi

� �M NDChoice{Pi}i∈I
(T-NDChoice)

Proof. The typing derivation of the expansion of NDChoice leaves open the derivations for � �M Pi alone. �
The type soundness theorem for the mixed-to-classical encoding is Item 9 of Theorem 14 below; the remaining items

help in building the main result.

Theorem 14 (Type Soundness).

1. If T unM , then �T �unC .
2. If � unM , then ���unC .
3. If T <: U , then �T � <: �U�.
4. If � �M v : T , then ��� �C v : �T �.
5. If � = �1 ◦M �2 , then ��� = ��1� ◦C ��2�.
6. If � = �1 + x : T , then ��� = ��1� + x : �T �.
7. If T 	 U , then �T � 	 �U�.
8. If T ⊥ U , then �T � ⊥ �U�.
9. If � �M P , then ��� �C �� � P�.

Proof. Item 1: By rule induction on the hypothesis.
Item 2: By rule induction on the hypothesis using Item 1.
Item 3: By coinduction using the set T = {(�T �, �U�) | T <: U }.
Item 4: By case analysis on the hypothesis using Items 2 and 3.
Items 5 and 6: By case analysis on the hypothesis.
Item 7: By coinduction using the set E = {(�T �, �U�) | T 	 U }.
Item 8: By coinduction using the set D = {(�T �, �U�) | T ⊥ U } and Item 7.
41

F. Casal, A. Mordido and V.T. Vasconcelos Theoretical Computer Science 897 (2022) 23–48
Item 9: By rule induction on the hypothesis. We sketch a few cases.
Case T-Par. The premises read � = �1 + �2 and �2 �M P1 and �2 �M P2. Item 5 and induction give ��� = ��1� ◦ ��2�

and ��2� �C �P� and ��2� �M �Q �. Conclude with the T-Par rule for classical processes.
Case T-Choice. The premises read � = �1 ◦�2 and � q1 and �1 �M x : q2�{l�i T i .Ui}i∈I and �2 + x : U j � l� j v j .P j : l� j T j .U j

and {l� j} j∈ J = {l�i}i∈I . We distinguish six cases according to Figs. 17 and 18.
Subcase lin⊕. Then we have q1 = q2 = lin and � = ⊕. From �2 + x : U j � l� j v j .P j : l� j T j .U j , the premises to rules T-Out

and T-In read �2 + x : U j = �3 + �4 and �3 �M v j : T j and �4 �M P j and �2 + x : Ui, y : Ti �M Pi . Item 4 gives ��3� �C
v j : �T j� and by induction we know ��4� �C ��4 � P j� and also ��2 + x : Ui, y : T ′

i � �C ��2 + x : Ui, y : T ′
i � P ′

i�. We now
build a derivation for the conclusion. From the induction hypotheses, using the rules T-OutC and T-NDChoice (Lemma 13),
and T-Sel we know that

��1 ◦ �2� �C x � l!i .NDChoice{x!vij .��4 � Pij�} j∈ J }
Similarly, using rules T-InC, T-NDChoice, and T-Sel we know that

��1 ◦ �2� �C x � l?i .NDChoice{lin x?yik.�(�2 + x : Ui), yik : T ′
i � P ′

ik�}
and we conclude the case using rule T-NDChoice again.

Subcase lin&. Here we have q1 = q2 = un and � = &. Similarly to the previous case, from the premises of T-Out, T-In and
the induction hypothesis, we get ��3� �C v j : �T j� and ��4� �C ��4 � P j� and ��2 + x : U ′

i, y : Ti� �C ��2 + x : U ′
i, y : Ti � P ′

i�.
We build a derivation using T-OutC, T-NDChoice, and obtaining

��2�, x : lin!�Ti�.�Ui� �C NDChoice{x!vij.��4 � Pij�} j∈ J }.
Similarly, using T-InC and T-NDChoice, we obtain

��2�, x : lin?�T ′
i �.�U ′

i� �C NDChoice{lin x?yik.�(�2 + x : U ′
i), yik : Ti � P ′

ik�} j∈ J }.
We conclude using rule T-Branch.

Subcase un⊕, q1 = un. In this case q2 = un and � = ⊕. We have � un, hence �1 = �2 = �. Because the type for x is un,
in order for �2 + x : U j to be defined U j must be equal to un�{l�i T i .Ui}i∈I , hence of the form μa.un�{l�i T i .a}i∈I . We now
proceed as in the subcases above and build the (long) derivation for the classical process using the typing rules (Fig. 11
and Lemma 13). A type for c is lin&{l!i : lin!�Ti�.end, l?i : lin?�T ′

i �.end}i∈I and that of d a dual. The type of u is μa.un!unit.a and
that of v is dual.

Subcase un&, q1 = un. This case is analogous to the previous one, results from a long derivation using the typing rules in
Fig. 11 and Lemma 13, but now considering q2 = un and � = &. The type of x is μa.un&{l�i T i .a}i∈I .

Subcases un�, q1 = lin. Due to the absence of uv , the derivations for these cases are similar but simpler than those for
subcases un�, q1 = un. �

The following lemma characterizes the reductions of NDChoice processes: they reduce to one of the choices and leave
an inert term G .

Lemma 15. NDChoice{Pi}i∈I → Pk | G ≈C Pk, for any k ∈ I .

Proof. NDChoice{Pi}i∈I → Pk | G , where G = (νst)
∏i �=k

i∈I s � li .0 and G ≈C 0. �
The following theorem fulfils the barb preservation criterion: if a mixed process has a barb, its translation has a weak barb

on the same channel.

Theorem 16 (Barb Preservation). The typed encoding �·� :M −→ C preserves barbs, that is, if � �M P ↓x, then ��� �C �� �C P� ⇓x.

Proof. By analysis of the translation of processes with barbs. In the case that x is linear, rearranging the choice in P in
fragments, we obtain that P ≡ (νxn yn) . . . (νx1 y1)(lin x

∑
i∈I (

∑
j∈ J i

l!i vi j .Pij + ∑
k∈Ki

l?i yik.P ′
ik) | R) and so its translation is

�� � P � = (νxn yn) . . . (νx1 y1)(NDChoice{
x � l!i .NDChoice{x!vij .��4 � Pij�} j∈ J i ,

x � l?i .NDChoice{lin x?yik.�(�2 + x : U ′
i), yik : T ′

i � P ′
ik�}k∈Ki }i∈I

| ��′ � R�).

This process makes internal reduction steps in the resolution of the outermost NDChoice, non-deterministically choos-
ing one of the possible fragments, via Lemma 15. However, independently of which branch is chosen, they are all
42

F. Casal, A. Mordido and V.T. Vasconcelos Theoretical Computer Science 897 (2022) 23–48
of the form x � �.C , which has a barb in x. That is: �� � P� ⇒ (νxn yn) . . . (νx1 y1)(x � �.C | ��′ � R� | G), which has
a barb in x. The G term is the inert remainder of the NDChoice reduction. In the unrestricted case, we have P ≡
(νxn yn) . . . (νx1 y1)(un x

∑
i∈I (

∑
j∈ J i

l!i vi j .Pij + ∑
k∈Ki

l?i yik.P ′
ik) | R). So,

�� � P � = (νxn yn) . . . (νx1 y1)((νuv)(u!() | un v?_.NDChoice{
(νcd)x!c.d � l!i .NDChoice{d!vij.(u!() | ��1 � Pij�)} j∈ J i ,

(νcd)x!c.d � l?i .NDChoice{lin d?yik.(u!() | ��1, yik : T ′
i � P ′

ik�)}k∈Ki }i∈I)

| ��2 � R�)

The process starts by reducing via R-UnCom on the u, v channels to the process

�� � P � ⇒ (νxn yn) . . . (νx1 y1)((νuv)(NDChoice{
(νcd)x!c.d � l!i .NDChoice{d!vij.(u!() | ��1 � Pij�)} j∈ J i ,

(νcd)x!c.d � l?i .NDChoice{lin d?yik.(u!() | ��1, yik : T ′
i � P ′

ik�)}k∈Ki }i∈I)

| ��2 � R� | U)

where U is the persistent part of the unrestricted process. This process, in turn, reduces via the NDChoice (Lemma 15) to
one of the possible branches which are all of the form (νab)x!a.C ,

�� � P � ⇒ (νxn yn) . . .(νx1 y1)(νuv)(νab)(x!a.C) | ��2 � R� | U | G).

Since P has a barb in x, x /∈ {xi, yi}n
i=1 and so this process also has a barb in x, concluding that �� � P� has indeed a weak

barb in x. �
We now address operational completeness. Operational completeness relates the behaviour of mixed sessions against

their classical sessions images: any reduction step in mixed sessions can be mimicked by a sequence of reductions steps
in classical sessions, modulo extended structural congruence. The ghost reductions result from the new channels and com-
munication inserted by the translation, namely those due to the NDChoice and to the encoding of “loops” for un mixed
choices.

Theorem 17 (Operational completeness). The typed encoding �·� : M −→ C is operationally complete, that is, if P →M P ′ , then
�� � P� ⇒C≈C �� � P ′�.

Proof. By rule induction on the derivation of P →M P ′ . We detail a few cases.
Case R-Par. We have �� � P1 | P2� = ��1 � P1� | ��2 � P2� with � = �1 ◦ �2. By induction we have ��1 � P1� ⇒C Q ≈C

��1 � P ′
1�. Using rule R-Par and the fact that ≈C is a congruence, we get ��1 � P1� | ��2 � P2� ⇒C Q | ��2 � P2� ≈C

��1 � P ′
1� | ��2 � P2� = �� � P ′

1 | P2�. The cases for R-Res and R-Struct are similar.
Case R-LinLin. Considering �, x : U , y : V = �1 ◦ �2 ◦ �3 with �1 � x : lin&{l!T0.U0, . . .} and �2 � y : lin⊕{l?T0.V 0, . . .} , and

U0 ⊥ V 0, and using the definition of the translation on �� � (νxy)(lin x(l!v.P + M) | lin y(l?z.Q + N) | O)�, we get

(νxy)(��1 � lin x(l!v.P + M� | ��2 � lin y(l?z.Q + N)� | ��3 � O �).

By a sequence of applications of the rules R-Case, C-Equiv, and R-LinCom, we obtain

(νxy)(��5 � P � | �(�′′
2 + y : V 0), z : T0 � Q �[v/z] | ��3 � O �),

where �1 = �′
1 ◦ �′′

1 and �′′
1 + x : U0 = �4 ◦ �5 and �4 � x : T0 and �2 = �′

2 ◦ �′′
2. Notice that �′

1 = �1, x : U where �1 is
un, hence �1 is in �′′

1. The same reasoning applies to �′
2. Since context �4 is used to type v , the substitution lemma [3]

reintroduces it in the context for Q [v/z]. Applying the definition of the translation, we conclude that translation of the
original mixed process reduces to �� � (νxy)(P | Q [v/z] | O)�.

The case for R-UnUn is similar, albeit more verbose.
Case R-UnLin. Using the definition of the translation for the ν constructor, we know that the process (νxy)(un x(l!v.P +

M) | lin y(l?z.Q + N) | O) translates to (νxy)��, x : U , y : V � un x(l!v.P + M) | lin y(l?z.Q + N) | O �, where R ⊥ S . Then, U is
of the form U = μa.un!U0.a and V = μa.un?V 0.a. We are then reduced to the translation rules in Fig. 17. Using the rule
R-UnCom to reduce u and v in the translation of un x(l!v.P + M), and applying the rules R-Case, C-Equiv, and R-LinCom, we
obtain

�� � (νxy)(P | Q [v/z] | un x(l!v.P + M) | O)�

The case for R-LinUn is similar.
The cases for R-IfT and R-IfF are direct. �
43

F. Casal, A. Mordido and V.T. Vasconcelos Theoretical Computer Science 897 (2022) 23–48
Broker

l!3© l?4©

P

l?+m!+n!1©

Qv
5©

l!+n?2©

(a) Basic broker

Broker

l!u3© l?4©

P

l?+m!v+n!w 1©

Q

l!u+n?2©

(b) Values are piggybacked

Fig. 19. Broker is an independent process.

We can show that the translation does not enjoy reduction soundness. Consider the classical process Q to be the encod-
ing of process P of the form un y(m?z.0), described in the right part of Fig. 15. Soundness requires that if Q →C Q ′ , then
P ⇒M P ′ and Q ⇒C≈C �� � P ′�. Clearly, Q has an initial reduction step (on channel u2 v2), which cannot be mimicked
by P . But this reduction is a transition internal to process Q . Equipped with a suitable notion of weak bisimulation that
ignores internal transitions, we expect soundness to hold.

8. What is in the way of a compiler?

This section discusses algorithmic type checking and the implementation of choice in message passing architectures.
We start with type checking and then move to the runtime system. Gay and Hole present an algorithmic subtyping

system for classical sessions [20]. Algorithmic subtyping for mixed sessions can be obtained by adapting the rules in Gay
and Hole. T-Sub is the only non syntax-directed rule in Fig. 9. We delete this rule and distribute subtype checking among
all rules that use, in their premises, sequents � � v : T , as usual. Most of the rules include a non-deterministic context split
operation. Take rule T-Par, for example. Rather than guessing the right split, we take the incoming context and give it all
to process P , later reclaiming the unused part. This outgoing context is then passed to process Q . The outgoing context of
the parallel composition P | Q is that of Q . See, e.g., Vasconcelos or Walker for details [3,21]. Rule T-Res requires guessing
the type of the two channel ends, so that one is dual to the other. Rather than guessing the type of channel end x, we seek
the help of the programmer by working with an explicitly typed syntax—(νxy : T)P —as in Franco and Vasconcelos [3,10],
where T refers to the type of channel end x. For the type of channel end y, rather than guessing, we build it from type T ;
cf. [16,17,19,30].

Running mixed sessions on a message passing architecture need not be an expensive operation. Take one of the commu-
nication axioms in Fig. 2. We set up a broker process that receives the label-polarity pairs of both processes ({l�i}i∈I and
{l� j} j∈ J), decides on a matching pair (guaranteed to exist for typed processes), and communicates the result back to the
two processes. The processes then exchange the appropriate value, and proceed. If the broker is an independent process,
then we exchange five messages per choice synchronisation. This basic broker is instantiated for two processes in Fig. 19a.

P � lin x(l?_.P1 + m!v.P1 + n!w.P3)

Q � lin y(l!u.Q 1 + n?_.Q 3)

We can do better by piggybacking the values in the output choices together with the label-polarities pairs. The broker
passes its decision to the input side in the form of a triple label-polarity-value, yielding one less message exchanged, as
showcased in Fig. 19b.

Finally, we observe that the broker need not be an independent process; it can be located at one of the choice processes.
This reduces the number of messages down to two messages in the general case, as described in Figs. 20a and 20b where
either P is the broker or Q is the broker. Even if the value was already sent by Q in the case that P is the broker, P must
still let Q know which choice was taken, so that Q may proceed with the appropriate branch.

However, in particular cases one message may be enough. Take, for instance a process P � un x(l!u.P ′ + m!v.P ′). Inde-
pendently of which branch is taken, the process proceeds as P ′ . Thus, if the broker is located in a process Q , then P needs
not be informed of the selected choice. The same is true for classical sessions where selection is a mixed-out choice of a
single branch.

There are two other aspects that one should discuss when implementing mixed sessions on a message passing architec-
ture other than the number of messages exchanged.

The first is related the type of broker used and to which values are revealed in a choice to the other party. In the case of
the basic broker, only the chosen option value is revealed, and never to the broker itself. However, when we piggyback the
values in the second type of broker, all values in the choice branches are revealed to the broker, even if they are not used
in the end. This is even more striking in the case where one of the processes is the broker—the other party has access to
all the possible values, independently of the choice that is taken.
44

F. Casal, A. Mordido and V.T. Vasconcelos Theoretical Computer Science 897 (2022) 23–48
P/B
l?
2© Q

l!u+n?
1©

(a) P is the broker

P

l?+m!v+n!w
1©

Q /B

l!u2©

(b) Q is the broker

Fig. 20. Broker is P or Q .

The second aspect is also related to the values themselves which, in order to be presented in the choice, values must
be computed a priori, even if they are not used in the choice. When dealing with the privacy of the values, we can choose
which type of broker to use depending on how much we want to reveal to the other party.

9. Related work

The origin of choice Free (completely unrestricted) choice is central to process algebras, including BPA and CCS [31,32]. Here
we usually find processes of the form P + Q , where P and Q are arbitrary process. Free choice is also present in the very
first proposal of the π -calculus [13,14], even if Milner later uses guarded choice [33]. Sangiorgi and Walker’s book builds
on the pi-calculus with guarded (mixed) choice [34]. Guarded choices in all preceding proposals operate on possibly distinct
channels—x!true.P + y?z.Q — whereas choices on mixed sessions run on a common channel—x(l!true.P + m?y.Q).

Labelled-choices were embedded in the theory of session types by Honda et al. [2,35,36], where one finds primi-
tives for value passing—x!true.P and x?y.Q —and, separately, for choice in the form of labelled selection—x � l.P —and
branching—x � {li : Pi}i∈I —see Section 5.1. Coalescing label selection with output and branching with input was proposed
by Vasconcelos [37] (and later used by Sangiorgi [38]) as a means to describe concurrent objects. Demangeon and Honda
use a similar language to study embeddings of calculi for functions and for session-based communication [39]. All these
languages offer only separated (unmixed) choices and only on the input side.

Choices and labels In process algebras choices are usually guarded by channels. For example, the interprocess communica-
tion rule for the pi-calculus, as in Sangiorgi and Walker [34] is

(x!y.P1 + M1) | (x?z.P2 + M2) → P1 | P2[y/z]
where x denotes a channel and M1 and M2 denote sums of prefixed processes (each of the form x!y.P or x?y.P). When one
moves to algebras ruled by session types, labelled-prefixed choices are instead the norm, even if one can think of distilled
choices in the form of (unlabelled) binary choice as in Caires et al. [24]. Labelled (n-ary) choices, as introduced by Honda et
al. [2,36], provide a better programming experience, in the same way that labelled sums (or variants) offer extra flexibility
with respect to binary sums in functional programming.

Labels in mixed choice take a different flavour. To start with, they do not constitute keys to choices when seen as maps.
Instead, labels in mixed choices are always paired with polarities and thus the obtained pairs are keys to type choices
(but not to process choices), again for extra programming flexibility. Duplicated label-polarity choices in processes allow for
controlled non-determinism and is much in line with the process algebra approach embodied by the above reduction rule,
where channel x may prefix processes in M1 or M2.

As in the pi calculus, mixed choice process are not endowed with a “point of view”: a choice is simply a choice. Commu-
nication safety (Theorem 3) however requires typed processes to take a view: internal or external (thus precluding unicity
of types). Once classified, all options in the internal side must be included in the options of the external side. This is in
clear contrast with the pi calculus, where choices such as M1 and M2 above may not have channels in common.

Mixed choices in the singularity operating system Concrete syntax apart, the language of linear mixed choices is quite similar
to that of channel contracts in Sing� [40]. Rather than explicit recursive types, Sing� contracts uses named states (akin
to typestates [41]), providing for more legible contracts. In Sing�, each state in a contract corresponds to a mixed session
lin&{li�i Si .Ti} (contracts are always written from the consumer side) where each li denotes a message tag, � the message
direction (! or ?), Si the type of the value in the message, and Ti the next state.

Stengel and Bultan showed that processes that follow Sing� contracts can engage in communication errors [42]. They
further provide a realizability condition for contracts that essentially rules out mixed choices. Bono and Padovani present
a calculus and a type system that models Sing� [17,43]. The type system ensures that well-typed processes are exempt
from communication errors, but the language of types excludes mixed-choices. So it seems that Sing�-like languages only
function properly under separated choice, yet our work survives under mixed choices. Contradiction? No! Sing� features
asynchronous (or buffered) semantics whereas mixed sessions run under synchronous semantics. The operational semantics
makes all the difference in this case.

Synchronicity, asynchronicity, and choice Pierce and Turner identified the problem: “In an asynchronous language guarded
choice should be restricted still further since an asynchronous output in a choice is sensitive to buffering” [9] and Peters
45

F. Casal, A. Mordido and V.T. Vasconcelos Theoretical Computer Science 897 (2022) 23–48
et al. state that “a discussion on synchrony versus asynchrony cannot be separated from a discussion on choice” [44,45].
Based on classical sessions, mixed sessions are naturally synchronous. The naive introduction of an asynchronous semantics
would ruin the main results of the language (see Section 4). Asynchronous semantics are known to be compatible with
classical sessions; see Honda et al. [46,47] for multiparty asynchronous session types and Fowler et al. [48] and Gay and
Vasconcelos [1] for two examples of functional languages with session types and asynchronous semantics. So one can ask
whether a language can be designed where mixed-choices are handled synchronously and separated-choices asynchronously,
where a type-guided operational semantics with by-default asynchronous semantics reverts to a synchronous semantics
when in presence of mixed-choices.

Separation results Palamidessi shows that the π -calculus with mixed choice is more expressive than its subset with sep-
arated choice [49]. Gorla provides a simpler proof [50] of the same result and Peters and Nestmann analyse the problem
from the perspective of breaking initial symmetries in separated-choice processes [51]. Unlike the choices in both π -calculus
with mixed and separated choice, choices in mixed sessions operate on the same channel and are guided by types. In par-
ticular, there is a communication safety property enforced by the type system in which all the options of the internal side
must be included into the options of the external side. Another difference to these separation results is that our translation
from mixed to classical sessions is guided by the type of the process. Due to the simple syntax of mixed sessions, we
can write a process which translates to different classical sessions processes, depending on its type. A process of the form
(νxy)(P | σ(P)) where P is

lin x(l?_.lin w(m!worker.0) + l!().lin w(m!leader.0))

and σ a substitution of x by y, would in principle be a symmetric network which elects a leader as in [51]. However, its
translation will not be symmetric as one of P or σ(P) will be the external choice and the other the internal. One may ask
if we could make the translation to classical sessions independent of the type of the process, for instance, by annotating
the type information at the syntax level (e.g., writing ⊕ and & explicitly in processes). From the viewpoint of usability and
software-engineering, processes would be harder to write and code reuse made difficult. On the other hand, translation
from such a syntax would be closer to that of Peters and Nestmann [51]. This is a direction to be explored in the future.

The origin of mixed sessions Mixed sessions dawned on us when looking into an algorithm to decide the equivalence of
context-free session types [52,53]. The algorithm translates types into (simple) context-free grammars. The decision pro-
cedure runs on arbitrary simple grammars: the right-hand sides of grammar productions may start with a label-output
or a label-input pair for the same non-terminal symbol at the left of the production. We then decided to explore mixed
sessions and picked the simplest possible language for the effect: the π -calculus. It would be interesting to look into mixed
context-free session types, given that decidability of type equivalence is guaranteed.

10. Conclusion

We introduce mixed sessions: session types with mixed choice. Classical session types feature separated choices; in
fact all the proposals in the literature we are aware of provide for choice on the input side only, even if we can easily
think of choice on the output side. In contrast to separated choices, where output operations are inherently associated with
the endpoint that initiates the communication, mixed choices allow to unfasten this association. Mixed sessions increase
flexibility in programming and are easily realisable in conventional message passing architectures.

Mixed choices come with a type system featuring subtyping. Typability is preserved by reduction. Furthermore well-
typed programs are exempt from runtime errors. We provide suggestions on how to derive a type checking procedure, even
if we do not formalise one.

Classical session types can be embedded in mixed sessions: we provide for an encoding and show typing and operational
correspondences. Conversely, mixed sessions can be encoded into classical session types: we present an encoding and show
that it is minimal, according to the criteria of Kouzapas et al. [6].

An interesting avenue for further development is looking for a suitable notion of weak bisimulation for mixed choices
in such a way that the mixed-to-classical encoding may enjoy reduction soundness. Another looks for a hybrid type-guided
semantics, asynchronous by default, that reverts to synchronous when in presence of an output choice.

The generalisation of mixed choices to the multiparty setting is also an interesting topic to be explored. The multiparty
session types programme has global types projected onto diverse binary session types, each describing the behaviour of one
particular participant. So, one could think of developing mixed-session global types to be projected into the types proposed
in this paper.

Mixed sessions are not exempt from deadlocks (see Section 4). There are different approaches to ensure the absence
of deadlocks in session-based systems. One is to start from global types, an avenue discussed in the previous paragraph.
Another approach is to look into extensions of the linear logic interpretations of session types [24,27] but that may raise
difficulties at the level of the logic. A third possibility is to look into type systems that capture some form dependency
between actions (see [54, Chapter 7]).
46

F. Casal, A. Mordido and V.T. Vasconcelos Theoretical Computer Science 897 (2022) 23–48
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

We thank Simon Gay, Uwe Nestmann, Kirstin Peters, Peter Thiemann and Nobuko Yoshida for comments and discussions.
We would also like to thank the anonymous reviewers for the valuable suggestions. This work was supported by FCT
through the project SafeSessions, ref. PTDC/CCI-COM/6453/2020 and the LASIGE Research Unit, refs. UIDB/00408/2020 and
UIDP/00408/2020, and by Cost Action CA15123 EUTypes.

References

[1] S.J. Gay, V.T. Vasconcelos, Linear type theory for asynchronous session types, J. Funct. Program. 20 (1) (2010) 19–50, https://doi .org /10 .1017 /
S0956796809990268.

[2] K. Honda, V.T. Vasconcelos, M. Kubo, Language primitives and type discipline for structured communication-based programming, in: Programming
Languages and Systems, in: Lecture Notes in Computer Science, vol. 1381, Springer, 1998, pp. 122–138.

[3] V.T. Vasconcelos, Fundamentals of session types, Inf. Comput. 217 (2012) 52–70, https://doi .org /10 .1016 /j .ic .2012 .05 .002.
[4] V.T. Vasconcelos, Fundamentals of session types, in: Formal Methods for Web Services, in: Lecture Notes in Computer Science, vol. 5569, Springer,

2009, pp. 158–186.
[5] N. Yoshida, V.T. Vasconcelos, Language primitives and type discipline for structured communication-based programming revisited: two systems for

higher-order session communication, Electron. Notes Theor. Comput. Sci. 171 (4) (2007) 73–93, https://doi .org /10 .1016 /j .entcs .2007.02 .056.
[6] D. Kouzapas, J.A. Pérez, N. Yoshida, On the relative expressiveness of higher-order session processes, Inf. Comput. 268 (2019) 104433, https://doi .org /

10 .1016 /j .ic .2019 .06 .002.
[7] V.T. Vasconcelos, F. Casal, B. Almeida, A. Mordido, Mixed sessions, in: Programming Languages and Systems - 29th European Symposium on Program-

ming, ESOP 2020, in: Lecture Notes in Computer Science, vol. 12075, Springer, 2020, pp. 715–742.
[8] F. Casal, A. Mordido, V.T. Vasconcelos, Mixed sessions: the other side of the tape, in: Proceedings of the 12th International Workshop on Programming

Language Approaches to Concurrency- and Communication-cEntric Software, PLACES@ETAPS [55], pp. 46–60, https://doi .org /10 .4204 /EPTCS .314 .5.
[9] B.C. Pierce, D.N. Turner, Pict: a programming language based on the pi-calculus, in: Proof, Language, and Interaction, Essays in Honour of Robin Milner,

The MIT Press, 2000, pp. 455–494.
[10] J. Franco, V.T. Vasconcelos, A concurrent programming language with refined session types, in: Software Engineering and Formal Methods, in: Lecture

Notes in Computer Science, vol. 8368, Springer, 2013, pp. 15–28.
[11] R. Milner, Functions as processes, in: Automata, Languages and Programming, in: Lecture Notes in Computer Science, vol. 443, Springer, 1990,

pp. 167–180.
[12] R. Milner, Functions as processes, Math. Struct. Comput. Sci. 2 (2) (1992) 119–141, https://doi .org /10 .1017 /S0960129500001407.
[13] R. Milner, J. Parrow, D. Walker, A calculus of mobile processes, I, Inf. Comput. 100 (1) (1992) 1–40, https://doi .org /10 .1016 /0890 -5401(92)90008 -4.
[14] R. Milner, J. Parrow, D. Walker, A calculus of mobile processes, II, Inf. Comput. 100 (1) (1992) 41–77, https://doi .org /10 .1016 /0890 -5401(92)90009 -5.
[15] H.P. Barendregt, The Lambda Calculus - Its Syntax and Semantics, Studies in Logic and the Foundations of Mathematics, vol. 103, North-Holland, 1985.
[16] G. Bernardi, M. Hennessy, Using higher-order contracts to model session types, Log. Methods Comput. Sci. 12 (2) (2016), https://doi .org /10 .2168 /LMCS -

12(2 :10)2016.
[17] V. Bono, L. Padovani, Typing copyless message passing, Log. Methods Comput. Sci. 8 (1) (2012), https://doi .org /10 .2168 /LMCS -8(1 :17)2012.
[18] S.J. Gay, P. Thiemann, V.T. Vasconcelos, Duality of session types: the final cut, in: Proceedings of the 12th International Workshop on Programming

Language Approaches to Concurrency [55], pp. 23–33, https://doi .org /10 .4204 /EPTCS .314 .3.
[19] S. Lindley, J.G. Morris, Talking bananas: structural recursion for session types, in: Garrigue et al. [56], pp. 434–447, https://doi .org /10 .1145 /2951913 .

2951921.
[20] S.J. Gay, M. Hole, Subtyping for session types in the pi calculus, Acta Inform. 42 (2–3) (2005) 191–225, https://doi .org /10 .1007 /s00236 -005 -0177 -z.
[21] D. Walker, Advanced topics in types and programming languages, in: Ch. Substructural Type Systems, The MIT Press, 2005, pp. 3–44.
[22] N. Kobayashi, B.C. Pierce, D.N. Turner, Linearity and the pi-calculus, in: Conference Record of POPL’96, ACM Press, 1996, pp. 358–371.
[23] N. Kobayashi, B.C. Pierce, D.N. Turner, Linearity and the pi-calculus, ACM Trans. Program. Lang. Syst. 21 (5) (1999) 914–947, https://doi .org /10 .1145 /

330249 .330251.
[24] L. Caires, F. Pfenning, B. Toninho, Linear logic propositions as session types, Math. Struct. Comput. Sci. 26 (3) (2016) 367–423, https://doi .org /10 .1017 /

S0960129514000218.
[25] L. Caires, F. Pfenning, Session types as intuitionistic linear propositions, in: P. Gastin, F. Laroussinie (Eds.), CONCUR 2010 - Concurrency Theory, in:

Lecture Notes in Computer Science, vol. 6269, Springer, 2010, pp. 222–236.
[26] P. Wadler, Propositions as sessions, in: ACM SIGPLAN International Conference on Functional Programming, ACM, 2012, pp. 273–286.
[27] P. Wadler, Propositions as sessions, J. Funct. Program. 24 (2–3) (2014) 384–418, https://doi .org /10 .1017 /S095679681400001X.
[28] R. Milner, D. Sangiorgi, Barbed bisimulation, in: W. Kuich (Ed.), Automata, Languages and Programming, 19th International Colloquium, in: Lecture

Notes in Computer Science, vol. 623, Springer, 1992, pp. 685–695.
[29] K. Honda, M. Tokoro, On asynchronous communication semantics, in: Object-Based Concurrent Computing, in: Lecture Notes in Computer Science,

vol. 612, Springer, 1991, pp. 21–51.
[30] G. Bernardi, O. Dardha, S.J. Gay, D. Kouzapas, On duality relations for session types, in: Trustworthy Global Computing, in: Lecture Notes in Computer

Science, vol. 8902, Springer, 2014, pp. 51–66.
[31] J.A. Bergstra, J.W. Klop, Process theory based on bisimulation semantics, in: Linear Time, Branching Time and Partial Order in Logics and Models for

Concurrency, in: Lecture Notes in Computer Science, vol. 354, Springer, 1988, pp. 50–122.
[32] R. Milner, A Calculus of Communicating Systems, Lecture Notes in Computer Science, vol. 92, Springer, 1980.
[33] R. Milner, The polyadic pi-calculus: a tutorial, ECS-LFCS 91–180, Laboratory for Foundations of Computer Science, Department of Computer Science,

University of Edinburgh, this report was published in: F.L. Hamer, W. Brauer, H. Schwichtenberg (Eds.), Logic and Algebra of Specification, Springer-
Verlag, 1993 (1991).

[34] D. Sangiorgi, D. Walker, The Pi-Calculus - a Theory of Mobile Processes, Cambridge University Press, 2001.
[35] K. Honda, Types for dyadic interaction, in: CONCUR ’93, 4th International Conference on Concurrency Theory, in: Lecture Notes in Computer Science,

vol. 715, Springer, 1993, pp. 509–523.
47

https://doi.org/10.1017/S0956796809990268
https://doi.org/10.1017/S0956796809990268
http://refhub.elsevier.com/S0304-3975(21)00463-1/bib6ED692EECAEFD13EF2F53E27D630DCB2s1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bib6ED692EECAEFD13EF2F53E27D630DCB2s1
https://doi.org/10.1016/j.ic.2012.05.002
http://refhub.elsevier.com/S0304-3975(21)00463-1/bib74420EE0B8D4D91B18E1F7BAAE04507Ds1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bib74420EE0B8D4D91B18E1F7BAAE04507Ds1
https://doi.org/10.1016/j.entcs.2007.02.056
https://doi.org/10.1016/j.ic.2019.06.002
https://doi.org/10.1016/j.ic.2019.06.002
http://refhub.elsevier.com/S0304-3975(21)00463-1/bibB22C89026A9DC4D309916BA371BF6BD8s1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bibB22C89026A9DC4D309916BA371BF6BD8s1
https://doi.org/10.4204/EPTCS.314.5
http://refhub.elsevier.com/S0304-3975(21)00463-1/bibF80246B378F98280BEFD6A579E2F288Ds1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bibF80246B378F98280BEFD6A579E2F288Ds1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bibB444F83D899D4EB34A5ACF48C3A97013s1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bibB444F83D899D4EB34A5ACF48C3A97013s1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bibE40B42F3B28EBB73623B4126E9F2A514s1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bibE40B42F3B28EBB73623B4126E9F2A514s1
https://doi.org/10.1017/S0960129500001407
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1016/0890-5401(92)90009-5
http://refhub.elsevier.com/S0304-3975(21)00463-1/bib8A519D4D566F6F84360B0033843A5448s1
https://doi.org/10.2168/LMCS-12(2:10)2016
https://doi.org/10.2168/LMCS-12(2:10)2016
https://doi.org/10.2168/LMCS-8(1:17)2012
https://doi.org/10.4204/EPTCS.314.3
https://doi.org/10.1145/2951913.2951921
https://doi.org/10.1145/2951913.2951921
https://doi.org/10.1007/s00236-005-0177-z
http://refhub.elsevier.com/S0304-3975(21)00463-1/bibA880E04985CB342A3F1641515979A338s1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bib50161CC3E70EA0EC09DBCF6EA31E73E3s1
https://doi.org/10.1145/330249.330251
https://doi.org/10.1145/330249.330251
https://doi.org/10.1017/S0960129514000218
https://doi.org/10.1017/S0960129514000218
http://refhub.elsevier.com/S0304-3975(21)00463-1/bib8D54AAF44545A1D06912B746EA7E7664s1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bib8D54AAF44545A1D06912B746EA7E7664s1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bib6750CF30E44F2099765E428D6B64497Fs1
https://doi.org/10.1017/S095679681400001X
http://refhub.elsevier.com/S0304-3975(21)00463-1/bib5974E77B458EEA9A0FD5AC29DC5414C7s1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bib5974E77B458EEA9A0FD5AC29DC5414C7s1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bibEF15AE01652178CC72E84494706B61BEs1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bibEF15AE01652178CC72E84494706B61BEs1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bib030BF49E5C360FAD18D607A6AB13D013s1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bib030BF49E5C360FAD18D607A6AB13D013s1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bibE3E60EF3F118EA5593256226F66C14CEs1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bibE3E60EF3F118EA5593256226F66C14CEs1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bib42FB576D4191F7B1CE747361AD704C57s1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bib7E6B6FB880C12102B43615D46252E289s1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bib7E6B6FB880C12102B43615D46252E289s1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bib7E6B6FB880C12102B43615D46252E289s1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bib7EFCDAB85FA56007F219577B68C49F32s1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bibE25061306ECA04F0E11EB848A4D09F6Bs1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bibE25061306ECA04F0E11EB848A4D09F6Bs1

F. Casal, A. Mordido and V.T. Vasconcelos Theoretical Computer Science 897 (2022) 23–48
[36] K. Takeuchi, K. Honda, M. Kubo, An interaction-based language and its typing system, in: PARLE ’94: Parallel Architectures and Languages Europe, in:
Lecture Notes in Computer Science, vol. 817, Springer, 1994, pp. 398–413.

[37] V.T. Vasconcelos, Typed concurrent objects, in: Object-Oriented Programming, in: Lecture Notes in Computer Science, vol. 821, Springer, 1994,
pp. 100–117.

[38] D. Sangiorgi, An interpretation of typed objects into typed pi-calculus, Inf. Comput. 143 (1) (1998) 34–73, https://doi .org /10 .1006 /inco .1998 .2711.
[39] R. Demangeon, K. Honda, Full abstraction in a subtyped pi-calculus with linear types, in: CONCUR 2011 - Concurrency Theory, in: Lecture Notes in

Computer Science, vol. 6901, Springer, 2011, pp. 280–296.
[40] M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson, G.C. Hunt, J.R. Larus, S. Levi, Language support for fast and reliable message-based communication

in singularity OS, in: Proceedings of the 2006 EuroSys Conference, ACM, 2006, pp. 177–190.
[41] R.E. Strom, S. Yemini, Typestate: a programming language concept for enhancing software reliability, IEEE Trans. Softw. Eng. 12 (1) (1986) 157–171,

https://doi .org /10 .1109 /TSE .1986 .6312929.
[42] Z. Stengel, T. Bultan, Analyzing singularity channel contracts, in: Proceedings of the Eighteenth International Symposium on Software Testing and

Analysis, ACM, 2009, pp. 13–24.
[43] V. Bono, C. Messa, L. Padovani, Typing copyless message passing, in: Programming Languages and Systems, in: Lecture Notes in Computer Science,

vol. 6602, Springer, 2011, pp. 57–76.
[44] K. Peters, J. Schicke, U. Nestmann, Synchrony vs causality in the asynchronous pi-calculus, in: Proceedings 18th International Workshop on Expressive-

ness in Concurrency, in: EPTCS, vol. 64, 2011, pp. 89–103.
[45] K. Peters, J. Schicke-Uffmann, U. Goltz, U. Nestmann, Synchrony versus causality in distributed systems, Math. Struct. Comput. Sci. 26 (8) (2016)

1459–1498, https://doi .org /10 .1017 /S0960129514000644.
[46] K. Honda, N. Yoshida, M. Carbone, Multiparty asynchronous session types, in: Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, ACM, 2008, pp. 273–284.
[47] K. Honda, N. Yoshida, M. Carbone, Multiparty asynchronous session types, J. ACM 63 (1) (2016) 9, https://doi .org /10 .1145 /2827695.
[48] S. Fowler, S. Lindley, J.G. Morris, S. Decova, Exceptional asynchronous session types: session types without tiers, Proc. ACM Program. Lang. 3 (POPL)

(2019) 28, https://doi .org /10 .1145 /3290341.
[49] C. Palamidessi, Comparing the expressive power of the synchronous and asynchronous pi-calculi, Math. Struct. Comput. Sci. 13 (5) (2003) 685–719,

https://doi .org /10 .1017 /S0960129503004043.
[50] D. Gorla, Towards a unified approach to encodability and separation results for process calculi, Inf. Comput. 208 (9) (2010) 1031–1053, https://doi .org /

10 .1016 /j .ic .2010 .05 .002.
[51] K. Peters, U. Nestmann, Breaking symmetries, Math. Struct. Comput. Sci. 26 (6) (2016) 1054–1106, https://doi .org /10 .1017 /S0960129514000346.
[52] B. Almeida, A. Mordido, V.T. Vasconcelos, Deciding the bisimilarity of context-free session types, in: Tools and Algorithms for the Construction and

Analysis of Systems - 26th International Conference, TACAS 2020, in: Lecture Notes in Computer Science, vol. 12079, Springer, 2020, pp. 39–56.
[53] P. Thiemann, V.T. Vasconcelos, Context-free session types, in: Garrigue et al. [56], pp. 462–475, https://doi .org /10 .1145 /2951913 .2951926.
[54] D. Ancona, V. Bono, M. Bravetti, J. Campos, G. Castagna, P. Deniélou, S.J. Gay, N. Gesbert, E. Giachino, R. Hu, E.B. Johnsen, F. Martins, V. Mascardi, F.

Montesi, R. Neykova, N. Ng, L. Padovani, V.T. Vasconcelos, N. Yoshida, Behavioral types in programming languages, Found. Trends Program. Lang. 3 (2–3)
(2016) 95–230, https://doi .org /10 .1561 /2500000031.

[55] Proceedings of the 12th International Workshop on Programming Language Approaches to Concurrency- and Communication-cEntric Software,
PLACES@ETAPS 2020, Dublin, Ireland, 26th April 2020, EPTCS, vol. 314, 2020.

[56] J. Garrigue, G. Keller, E. Sumii (Eds.), Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming, ACM, 2016.
48

http://refhub.elsevier.com/S0304-3975(21)00463-1/bibC2A98716C3A276E81E045810AC5FF427s1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bibC2A98716C3A276E81E045810AC5FF427s1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bibFA3A50CDE13BE89C66BC1F20073E2A74s1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bibFA3A50CDE13BE89C66BC1F20073E2A74s1
https://doi.org/10.1006/inco.1998.2711
http://refhub.elsevier.com/S0304-3975(21)00463-1/bibF99B06D231DD0901ECF102B095865883s1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bibF99B06D231DD0901ECF102B095865883s1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bib15679FA6746EAE55B03181FDFA9F7E0Fs1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bib15679FA6746EAE55B03181FDFA9F7E0Fs1
https://doi.org/10.1109/TSE.1986.6312929
http://refhub.elsevier.com/S0304-3975(21)00463-1/bib50EE0532A376DB37A859BAF2B9CB843Cs1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bib50EE0532A376DB37A859BAF2B9CB843Cs1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bib48BF190D071000B4DB20AEC7CDA6926As1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bib48BF190D071000B4DB20AEC7CDA6926As1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bib14546ECC0DD8BDF288EFEC8AB3727431s1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bib14546ECC0DD8BDF288EFEC8AB3727431s1
https://doi.org/10.1017/S0960129514000644
http://refhub.elsevier.com/S0304-3975(21)00463-1/bibBED77F5CCF6EFB89B4235C63559FB6B3s1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bibBED77F5CCF6EFB89B4235C63559FB6B3s1
https://doi.org/10.1145/2827695
https://doi.org/10.1145/3290341
https://doi.org/10.1017/S0960129503004043
https://doi.org/10.1016/j.ic.2010.05.002
https://doi.org/10.1016/j.ic.2010.05.002
https://doi.org/10.1017/S0960129514000346
http://refhub.elsevier.com/S0304-3975(21)00463-1/bib657DFC4EEF510659C16CD427754723A1s1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bib657DFC4EEF510659C16CD427754723A1s1
https://doi.org/10.1145/2951913.2951926
https://doi.org/10.1561/2500000031
http://refhub.elsevier.com/S0304-3975(21)00463-1/bibCB54316A6B908D0F389866333F2895D0s1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bibCB54316A6B908D0F389866333F2895D0s1
http://refhub.elsevier.com/S0304-3975(21)00463-1/bibB962E29496240E52AF891BC964F7EC1Es1

	Mixed sessions
	1 Introduction
	2 There is room for mixed sessions
	2.1 Mixed choices
	2.2 Duplicated labels in choices for types and for processes
	2.3 Unrestricted output

	3 The syntax and semantics of mixed sessions
	3.1 Syntax
	3.2 Operational semantics
	3.3 Typing

	4 Well-typed mixed sessions do not lead to runtime errors
	5 Classical session types and the encoding criteria
	5.1 Classical session types
	5.2 Minimal encodings
	5.3 The classical and the mixed typed calculi

	6 Classical sessions as mixed sessions
	7 Mixed sessions as classical sessions
	7.1 Motivation
	7.2 The mixed-to-classical encoding
	7.3 The mixed-to-classical encoding is minimal

	8 What is in the way of a compiler?
	9 Related work
	10 Conclusion
	Declaration of competing interest
	Acknowledgements
	References

