
UNIVERSIDADE DE LISBOA

INSTITUTO SUPERIOR TÉCNICO

A probabilistic logic over equations and domain restrictions

Andreia Filipa Torcato Mordido

Supervisor: Doctor Carlos Manuel Costa Lourenço Caleiro

Thesis approved in public session to obtain the PhD Degree in

Information Security

Jury final classification: Pass with Distinction

Jury

Chairperson: Chairman of the IST Scientific Board

Members of the Committee:

Doctor Luca Viganò

Doctor Marcelo Finger

Doctor Paulo Alexandre Carreira Mateus

Doctor Carlos Manuel Costa Lourenço Caleiro

2017

UNIVERSIDADE DE LISBOA

INSTITUTO SUPERIOR TÉCNICO

A probabilistic logic over equations and domain restrictions

Andreia Filipa Torcato Mordido

Supervisor: Doctor Carlos Manuel Costa Lourenço Caleiro

Thesis approved in public session to obtain the PhD Degree in

Information Security

Jury final classification: Pass with Distinction

Jury

Chairperson: Chairman of the IST Scientific Board

Members of the Committee:

Doctor Luca Viganò, Full Professor, Faculty of Natural & Mathematical Sciences, King’s

College London, UK

Doctor Marcelo Finger, Professor Titular do Instituto de Matemática e Estat́ıstica da

Universidade de São Paulo, Brasil

Doctor Paulo Alexandre Carreira Mateus, Professor Associado (com Agregação) do

Instituto Superior Técnico da Universidade de Lisboa

Doctor Carlos Manuel Costa Lourenço Caleiro, Professor Associado do Instituto Superior

Técnico da Universidade de Lisboa

Funding Institutions

Fundação para a Ciência e Tecnologia (FCT)

Fundação Calouste Gulbenkian

Instituto de Telecomunicações

2017

Resumo

Nesta tese, propomo-nos apresentar uma lógica que permita formalizar o racioćınio subja-

cente à análise de protocolos criptográficos, nomeadamente no contexto de offline guessing

attacks. A conjugação dos parâmetros que caracterizam a análise de protocolos de segurança

requere que a lógica seja dotada de três componentes fundamentais: equações, probabilidades

e quantificadores.

Começamos por apresentar uma lógica (EqCL) que nos permite raciocinar sobre restrições

equacionais e que resulta da combinação da lógica proposicional clássica, da lógica equacional

e de quantificadores. Apresentamos uma axiomatização correta e completa para esta lógica,

parametrizada por uma especificação equacional da base algébrica. No sentido de automatizar

o racioćınio dedutivo, exploramos o problema de satisfatibilidade da lógica EqCL e apresen-

tamos uma redução polinomial a SAT, sob a hipótese de que a teoria equacional subjacente é

convergente. Inspirados pela análise do problema da satisfatibilidade para EqCL, propomo-

nos explorar o problema da satisfatibilidade probabiĺıstica e estendê-lo a combinações lineares

de fórmulas probabiĺısticas envolvendo fórmulas proposicionais. Definimos assim o problema

GenPSAT e apresentamos uma redução polinomial a Programação Linear Inteira Mista. Uma

vez implementada uma ferramenta que decide GenPSAT, estudamos o comportamento de

transição de fase deste problema NP-completo. Estamos então em condições de definir a

lógica pretendida: DEqPrL é a lógica probabiĺıstica definida sobre uma base algébrica

que engloba equações e restrições de domı́nio. Apresentamos um sistema dedutivo correto

e fracamente completo para DEqPrL parametrizado por uma especificação equacional da

base algébrica e pelas respectivas restrições de domı́nio. Com base nos resultados obtidos

para GenPSAT, apresentamos uma redução polinomial do problema de satisfatibilidade para

DEqPrL a Satisfatibilidade Módulo Teorias, assumindo que a teoria equacional subjacente

é convergente e que as restrições de domı́nio satisfazem uma propriedade adequada.

Ilustramos a aplicabilidade das lógicas apresentadas em vários exemplos, nomeadamente

no contexto da análise de offline guessing attacks a protocolos criptográficos.

Palavras-chave: Lógica Probabiĺıstica, Lógica Equacional, Completude, Satisfatibilidade,

Offline Guessing Attacks.

i

Abstract

In this thesis, we aim to provide a logic to deal with the reasoning required for the analysis

of cryptographic protocols, namely in the context of offline guessing attacks. The envisaged

logic should be able to cope with equations, probabilities and quantifiers in order to address

the common features of cryptographic protocols analysis.

We start by presenting a logic (EqCL) able to state and reason about equational con-

straints, by combining aspects of classical propositional logic, equational logic and quantifiers.

We provide a sound and complete axiomatization parametrized by an equational specification

of the algebraic basis. Then, we explore the satisfiability problem for EqCL and present a

polynomial reduction to SAT, under the assumption that the underlying equational theory is

convergent. Inspired by the satisfiability results for EqCL, we aim at extending the scope

of the probabilistic satisfiability problem by allowing linear combinations of probabilistic as-

signments of values to propositional formulas. We define the GenPSAT problem and present

a polynomial reduction of GenPSAT to Mixed-Integer Programming. With a solver in hands,

we study the phase transition behaviour of this NP-complete problem. Once collected all the

necessary ingredients, we present DEqPrL - the probabilistic logic over an algebraic basis

that enables one to reason about equations and domain restrictions. We provide a sound and

weak complete deductive system for DEqPrL, parametrized by an equational specification

of the algebraic basis coupled with the intended domain restrictions. Driven by the devel-

opments with GenPSAT, we provide a polynomial reduction of the satisfiability problem for

DEqPrL to the Satisfiability Modulo Theories, assuming that the underlying equational the-

ory is convergent and that the axiomatization of domain restrictions enjoys a suitable subterm

property.

Some relevant examples that illustrate the usefulness of the logics, namely regarding the

static analysis of offline guessing attacks to cryptographic protocols, are also presented.

Keywords: Probabilistic Logic, Equational Logic, Completeness, Satisfiability, Offline

Guessing Attacks.

iii

�+FMQrH2/;K2Mib

6B`bi Q7 �HH- A rQmH/ HBF2 iQ 2tT`2bb Kv KQbi bBM+2`2 ;`�iBim/2 iQ Kv bmT2`pBbQ`- S`Q72bbQ`
*�`HQb *�H2B`Q- 7Q` i?2 ;mB/2M2bb �M/ T2`bBbi2Mi bmTTQ`i- 7Q` ?Bb T�iB2M+2 �M/ 7Q` i?2 K�Mv
+`m+B�H �/pB+2b Qp2` i?2b2 v2�`bX A �K i`mHv ;`�i27mH5

Jv /22T2bi ;`�iBim/2 iQ Kv 7�KBHv 7Q` �HH i?2 HQp2- 2M+Qm`�;2K2Mi �M/ i?2 i`mbi i?2v ?�p2
�Hr�vb TH�+2/ BM K2X hQ Kv #`Qi?2`- :QMÏ�HQ- A rQmH/ �HbQ HBF2 iQ i?�MF i?2 HQM; T?BHQbQT?B+�H
+QMp2`b�iBQMb �M/ ?Bb �#BHBiv iQ i�F2 +�`2 Q7 K2 #v ;BpBM; i?2 KQbi +�M/B/ �/pB+2b 2p2`X hQ
Kv KQi?2`- *`BbiBM�- A Qz2` Kv ?2�`i72Hi i?�MFb 7Q` �Hr�vb F22TBM; K2 b�72 r?2M i?2 rQ`H/
b22Kb iQ im`M /�`FX hQ Kv 7�i?2`- �MiƦMBQ- A i?�MF �HH i?2 +QM+2`M �M/ bmTTQ`iX

hQ Kv +Q@�mi?Q` 6BHBT2 *�b�H A rQmH/ HBF2 iQ i?�MF �HH i?2 7`mBi7mH /Bb+mbbBQMb- ?Bb rBHHBM;@
M2bb- �M/ i?2 HQM; rQ`FBM; ?Qm`b- 2p2M r?2M i?2`2 r�b MQ#Q/v H27i BM i?2 /2T�`iK2MiX A �HbQ
rBb? iQ i?�MF AQH�M/� �M/ :mBH?2`K2 �HH i?2 DQF2b �M/ H�m;?bX qBi?Qmi i?2 i?`22 Q7 i?2K Bi
rQmH/ MQi ?�p2 ?�/ i?2 b�K2 K2�MBM;X

A rQmH/ HBF2 iQ i?�MF 2p2`vQM2 �i i?2 a2+m`Biv �M/ Zm�MimK AM7Q`K�iBQM :`QmT �i Ah 7Q`
i?2B` bmTTQ`iX hQ ǳQm`Ǵ K2i�@bmT2`pBbQ`- S`Q72bbQ` �KőH+�` a2`M�/�b- � rQ`/ Q7 i?�MFb 7Q`
i?2 `2+QKK2M/�iBQMb i?`Qm;?Qmi i?Bb HQM; DQm`M2vX

6BM�HHv- A i?�MF i?2 7mM/BM; bQm`+2b i?�i K�/2 i?Bb rQ`F TQbbB#H2,

Ç 6mM/�Ï½Q T�`� � *BāM+B� 2 h2+MQHQ;B� U6*hV i?`Qm;? i?2 S?. b+?QH�`b?BT rBi? `272`2M+2
a6_>f".fdde93fkyRRc

Ç 6mM/�Ï½Q *�HQmbi2 :mH#2MFB�M i?`Qm;? i?2 �r�`/ BM S`Q;`�K� /2 1biőKmHQ ¨ AMp2biB@
;�Ï½Q kyRRc

Ç AMbiBimiQ /2 h2H2+QKmMB+�ÏǤ2b i?`Qm;? i?2 `2b2�`+? ;`�Mib "AJfMXǞ Ryy �M/ Ah@11�f8yyy3@
:2MSa�hc

Ç S`QD2+i *QK6Q`K*`vTi 7`QK AMbiBimiQ /2 h2H2+QKmMB+�ÏǤ2b 7Q` 2M�#HBM; K2 iQ �ii2M/
iQ b2p2`�H BMi2`2biBM; +QM72`2M+2bX

p

Contents

Introduction 1

1 Preliminaries 7

1.1 Logic . 7

1.1.1 Language . 7

1.1.2 Consequence relation . 8

1.1.3 Examples . 13

1.2 Probabilistic Logic . 14

1.2.1 Syntax and Semantics . 14

1.2.2 Deductive System . 15

1.2.3 Soundness and Completeness . 16

1.2.4 Satisfiability and Complexity . 17

1.3 Equational Logic . 18

1.3.1 Terms, Equations, and Algebras . 18

1.3.2 Syntax and Semantics . 20

1.3.3 Deductive System . 21

1.3.4 Soundness and Completeness . 22

1.3.5 Extensions of Equational Logic . 22

2 Equation-Based Classical Logic 27

2.1 Syntax and Semantics . 28

2.2 Deductive System . 30

2.3 Soundness and Completeness . 35

2.4 Decidability and Complexity . 39

2.4.1 Satisfiability . 40

2.4.2 Validity . 51

2.4.3 Complexity . 51

2.5 Applications to Information Security . 53

vii

2.5.1 Offline Guessing Attacks . 53

2.5.2 Privacy on e-voting . 55

2.6 Concluding Remarks . 56

3 Generalized Probabilistic Satisfiability 59

3.1 Preliminaries . 60

3.2 GenPSAT problem . 61

3.3 Reducing GenPSAT to Mixed-Integer Programming 65

3.3.1 Linear Algebraic Formulation for GenPSAT 65

3.3.2 Translation to MIP . 67

3.4 Phase Transition . 73

3.5 Concluding Remarks . 76

4 Probabilistic Logic over Equations and Domain Restrictions 79

4.1 Syntax and Semantics . 80

4.2 Deductive System . 85

4.3 Soundness and Completeness . 91

4.4 Decidability and Complexity . 97

4.4.1 Satisfiability . 98

4.4.2 Validity . 126

4.4.3 Complexity . 127

4.4.4 Implementation . 128

4.5 Applications to Information Security . 130

4.5.1 Offline Guessing Attacks with some Cryptanalysis 130

4.5.2 On the Implementation Details . 132

4.5.3 Privacy on e-voting . 134

4.6 Concluding Remarks . 135

5 Conclusions and Future Work 137

Bibliography 149

viii

List of Algorithms

2.1 CNFSAT-EqCL solver based on SAT . 42

3.1 GenPSAT solver based on MIP . 70

4.1 DNFSAT-DEqPrL solver based on SAT and GenPSAT 100

4.2 CNFSAT-DEqPrL solver based on SMT −QF LIRA 116

ix

Introduction

Information security is a long-standing concern given its military, political, social, and eco-

nomic implications. In this era of global electronic communication and commerce, it is

no wonder that the subject deserves increasing attention. It is an interdisciplinary area

that, besides all the engineering aspects, requires a deep understanding of algebra and num-

ber theory, information theory, computational complexity, probabilities, concurrency and

distribution (see [104]).

Modern cryptography was driven by Diffie and Hellman’s proposal in 1976 [52]; Diffie and

Hellman proposed an encryption notion contrasting with the traditional symmetric encryption

scheme - the asymmetric cryptography. Asymmetric cryptography came to establish a new

paradigm of secure communication and thereafter it has been widely used to ensure the

security of communications. Nevertheless, the well-known attack to the Needham-Schroeder

public-key protocol [74], only discovered 18 years after its disclosure [86], highlighted the need

for using formal methods in the analysis of cryptographic protocols.

The analysis of secure communication protocols relies essentially in two approaches: a

computational approach in which the computational complexity issues, resource-bounded

attackers and probabilities of attacks are taken into consideration [21, 31]; and the formal

approach, based on the idealistic hypothesis of perfect cryptography [4, 27], that adopts the

Dolev-Yao attacker [53]. The former approach, for being much closer to reality, has had a

significant success but is often far from being scalable or amenable to automation. On the

contrary, the latter departs from an idealization of the cryptographic primitives, but has

been very successful in practice while also being largely automatable and, in many cases,

scalable. The formal approach is meaningful because, beyond the specific security of the

cryptographic primitives being used, all the communications take place in a hostile open net-

work in which any malicious agent can interfere. In fact, most of the formal approaches are

primarily directed towards finding attacks on protocols, rather than on proving their

correctness, which is actually undecidable in general due to the fact that the search space is

infinite. Their underlying computational and analytic models include higher-order logic

theories, rewriting and narrowing in equational theories, process calculi, temporal and

1

epistemic logics, and strand spaces [1, 4, 8, 9, 11,27, 54, 57, 74, 75, 79, 93].

The advantages that arise from the combination of both methodologies are widely recog-

nized (e.g. by the use of formal methods for predicting the impact of small implementation

details, as we will see in Example 4.5.3) and there is a great effort to reduce the gap between

the two approaches [5–7,14,16,25,47,70,83,94], using more sophisticated probabilistic models

and taking into account computational complexity issues [70].

Naturally, ‘formal methods’ should be read as ‘logics’, but in reality things are not

that straightforward. In fact, the problem at hand is usually so intricate that suitable

fully-fledged logics have not yet been developed, and the reasoning is usually carried over

in an underspecified higher-order metalogic, often incorporating many ingredients: ranging

from equational to probabilistic reasoning, from communication and distribution, to temporal

or epistemic reasoning [44].

Such logics would enable the formalization of the very important fact that security is not an

absolute notion. On the contrary, the realistic view of security should be relative - a security

property should only be considered to hold as long as the probability of an attack assuming a

computationally bounded attacker (typically with polynomially-bounded computational

power) is negligible. The proper integration of such logical notions into the formal approach to

security analysis has a very positive impact on understanding and shortening the gap towards

the computational approach.

The research on this thesis seeks to contribute to the reduction of the gap between both

approaches and aims at developing a logic able to deal with the reasoning required for the

analysis of cryptographic protocols. The main purpose is mostly to provide a formal ground

for the reasoning of a Dolev-Yao attacker breaking a cryptographic protocol, namely in the

context of the static analysis of offline guessing attacks [18]. In offline guessing, typically,

an attacker eavesdrops the network and gets hold of a number of messages exchanged by the

parties. These messages are usually generated from random data and ciphered using secret

passwords or weak keys, being immediately unreadable, but often are known to have strong

algebraic relationships between them. These algebraic relationships are captured into the

logic by means of equations between terms whose underlying set of generators represents the

random data, whereas the cryptographic primitives are represented through function symbols.

If the attacker tries to guess the secret keys (a realistic hypothesis in many scenarios,

including human-picked passwords, or protocols involving devices with limited computational

power), he may use these relationships to validate his guess. The use of quantifiers enables

us to handle the many possible scenarios that emerge from attacker’s guesses. When the

guesses and the random data arise from a probability distribution, we can take a step forward

and quantify our analysis by estimating the success of attacks. The analysis of the attacker’s

2

reasoning is enabled by incorporating classical reasoning into the logic.

We can further take a bold step towards cryptanalysis and consider a setting where the

usual Dolev-Yao intruder is extended with some cryptanalytic power [41, 83]. In this setting,

besides their algebraic relationships, the random data, the guesses and the messages are known

to additionally comply with certain domain restrictions that may be crucial to the attacker

analysis.

Against this backdrop, we aim at developing a logic that combines aspects from classical

logic and equational logic with an exogenous-like approach [77] to quantitative probabilistic

reasoning. The non-trivial way in which all these components interact, reveals a long (and

very interesting!) journey ahead of us.

The structure of this thesis can be seen has a peculiar semilattice whose nodes consist of the

3 main components of this logic - classical reasoning, equational reasoning and probabilities

- and the supremum of the 3 nodes is the probabilistic logic over an algebraic basis, that we

aim to achieve.

..

.

.DEqPrL . .

. ...EqCLGenPSAT .

...Equational reasoningClassical reasoningProbabilistic reasoning

Figure 1: Structure of the dissertation.

Along the dissertation, we will be moving from the bottom to the top of Figure 1. We

start with an overview of the logics that characterize each of the components of the logic,

namely: propositional classical logic [34, 81], equational logic [24, 80, 105], and probabilistic

logic [58]. Then, we ascend one step higher and present a logic with a classical structure over

an equational basis (EqCL). To ensure that we are prepared to move to the top, we develop a

solver for a generalization of the probabilistic satisfiability problem (see [59,60]), the GenPSAT

problem. Finally, we present the probabilistic logic over an algebraic basis (DEqPrL) that we

envisaged. Due to the main motivation of this work relying in information security concepts,

we will make sure to bring some relevant examples throughout the text.

3

Outline

The dissertation is organized in 5 chapters organized as follows:

Preliminaries: The preliminary chapter provides the ground for the upcoming chapters and

consists of a survey of the logics for the most basic components underlying our work, namely,

classical propositional logic, probabilistic logic and equational logic. We take the opportunity

to target our algebraic approach for the motivation that drove this work: information security

concepts. A great part of the contents of the first chapter may be skipped for those who are

already familiar with the referred logics. However, we introduce some original concepts at the

end of this preliminary chapter, when we address some extensions of equational logic.

Equation-Based Classical Logic (EqCL): In Chapter 2, we propose and study a logic

able to state and reason about equational constraints, by combining aspects of classical propo-

sitional logic, equational logic, and quantifiers. The logic has a classical structure over an

algebraic basis, and a form of universal quantification distinguishing between local and global

validity of equational constraints. We present a sound and complete axiomatization for the

logic, parameterized by an equational specification of the algebraic basis. We provide a poly-

nomial reduction of the satisfiability problem for the logic to the SAT problem and show

that the logic is decidable under the assumption that its algebraic basis is given by a conver-

gent rewriting system, thus covering an interesting range of examples. As an application, we

analyze offline guessing attacks to security protocols, where the equational basis specifies the

algebraic properties of the cryptographic primitives. This work was developed with Carlos

Caleiro and published in [84].

Generalized Probabilistic Satisfiability (GenPSAT): In Chapter 3, we study a

generalized probabilistic satisfiability problem - GenPSAT - which consists in deciding the

satisfiability of linear inequalities involving probabilities of classical propositional formulas.

GenPSAT is proved to be NP-complete and we present a polynomial reduction to

Mixed-Integer Programming. Capitalizing on this translation, we implement and test a solver

for the GenPSAT problem. As previously observed for many other NP-complete problems, we

are able to detect a phase transition behaviour for GenPSAT. This work was developed with

Carlos Caleiro and Filipe Casal, was presented in the Workshop on Logical and Semantic

Frameworks with Applications LSFA 2016, and was submitted for publication, see [29].

Probabilistic Logic over Equations and Domain Restrictions (DEqPrL): In Chap-

ter 4, we propose and study a probabilistic logic over an algebraic basis, including equations

and domain restrictions. The logic combines aspects from classical logic and equational logic

4

with an exogenous- -like approach to quantitative probabilistic reasoning. We present a sound

and (weakly) complete axiomatization for the logic, parameterized by an equational specifi-

cation of the algebraic basis coupled with the intended domain restrictions. We show that

the satisfiability problem for the logic is decidable, under the assumption that its algebraic

basis is given by means of a convergent rewriting system, and, additionally, that the axiom-

atization of domain restrictions enjoys a suitable subterm property. For this purpose, we

provide a polynomial reduction to Satisfiability Modulo Theories with respect to the theory

of quantifier-free linear arithmetic over the integers and reals (QF LIRA). As a consequence,

we get that validity in the logic is also decidable. Furthermore, under the assumption that

the rewriting system that defines the equational basis underlying the logic is also subterm

convergent, we show that the resulting satisfiability problem is NP-complete, and thus the

validity problem is coNP-complete. We also provide an implementation of a solver for the sat-

isfiability problem and test the logic with meaningful information security examples, proving

that it can handle some implementation details of cryptographic protocols formally and then

conclude how do they compromise security, by estimating the probability of attacks. This

work was developed with Carlos Caleiro and submitted for publication, see [85].

Conclusions and Future Work: In Chapter 5, we briefly summarize the main achieve-

ments of this thesis, assess our contributions and discuss some limitations, room for improve-

ment and future research.

Summary of Contributions

Given the context of this dissertation, we summarize those that we consider to be the main

contributions of this thesis:

• the development of a logic (EqCL) combining aspects of classical propositional logic,

equational logic and quantifiers in order to be able to state and reason about equational

constraints in both local and global contexts;

• the polynomial reduction of the satisfiability problem for EqCL to SAT under the

assumption that the equational basis is given by means of a convergent rewriting system;

• the decidability result for EqCL, proved using the satisfiability algorithm that is based

on SAT;

• the polynomial reduction of a generalization of the probabilistic satisfiability

problem (GenPSAT) with linear inequalities involving probabilities of classical proposi-

tional formulas to Mixed-Integer Programming;

5

• the implementation of a GenPSAT solver and subsequent analysis of the phase transition

behaviour;

• the development of a logic (DEqPrL) combining aspects from classical propositional

logic, equational logic with domain restrictions, probabilities and quantifiers, by

providing a sound and (weakly) complete deductive system parametrized by an equa-

tional specification of the algebraic basis coupled with the intended domain restrictions;

• the decidability procedure for the satisfiability problem for DEqPrL by reduction

to QF LIRA, under the assumption that the equational basis is given by means of a

convergent rewriting system and that the axiomatization of the domain restrictions

enjoy a suitable subterm property;

• the decidability result for DEqPrL, proved using the satisfiability algorithm that, in

its turn, is based on QF LIRA;

• the application of the logic to meaningful examples in information security, namely by

verifying and estimating the sucess of offline guessing attacks to cryptographic protocols

by a Dolev-Yao intruder with some cryptanalytic power.

6

Chapter 1

Preliminaries

In this chapter, we survey non-original preliminary concepts and results necessary to under-

stand the work presented in this thesis. This overview is not exhaustive and we often mention

references in the literature for a more in depth treatment of these matters. Nonetheless, it

enables us to fix some notation.

The chapter is outlined as follows: in Section 1.1 we introduce some brief and well-known

notions of logic; in Section 1.2 we overview the probabilistic logic proposed by Fagin, Halpern

and Megiddo in [58]; Section 1.3 consists of a brief survey of equational logic.

1.1 Logic

As the main topic of our study, logic deserves a careful treatment and an uniform approach

throughout the whole manuscript. In this sense, we do not aim to introduce original content

in this section, but only to survey some well-known topics, definitions and results that can

easily be found in any textbook on logic [102,106,110] and universal algebra [24,80].

We follow the lines of [106] and look at logical consequence as the central aspect of logic.

The logical consequence gives the most fundamental meaning to the language of the logic. For

this purpose, we consider both model-theoretic and proof-theoretic frameworks providing two

distinct (but often interrelated) approaches for consequence relation: the semantic entailment

and the deducibility relation.

1.1.1 Language

A formula in the language is a syntactic object, to which it can be assigned an interpretation.

Formulas are composed by a sequence of atoms and logical connectives, that usually follow

some rules imposed by a given grammar.

7

Definition 1.1.1. Let A be a set of atoms and C be a finite set of logical connectives, to

which is associated an assignment of non-negative integers representing its arity (number of

arguments), ar ∶ C→ N. The language L over A with connectives C is defined by the following

grammar:

L ∶∶= A ∣ C (L, . . . ,L).
The inductive feature of the languages turns out to be very useful in our proofs, since we

often explore the inductive structure of the formulas.

The notion of subformula arises very naturally.

Definition 1.1.2. Let A be a set of atoms, C be a finite set of logical connectives with the

corresponding arities given by ar ∶ C→ N and L be a language over A with connectives C. We

define the set of subformulas of ϕ ∈ L inductively by:

• subform(α) = {α};
• subform(c(ϕ1, . . . ,ϕar(c))) = {c(ϕ1, . . . ,ϕar(c))} ∪ ar(c)⋃

i=1 subform(ϕi),
where α ∈ A, c ∈ C and ϕ1, . . . ,ϕar(c) ∈ L. Given a set of formulas Φ ⊆ L, we denote by

subform(Φ) the set of subformulas of all formulas in Φ, subform(Φ) = ⋃
ϕ∈Φ subform(ϕ).

Definition 1.1.3. Let A be a set of atoms, C be a finite set of logical connectives with the

corresponding arities given by ar ∶ C→ N and L be a language over A with connectives C. We

define the length of a formula ϕ ∈ L, which we denote by ∣ϕ ∣, inductively as follows:

• ∣α ∣ = 1;
• ∣ c(ϕ1, . . . ,ϕar(c)) ∣ = 1 + ∣ϕ1 ∣ +⋯ + ∣ϕar(c) ∣ ,

where α ∈ A, c ∈ C and ϕ1, . . . ,ϕar(c) ∈ L.
1.1.2 Consequence relation

In order to establish the fundamental concept of consequence relation, let us fix some notation:

given a set L, let us denote by ℘(L) the set of all subsets of L.

Definition 1.1.4. Let L be a set. A consequence relation on L is a relation ⊢ ⊆ (℘(L) × L)
such that the following conditions hold, for every ϕ ∈ L and Φ,Ψ ⊆ L:

• if ϕ ∈ Φ, then Φ ⊢ ϕ;
• if Φ ⊢ ϕ and Φ ⊆ Ψ, then Ψ ⊢ ϕ;
• if Φ ⊢ ϕ and for every ψ ∈ Φ, Ψ ⊢ ψ, then Ψ ⊢ ϕ.

8

The consequence relation ⊢ is finitary if it additionally satisfies:

• if Φ ⊢ ϕ, then there exists a finite set Ψ such that Ψ ⊆ Φ and Ψ ⊢ ϕ.
Definition 1.1.5. A logic is a pair L = ⟨L,⊢⟩ where:

• L is a set of formulas ;

• ⊢ ⊆ (℘(L) × L) is a consequence relation.

Definition 1.1.6. Let L = ⟨L,⊢⟩ be a logic. Given ϕ ∈ L and Φ ⊆ L we say that ϕ is a

consequence of Φ in L when Φ ⊢ ϕ. If Φ = ∅, ϕ is said to be a theorem in L and we simply

write ⊢ ϕ. A set Φ ⊆ L is inconsistent in L if Φ ⊢ ϕ for every ϕ ∈ L, otherwise Φ is said to be

consistent in L. Furthermore, a formula ϕ ∈ L is said to be consistent in L provided that the

set {ϕ} is consistent.
When the logic L is clear from context, we often omit the reference to L.

Definition 1.1.7. Let L = ⟨L,⊢⟩ be a logic. Ψ ⊆ L is said to be a maximal consistent set in

L if:

• Ψ is consistent in L;
• for every Φ ⊆ L such that Ψ ⊂ Φ, Φ is inconsistent in L.
Maximal consistent sets are often called complete theories (see [98, 106]). They will be

very useful provided the following existential result that is originally attributed to Adolf

Lindenbaum and was published by Alfred Tarski in [106].

Lemma 1.1.8 (Lindenbaum’s Lemma). Let L = ⟨L,⊢⟩ be a logic where ⊢ is a finitary conse-

quence relation on L. If Φ ⊆ L is consistent in L, then there exists a maximal consistent set

Ψ in L that contains Φ, Φ ⊆ Ψ.

Often we are faced with two main approaches for consequence relations on the same lan-

guage: the semantic (model-theoretic) consequence relation and the syntactic (proof-theoretic)

consequence relation. The former one stands for ensuring that every model satisfying premises

also satisfies the conclusions, whereas the second one stands for the derivation of conclusions

from premises with the applications of rules of inference.

Semantic consequence relation

When the logical validity is sustained in the absence of a counterexample, we are in the

presence of a model-theoretic approach for consequence relation. In this semantic approach,

an argument is valid if in any model where the premises hold, the conclusion also holds.

9

Definition 1.1.9. A satisfaction system is a triple S = ⟨L,M,⊩⟩ composed by:

• a set of formulas L;

• a class of models M;

• a satisfaction relation ⊩ ⊆ (M × L).
Given a formula ϕ ∈ L and a model M ∈M, we say that M satisfies ϕ if M ⊩ ϕ. A formula ϕ

is satisfiable in S if there exists a model M ∈M that satisfies ϕ; ϕ is valid (in S) if for every

M ∈M, M ⊩ ϕ.
We extend the notion of satisfaction by requiring that a model M ∈M satisfies a set of

formulas Φ ⊆ L (in symbols, M ⊩ Φ) if M ⊩ ϕ for each ϕ ∈ Φ.
Definition 1.1.10. Let S = ⟨L,M,⊩⟩ be a satisfaction system. The formulas ϕ1,ϕ2 ∈ L are

equivalent provided that for every model M ∈M, M ⊩ ϕ1 if and only if M ⊩ ϕ2.

Definition 1.1.11. Consider two satisfaction systems S1=⟨L1,M1,⊩1⟩ and S2=⟨L2,M2,⊩2⟩.
The formulas ϕ1 ∈ L1 and ϕ2 ∈ L2 are equisatisfiable provided that ϕ1 is satisfiable in S1 if

and only if ϕ2 is satisfiable in S2.

Definition 1.1.12. Let S = ⟨L,M,⊩⟩ be a satisfaction system. We define the semantic

entailment ⊧S⊆ (℘(L)×L) as follows: Φ ⊧S ϕ provided that for every model M ∈M, M ⊩ ϕ
whenever M ⊩ Φ. A formula ϕ ∈ L is said to be entailed in S by Φ ⊆ L if Φ ⊧S ϕ.

A semantic entailment ⊧S is said to be compact if Φ ⊧S ϕ implies that there exists a finite

set Ψ ∈ ℘(L) with Ψ ⊆ Φ such that Ψ ⊧S ϕ.
Proposition 1.1.13. Let S = ⟨L,M,⊩⟩ be a satisfaction system. The semantic entailment

⊧S is a consequence relation.

Proof. To prove the first condition required for being a consequence relation, let Φ ⊆ L, M ∈M
and assume that the M ⊩ Φ. We can immediately conclude that M ⊩ ϕ for every ϕ ∈ Φ,
hence Φ ⊧S ϕ.

Now let us consider two sets of formulas Φ,Ψ such that Φ ⊆ Ψ ⊆ L and a formula ϕ ∈ L.
Assume that Φ ⊧S ϕ. Then, let M ∈M be any model such that M ⊩ Ψ. Since Φ ⊆ Ψ, this

means that M ⊩ Φ, so M ⊩ ϕ. We conclude that Ψ ⊧S ϕ.
Finally, let Φ,Ψ ⊆ L be any two sets of formulas and ϕ ∈ L be a formula. Assume that

Φ ⊧S ϕ and for every ψ ∈ Φ, Ψ ⊧S ψ. Then, let M ∈M be any model satisfying Ψ. It means

that M ⊩ ψ for every ψ ∈ Φ, therefore M ⊩ Φ. So, Ψ ⊧S ϕ.
Sometimes we denote the semantic entailment ⊧S by ⊧M, for a satisfaction system

S=⟨L,M,⊩⟩.
10

Syntactic consequence relation

Next, we focus on a proof-theoretic approach for logical consequence, where the validity of an

argument is based on the existence of a proof of the conclusion from the premises. There are

many proof-calculi in the literature [17,63,102,109,110] and some of them could even be more

suitable and informative for the proofs that we intend to do, however we focus on probably

the most common proof-theoretic approach to define consequence relations: (Hilbert-style)

deductive systems.

Definition 1.1.14. Let L be a set of formulas. An inference rule over L is a pair ⟨Prem,Conc⟩
where:

• Prem ⊆ L is a set of premises,

• Conc ∈ L is a conclusion.

An inference rule is said to be finitary if Prem ∈ ℘(L) is a finite set. We denote by InfR(L) and
InfRfin(L) the set of inference rules and the set of finitary inference rules over L, respectively.

Given ϕ,ϕ1, . . . ,ϕn, . . . ∈ L, we denote an inference rule ⟨{ϕ1, . . . ,ϕn, . . .},ϕ⟩ by ϕ1 ⋯ ϕn ⋯
ϕ .

An axiom stands for an inference rule without premises. We denote an axiom ⟨∅,ϕ⟩ simply

by ϕ.

Definition 1.1.15. Let L be a set of formulas. A deductive system is a set of finitary inference

rules H ⊆ InfRfin(L).
Definition 1.1.16. Let L be a set of formulas and H be a deductive system. A deduction in

H from a set of formulas Φ ⊆ L is a finite sequence of formulas D such that for each ψ ∈D at

least one of the following conditions holds:

• ψ ∈ Φ;
• ψ is an axiom1 of H;
• ψ is a conclusion of an inference rule1 of H whose premises occur earlier in D.

Let ϕ ∈ L and Φ ⊆ L. A deduction of ϕ from Φ in H is a deduction D from Φ in which ϕ is

the last formula occurring in D. The formula ϕ is said to be deducible from Φ in H, and we

write Φ ⊢H ϕ, if there exists a deduction of ϕ from Φ. The relation ⊢H ⊆ (℘(L) × L) is called
a deducibility relation.

1When the logic has an implicit notion of substitution, we are often faced with an axiom schemata instead of axioms

and inference rules. In this case, we need to consider all the instances of each axiom schema and all the instances of

each rule schema.

11

Proposition 1.1.17. Let L be a set of formulas and H be a deductive system. The deducibility

relation ⊢H is a finitary consequence relation.

Proof. Let Φ ⊆ L and notice that we can deduce every ϕ ∈ Φ from Φ, therefore the first

condition for being a consequence relation holds, Φ ⊢H ϕ.
Then, let us consider two sets of formulas Φ,Ψ such that Φ ⊆ Ψ ⊆ L and a formula ϕ ∈ L.

Assume that Φ ⊢H ϕ and notice that, since Φ ⊆ Ψ, the same deduction allows us to conclude

Ψ ⊢H ϕ.
For the third condition, let Φ,Ψ ⊆ L be any two sets of formulas and ϕ ∈ L be a formula.

Assume that Φ ⊢H ϕ and Ψ ⊢H ψ, for every ψ ∈ Φ. To conclude that Ψ ⊢H ϕ, consider the

deduction D that led to Φ ⊢H ϕ and substitute each occurrence of a formula ψ ∈ Φ in D by

its deduction from Ψ.

To check finitaryness, let Φ ⊆ L, ϕ ∈ L and assume that Φ ⊢H ϕ. Since the deduction

system H only contains finitary inference rules and the deduction of ϕ from Φ is finite, it

follows that there exists a finite set Ψ ∈ ℘(L) such that Ψ ⊆ Φ and Ψ ⊢H ϕ.

Soundness and Completeness

The mutual relationship between model-theoretic and proof-theoretic consequence relations

is an important topic.

Definition 1.1.18. Let L be a set, ⊧ be a semantic consequence relation on L and ⊢ be a

(finitary) syntactic consequence relation on L. We say that:

• the proof-system used to define ⊢ is weakly sound for the semantics used to define ⊧
when, for every ϕ ∈ L, if ⊢ ϕ then ⊧ ϕ;

• the proof-system used to define ⊢ is (strongly) sound for the semantics used to define ⊧
when, for every Φ ⊆ L and ϕ ∈ L, if Φ ⊢ ϕ then Φ ⊧ ϕ;

• the proof-system used to define ⊢ is weakly complete for the semantics used to define ⊧
when, for every ϕ ∈ L, if ⊧ ϕ then ⊢ ϕ;

• the proof-system used to define ⊢ is (strongly) complete for the semantics used to define

⊧ when, for every Φ ⊆ L and ϕ ∈ L, if Φ ⊧ ϕ then Φ ⊢ ϕ.
When the semantics used to define ⊧ is clear from context, we simply say that the proof-system

used to define ⊢ is weakly sound (resp. sound, weakly complete, complete).

12

1.1.3 Examples

We stressed that along this dissertation we explore several logics. In particular, the following

sections are a survey of the logics that more directly influenced our work. For the sake of

illustration, we now present classical propositional logic.

Example 1.1.19 (Classical propositional logic). Let P be a set of propositional symbols

and C be the set of classical connectives composed by the 1-ary connective ¬ and the 2-ary

connectives ∧,∨,→. According to definition 1.1.1, the language of classical propositional logic

(CPL) is the set LCPL of propositional formulas defined inductively by

LCPL ∶∶= P ∣ ¬LCPL ∣ LCPL ∧ LCPL ∣ LCPL ∨ LCPL ∣ LCPL → LCPL .

The semantics for CPL is defined over a class {0,1}P of all possible binary valuations over

the propositional symbols P . The value 0 should stand for falsity and 1 for truth. A valuation

v ∈ {0,1}P is extended to the set of propositional formulas, v ∶ LCPL → {0,1}, inductively as

follows:

• v(p) = v(p);
• v(¬ϕ) = 1 − v(ϕ);
• v(ϕ1 → ϕ2) = 1 + v(ϕ1) ⋅ v(ϕ2) − v(ϕ1);
• v(ϕ1 ∧ϕ2) = v(ϕ1) ⋅ v(ϕ2);
• v(ϕ1 ∨ϕ2) = v(ϕ1) + v(ϕ2) − v(ϕ1) ⋅ v(ϕ2),

for each p ∈ P , ϕ,ϕ1,ϕ2 ∈ LCPL. We abuse notation and denote v by v.

The satisfaction system that leads to the semantic consequence relation of CPL is the

triple ⟨LCPL,{0,1}P ,⊩CPL⟩, where the satisfaction relation ⊩CPL⊆ ({0,1}P × LCPL) is defined
as follows:

v ⊩CPL ϕ iff v(ϕ) = 1.
Taking into account the usual abbreviations for conjunction and disjunction (ϕ1∧ϕ2 abbr.

¬(ϕ1 → ¬ϕ2) and ϕ1 ∨ϕ2 abbr. ¬(¬ϕ1 ∧¬ϕ2)), for the syntactic consequence relation we con-

sider the deductive system HCPL consisting of axioms:

CPL1 ϕ1 → (ϕ2 → ϕ1),
CPL2 (ϕ1 → (ϕ2 → ϕ3))→ ((ϕ1 → ϕ2)→ (ϕ1 → ϕ3)) ,
CPL3 (¬ϕ1 → ¬ϕ2)→ (ϕ2 → ϕ1);

and additionally the inference rules of modus ponens:

13

MP ϕ1 ϕ1→ϕ2
ϕ2

,

for every ϕ1,ϕ2,ϕ3 ∈ LCPL.

The syntactic consequence relation of CPL is, then, the deducibility relation ⊢HCPL obtained

from the deductive system HCPL, as stated in definition 1.1.16.

Soundness and completeness results for HCPL are well known (see for instance [81]), so

both the semantic and the syntactic formulations of consequence relations for the language

LCPL coincide: ⊩CPL = ⊢HCPL . Having said this, CPL is the logic ⟨LCPL,⊢HCPL⟩. △

1.2 Probabilistic Logic

Probabilistic logic aims at dealing with probabilistic reasoning and with the underlying uncer-

tainty in formal deductive proofs. Throughout the years, much effort was spent by a number

of mathematicians and logicians (as J. Bernoulli, J. H. Lambert, A. De Morgan, G. Boole, C.

S. Peirce, D. Scott, P. Krauss, T. Hailperin and N.J. Nilsson) on trying to formalize the rea-

soning about probabilities. In 1990, Fagin, Halpern and Megiddo presented a logic to reason

explicitly about probabilities [58]. Their extensive work encompasses the measurable and the

non-measurable cases. In this Section, we survey the measurable case.

Reasoning about probabilities is one of the most fundamental issues of our work, so we

pay special attention to this topic. There are a number of techniques that are common to

the reasoning underlying probabilities, so we profit to establish the general framework and

notation in order for the remaining text to be consistent and reader-friendly.

1.2.1 Syntax and Semantics

The probabilistic logic introduced by Fagin, Halpern and Megiddo [58] relies on fixing a set P
of propositional symbols and considering the set of propositional formulas LCPL. The proba-

bilistic propositional formulas are defined through a weight term language WTerm consisting

of linear probabilistic terms with rational coefficients defined by the following grammar:

WTerm ∶∶= Q ⋅ Pr(LCPL) +⋯ +Q ⋅ Pr(LCPL) ,

which is used to define the set WAt of weighted atoms as follows:

WAt ∶∶=WTerm ≥ Q .

The language of the logic consists of the following set ProbCPL of probabilistic propositional

formulas :

ProbCPL ∶∶=WAt ∣ ¬ProbCPL ∣ ProbCPL ∧ ProbCPL .

14

Notice that in [58] the weighted terms involve integer coefficients, however this formulation

is equivalent as we can always clear denominators. The usual abbreviations are accepted: −q⋅w
abbr. (−−−q) ⋅ w, w1 ≥ w2 + q abbr. w1 − w2 ≥ q, w < q abbr. ¬(w ≥ q), w ≤ q abbr. −w ≥ −q,
w > q abbr. −w < −q, w = q abbr. w ≤ q ∧ w ≥ q, q1 ≤ w ≤ q2 abbr. w ≥ q1 ∧ w ≤ q2, where

q, q1, q2 ∈ Q,w,w1,w2 ∈ WTerm. The propositional true ⊺ is defined as an abbreviation for

p∨¬p for some fixed propositional symbol p ∈ P and the propositional false - abbreviates ¬⊺.

To interpret probabilistic propositional formulas, we consider the set of all valuations

over P and endow it with a probability distribution. Let Π denote the set of all probability

distributions over valuations in {0,1}P .
Definition 1.2.1. The satisfaction relation ⊩PrCPL⊆ (Π × ProbCPL) is defined inductively as

follows:

• π ⊩PrCPL q1 ⋅Pr(ϕ1) +⋯ + q" ⋅Pr(ϕ") ≥ q iff
"∑

i=1
⎛
⎝qi
⎛
⎝ ∑
v∈{0,1}P(v(ϕi) ⋅ π(v))⎞⎠

⎞
⎠ ≥ q;

• π ⊩PrCPL ¬f iff π /⊩PrCPL f ;

• π ⊩PrCPL f ∧ g iff π ⊩PrCPL f and π ⊩PrCPL g,

for each probability distribution π ∈ Π, % ≥ 1, ϕ1, . . . ,ϕ" ∈ LCPL, q1, . . . , q", q ∈ Q, f, g ∈ ProbCPL.
A probability distribution π ∈ Π is said to satisfy f ∈ ProbCPL if π ⊩PrCPL f .

1.2.2 Deductive System

The syntactic consequence relation is the consequence relation ⊢HPrCPL obtained from the de-

ductive system HPrCPL consisting of axioms:

C1PrCPL f1 → (f2 → f1),
C2PrCPL (f1 → (f2 → f3))→ ((f1 → f2)→ (f1 → f3)) ,
C3PrCPL (¬f1 → ¬f2)→ (f2 → f1),
P1PrCPL Pr(ϕ) ≥ 0,
P2PrCPL Pr(ϕ1 ∧ϕ2) + Pr(ϕ1 ∧ ¬ϕ2) − Pr(ϕ1) = 0,
P3PrCPL Pr(ϕ1) = Pr(ϕ2) if ⊢CPL (ϕ1 ↔ ϕ2),
P4PrCPL Pr(⊺) = 1,
I1PrCPL w ≥ q ∨w ≤ q,
I2PrCPL w ≥ q1 → w > q2, if q1 > q2,
I3PrCPL q1 ⋅ Pr(ϕ1) +⋯ + q! ⋅ Pr(ϕ!) ≥ q↔ q1 ⋅ Pr(ϕ1) +⋯ + q! ⋅ Pr(ϕ!) + 0 ⋅ Pr(ϕ!+1) ≥ q,

15

I4PrCPL ((q1 ⋅ Pr(ϕ1) +⋯ + q! ⋅ Pr(ϕ!) ≥ q0) ∧ (q′1 ⋅ Pr(ϕ1) +⋯ + q′! ⋅ Pr(ϕ!) ≥ q′0))→→ ((q1 +++ q′1) ⋅ Pr(ϕ1) +⋯ + (q! +++ q′!) ⋅ Pr(ϕ!) ≥ q0 +++ q′0),
I5PrCPL q1 ⋅ Pr(ϕ1) +⋯ + q! ⋅ Pr(ϕ!) ≥ q → (q′ ⋅⋅⋅ q1) ⋅ Pr(ϕ1) +⋯ + (q′ ⋅⋅⋅ q!) ⋅ Pr(ϕ!) ≥ (q′ ⋅⋅⋅ q),
I6PrCPL q1 ⋅ Pr(ϕ1) +⋯ + q! ⋅ Pr(ϕ!) ≥ q↔ qi1 ⋅ Pr(ϕi1) +⋯ + qi! ⋅ Pr(ϕi!) ≥ q;
and additionally the inference rules of modus ponens:

MPPrCPL
f1 f1→f2

f2
,

for every f1, f2, f3 ∈ ProbCPL, integer % with % ≥ 0, ϕ,ϕ1,ϕ2, . . . ,ϕ",ϕ"+1 ∈ LCPL, q, q
′, q0, q1, ..., q",

q′0, q′1, . . . , q′" ∈ Q, q′ > 0 and for every permutation (i1⋯i") of (1⋯%).
The deductive system HPrCPL reflects the three main components of this probabilistic

logic: it deals with classical reasoning, reasoning about probabilities, and reasoning about

linear inequalities. We emphasize that in [58] it was shown that axioms I1PrCPL-I6PrCPL,

C1PrCPL-C3PrCPL, and inference rule MPPrCPL constitute a sound and complete axiomatization

for reasoning about inequalities.

1.2.3 Soundness and Completeness

Now, we aim to recall the main techniques presented in [58] to prove that the deductive system

HPrCPL is weakly complete. These will also constitute one of our main tools for dealing with

probabilities afterwards.

Theorem 1.2.2 ([58]). HPrCLP is sound and weakly complete.

Sketch of the proof: The proof of soundness is straightforward, so we proceed by summarizing

the main steps in the proof of completeness. The details may be found in [58].

Recall that we want to show that: if ⊧HPrCPL f then ⊢HPrCPL f. The proof of completeness

follows by contraposition. Hence, assume that /⊢HPrCPL f and try to find a model for ¬f . We use

the classical feature of the logic to reduce ¬f to an equivalent formula in disjunctive normal

form, i.e., into a formula of the form f1∨ . . .∨fr, where each fi is a probabilistic propositional

formula that is a conjunction of one or more weighted atoms or their negations. Since ¬f is

consistent, let gi1 ∧ . . .∧gir ∧¬gir+1 ∧ . . .∧¬gir+s represent a consistent disjunct fi of f1 ∨ . . .∨fr,
where gi1, . . . , g

i
r, g

i
r+1, . . . , gir+s ∈ WAt, whose existence is guaranteed by the Lindenbaum’s

Lemma (Lemma 1.1.8). Then, let P0 = {p1, . . . , pn} be the set of all propositional symbols

occurring in fi and consider the set Θ = { ⋀
p∈Qp ∧ ⋀

q∈P0∖Q¬q ∣ Q ⊆ P0} . Fix an enumeration of

the 2n elements of Θ. Once proved that Pr(ϕ) = ∑
θ∈Θ st θ→ϕPr(θ), one can instantiate each

weighted term Pr(ϕ) occurring in fi with the weighted term ∑
θ∈Θ st θ→ϕPr(θ) and, clearing

16

denominators, fi turns out to be equivalent to the probabilistic propositional formula that

results from the conjunction of the following formulas:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1,1 ⋅ Pr(θ1) +⋯ + a1,2n ⋅ Pr(θ2n) ≥ a1
⋮

ar,1 ⋅ Pr(θ1) +⋯ + ar,2n ⋅ Pr(θ2n) ≥ ar
a′1,1 ⋅ Pr(θ1) +⋯ + a′1,2n ⋅ Pr(θ2n) < a′1

⋮
a′s,1 ⋅ Pr(θ1) +⋯ + a′s,2n ⋅ Pr(θ2n) < a′s
Pr(θ1) +⋯ + Pr(θ2n) = 1
Pr(θ) ≥ 0 for all θ ∈ Θ

(1.1)

for some integers ai, a
′
j , ai,k, a

′
j,k with i ∈ {1, . . . , r}, j ∈ {1, . . . , s}, k ∈ {1, . . . , 2n}. But since

the probabilities can be assigned independently to each element of Θ, we can use the result

of soundness and completeness for the axioms of inequality (for details, see Section 4 of [58])

and conclude that (1.1) is unsatisfiable if and only if it is inconsistent. But the inconsistency

of (1.1) would lead to the inconsistency of f , so we conclude that (1.1) is satisfiable, hence

¬f is also satisfiable.

Let us denote by PrCPL the probabilistic logic ⟨ProbCPL,⊢HPrCPL⟩.
1.2.4 Satisfiability and Complexity

The reasoning carried out in the proof of completeness let Fagin et al.take one step further to

prove a small-model theorem, which states that a satisfiable probabilistic propositional formula

f is satisfiable in a small model, meaning that f is certainly satisfiable in a model whose

probability distribution assigns at most ∣ f ∣ non-zero values of probabilities to valuations.

This result follows as an immediate consequence of the famous result from linear programming

presented in [35], which we state now.

Lemma 1.2.3 ([35, 58]). If a system of % linear inequalities with integer coefficients has a

non-negative solution, then it has a non-negative solution with at most % positive entries.

The small-model theorem is naturally followed by a complexity result for the satisfiability

problem. In general, the satisfiability problems consist in deciding the existence of a model for

a given formula. For the probabilistic logic that we present in this section, the satisfiability

problem consists in deciding the existence of a probability distribution satisfying a probabilis-

tic propositional formula. Once proved the small-model theorem, the complexity result for

the satisfiability problem of this logic emerges (details can be found in [58]).

17

Theorem 1.2.4 ([58]). The satisfiability problem for the probabilistic logic PrCPL is

NP-complete.

1.3 Equational Logic

Equality is probably one of the most familiar symbols in mathematics. This concept has a long

history that goes from the ancient association to the result of a calculation to the major role

that it plays in computation. The need for a rigorous treatment of equality rapidly emerged

and motivated the formalization of equational reasoning.

The first step towards equational logic is conferred to the Peano arithmetic that axiomatize

equality on natural numbers [95]. It was followed by several results from Russel, Tarski and

Church in type theory and great developments in universal algebra and equational logic due

to Birkhoff, Grätzer, Cohn and Tarski [24, 38, 67,105].

1.3.1 Terms, Equations, and Algebras

In general, terms are constructed from generators and function symbols. To clarify the context

in which we choose the function symbols, let us defined what is intended to be a signature.

Definition 1.3.1. A signature is a N-indexed family of countable sets Fn of function symbols

of arity n, F = {Fn}n∈N. The elements of F0 are also called constant symbols.

Definition 1.3.2. Let F be a signature and G be a set of generators. The set TF(G) of terms

over G is defined inductively by:

• G ⊆ TF(G);
• if t1, . . . , tn ∈ TF(G) and f ∈ Fn, then f(t1 . . . , tn) ∈ TF(G).
Under some generality, we defined terms over a set of generators because later we will

be interested in distinguishing algebraic terms defined over a set of variables, from nominal

terms defined over a set of names. Throughout the text we drop the subscript F when it is

clear from the context.

Definition 1.3.3. Let F be a signature and G be a set of generators. The set gen(t) of

generators occurring in a term t ∈ T (G) is defined inductively by:

• gen(g) = {g}, for each g ∈ G;

• gen(f(t1 . . . , tn)) = n⋃
i=1gen(ti), for each n ∈ N, f ∈ Fn and t1, . . . , tn ∈ T (G).

18

Notice that throughout the text, the set of generators occurring in a term will be renamed

depending on the set of generators considered.

Definition 1.3.4. Let F be a signature and G be a set of generators. The set subterms(t) of
subterms of a term t ∈ T (G) is defined inductively by:

• subterms(g) = {g}, for each g ∈ G;

• subterms(f(t1 . . . , tn)) = {f(t1 . . . , tn)} ∪ n⋃
i=1 subterms(ti), for each n ∈ N, f ∈ Fn and

t1, . . . , tn ∈ T (G).
We extend the notion of subterm to sets of terms. Given a set of terms T0 ⊆ T (G), we define

the set of subterms occurring in T0 as subterms(T0) = ⋃
t∈T0

subterms(t).
Definition 1.3.5. Let F be a signature and G be a set of generators. The length of a term

t ∈ T (G) is denoted by ∣ t ∣ and defined inductively by:

• ∣ g ∣ = 1, for each g ∈ G;

• ∣ f(t1 . . . , tn) ∣ = 1 + ∣ t1 ∣ + . . . + ∣ tn ∣, for each n ∈ N, f ∈ Fn and t1, . . . , tn ∈ T (G).
The following proposition is an immediate corollary of the previous definitions.

Proposition 1.3.6. Let F be a signature and G be a set of generators. The number of

subterms of a term t ∈ T (G) is at most ∣ t ∣.
Definition 1.3.7. Let F be a signature and G1,G2 be any sets. A substitution from G1

to TF(G2) is a function σ ∶ G1 → TF(G2). The set of all substitutions from G1 to TF(G2)
is denoted by TF(G2)G1 . Any substitution can be extended to the set of terms over G1,

σ ∶ TF(G1)→ TF(G2) as follows:
• σ(g) = σ(g) for each g ∈ G1;

• σ(f(t1, . . . , tn)) = f(σ(t1), . . . ,σ(tn)), for every n ∈ N, f ∈ Fn and t1, . . . , tn ∈ TF(G1).
We abuse notation and use σ to denote σ. A term t ∈ TF(G2) is called an instance of a term

s ∈ TF(G1) if there exists a substitution σ ∈ TF(G2)G1 such that σ(s) = t.
Now we proceed defining the atoms of interest for the equational logic.

Definition 1.3.8. Let F be a signature and G be a set. An equation is a pair (t1, t2) ∈
T (G)×T (G). We represent an equation as t1 ≈ t2. The set of all equations over G is denoted

by EqF(G). We drop the subscript F when it is clear from context.

The set of subterms of an equation is defined as subterms(t1 ≈ t2) = {t1, t2} and the set of

generators occurring in t1 ≈ t2 is the set gen(t1 ≈ t2) = gen(t1) ∪ gen(t2).
19

Definition 1.3.9. Let F be a signature. An F-algebra is a pair A = ⟨A, (⋅)A⟩ where:
• the carrier A is a non-empty set;

• the interpretation of function symbols (⋅)A is such that, for each f ∈ Fn, f
A ∶ An → A is

an operation on A.

Definition 1.3.10. Let F be a signature and G be a set of generators. A term algebra is the

F-algebra TF(G) whose carrier is TF(G) and the interpretation of terms is such that, for each

f ∈ Fn, f
TF(G)(t1, . . . , tn) = f(t1, . . . , tn).

Definition 1.3.11. Let F be a signature and A be an F-algebra with carrier A. An equivalence

relation ≡ ⊆ (A ×A) is a congruence relation if and only if for every n ∈ N and f ∈ Fn,

fA(a1, . . . , an) ≡ fA(a′1, . . . , a′n) whenever a1 ≡ a′1. . . . , an ≡ a′n.
The quotient algebra A/≡ has as carrier the set of equivalence classes {[a]≡ ∣ a ∈ A} and

the interpretation of function symbols is such that for each f ∈ Fn, f
A/≡([a1]≡, . . . , [an]≡) =

[fA(a1, . . . , an)]≡.
1.3.2 Syntax and Semantics

The equational logic [13,56,61,71] relies on fixing a signature F and a countable set of variables

X. Since the generators for terms are simply variables, vars(t) stands for the set of variables

occurring in a term t ∈ T (X).
The language of the logic consists of the set Eq(X) of equations over X:

Eq(X) ∶∶= T (X) ≈ T (X) .

The semantics for equational logic is defined over a class A of F-algebras. Each of them

should be provided of a set of assignments of values to variables.

Definition 1.3.12. Let A be an F-algebra with carrier set A. An assignment is a function

σ ∶ X → A. The set of all assignments is denoted by AX . An assignment can be extended to

the set of terms, !⋅"σA ∶ T (X)→ A as follows:

• !x"σA = σ(x) for each x ∈X;

• !f(t1, . . . , tn)"σA = fA(!t1"σA, . . . , !tn"σA), for every n ∈ N, f ∈ Fn, t1, . . . , tn ∈ T (X).
Definition 1.3.13. Let A be an F-algebra with carrier set A and σ ∈ AX an assignment. We

say that an equation t1 ≈ t2 is satisfiable in A provided with σ, and write A,σ ⊪ t1 ≈ t2, if

!t1"σA = !t2"σA.

20

Definition 1.3.14. Let A be a class of F-algebras. The satisfaction relation ⊪ ⊆ (A × Eq(X))
is such that A ⊪ t1 ≈ t2 if and only if A,σ ⊪ t1 ≈ t2 for every assignment σ ∈ AX . The

satisfaction relation is extended to sets of equations as usual. The semantic entailment

⊧(⊪)A ⊆ (℘(Eq(X)) × Eq(X)) is defined as follows: given Γ ⊆ Eq(X) and t1 ≈ t2 ∈ Eq(X),
Γ ⊧(⊪)A t1 ≈ t2 provided that every A ∈ A satisfies t1 ≈ t2 whenever it satisfies Γ.

We now define an important class of algebras that consists of varieties [13].

Definition 1.3.15. Let Γ be a set of equations. An F-algebra A is said to be a model of Γ

if A satisfies Γ, A ⊪ Γ. The class of all models of Γ is called the Γ-variety.

The concept of an equational theory generated by a set of equations arises naturally [13,97].

Definition 1.3.16. The equational theory induced by a set of equations Γ ⊆ Eq(X) is the set
Th(Γ) of equations satisfied by all the models in the Γ-variety AΓ,

Th(Γ) = {t1 ≈ t2 ∣ Γ ⊧(⊪)AΓ
t1 ≈ t2}.

1.3.3 Deductive System

The syntactic consequence relation on Eq(X) is the consequence relation ⊢HEqL obtained from

the deductive system HEqL consisting of the following inference rules:

Ref t ≈ t
Sym

t1 ≈ t2
t2 ≈ t1

Trans
t1 ≈ t2 t2 ≈ t3

t1 ≈ t3
Cong

t1 ≈ t′1 ⋯ tn ≈ t′n
f(t1, . . . , tn) ≈ f(t′1, . . . , t′n)

Sub
t1 ≈ t2

σ(t1) ≈ σ(t2)
for every t1, t2, t3, . . . , tn, t

′
1, . . . , t

′
n ∈ T (X) and σ ∈ T (X)X .

The equational logic can be seen a simple fragment of first order logic with equality devoid

of quantifiers and connectives [78,80, 97].

21

1.3.4 Soundness and Completeness

Soundness and completeness results for HEqL are well known (see for instance [13, 24]).

Theorem 1.3.17 ([24]). HEqL is sound and complete.

1.3.5 Extensions of Equational Logic

The notions that we have been developing and the deductive system that we presented can

be generalized to more expressive frameworks in the equational context.

Equational Horn Logic

Our concern is to specify some equational properties and, in this matter, it turns out to be

essential to get more expressivity. Even though this idea is amply discussed in the literature

(see [56, 80]), it is extensively analyzed in [89].

A Horn clause over a set of variables X is an expression (t1 ≈ t′1 , . . . , tk ≈ t′k ⇒ t ≈ t′),
with k ≥ 0 and t, t′, t1, . . . , tk, t′1, . . . , t′k ∈ T (X). A Horn clause is simply an equation when

k = 0. We omit the enclosing parentheses when no ambiguities arise.

Often, in the literature, a Horn clause is also called a conditional equation (see, for in-

stance, [89]). Kowalski motivated the importance of Horn clauses in detriment of clauses in

general [72] stating that: “most of the models for problem-solving which have been developed

in artificial intelligence can be regarded as models for problems expressed by means of Horn

clauses.”([72], p.17).

The interpretation of a Horn clause in an F-algebra A with respect to σ ∈ AX is defined

by: A,σ ⊪ (t1 ≈ t′1, . . . , tk ≈ t′k ⇒ t ≈ t′) if whenever !ti"σA = !t′i"σA for each 1 ≤ i ≤ k then

!t"σA = !t′"σA. An algebra A satisfies a Horn clause if it is satisfied by A along with each

σ ∈ AX . More generally, a Horn clause is satisfied in a class of algebras A if it is satisfied in

every A ∈ A. The notion of satisfaction can be generalized to sets of Horn clauses and the

semantic entailment is defined as usual.

Given a finite set of Horn clauses Γ, an F-algebra A is said to be a model of Γ if A satisfies

Γ, A ⊪ Γ. The class of all models of Γ is called a Γ-quasivariety.

Consider the deductive system HHorn composed by the inference rules of HEqL as axioms

in the implication form:

Ref t ≈ t
Sym t1 ≈ t2 ⇒ t2 ≈ t1
Trans t1 ≈ t2, t2 ≈ t3 ⇒ t1 ≈ t3
Cong t1 ≈ t′1, . . . , tn ≈ t′n ⇒ f(t1, . . . , tn) ≈ f(t′1, . . . , t′n)

22

and additionally by the inference rule Sub and also the Cut rule:

Sub
t1 ≈ t2

σ(t1) ≈ σ(t2)
Cut

Γ ∪ {t′1 ≈ t′2}⇒ t1 ≈ t2 ∆⇒ t′1 ≈ t′2
Γ ∪∆⇒ t1 ≈ t2

for every t1, t2, t3, . . . , tn, t
′
1, t

′
2 . . . , t

′
n ∈ T (X), Γ,∆ ⊆ T (X) and σ ∈ T (X)X .

Soundness and completeness of this deductive system is a well-known result (see, for

instance, [89])

Theorem 1.3.18 ([89]). HHorn is sound and complete.

Equational Logic and Rewriting

The marriage between logic and computer science has revealed the need to give a compu-

tational dimension to the algebraic capacity of rewriting expressions. Namely, the intuition

underlying the simplification of an expression, which cannot be formalized using the standard

notion of equality, naturally emerges using the notion of rewriting as an oriented equality.

Since our motivation relies, precisely, on equational theories arising from the algebraic

requirements underlying security protocols, we are particularly interested in equational the-

ories generated by convergent rewriting systems. A lot of research has been done in this

topic [56, 71, 89]. We mainly base this survey in rewriting systems on the extensive analysis

of Baader and Nipkow in [13].

Given a set of variables X, a rewriting system R is a finite set of rewrite rules % → r,

where %, r ∈ T (X) and it is often required that vars(r) ⊆ vars(%). A rewrite rule is applied by

replacing an instance of the left-hand side by the same instance of its right-hand side.

Given a rewriting system R and a set of generators G, the rewriting relation →R ⊆
T (G) × T (G) on T (G) is the smallest relation such that:

• if (%→ r) ∈ R and σ ∶X → T (G) is a substitution, then σ(%)→R σ(r)
• if f ∈ Fn, t1, . . . , tn, t

′
i ∈ T (G) and there exists i ∈ {1, . . . , n} such that ti →R t′i, then

f(t1, . . . , ti, . . . , tn)→R f(t1, . . . , t′i, . . . , tn).
We denote by →∗

R the reflexive and transitive closure of →R.

A term t ∈ T (G) is said to be reducible if there exists a term t′ ∈ T (G) such that t →R t′.
A term t ∈ T (G) is said to be in normal form if it is not reducible. A term t′ is a normal

form of t if t′ is in normal form and t →∗
R t′. We denote by t↓ the normal form of t ∈ T (G),

when it exists.

23

A rewriting system R is confluent if, given t ∈ T (G), t →∗
R t′ and t →∗

R t′′ implies that

there exists t∗ ∈ T (G) such that t′ →∗
R t∗ and t′′ →∗

R t∗. R is terminating if there exists no

infinite rewriting sequence. R is convergent if it is confluent and terminating. If a rewriting

system is convergent then any t ∈ T (G) has a unique normal form (see [13]), i.e., there exists

a term t↓ ∈ T (G) such that t→∗
R t↓ and t↓ is irreducible.

The equational theory generated by a convergent rewriting system R is the set of equations

such that t1 ≈R t2 if and only if t1 ↓ = t2 ↓, also said to be a convergent equational theory. A

convergent equational theory is known to always be decidable (see [13]).

A rewriting system R is said to be subterm convergent [3, 39] if r ∈ subterms(%) ∪ F0 and

% /∈ F0 for each rewrite rule (% → r) ∈ R. An equational theory generated by a subterm

convergent rewriting systems is called subterm theory.

Example 1.3.19. The sum (xor) of single bits can be characterized considering a signature

Fxor with three function symbols: zero ∈ Fxor
0 , suc ∈ Fxor

1 , ⊕ ∈ Fxor
2 , and the equational theory

Th(Γxor) where
Γxor = {zero⊕ x ≈ x, suc(x)⊕ y ≈ x⊕ suc(y), suc(suc(x)) ≈ x}.

Obviously, Z2 with the usual interpretations for zero, successor and sum modulo 2 satisfies

Γxor. Furthermore, it must be clear that the rewriting system obtained by giving to each of

the equations a left-to-right orientation is convergent. However, it is not subterm convergent

due to the second equation. △
Equations and Domain Restrictions

In this subsection we are targeting our analysis to a wider algebraic reasoning. This is a

subsection purely based on our information security motivation for this work and consists in

extending the algebraic scope to the analysis of domain restrictions. Only in this way we

will be able to model the reasoning of an attacker with cryptanalytic capabilities, as inspired

by [83].

We motivate our domain restriction analysis on the previous Horn clause analysis. For

this purpose, let us consider a signature F, a set of generators G and a finite set of domain

names D. We use t ∈ D (resp., t /∈ D) to represent the fact that a term t ∈ T (G) belongs (resp.,
does not belong) to a domain D ∈ D. We dub the expression t ∈ D (resp., t /∈ D) a positive

(resp., negative) domain restriction, and define the set of subterms of a (positive or negative)

domain restriction t ...∈ D, with ...∈ ∈ {∈, /∈}, as subterms(t ...∈ D) = {t}. The set of generators of

a domain restriction is the set gen(t ...∈ D) = gen(t). Further, we use DRes(G) to denote the

set of all positive domain restrictions over G.

24

A domain clause is an expression of the form (t1 ∈ D1, ..., tk1 ∈ Dk1 ⇒ t′1 ...∈ D′
1, ..., t

′
k2

...∈ D′
k2
),

where the right-hand side is a non-empty sequence of (positive or negative) domain restric-

tions, i.e., k2 > 0 and ...∈ ∈ {∈, /∈}. When t′1 = ⋅ ⋅ ⋅ = t′k2 = t and t1, . . . , tk1 ∈ subterms(t),
we say that the domain clause satisfies the subterm property. Again, we omit the enclosing

parentheses when no ambiguities arise.

Note that the subterm property is satisfied by an interesting range of examples, as it

basically means that a domain restriction on a term is only conditioned by domain restrictions

of its subterms.

We define an algebraic domain interpretation as a pair (A, IA), where A is an F-algebra

with carrier set A and IA ∶ D → ℘(A) fixes an interpretation of domain names as subsets of A.

Given an assignment σ ∈ AX , the interpretation of domain clauses is defined, as expected, by:

(A, IA),σ ⊪ (t1 ∈ D1, . . . , tk1 ∈ Dk1 ⇒ t′1 ...∈ D′
1, . . . , t

′
k2

...∈ D′
k2
) if whenever !ti"σA ∈ IA(Di) for

each 1 ≤ i ≤ k1 then !t′j"σA ...∈ IA(D′
j) for some 1 ≤ j ≤ k2. An algebraic domain interpretation

(A, IA) satisfies a domain clause if it is satisfied by (A, IA) along with each σ ∈ AX . Moreover,

a domain clause is satisfied in a class of algebraic domain interpretations I if it is satisfied by

each (A, IA) ∈ I.
Example 1.3.20. Let us extend Example 1.3.19 by introducing a couple of domain names,

Dxor = {even,odd}, which are intended to obey some domain clauses:

Λxor = {zero ∈ even, (x ∈ even⇒ suc(x) ∈ odd), x ∈ odd⇒ suc(x) ∈ even, x ∈ odd⇒ x /∈ even}.
Note that each domain clause in Λ2 satisfies the subterm property, as the behaviour of terms

is conditioned by restrictions on their subterms.

It is clear that the algebraic domain interpretation (Z2, I
Z2), with IZ2 defined as IZ2(even) =

{0} and IZ2(odd) = {1}, satisfies Λ2. △

25

Chapter 2

Equation-Based Classical Logic

In this chapter we propose and study an equation-based classical logic (EqCL) able to state

and reason about equational constraints, by combining aspects of classical propositional logic,

equational logic, and quantifiers. As we previously referred, this logic is mainly motivated by

the reasoning required to perform static analysis of offline guessing attacks [18] and aims to

capture the algebraic relationships between the messages exchanged within the context of a

cryptographic protocol.

The logic is designed as a simple global classical logic built on top of a local equational

basis. These two layers are permeated by a second-order-like quantification mechanism over

outcomes. Intuitively, the attacker refers to messages using names whose concrete values are

not important, but are gathered in a set of possible outcomes. The local layer allows us to

reason about and define equational constraints on individual outcomes. At the global layer,

we can state and reason about properties of the set of all possible outcomes. Interestingly,

the quantification we use can be understood as an S5-like modality, which also explains why

we will not need to consider nested quantifiers. EqCL bears important similarities with ex-

ogenous logics in the sense of [77], and with probabilistic logics as developed, for instance,

in [58]. We provide a sound and complete deductive system for the logic, given a Horn-clause

equational specification of the algebraic basis. We also show that the logic is decidable when

the base equational theory can be given by means of a convergent rewriting system. Our

decidability proof is actually more informative, as we develop a satisfiability procedure for

our logic by means of a polynomial reduction to satisfiability for propositional classical logic.

This strategy is useful as it enables building prototype tools for the logic using available SAT-

solvers, and uses techniques that are similar to those used in the SMT literature [87]. As an

application, we analyze offline guessing attacks to security protocols, where the equational

basis specifies the algebraic properties of the cryptographic primitives.

27

The chapter is outlined as follows: in Section 2.1 we define the syntax and semantics of

EqCL; in Section 2.2 we define a deductive system, whose soundness and completeness we

prove in Section 2.3, assuming that we are given an equational specification of the algebraic

basis; Section 2.4 is dedicated to showing, via a polynomial reduction to classical SAT, that

EqCL is decidable whenever the equational base is given by means of a convergent rewriting

system and, interestingly, it turns out that under such (not quite that restraining) restrictions,

the complexity is not worse than for classical propositional logic; finally, in Section 2.5 we

illustrate the usefulness of this logic with meaningful examples, namely related to the analysis

of offline guessing attacks to security protocols. This work is published in [84] and is now

presented with a more detailed analysis of the satisfiability and complexity results.

2.1 Syntax and Semantics

The logic EqCL relies on fixing a signature F, a set of variables X and class A of F-algebras.

We also introduce a countable set of names N , distinct from variables.

Elements of T (X) will be referred to as algebraic terms and vars(t) stands for the set of

variables occurring in t ∈ T (X). In the other hand, we dub elements of T (N) as nominal

terms and names(t) stands for the set of names that occur in t ∈ T (N). Names can be thought

of as being associated to values that are not made explicit. We call outcome to each possible

concrete assignment of values to names.

The language of EqCL, designed in order to express equational constraints locally on each

outcome, but also global properties of the set of all intended outcomes, is the set Glob defined

by the following grammar:

Glob ∶∶= ∀Loc ∣ ¬Glob ∣ Glob ∧Glob

Loc ∶∶= Eq(N) ∣ ¬Loc ∣ Loc ∧ Loc .

We abbreviate ¬(t1 ≈ t2) by t1 /≈ t2 for any t1, t2 ∈ T (N), and also use the usual

abbreviations: ψ1 ∨ ψ2 abbr. ¬(¬ψ1 ∧ ¬ψ2), ψ1 → ψ2 abbr. ¬ψ1 ∨ ψ2, ψ1 ↔ ψ2 abbr.

(ψ1 → ψ2) ∧ (ψ2 → ψ1), where either ψ1,ψ2 ∈ Loc or ψ1,ψ2 ∈ Glob. Note that both the

local and global languages are classical: the former with an equational basis and the later

over local formulas instead of propositional symbols.

A literal is a global formula in ∀Loc∪¬∀Loc. We say that a global formula is in disjunctive

normal form (DNF) if it is a disjunction of one or more conjunctions of literals. And it is in

conjunctive normal form (CNF) if it is a conjunction of one or more disjunctions of literals.

Elements of ∀Loc are referred to as (global) atoms.

We extend the notion of subterm to global formulas in a standard way. Similarly, we

generalize the notion of names occurring in a nominal term to local and global formulas. We

28

define the set of subformulas of either a local or a global formula ψ in the usual way and

denote it by subform(ψ).
Given a nominal term t0 ∈ T (N), a set of names ñ = {n1, . . . , nk} ⊆ N such that names(t0) ⊆

ñ and t̃ = {t1, . . . , tk} ⊆ T (N) we denote by [t0]ñt̃ the nominal term obtained by replacing each

occurrence of ni by ti, i ∈ {1, . . . , k}, i.e., [t0]ñt̃ = σ(t0) where σ is a substitution such that

σ(ni) = ti for each i. This notion is easily extended to local formulas.

As explained above, names carry a form of undeterminedness, i.e., their values are fixed

but we have no explicit knowledge about them. We will dub the possible concretizations of

names by outcomes1.

Definition 2.1.1. Given an F-algebra A with carrier set A, we define an outcome as a

function ρ ∶ N → A. The set of all outcomes is denoted by AN . The interpretation of terms

!⋅"ρA ∶ TF(N)→ A is defined as usual.

Definition 2.1.2. Given an F-algebra A with carrier set A and an outcome ρ ∈ AN , the

satisfiability of local formulas is defined inductively by:

• A,ρ ⊩loc t1 ≈ t2 iff !t1"ρA = !t2"ρA,

• A,ρ ⊩loc ¬ϕ iff A,ρ /⊩loc ϕ, and

• A,ρ ⊩loc ϕ1 ∧ϕ2 iff A,ρ ⊩loc ϕ1 and A,ρ ⊩loc ϕ2.

Definition 2.1.3. An F-structure is a pair (A,S) where A is an F-algebra with carrier set A

and S ⊆ AN is a non-empty set of possible outcomes.

Definition 2.1.4. Given an F-structure (A,S), the satisfaction of global formulas by an

F-structure is defined inductively by:

• (A,S) ⊩ ∀ϕ iff A,ρ ⊩loc ϕ for every ρ ∈ S,
• (A,S) ⊩ ¬δ iff (A,S) /⊩ δ, and
• (A,S) ⊩ δ1 ∧ δ2 iff (A,S) ⊩ δ1 and (A,S) ⊩ δ2.
As usual, given ∆ ⊆ Glob we write (A,S) ⊩∆ if (A,S) ⊩ δ for every δ ∈∆.

Definition 2.1.5. Semantic consequence is defined, as usual, by ∆ ⊧A δ whenever (A,S) ⊩∆

implies (A,S) ⊩ δ, for any F-structure (A,S) with A ∈ A.
1This terminology stems from the intuition that names could be sampled from a distribution. Our aim is, indeed,

to add a probabilistic component to this logic, that will materialize in Chapter 4. For the moment, however, outcomes

should just be understood as being obtained non-deterministically.

29

Example 2.1.6. Consider the signature Fcom where we require s ∈ Fcom
2 , and let Acom be the

class of Fcom-algebras satisfying the set of equations Γcom = {s(x1, x2) ≈ s(x2, x1)}, i.e., Acom

is the class of all commutative groupoids. Then, for n,m,a, b, c ∈ N , we have:

∀(n ≈ a ∨ n ≈ b),∀(m ≈ a ∨m ≈ b),∀(s(a, b) ≈ c) ⊧Acom ∀(n /≈m→ s(n,m) ≈ c),
asserting that in a commutative groupoid where the sum of a and b leads to c, the sum of m

and n also leads to c provided that one is equal to a and the other takes the value of b. △
Example 2.1.7. A standard example of an equational theory used in information secu-

rity for formalizing (part of) the capabilities of a so-called Dolev-Yao attacker (see, for in-

stance, [2, 3, 18]) consists in taking a signature FDY with {⋅}⋅,{⋅}−1⋅ ∈ FDY
2 , representing sym-

metric encryption and decryption of a message with a key, (⋅, ⋅) ∈ FDY
2 , representing message

pairing, and π1,π2 ∈ FDY
1 representing projections. The algebraic properties of these opera-

tions are given by

ΓDY = {{{x1}x2}−1x2
≈ x1,π1(x1, x2) ≈ x1,π2(x1, x2) ≈ x2}.

Let ADY be a ΓDY-variety, i.e., the class of algebras satisfying ΓDY. Then, we have that

⊧ADY ∀(m ≈ k)→ ∀ ({{n}k}−1m ≈ π2(a,n)) . △

2.2 Deductive System

In order to obtain a sound and complete deductive system for EqCL, we must additionally

require that the basic class A of algebras be axiomatized by a set Γ of Horn clauses over X.

From there, we can define the deductive system HΓ presented in Figure 2.1.

Eq1 ∀(t ≈ t) N1 ∀(ϕ1 ∧ϕ2)↔ (∀ϕ1 ∧ ∀ϕ2)
Eq2 ∀(t1 ≈ t2 → t2 ≈ t1) N2 ∀¬ϕ→ ¬∀ϕ
Eq3 ∀(t1 ≈ t2 ∧ t2 ≈ t3 → t1 ≈ t3) N3 ¬∀ϕ→ ∀¬ϕ, if names(ϕ) = ∅
Eq4 ∀(t1 ≈ t′1 ∧ ... ∧ tn ≈ t′n → f(t1, ..., tn) ≈ f(t′1, ..., t′n)) N4 ∀(ϕ1 ↔ ϕ2)→ (∀ϕ1 ↔ ∀ϕ2)
EqC1 ∀((ϕ1 → (ϕ2 → ϕ3))→ ((ϕ1 → ϕ2)→ (ϕ1 → ϕ3))) C1 δ1 → (δ2 → δ1)
EqC2 ∀(ϕ1 → (ϕ2 → ϕ1)) C2 (δ1 → (δ2 → δ3))→ ((δ1 → δ2)→ (δ1 → δ3))
EqC3 ∀((¬ϕ1 → ¬ϕ2)→ (ϕ2 → ϕ1)) C3 (¬δ1 → ¬δ2)→ (δ2 → δ1)
EqC4 ∀(ϕ1 → ((ϕ1 → ϕ2)→ ϕ2)) C4 δ1 δ1→δ2

δ2

E(Γ) ∀((σ(s1) ≈ σ(s′1) ∧ . . . ∧ σ(sn) ≈ σ(s′n))→ σ(s) ≈ σ(s′))
for every t, t1, t2, t3, . . . , tn, t′1, . . . , t′n ∈ T (N), ϕ,ϕ1,ϕ2,ϕ3 ∈ Loc, δ1, δ2, δ3 ∈ Glob, σ ∈ T (N)X and

(s1 ≈ s′1, . . . , sn ≈ s′n ⇒ s ≈ s′) ∈ Γ.
Figure 2.1: The deductive system HΓ.

30

The deductive system HΓ consists of a number of axioms and inference rules C4, modus po-

nens. The system combines the different components inherent to this logic: axioms

Eq1-Eq4 incorporate standard equational reasoning, namely reflexivity, symmetry, transitiv-

ity and congruence; C1-C4 and EqC1-EqC4 incorporate classical reasoning for the global and

local layers (just note that locally, modus ponens becomes axiom EqC4); N1-N4 characterize

the relationship between the local and global layers across the universal quantifier; and the

axioms E(Γ) incorporate the equational theory underlying A. We define, as usual, a deducibil-

ity relation ⊢FΓ. We drop the superscript F whenever it is clear from context.

EqCL is an extension of classical logic at both the local and the global layers. Hence, we

are able to import many properties and results from classical propositional logic with similar

proofs, just by noting that the inference rule C4 is modus ponens. Namely, it is easy to see

that the deduction meta-theorem holds, that it is possible to rewrite any global formula into

disjunctive normal form, and so on. The following Lemma is the compilation some of these

results, that will be useful later.

Lemma 2.2.1. The following properties hold:

MTD Ψ ∪ {δ} ⊢Γ δ′ if and only if Ψ ⊢Γ δ → δ′.

Aux1 ⊢Γ ∀((ϕ1 → ϕ2)↔ ¬(ϕ1 ∧ ¬ϕ2))
Aux2 ⊢Γ δ1 → (δ2 → (δ1 ∧ δ2))
Aux3 ⊢Γ ∀((¬(ϕ1 ∧ ¬ϕ2) ∧ϕ1)↔ ϕ1 ∧ϕ2)
Aux4 ⊢Γ (∀ϕ1 ∧ ∀ϕ2)→ ∀ϕ2

DNF ⊢Γ δ↔ m⋁
j=1(

nj⋀
i=1 δ

j
i) , for some {δji } i∈{1,...,nj}

j∈{1,...,m}
⊆ (∀Loc ∪ ¬∀Loc),

where ϕ1,ϕ2,ϕ3 ∈ Loc, Ψ ⊆ Glob, δ, δ′, δ1, δ2, δ3 ∈ Glob.
Proof. The proof of each of these properties follows by a simple replication of what is done for

its analogue in classical propositional logic or either by simple observation of the introduced

abbreviations for the connectives. For the sake of illustration, we sketch the proof of MTD

and DNF.

MTD To prove the reverse implication, consider a deduction δ1, . . . , δr of δ → δ′ from Ψ, where

the formula δr is δ → δ′, and let us use that to construct the following deduction of δ′

31

from Ψ ∪ {δ}:
s1. δ1

⋮
sr. δr (deduction of δ → δ′)

sr+1. δ (δ ∈ Ψ ∪ {δ})
sr+2. δ′ (from sr and sr+1 by C4)

For the direct implication, let us consider a deduction γ1, . . . ,γ" of δ
′ from Ψ ∪ {δ} and

let us prove that Ψ ⊢Γ δ → δ′ by induction on the length of the deduction, %. Recall that

γ" is δ
′ and notice that for % = 1 the deduction of δ′ from Ψ ∪ {δ} is simply

s1. δ′

where either δ′ is an instance of an axiom, δ′ ∈ Ψ or δ′ ∈ {δ}. For each of these three

cases we construct a deduction of δ → δ′ from Ψ.

1. If δ′ is an instance of an axiom, we have the following deduction of Ψ ⊢Γ δ → δ′:
s1. δ′ (instance of an axiom of HΓ)

s2. δ′ → (δ → δ′) (instance of C1)

s3. δ → δ′ (from s1 and s2 by C4)

2. If δ′ ∈ Ψ, we conclude that Ψ ⊢Γ δ → δ′ using the following deduction:

s1. δ′ (δ′ ∈ Ψ)
s2. δ′ → (δ → δ′) (instance of C1)

s3. δ → δ′ (from s1 and s2 by C4)

3. If δ′ ∈ {δ}, i.e. δ′ coincides with δ, consider the following deduction of δ → δ:

s1. (δ → ((δ → δ)→ δ))→ ((δ → (δ → δ))→ (δ → δ)) (instance of C2)

s2. δ → ((δ → δ)→ δ) (instance of C1)

s3. (δ → (δ → δ))→ (δ → δ) (from s1 and s2 by C4)

s4. δ → (δ → δ) (instance of C1)

s5. δ → δ (from s3 and s4 by C4)

i.e., ⊢Γ δ → δ, which implies Ψ ⊢Γ δ → δ.

Now assume that whenever the length of the deduction of Ψ∪{δ} ⊢Γ δ′ is %, there exists
a deduction of δ → δ′ from Ψ and let us prove the same for deductions of length % + 1.
Assume that there exists a deduction ofΨ∪{δ} ⊢Γ δ′ with length %+1: γ1, . . . ,γ"+1. Recall

32

that γ"+1 coincides with δ′ notice that: if either the (% + 1)th formula of the deduction,

δ′, is an instance of an axiom, δ′ ∈ Ψ or δ′ ∈ {δ}, then we proceed as in the base case;

otherwise, γ"+1 should follow from inference rule C4 applied to two previous formulas

in the deduction, say ψ and ψ → δ′. Since both ψ and ψ → δ′ appear in the deduction

before the (% + 1)th line, by induction hypothesis there are proofs of δ → (ψ → δ′) from
Ψ, say ψ1, . . . ,ψn, and of δ → ψ from Ψ, call it ψ′1, . . . ,ψ′m, so that consider the following

deduction of δ → δ′ from Ψ:

s1. ψ1

⋮
sn. ψn (deduction of ϕ→ (ψ → ϕ′) from Ψ)

sn+1. ψ′1⋮
sn+m. ψ′m (deduction of ϕ→ ψ from Ψ)

sn+m+1. (δ → (ψ → δ′))→ ((δ → ψ)→ (δ → δ′)) (instance of C2)

sn+m+2. (δ → ψ)→ (δ → δ′) (from sn and sn+m+1 by C4)

sn+m+3. δ → δ′ (from sn+m and sn+m+2 by C4)

We proved that Ψ ⊢Γ δ → δ′.
DNF Let δ ∈ Glob be any formula. We prove by structural induction over the formula δ that

it can be converted into DNF.

For the base case, if δ is of the form ∀ϕ for some ϕ ∈ Loc, it is already in the DNF. So,

let us assume that all subformulas of δ can be written in DNF.

• If δ is of the form ¬δ′ for δ′ ∈ Glob, by induction hypothesis, δ′ can be written in DNF:

δ′ is equivalent to n⋁
j=1(

mj⋀
i=1 δ

j
i) for some {δji } i∈{1,...,mj}

j∈{1,...,n}
⊆ (∀Loc ∪ ¬∀Loc).

But then, making use of the introduced abbreviations for disjunction, we can write ¬δ′
equivalently as ¬(n⋁

j=1(
mj⋀
i=1 δ

j
i)) = n⋀

j=1¬(
mj⋀
i=1 δ

j
i) = n⋀

j=1(
mj⋁
i=1¬δji) . Notice that

{¬δji } i∈{1,...,mj}
j∈{1,...,n}

⊆ (∀Loc∪¬∀Loc). By the distributivity of conjunction over disjunction,

it can be written equivalently as
s⋁

j=1(
rj⋀
i=1ψ

j
i), for some positive integers s, r1, . . . , rs and

literals {ψj
i } i∈{1,...,rj}

j∈{1,...,s}
⊆ (∀Loc ∪ ¬∀Loc).

• If δ is of the form δ1 ∧ δ2 for some δ1, δ2 ∈ Glob then, by induction hypothesis, δ1 and

δ2 can both be written in the DNF:

δ1 is equivalent to
n1⋁
j=1
⎛⎜⎝
mj

1⋀
i=1 δ

j
i

⎞⎟⎠ and δ2 is equivalent to
n2⋁
j=1
⎛⎜⎝
mj

2⋀
i=1 δ̄

j
i

⎞⎟⎠ .

33

But then, δ1∧δ2 is equivalent to
⎛
⎝

n1⋁
j=1
⎛
⎝
mj

1⋀
i=1 δ

j
i

⎞
⎠
⎞
⎠∧
⎛
⎝

n2⋁
j=1
⎛
⎝
mj

2⋀
i=1 δ̄

j
i

⎞
⎠
⎞
⎠ . Applying the distribu-

tivity of conjunction over disjunction δ1 ∧ δ2 is still equivalent to
n⋁
j=1(

mj⋀
i=1ψ

j
i), for some

positive integers n,m1, . . . ,mn and literals {ψj
i } i∈{1,...,mj}

j∈{1,...,n}
⊆ (∀Loc ∪ ¬∀Loc).

We should observe that the semantics assigned to the global formulas in ∀Loc supports

the feeling that this quantification can be understood as an S5-like modality. Notice that a

normality-like axiom can be easily derived.

Lemma 2.2.2. Given ϕ1,ϕ2 ∈ Loc, ⊢Γ ∀(ϕ1 → ϕ2)→ (∀ϕ1 → ∀ϕ2).
Proof. To deduce ⊢Γ ∀(ϕ1 → ϕ2) → (∀ϕ1 → ∀ϕ2), we employ the deduction meta-theorem

MTD and construct a deduction of ∀ϕ2 from {∀(ϕ1 → ϕ2),∀ϕ1} to prove that

{∀(ϕ1 → ϕ2),∀ϕ1} ⊢Γ ∀ϕ2.

s1. ∀(ϕ1 → ϕ2) (hypothesis)

s2. ∀ ((ϕ1 → ϕ2)↔ ¬(ϕ1 ∧ ¬ϕ2))→ (∀(ϕ1 → ϕ2)↔ ∀¬(ϕ1 ∧ ¬ϕ2)) (instance of N4)

s3. ∀ ((ϕ1 → ϕ2)↔ ¬(ϕ1 ∧ ¬ϕ2)) (instance of Aux1)

s4. ∀(ϕ1 → ϕ2)↔ ∀¬(ϕ1 ∧ ¬ϕ2) (apply C4 to s2 and s3)

s5. ∀¬(ϕ1 ∧ ¬ϕ2) (apply C4 to s1 and s4)

s6. ∀ϕ1 (hypothesis)

s7. ∀¬(ϕ1 ∧ ¬ϕ2)→ (∀ϕ1 → (∀¬(ϕ1 ∧ ¬ϕ2) ∧ ∀ϕ1)) (instance of Aux2)

s8. ∀ϕ1 → (∀¬(ϕ1 ∧ ¬ϕ2) ∧ ∀ϕ1) (apply C4 to s5 and s7)

s9. ∀¬(ϕ1 ∧ ¬ϕ2) ∧ ∀ϕ1 (apply C4 to s6 and s8)

s10. ∀¬(ϕ1 ∧ ¬ϕ2) ∧ ∀ϕ1 ↔ ∀ (¬(ϕ1 ∧ ¬ϕ2) ∧ϕ1) (instance of N1)

s11. ∀ (¬(ϕ1 ∧ ¬ϕ2) ∧ϕ1) (apply C4 to s9 and s10)

s12. ∀ (¬(ϕ1 ∧ ¬ϕ2) ∧ϕ1 ↔ ϕ1 ∧ϕ2) (instance of Aux3)

s13. ∀ (¬(ϕ1 ∧ ¬ϕ2) ∧ϕ1 ↔ ϕ1 ∧ϕ2)→
→ (∀(¬(ϕ1 ∧ ¬ϕ2) ∧ϕ1)↔ ∀(ϕ1 ∧ϕ2)) (instance of N4)

s14. ∀ (¬(ϕ1 ∧ ¬ϕ2) ∧ϕ1)↔ ∀(ϕ1 ∧ϕ2) (apply C4 to s12 and s13)

s15. ∀(ϕ1 ∧ϕ2) (apply C4 to s11 and s14)

s16. ∀(ϕ1 ∧ϕ2)↔ ∀ϕ1 ∧ ∀ϕ2 (instance of N1)

s17. ∀ϕ1 ∧ ∀ϕ2 (apply C4 to s15 and s16)

s18. ∀ϕ1 ∧ ∀ϕ2 → ∀ϕ2 (instance of Aux4)

s19. ∀ϕ2 (apply C4 to s17 and s18)

34

Example 2.2.3. Recall Example 2.1.6. From the commutativity equation we obtain the

axiom ∀(s(n1, n2) ≈ s(n2, n1)), for n1, n2 ∈ N . By using also Eq3-Eq4, EqC1-EqC4, N1, and

finally applying inference rule C4, we can easily show that

∀(n ≈ a ∨ n ≈ b),∀(m ≈ a ∨m ≈ b),∀(s(a, b) ≈ c) ⊢Γcom ∀(n /≈m→ s(n,m) ≈ c). △

2.3 Soundness and Completeness

We now prove that HΓ is a sound and complete deductive system for the logic based on the

class A of all algebras that satisfy Γ. In this way, we ensure that the syntactic consequences

derived from HΓ correspond exactly to the conclusions that we can entail from the semantics

that we have set out.

Theorem 2.3.1. The deductive system HΓ is sound.

Proof. The proof of soundness follows by induction on the structure of the deductions. In this

sense, we must prove that each axiom and the inference rule of HΓ are valid. The proof of

validity of all axioms and inference rules is straightforward, however we detail some of them

by their different nature.

Eq4 To prove that Eq4 is valid, consider an F-structure (A,S) with A ∈ A and let ρ ∈ S
represent any possible outcome for which A,ρ ⊩loc ti ≈ t′i , i.e, !ti"ρA = !t′i"ρA for each i ∈
{1, . . . , n}. Then, obviously !f(t1, ..., tn)"ρA = !f(t′1, ..., t′n)"ρA, and A,ρ ⊩loc f(t1, ..., tn) ≈
f(t′1, ..., t′n).

N2 For N2, let ϕ ∈ Loc be any local formula and let (A,S) be an F-structure with A ∈ A
such that (A,S) ⊩ ∀¬ϕ, i.e., A,ρ ⊩loc ¬ϕ for every ρ ∈ S. It means that there exists at

least one ρ ∈ S for which A,ρ /⊩loc ϕ and we easily conclude that (A,S) ⊩ ¬∀ϕ.
N3 To check that N3 is valid, let ϕ ∈ Loc be a local formula such that names(ϕ) = ∅ and

consider (A,S) to be any F-structure with A ∈ A and such that (A,S) ⊩ ¬∀ϕ, i.e., there
exists an outcome ρ∗ ∈ S such that A,ρ∗ ⊩loc ¬ϕ. Since names(ϕ) = ∅, the satisfiability

of ϕ does not depend on the outcome ρ ∈ S, so that A,ρ ⊩loc ¬ϕ for every ρ ∈ S. Hence,

(A,S) ⊩ ∀¬ϕ.
E(Γ) For the validity of E(Γ), consider a Horn clause s1 ≈ s′1, . . . , sn ≈ s′n ⇒ s ≈ s′ ∈ Γ, a

substitution σ ∈ T (N)X and an F-structure (A,S) with A ∈ A and let us check that

(A,S) ⊩ ∀((σ(s1) ≈ σ(s′1) ∧ . . . ∧ σ(sn) ≈ σ(s′n)) → σ(s) ≈ σ(s′)). For this purpose,

consider ρ ∶ N → A to be any outcome in S and assume that A,ρ ⊩loc σ(s1) ≈ σ(s′1) ∧
. . . ∧ σ(sn) ≈ σ(s′n). By noting that !⋅"ρA ○ σ ∶ X → A and recalling that A ∈ A, i.e., the
algebra A satisfies all clauses in Γ, we easily conclude that A,ρ ⊩loc σ(s) ≈ σ(s′).

35

Remark 2.3.2. Recall that a set of global formulas ∆ ⊆ Glob is consistent if there exists δ ∈ Glob
such that ∆ /⊢Γ δ. Since the EqCL is classically based, ∆ /⊢Γ δ if and only if ∆ ∪ {¬δ} is

consistent. Furthermore, as a consequence of Lindenbaum’s Lemma and given any set K, we

have that {nk⋁
i=1 δk,i ∣ k ∈K} is consistent if and only if, for every k ∈K, there exists 1 ≤ ik ≤ nk

such that {δk,ik ∣ k ∈K} is consistent.
Theorem 2.3.3. The deductive system HΓ is complete.

The proof of completeness that we will present after a few technical details, is the combi-

nation of several well-know techniques used to deal with equalities, quantifiers and classical

reasoning. We follow the usual contrapositive approach and prove that: given ∆ ⊆ Glob and

δ ∈ Glob, if ∆ /⊢Γ δ then ∆ /⊧A δ. Let us fix the context and prove some auxiliary results that

will be useful throughout the proof. Once we assume that ∆ /⊢Γ δ, we will be searching for an

F-structure (A,S) such that A satisfies Γ, (A,S) ⊩ ∆ and (A,S) /⊩ δ. With this mindset, let

us begin by writing each element of ∆ ∪ {¬δ} in disjunctive normal form:

⎧⎪⎪⎨⎪⎪⎩ξ
DNF ∶= mξ⋁

j=1
nj⋀
i=1ψξ,j,i ∣ ξ ∈∆ ∪ {¬δ}⎫⎪⎪⎬⎪⎪⎭ , (2.1)

where mξ, nj ∈ N, and ψξ,j,i ∈ (∀Loc ∪ ¬∀Loc). Then, let
⎧⎪⎪⎨⎪⎪⎩
njξ⋀
i=1ψξ,jξ,i ∣ ξ ∈∆ ∪ {¬δ}⎫⎪⎪⎬⎪⎪⎭ be a consistent set (2.2)

constructed by one disjunct of each element in (2.1), according to Remark 2.3.2.

We will be looking for an F-structure satisfying each of the following relevant atoms:

RelAt(∆ ∪ {¬δ}) = ⋃
ξ∈∆∪{¬δ}{ψξ,jξ,1, . . . ,ψξ,jξ,njξ

} ⊆ ∀Loc ∪ ¬∀Loc . (2.3)

We follow a Henkin construction [69] to define the F-algebra A, adding enough constants

to the language in order to introduce all the necessary witnesses for formulas of the form ¬∀ϕ.
Note that the set of local formulas is countable and thus we introduce a set of new constants

for each of them, which we will use to instantiate all names in N : ⋃ϕ∈Loc {cϕ,n ∣ n ∈ N}. The
extended signature by F+ coincides with F in all but

F+0 = F0 ∪ ⎛⎝ ⋃ϕ∈Loc{cϕ,n ∣ n ∈ N}
⎞
⎠ .

The set (2.3) is extended with the witnesses for existential formulas by considering an enu-

meration for Loc × Loc and then considering the following inductive definition:

W0 = RelAt(∆ ∪ {¬δ})
Wi+1 = Wi ∪ {¬∀ϕ1

i → (∀[¬ϕ1
i]ñc̃ϕ1

i

∧ (∀ϕ2
i → ∀[ϕ2

i]ñc̃ϕ1
i

))} for each i ∈ N,
36

where names(ϕ1
i) ∪ names(ϕ2

i) = ñ = {n1, . . . , nm}, c̃ϕ = {cϕ,n1 , . . . , cϕ,nm}. This way, given

i ∈ N we introduce, where appropriate, a witness for ¬∀ϕ1
i .

To prove that the union of this family of sets is consistent with respect to the extended

signature F+, we need to prove an auxiliary Lemma.

Lemma 2.3.4. If Wi ⊢F+Γ (¬∀ϕ1
i ∧ ∀[ϕ1

i]ñc̃ϕ1
i

) ∨ (¬∀ϕ1
i ∧ ∀ϕ2

i ∧ ¬∀[ϕ2
i]ñc̃ϕ1

i

) then

Wi ⊢F+Γ (¬∀ϕ1
i ∧ ∀ϕ1

i) ∨ (¬∀ϕ1
i ∧ ∀ϕ2

i ∧ ¬∀ϕ2
i) .

Proof. Assume thatWi ⊢F+Γ (¬∀ϕ1
i ∧ ∀[ϕ1

i]ñc̃ϕ1
i

)∨(¬∀ϕ1
i ∧ ∀ϕ2

i ∧ ¬∀[ϕ2
i]ñc̃ϕ1

i

) and let ω = ψ1...ψp

denote a deduction of it. Note that we can change all the new constants c̃ϕ1
i
back to names,

[ω]c̃ϕ1iñ = [ψ1]c̃ϕ1iñ . . . [ψn]c̃ϕ1iñ , and obtain a deduction of

[Wi]c̃ϕ1iñ ⊢F+Γ [(¬∀ϕ1
i ∧ ∀[ϕ1

i]c̃ϕ1
i

) ∨ (¬∀ϕ1
i ∧ ∀ϕ2

i ∧ ¬∀[ϕ2
i]ñc̃ϕ1

i

)]c̃ϕ1i
ñ

.

Let us check this. Given l ∈ {1, . . . , p},
• if ψ" ∈Wi, [ψ"]c̃ϕ1iñ ∈ [Wi]c̃ϕ1iñ ,

• if ψ" ∈ TF+(N) is an instance of an axiom, [ψj]c̃ϕ1iñ is an instance of the same axiom,

• if ψ" results from applying C4 to ψl1 ,ψl2 , where ψl2 should be of the form ψl1 → ψ", then

[ψ"]c̃ϕ1iñ results from applying C4 to [ψl1]c̃ϕ1iñ , [ψl2]c̃ϕ1iñ .

We proved by induction in the structure of the deduction ω that

[Wi]c̃ϕ1iñ ⊢F+Γ [(¬∀ϕ1
i ∧ ∀[ϕ1

i]ñc̃ϕ1
i

) ∨ (¬∀ϕ1
i ∧ ∀ϕ2

i ∧ ¬∀[ϕ2
i]ñc̃ϕ1

i

)]c̃ϕ1i
ñ

.

According to definition of replacement for global formulas and since c̃ϕ1
i
are new constants

occurring nowhere else, [(¬∀ϕ1
i ∧ ∀[ϕ1

i]ñc̃ϕ1
i

) ∨ (¬∀ϕ1
i ∧ ∀ϕ2

i ∧ ¬∀[ϕ2
i]ñc̃ϕ1

i

)]c̃ϕ1i
ñ

is the following

global formula ∀ (¬∀ϕ1
i ∧ ∀ϕ1

i)∨(¬∀ϕ1
i ∧ ∀ϕ2

i ∧ ¬∀ϕ2
i) . On the other hand, c̃ϕ1

i
does not occur

in Wi, and so, [Wi]c̃ϕ1iñ =Wi. This shows that Wi ⊢F+Γ (¬∀ϕ1
i ∧ ∀ϕ1

i) ∨ (¬∀ϕ1
i ∧ ∀ϕ2

i ∧ ¬∀ϕ2
i) .

We are now able to prove the main Lemma, which states that the limit of the previous

nondecreasing sequence of sets {Wi}i∈N is consistent.

Lemma 2.3.5. W = ⋃i∈NWi is consistent (regarding F+).

37

Proof. Let us prove by induction on i ∈ N that Wi is consistent: W0 = RelAt(∆ ∪ {¬δ})
is consistent immediately from (2.2). Then assume that Wi is consistent but Wi+1 is not

consistent. In this case, Wi+1 ⊢F+Γ δ for any δ ∈ GlobF+ . In particular,

Wi+1 ⊢F+Γ ¬(¬∀ϕ1
i → (∀[¬ϕ1

i]ñc̃ϕ1
i

∧ (∀ϕ2
i → ∀[ϕ2

i]ñc̃ϕ1
i

))) .
Recalling that Wi+1 =Wi ∪ {¬∀ϕ1

i → (∀[¬ϕ1
i]ñc̃ϕ1

i

∧ (∀ϕ2
i → ∀[ϕ2

i]ñc̃ϕ1
i

))} and using the deduc-

tion meta-theorem MTD it follows that

Wi ⊢F+Γ (¬∀ϕ1
i → (∀[¬ϕ1

i]ñc̃ϕ1
i

∧ (∀ϕ2
i → ∀[ϕ2

i]ñc̃ϕ1
i

)))→ (¬(¬∀ϕ1
i → (∀[¬ϕ1

i]ñc̃ϕ1
i

∧ (∀ϕ2
i → ∀[ϕ2

i]ñc̃ϕ1
i

)))) ,
i.e., Wi ⊢F+Γ ¬(¬∀ϕ1

i → (∀[¬ϕ1
i]ñc̃ϕ1

i

∧ (∀ϕ2
i → ∀[ϕ2

i]ñc̃ϕ1
i

))) .
We can write the following equivalent assertions:

Wi ⊢F+Γ ¬(¬∀ϕ1
i → (∀[¬ϕ1

i]ñc̃ϕ1
i

∧ (∀ϕ2
i → ∀[ϕ2

i]ñc̃ϕ1
i

)))
iff Wi ⊢F+Γ ¬∀ϕ1

i ∧ ¬(∀[¬ϕ1
i]ñc̃ϕ1

i

∧ (∀ϕ2
i → ∀[ϕ2

i]ñc̃ϕ1
i

))
iff Wi ⊢F+Γ ¬∀ϕ1

i ∧ (∀[ϕ1
i]ñc̃ϕ1

i

∨ ¬(∀ϕ2
i → ∀[ϕ2

i]ñc̃ϕ1
i

))
iff Wi ⊢F+Γ ¬∀ϕ1

i ∧ (∀[ϕ1
i]ñc̃ϕ1

i

∨ (∀ϕ2
i ∧ ¬∀[ϕ2

i]ñc̃ϕ1
i

))
iff Wi ⊢F+Γ (¬∀ϕ1

i ∧ ∀[ϕ1
i]ñc̃ϕ1

i

) ∨ (¬∀ϕ1
i ∧ ∀ϕ2

i ∧ ¬∀[ϕ2
i]ñc̃ϕ1

i

) ,
which, using Lemma 2.3.4, leads to

Wi ⊢F+ (¬∀ϕ1
i ∧ ∀ϕ1

i) ∨ (¬∀ϕ1
i ∧ ∀ϕ2

i ∧ ¬∀ϕ2
i) , (2.4)

which is a contradiction and ends our proof that W is consistent with respect to F+.
Now that we have some ingredients, we proceed with the proof of completeness.

Proof of Theorem 2.3.3. Consider ∆ ⊆ Glob, δ ∈ Glob and assume ∆ /⊢Γ δ. We need to prove

that ∆ /⊧A δ by defining an F-structure (A,S) such that A satisfies Γ, (A,S) ⊩∆ and (A,S) /⊩
δ, i.e., (A,S) should satisfy the set of relevant atoms in (2.3), (A,S) ⊩ RelAt(∆ ∪ {¬δ}).

To define such F-structure, recall the Henkin construction carried out previously and

consider the set W = ⋃i∈NWi ⊆ GlobF+ that was proved to be consistent in Lemma 2.3.5,

regarding the extended signature F+. Let Ξ ⊆ GlobF+ be a maximal consistent set extending

W , whose existence is guaranteed by the Lindenbaum’s Lemma (Lemma 1.1.8), and con-

sider the congruence relation ≡ over TF+(N) defined by t1 ≡ t2 iff ∀(t1 ≈ t2) ∈ Ξ. Axioms

Eq1-Eq4 together with Lemma 2.2.2, make ≡ be a congruence relation. We define A to be the

38

the quotient F+-algebra TF+(N)/≡. Note that by definition of ≡, by E(Γ), C4, Lemma 2.2.2,

and recalling that Ξ is maximally consistent, it is easy to check that A satisfies Γ. For the

construction of S we choose to define an outcome for each element of ¬∀Loc in Ξ. Given

¬∀ϕ ∈ Ξ, let ρ¬∀ϕ ∶ N → A be the outcome defined by ρ(n) = [cϕ,n]≡ for each n ∈ N . Finally,

define S = {ρ¬∀ϕ ∣ ¬∀ϕ ∈ Ξ}. Note that S ≠ ∅ because, given t ∈ T (N), axiom Eq1 implies that

∀(¬(t /≈ t)) ∈ Ξ, which together with axiom N2 means that ¬∀(t /≈ t) ∈ Ξ.
In order to conclude that actually (A,S) ⊩ RelAt(∆ ∪ {¬δ}), observe that we can easily

prove by induction on the complexity of ϕ ∈ Loc that: given ¬∀ϕ0 ∈ Ξ,
∀[ϕ]ñc̃ϕ0 ∈ Ξ if and only if A,ρ¬∀ϕ0 ⊩loc [ϕ]ñc̃ϕ0 , where names(ϕ) = ñ. (2.5)

To prove that (A,S) is a model for RelAt(∆∪ {¬δ}), recall that RelAt(∆∪ {¬δ}) ⊆ ∀Loc∪
¬∀Loc, let γ ∈ RelAt(∆ ∪ {¬δ}) and then prove that (A,S) ⊩ γ by analyzing the two possible

cases for γ:

• if γ is of the form ∀ϕ with names(ϕ) = ñ, we need to prove that for any ρ ∈ S A,ρ ⊩loc ϕ.

Let ρ ∈ S and recall that ρ was motivated by some ¬∀ϕ0 ∈ Ξ, say that ρ = ρ¬∀ϕ0 . Since

∀ϕ ∈ RelAt(∆∪ {¬δ}) ⊆ Ξ it follows that ∀[ϕ]ñc̃ϕ0 ∈ Ξ by construction of W . By (2.5) we

conclude that A,ρ¬∀ϕ0 ⊩loc [ϕ]ñc̃ϕ0 , which according to definition of ρ¬∀ϕ0 implies that

A,ρ¬∀ϕ0 ⊩loc ϕ.

• on the other hand, if γ is of the form ¬∀ϕ with names(¬ϕ) = names(ϕ) = ñ, consider the
already defined outcome ρ¬∀ϕ ∈ S. Notice that since ¬∀ϕ ∈ Ξ it follows that ∀[¬ϕ]ñc̃ϕ ∈ Ξ.
The observation (2.5) implies that A,ρ¬∀ϕ ⊩loc [¬ϕ]ñc̃ϕ , which by definition of ρ¬∀ϕ
implies A,ρ¬∀ϕ ⊩loc ¬ϕ. Therefore (A,S) ⊩ ¬∀ϕ.

We conclude that (A,S) satisfies the set defined in (2.2), and therefore (A,S) ⊩∆∪ {¬δ}.
Hence, ∆ /⊧A δ.

This concludes the soundness and completeness results for EqCL. We are now able to use

indistinctively the syntactic consequence relation ⊢Γ and the semantic consequence relation

⊧A provided that the basic class A of algebras is axiomatized by the set Γ of Horn clauses

over X.

The development of other calculi as sequent calculus [63] or labelled tableaux [17, 109]

would be interesting and would ease syntactic deductions, however was outside the scope of

what we intended to do. Even though, it constitutes an interesting topic for future work.

2.4 Decidability and Complexity

In general, EqCL cannot be expected to be decidable, as equational theories can easily be

undecidable [13]. Combinatory logic [46], that we present in Example 2.4.1, is an example of

an undecidable equational theory.

39

Example 2.4.1. Consider a signature with constants S,K, I and with the binary infix symbol

‘ ⋅⋅⋅ ’. The equational theory induced by the following set of equations is undecidable:

Γ = { I ⋅ x ≈ x , (K ⋅ x) ⋅ y ≈ x , ((S ⋅ x) ⋅ y) ⋅ z ≈ (x ⋅ z) ⋅ (y ⋅ z) } . △
We will show, however, that this logic is decidable if we just require that the base equa-

tional theory is convergent. We may wonder whether the logic would not be decidable by

considering decidable equational theories in general, even those for which do not exist any

rewriting system decision procedure to decide the validity problem, as is the case of the decid-

able equational theory induced by the commutative axiom (see [51]). Indeed, it would be very

interesting to explore that in the future. For now, it is outside the scope of what we intend to

do, as the majority of the equational theories underlying information security examples are

generated by convergent rewriting systems. All the more, we take advantage of the rewriting

systems underlying equational theories to draw a decidability result. Our decidability proof is

actually more informative, as we develop a satisfiability procedure for EqCL by a polynomial

reduction to the satisfiability problem for classical propositional logic. That said, our setup

is, from now on, that Γ is a convergent equational theory.

2.4.1 Satisfiability

Throughout this subsection we analyze the satisfiability problem for EqCL (SAT-EqCL) and

provide a satisfiability algorithm that reduces SAT-EqCL to the SAT problem for classical

propositional logic.

The SAT-EqCL problem consists in deciding the existence of a model for a global formula,

i.e., given δ ∈ Glob, SAT-EqCL decides the existence of an F-structure (A,S) satisfying δ.
In general, the satisfiability solvers require a particular format for the input formula [65].

The standard input representation for the SAT solvers is the CNF. Following this line, we

begin with a detailed analysis of the CNFSAT-EqCL problem for EqCL, the satisfiability

problem whose input is restricted to formulas in conjunctive normal form, and then proceed

with the satisfiability result.

Moving to the propositional context

To properly describe the algorithm that reduces SAT-EqCL to SAT, we need to translate local

formulas to the propositional context. Hence, let us consider a set of propositional symbols

corresponding to equations between nominal terms Eq(N)p = {pt1≈t2 ∣ t1, t2 ∈ T (N)}, and then

define the translation of a local formula ϕ ∈ Loc to a propositional formula propϕ inductively,

by:

40

• if ϕ is of the form t1 ≈ t2, propϕ is precisely pt1≈t2 ,

• if ϕ is of the form ¬ψ then propϕ is ¬propψ ,
• if ϕ is of the form ϕ1 ∧ϕ2 then propϕ is propϕ1

∧ propϕ2
.

Furthermore, since the satisfiability of EqCL will be reduced to the satisfiability problem

of classical propositional logic, we must import the algebraic requirements to the propositional

context. For this purpose, assume that we want to test the satisfiability of a global formula

δ ∈ Glob and let RelTermδ ⊆ T (N) represent the set of relevant nominal terms for δ. RelTermδ

should embrace subterms(δ), their normal forms with respect to the convergent rewriting

system R underlying Γ and still the equational theory instantiated on them:

RelTermδ = subterms(δ) ∪ {t↓∣ t ∈ subterms(δ)} ∪ subterms(∆≈),
where ∆≈ = {σ(t) ≈ σ(t′) ∣ (t→ t′) ∈ R,σ ∈ subterms(δ)X}.

The propositional symbols of interest are those that represent equations between terms in

RelTermδ, and are gathered in the set

Bδ = {pt1≈t2 ∣ t1, t2 ∈ RelTermδ} . (2.6)

Equational statements must obey some relations, to be imposed on their representatives.

These relations are established in Φδ and correspond to a reflexivity-like property incorporat-

ing the equational theory, symmetry, transitivity and congruence:

Φδ ={pt≈t↓ ∣ t ∈ RelTermδ} ∪ {pt1≈t2 → pt2≈t1 ∣ t1, t2 ∈ RelTermδ}∪
{pt1≈t2 ∧ pt2≈t3 → pt1≈t3 ∣ t1, t2, t3 ∈ RelTermδ}∪
{pt1≈t′1∧ ... ∧ ptn≈t′n→ pf(t1,...,tn)↓≈f(t′1,...,t′n)↓ ∣ t1, t′1, ..., tn, t′n, f(t1, ..., tn)↓, f(t′1, ..., t′n)↓∈ RelTermδ}.

(2.7)

Note that for each t ∈ RelTermδ, pt≈t is a propositional consequence of Φδ.

We should emphasize that, since subterms(δ) has linear size on the length of δ and the

equational theory is convergent, RelTermδ is well defined and has polynomial size on the length

of δ. Denoting ∣RelTermδ ∣ = k, Φδ has at most k + k2 + k3 + k2a+2 elements, where a is the

maximum arity of the function symbols occurring in RelTermδ. We drop the superscript δ

when it is clear from context.

CNFSAT-EqCL problem

The CNFSAT-EqCL problem consists in deciding the existence of a model for a global formula

δ ∈ Glob given in conjunctive normal form.

41

To test the satisfiability of a global formula δ ∈ Glob given in CNF by
m⋀
j=1

nj⋁
i=1 δ

j
i , one

computes the set Bδ of propositional symbols described in (2.6), the set Φδ of propositional

formulas described in (2.7) and then use Algorithm 2.1 to decide whether the given formula

is satisfiable or not. Note that each conjunct is a disjunction of literals. Specifying explicitly

those components, δ is given by:
m⋀
j=1 (∀ψ

j
1 ∨ . . . ∨ ∀ψj

nj
∨ ¬∀ϕj

1 ∨ . . . ∨ ¬∀ϕj
kj
) .

The conversion to the propositional context is based on the idea that there should exist as

many copies of Bδ as the number of existential formulas ¬∀Loc occurring in δ. In its very last

description, δ counts with ∑m
j=1 kj formulas of ¬∀Loc, so let B∗ carry such number of labeled

copies of Bδ:
B∗ = m⋃

j′=1
kj′⋃
"′=1{p

[j′,"′] ∣ p ∈ Bδ} ∪Bδ.
When kj′ = 0, kj′⋃

"′=1{p[j
′,"′] ∣ p ∈ Bδ} represents the empty set.

Algorithm 2.1 CNFSAT-EqCL solver based on SAT

1: procedure CNFSATEqCL

2: input: global formula δ given in CNF by
m⋀
j=1 (∀ψj

1 ∨ . . . ∨ ∀ψj
nj ∨ ¬∀ϕj

1 ∨ . . . ∨ ¬∀ϕj
kj
)

3: output: Sat or Unsat depending on whether δ is satisfiable or not

4: propositional symbols:
m⋃
j′=1

kj′⋃
"′=1{p[j

′,"′] ∣ p ∈ Bδ} ∪Bδ
5: Q ∶= ⋀

φ∈Φδ (
m⋀
j′=1

kj′⋀
"′=1φ

[j′,"′] ∧ φ) ▷ incorporate Φδ in Q

6: for j = 1 to m do ▷ define the jth conjunct

7: Qj ∶= -
8: for s = 1 to nj do ▷ incorporate each ∀ψj

s in Qj

9: Qj ∶= Qj ∨ (m⋀
j′=1

kj′⋀
"′=1prop

[j′,"′]
ψj
s

∧ propψj
s
)

10: for % = 1 to kj do ▷ incorporate each ¬∀ϕj
" in Qj

11: Qj ∶= Qj ∨ ¬prop[j,"]
ϕj
$

12: Q ∶= Q ∧ m⋀
j=1Qj ▷ propositional formula Q corresponding to δ

13: return sat solver(Q) ▷ return Sat if Q is satisfiable and Unsat otherwise

Given a global formula δ ∈ Glob written in conjunctive normal form, the CNFSAT-EqCL

solver tests the satisfiability of δ by reduction to a SAT solver, which is represented in Algo-

rithm 2.1 by an auxiliary procedure sat solver that returns Sat or Unsat, depending on whether

42

the propositional formula given as input is satisfiable or not. Notice that we have fixed a con-

vergent equational theory Γ, so that the sets of propositional formulas Bδ and Φδ are well

defined and have polynomial size on the length of δ. Recall once again that each conjunct is

written as a disjunction of elements from ∀Loc ∪ ¬∀Loc. Satisfying an element of the form

∀ϕ imposes that ϕ must be verified in all possible outcome, whereas satisfying a formula as

¬∀ϕ requires that at least one possible outcome satisfies ¬ϕ. Therefore, our reduction to

the propositional context must carry this sensitivity. In this way, the satisfiability of those

conjuncts is tested using several labeled copies of propositional symbols (one copy for each

literal of the form ¬∀Loc), as if they had embedded several valuations (exactly one for each

literal in ¬∀Loc). The labels are extended from the propositional symbols to the propositional

formulas as expected. When the resulting propositional formula is satisfiable, we conclude

that δ is also satisfiable.

Let us illustrate the satisfiability procedure in a small example.

Example 2.4.2. Recall the signature FDY and the equational theory ΓDY introduced in

Example 2.1.7. Let us use Algorithm 2.1 to test the satisfiability of the CNF formula:

∀(m ≈ k) ∧ ¬∀({{n}k}−1m ≈ π2(a,n)). (2.8)

Note that, in this case, Q is simply a conjunction of several propositional formulas. We reveal

just a few of them in order to conclude that the SAT solver would return Unsat in this specific

case. From the construction, Q1 ∧Q2 would look like

propm≈k ∧ prop[2,1]m≈k ∧ ¬prop[2,1]{{n}k}−1m ≈π2(a,n) .

But then, recall the presence of Φδ, which would imply that prop[2,1]{{n}k}−1k ≈n and prop[2,1]
π2(a,n)≈n

holds. By the transitivity representative in Φδ we conclude that prop[2,1]{{n}k}−1k ≈π2(a,n) is

derivable. The propositional representative of congruence, also allows us to conclude that,

since prop[2,1]m≈k holds, prop[2,1]{{n}k}−1m ≈{{n}k}−1k must also hold. By transitivity, one concludes that

prop[2,1]{{n}k}−1m ≈π2(a,n) holds, which contradicts Q2, ¬prop[2,1]{{n}k}−1m ≈π2(a,n).
Hence, the formula (2.8) is not satisfiable. △

Lemma 2.4.3. If Γ is a convergent equational theory, a global formula δ ∈ Glob in CNF is

satisfiable iff Algorithm 2.1 returns Sat.

Proving this Lemma requires showing that satisfiability at the propositional level carries

over to EqCL. For this purpose, given δ ∈ Glob, we define a translation of outcomes with

values in an F-algebra A with carrier set A to valuations in the propositional context, and vice-

versa. For the first kind of translation, let us denote by v(⋅) the transformation of outcomes

43

into valuations, v(⋅) ∶ AN → {0,1}B such that, given ρ ∈ AN , the corresponding valuation

vρ ∶ B → {0,1} is defined by:

vρ(pt1≈t2) = 1 iff !t1"ρA = !t2"ρA. (2.9)

This translation is sound and complete. The following Lemma is easily proved by induction

on ϕ.

Lemma 2.4.4. For each ϕ ∈ subform(δ) ∩ Loc and ρ ∈ AN , A,ρ ⊩loc ϕ iff vρ (propϕ) = 1.
For the second kind of translation, we denote by [⋅] the transformation of valuations into

outcomes [⋅] ∶ {0,1}B → ℘(AN) such that, given v ∈ {0,1}B,
[v] = {ρ ∈ AN ∣ vρ ≅ v} (2.10)

where vρ was defined in (2.9) and ≅ represents equality of functions. The role of this translation

is simply to gather all the outcomes that would lead to the same valuation. To prove that

this translation is sound and complete we need the following auxiliary result.

Lemma 2.4.5. For any terms t1, t2 ∈ subterms(δ) and valuation v ∈ {0,1}B such that [v] ≠ ∅,
v (pt1≈t2) = 1 iff A,ρ ⊩loc t1 ≈ t2 for every ρ ∈ [v].
Proof. Let t1, t2 ∈ subterms(δ) and v ∈ {0,1}B be a valuation such that [v] ≠ ∅. For the

direct implication assume that v (pt1≈t2) = 1 and note that for each ρ ∈ [v] we have vρ ≅ v,

which implies that vρ (pt1≈t2) = 1. By definition of v(⋅) it is equivalent to !t1"ρA = !t2"ρA, and
therefore to A,ρ ⊩loc t1 ≈ t2. Reciprocally, assume that for every ρ ∈ [v] A,ρ ⊩loc t1 ≈ t2, i.e.,
vρ (pt1≈t2) = 1. This implies that v (pt1≈t2) = 1.
Lemma 2.4.6. For any formula ϕ ∈ subform(δ) ∩ Loc and valuation v ∈ {0,1}B such that

[v] ≠ ∅, v (propϕ) = 1 iff A,ρ ⊩loc ϕ for every ρ ∈ [v].
Proof. The proof follows by structural induction on ϕ and makes use of the previous result.

• if ϕ is of the form t1 ≈ t2 the result follows from the previous Lemma,

• if ϕ is of the form ¬ϕ′ for some ϕ′ ∈ Loc, then ϕ′ ∈ subform(δ) and the following

equivalences hold:

v (prop¬ϕ′) = 1
iff v (¬propϕ′) = 1
iff v (propϕ′) = 0
iff vρ (propϕ′) = 0, for every ρ ∈ [v]
iff A,ρ /⊩loc ϕ

′, for every ρ ∈ [v]
iff A,ρ ⊩loc ¬ϕ′, for every ρ ∈ [v]

44

• if ϕ is of the form ϕ1 ∧ϕ2 for some ϕ1 ∧ϕ2 ∈ Loc, then ϕ1, ϕ2 ∈ subform(δ) and we have

the following equivalences:

v (propϕ1∧ϕ2
) = 1

iff v (propϕ1
∧ propϕ2

) = 1
iff v (propϕ1

) = 1 and v (propϕ2
) = 1

iff vρ (propϕ1
) = 1 and vρ (propϕ2

) = 1, for every ρ ∈ [v]
iff A,ρ ⊩loc ϕ1 and A,ρ ⊩loc ϕ2, for every ρ ∈ [v]
iff A,ρ ⊩loc ϕ1 ∧ϕ2, for every ρ ∈ [v] .

The proof of Lemma 2.4.3 needs one more technical Lemma, that will later ensure that

there always exist at least one outcome corresponding to each valuation in the propositional

side.

Lemma 2.4.7. Given a valuation v ∈ {0,1}B that satisfies Φδ, we have

[v] = {ρ ∈ (T (N)/≡)N ∣ vρ ≅ v} ≠ ∅,
where ≡ is the congruence relation on T (N) generated by the following rule:

given s ≈ s′ ∈ Γ and σ ∈ T (N)X , σ(s) ≡ σ(s′).
Proof. Let v ∈ {0,1}B be a valuation satisfying Φδ and let us define a congruence relation

≡v ⊆ (T (N)/≡ × T (N)/≡) generated by the rule:

for every t1, t2 ∈ RelTerm, [t1]≡ ≡v [t2]≡ iff v (pt1≈t2) = 1.
Note that ≡v is compatible with ≡, in the sense that ≡v is well defined and the definition

does not depend on the representative element of each equivalence class of ≡. Indeed, given

t1, t2, t
′
1, t

′
2 ∈ RelTerm such that

t′1 ∈ [t1]≡ (2.11)

and

t′2 ∈ [t2]≡ (2.12)

we easily prove that if v (pt1≈t2) = 1 then v (pt′1≈t′2) = 1. For this purpose, note that by (2.11)

we know that t1 ↓= t′1 ↓. Since t1, t
′
1 ∈ RelTerm, then t1 ↓, t′1 ↓∈ RelTerm as well. Additionally,

pt1≈t1↓ and pt′1≈t′1↓ are propositional consequences of Φδ. Since v satisfies Φδ, by symmetry and

transitivity, we are now able to conclude that v (pt1≈t′1) = 1, which together with v (pt1≈t2) = 1
implies that v (pt′1≈t2) = 1. A similar reasoning can be done from (2.12) to conclude that

v (pt′1≈t′2) = 1.
45

Let [[t]≡]∗≡v be a representative for the equivalence class [[t]≡]≡v and consider the outcome

ρv ∶ N → T (N)/≡
n ↦ [[n]≡]∗≡v

We now check that ρv ∈ [v], i.e., vρv ≅ v ∶ given pt1≈t2 ∈ B,
vρv(pt1≈t2) = 1 iff !t1"ρ

v

A = !t2"ρ
v

A (by definition of v(⋅))
iff [[t1]≡]∗≡v = [[t2]≡]∗≡v (by definition of ρv)

iff [t1]≡ ≡v [t2]≡ (two equivalence classes are either equal or disjoint)

iff v (pt1≈t2) = 1 (by definition of ≡v)
iff v(pt1≈t2) = 1.

Since ρv ∈ [v], it follows that [v] ≠ ∅.
Proof of Lemma 2.4.3. Let δ ∈ Glob be any global formula given in CNF. To prove the direct

implication, consider an F-structure (A,S) satisfying δ: (A,S) ⊩ m⋀
j=1

nj⋁
i=1 δ

j
i . This means that

for each j ∈ {1, . . . ,m}, (A,S) ⊩ nj⋁
i=1 δ

j
i . Since each δji is a literal, we can rewrite it as

(A,S) ⊩ ¬∀ϕj
1 ∨ . . . ∨ ¬∀ϕj

kj
∨ ∀ψj

1 ∨ . . . ∨ ∀ψj
nj
.

Note that for each conjunct, j ∈ {1, . . . ,m}, at least one of the disjuncts must be satisfied, i.e.,

either there exists % ∈ {1, . . . , kj} such that A,ρ ⊩loc ¬ϕj
" for some ρ ∈ S, (2.13)

or there exists s ∈ {1, . . . , nj} such that A,ρ ⊩loc ψ
j
s for every ρ ∈ S. (2.14)

Given j ∈ {1, . . . ,m} such that kj > 0, consider each % ∈ {1, . . . , kj} and let us denote by ρϕ
j
$ an

outcome in the conditions of (2.13) if one exists, and any other outcome of S in case there is

no outcome in conditions (2.13), since any other satisfies all the positive literals, as stated in

(2.14). Collect all these valuations in the set Vj = {v
ρϕ

j
1
, . . . , v

ρ
ϕ
j
kj

}. Then, consider any other

outcome ρ ∈ S and let Vj = {vρ} for every j ∈ {1, . . . ,m} with kj = 0. The set of all valuations

of interest is the set V = m⋃
j=1Vj ∪ {vϕ} ⊆ {0,1}Bδ .

Remark 2.4.8. Observe that, for each j ∈ {1, . . . ,m}, all the valuations v ∈ Vj satisfy the propo-

sitional formula Q̃j ∶= ⋁nj

i=1 propψj
i
∨⋁kj

"=1 ¬propϕj
$
by simply noting that it results from (2.13),

(2.14) and from Lemma 2.4.4. Furthermore, all these valuations also satisfy the propositional

formula ⋀φ∈Φ φ, as (A,S) satisfies each instance of Eq1-Eq4 and E(Γ).

Now let us merge all the valuations of V together into a valuation v∗ ∶ B∗ → {0,1} over

the set B∗, defined by:

v∗(p[j′,"′]) = v
ρ
ϕ
j′
$′
(p)

v∗(p) = vρ(p),
46

for each p ∈ Bδ, and observe that v∗ satisfies:

Q ∶= ⋀
φ∈Φ
⎛
⎝

m⋀
j′=1

kj′⋀
"′=1φ

[j′,"′] ∧ φ⎞⎠ ∧
m⋀
j=1
⎡⎢⎢⎢⎢⎣
nj⋁
s=1
⎛
⎝

m⋀
j′=1

kj′⋀
"′=1prop

[j′,"′]
ψj
s

∧ propψj
s

⎞
⎠ ∨

kj⋁
"=1¬prop

[j,"]
ϕj
$

⎤⎥⎥⎥⎥⎦ .
To conclude this, note that:

• For each φ ∈ Φ, j′ ∈ {1, . . . ,m} and %′ ∈ {1, . . . , kj′}, by definition of v∗ and using

Remark 2.4.8 we have v∗(φ[j′,"′]) = v
ρ
ϕ
j′
$′
(φ) = 1 and v∗(φ) = vρ(φ) = 1.

• For each j ∈ {1, . . . ,m}, recall observations (2.13) and (2.14) and notice that: ei-

ther there exists an % ∈ {1, . . . , kj} such that v∗ (¬prop[j,"]
ϕj
$

) = v
ρ
ϕ
j
$
(¬propϕj

$
) = 1,

or there exists an s ∈ {1, . . . , nj} for which all the outcomes satisfy ψj
s, and so, for

each j′ ∈ {1, . . . ,m} and %′ ∈ {1, . . . , kj′}, we use the definition of v∗ to conclude that

v∗(prop[j′,"′]
ψj
s
) = v

ρ
ϕ
j′
$′
(propψj

s
) = 1 and v∗(propψj

s
) = vρ(propψj

s
) = 1.

Hence, Algorithm 2.1 returns Sat.

Reciprocally, assume that Algorithm 2.1 returns Sat, i.e., there exists a valuation

v∗ ∶ B∗ → {0,1} that satisfies Q. In particular, v∗ satisfies Qj for each j ∈ {1, . . . ,m}:
v∗ ⎛⎝

nj⋁
s=1
⎛
⎝

m⋀
j′=1

kj′⋀
"′=1prop

[j′,"′]
ψj
s

∧ propψj
s

⎞
⎠ ∨

kj⋁
"=1¬prop

[j,"]
ϕj
$

⎞
⎠ = 1 . (2.15)

Consider the valuations V∗ = {v} ∪ m⋃
j=1{v[j,1], . . . , v[j,kj]} ⊆ {0,1}B

δ
where, for each

j ∈ {1, . . . ,m} and % ∈ {1, . . . , kj}, v[j,"] is the projection of v∗ over the [j, %]th copy of Bδ
in B∗ and is defined by

v[j,"](p) = v∗(p[j,"]),
and v is the projection of v∗ over Bδ and is defined by

v(p) = v∗(p),
for each p ∈ Bδ. These are the relevant valuations for the remaining construction.

Now we define a model (A,S) for δ. Begin by defining the quotient F-algebra A = T(N)/≡,
with carrier set A = T (N)/≡, where ≡ is the congruence relation on T (N) generated by the

following rule:

given s ≈ s′ ∈ Γ and σ ∈ T (N)X , σ(s) ≡ σ(s′).
From a simple observation we find that, given s ∈ T (X) and σ ∈ T (N)X , σ(s) ≡ σ(s ↓).
Besides the definition of A, we need to define S. Let S = {ρ∗v ∣ v ∈ V∗} where, for each v ∈ V∗,
ρ∗v ∈ [v] is an outcome chosen from [v], whose existence is ensured by Lemma 2.4.7.

47

To prove that (A,S) is actually the F-structure we are looking for, we observe that A
satisfies Γ immediately by definition of ≡ and remark that ∅ ≠ S ⊆ AN as an immediate

consequence of Lemma 2.4.7. Finally, we check that (A,S) ⊩ m⋀
j=1

nj⋁
i=1 δ

j
i or, in other words, that

for each j ∈ {1, . . . ,m}, (A,S) ⊩ ∀ψj
1 ∨ . . . ∨ ∀ψj

nj ∨ ¬∀ϕj
1 ∨ . . . ∨ ¬∀ϕj

kj
, which is immediate

from (2.15) by simply observing that for each j ∈ {1, . . . ,m}:
• either there exists % ∈ {1, . . . , kj} such that v∗ (¬prop[j,"]

ϕj
$

) = 1, i.e., v[j,"] (¬propϕj
$
) = 1 and,

by Lemma 2.4.6, A,ρ∗v[j,$] ⊩loc ¬ϕj
" which implies that (A,S) ⊩ ¬∀ϕj

" ;

• or there exists s ∈ {1, . . . , nj} for which v∗ (m⋀
j′=1

kj′⋀
"′=1prop

[j′,"′]
ψj
s

∧ propψj
s
) = 1, i.e., for every

j′ ∈ {1, . . . ,m} and %′ ∈ {1, . . . , kj′}, we have v[j′,"′] (propψj
s
) = 1 and v(propψj

s
) = 1, which

implies that (A,S) ⊩ ∀ψj
s.

Tseitin-like transformation on EqCL

We described an algorithm to decide the satisfiability of global formulas written in CNF.

However, rewriting a formula into conjunctive normal form can lead to an explosion on the

length of the formula. Therefore, instead of simply expanding a given formula to CNF, one

usually decides the satisfiability of a global formula δ ∈ Glob by analyzing the satisfiability of

an equisatisfiable CNF formula.

In classical propositional logic, the satisfiability of a given propositional formula is usually

decided by testing the satisfiability of an equisatisfiable formula in conjunctive normal form

that is obtain through the Tseitin’s transformation [107]. Let us follow the steps for classical

propositional logic and import the Tseitin’s transformation to EqCL.

The Tseitin-like transformation for EqCL allows us to convert any global formula δ ∈ Glob
into an equisatisfiable CNF formula, with only a linear cost on the length of δ. In EqCL,

the idea is to introduce additional atoms ∀(nδ′1 ≈ nδ′2) for every non-atomic subformula δ′ of
δ, ensuring that ∀(nδ′1 ≈ nδ′2) ↔ δ′ and, in the end, also ensuring that the former formula is

satisfied by imposing ∀(nδ1 ≈ nδ2).
In this sense, given a global formula δ ∈ Glob, we consider the set of all subformulas of

δ that are not atoms, subform(δ) ∖ ∀Loc, and fix a pair of new (distinct) names for each of

them. To ease notation, we denote by ∀at(δ′) the atom corresponding to the subformula

δ′ ∈ (subform(δ) ∖ ∀Loc). Furthermore, we abuse notation and also denote an atom δ′ ∈
(subform(δ) ∩ ∀Loc) by ∀at(δ′). In short:

∀at(δ′) = ⎧⎪⎪⎨⎪⎪⎩
δ′ if δ′ ∈ subform(δ) ∩ ∀Loc
∀(nδ′1 ≈ nδ′2) if δ′ ∈ subform(δ) ∖ ∀Loc

48

where the names in (⋃δ′∈subform(δ)∖∀Loc{nδ′1 , nδ′2 }) ⊆ N are new and distinct from each other.

For each non-atomic subformula δ′ ∈ (subform(δ) ∖ ∀Loc), we define the additional

conjuncts tc(δ′) representing the equivalence ∀at(δ′) ↔ δ′ in CNF according to the

structure of δ′:
tc(¬ψ) = (∀at(¬ψ) ∨ ∀at(ψ)) ∧ (¬∀at(¬ψ) ∨ ¬∀at(ψ));
tc(ψ1∧ψ2) = (¬∀at(ψ1∧ψ2)∨∀at(ψ1))∧(¬∀at(ψ1∧ψ2)∨∀at(ψ2))∧(∀at(ψ1 ∧ψ2)∨¬∀at(ψ1)∨¬∀at(ψ2));
tc(ψ1∨ψ2) =(∀at(ψ1 ∨ψ2)∨¬∀at(ψ1))∧(∀at(ψ1 ∨ψ2)∨¬∀at(ψ2))∧(¬∀at(ψ1 ∨ψ2)∨∀at(ψ1)∨∀at(ψ2)).

We define the Tseitin-like transformation on EqCL simply as:

tt(δ) = ∀at(δ) ∧ ⋀
δ′∈(subform(δ)∖∀Loc) tc(δ

′).

Notice that the obtained CNF formula has linear size on the length of δ, since subform(δ)
has linear size on the length of δ and the transformation tc(⋅) increments the length of the

formula only by a constant. As corollary of the previous construction we have the following

Lemma.

Lemma 2.4.9. Given δ ∈ Glob, there exists an equisatisfiable formula δ′ ∈Glob in conjunctive

normal form whose length is linear on the length of δ and can be computed in polynomial time.

Proof. As we already observed, the Tseitin-like transformation described above converts any

δ ∈ Glob into a global formula tt(δ) in conjunctive normal form with linear size on the length of

δ. This Tseitin-like transformation can be computed in polynomial time as described above.

To check that tt(δ) is equisatisfiable to δ, note that each model for δ can be extended

to the new names in order to be a model for tt(δ) and any model of tt(δ) can lead to a

model for δ simply by ignoring the values assigned to the additional names introduced by the

Tseitin-like transformation.

Please note that this construction is equivalent to substituting each atom occurring in δ by

propositional symbols, applying Tseitin’s transformation (in the propositional context) to the

resulting propositional formula and afterwards replacing all the new propositional symbols by

additional atoms ∀(n1 ≈ n2), composed of new and independent names n1, n2.

Example 2.4.10. Recall Example 2.1.7. Using the Tseitin-like transformation for EqCL,

we can obtain an equisatisfiable formula in CNF for

(∀(m ≈ k) ∨ ∀({{n}k}−1m ≈ n))→ ∀ ({{n}k}−1m ≈ π2(a,n))
as follows: begin by rewriting the formula without the connective →, introduced by abbrevi-

49

ation, and then identify its subformulas that are not atoms

¬
δ1LMMNMMMO(∀(m ≈ k) ∨ ∀({{n}k}−1m ≈ n))PMMMQMMMR
δ2

∨ ∀ ({{n}k}−1m ≈ π2(a,n))
PMMQMMMR

δ

.

The CNF formula equisatisfiable to δ is:

tt(δ) = ∀at(δ) ∧ tc(δ1) ∧ tc(δ2) ∧ tc(δ),
where

tc(δ1) = (∀at(δ1)∨¬∀(m ≈ k))∧(∀at(δ1)∨¬∀({{n}k}−1m ≈ n)∧(¬∀at(δ1)∨∀(m ≈ k)∨∀({{n}k}−1m ≈ n)),
tc(δ2) = (∀at(δ2) ∨ ∀at(δ1)) ∧ (¬∀at(δ2) ∨ ¬∀at(δ1)),
tc(δ) = (∀at(δ) ∨ ¬∀at(δ2)) ∧ (∀at(δ) ∨ ¬∀({{n}k}−1m ≈ π2(a,n)))∧

∧, (¬∀at(δ) ∨ ∀at(δ2) ∨ ∀({{n}k}−1m ≈ π2(a,n))) . △
SAT-EqCL problem

In the more generic context, we are looking for a procedure to decide the SAT-EqCL problem,

i.e., to decide the existence of a model for a given global formula δ ∈ Glob. As already noted,

the classical expansion of δ to CNF can lead to an exponential explosion on the length of the

formula. For this reason, in general, the more efficient way to reduce the SAT-EqCL problem to

CNFSAT-EqCL is not by looking for a global formula in CNF equivalent to δ, but by exploring

the Tseitin-like transformation for EqCL and come up with an equisatisfiable formula.

Theorem 2.4.11. If Γ is a convergent equational theory then the SAT-EqCL problem is de-

cidable.

Proof. Given a global formula δ ∈ Glob, we use the Tseitin-like transformation for EqCL to

convert δ into an equisatisfiable formula tt(δ) in conjunctive normal form. Then, we run the

CNFSAT-EqCL solver presented in Algorithm 2.1 on tt(δ). If CNFSAT-EqCL returns Sat then

tt(δ) has a model, and so δ has a model; if it returns Unsat, then tt(δ) is unsatisfiable and δ

is also unsatisfiable.

Note that, alternatively, we could have chosen, as usual for the satisfiability solvers, to

reduce the SAT-EqCL problem to a 3CNFSAT-EqCL solver that, instead of accepting any CNF

formula as input, would require the formula to have at most 3 disjuncts on each conjunct.

In fact, also the Tseitin-like transformation for EqCL transforms any global formula into a

CNF formula with this format.

50

2.4.2 Validity

Decidability of EqCL follows as an immediate corollary of the satisfiability result.

Theorem 2.4.12. If Γ is a convergent equational theory then EqCL is decidable.

Proof. Since the deduction meta-theorem holds in EqCL, given a finite set ∆ ⊆ Glob and a

formula ϕ ∈ Glob, proving that ∆ ⊢Γ ϕ is equivalent to proving that ⊢Γ ((⋀ψ∈∆ψ) → ϕ), so
we proceed by checking the decidability of the validity problem.

Let δ ∈ Glob be an arbitrary formula, and let us decide whether ⊢Γ δ or /⊢Γ δ by testing

the satisfiability of ¬δ: if ¬δ is satisfiable, since EqCL is sound, we conclude that /⊢Γ δ; if ¬δ
is not satisfiable, completeness implies that ⊢Γ δ.

Let us recall Example 2.4.2 to illustrate our decision procedure.

Example 2.4.13. Consider, once again, the signature FDY and the equational theory ΓDY.

Our decision procedure allows us to conclude that the global formula

∀(m ≈ k)→ ∀({{n}k}−1m ≈ π2(a,n)).
is a theorem of EqCL, provided that in Example 2.4.2 we proved that its negation is

unsatisfiable. △
2.4.3 Complexity

The satisfiability result highlights a way of reducing the SAT-EqCL problem to the SAT prob-

lem for classical propositional logic, under the assumption that Γ is a convergent equational

theory. Actually, our analysis revealed a reduction from SAT-EqCL to CNFSAT-EqCL and, fur-

thermore, from CNFSAT-EqCL to SAT. Given the satisfiability result, we explored soundness

and completeness of EqCL to derive the decidability result.

Capitalizing on the polynomial complexity of these reductions and on the complexity of

SAT, we analyze complexity of CNFSAT-EqCL and SAT-EqCL. In this context, let us denote

by P the class of problems solved in polynomial time by a Turing machine, by NP the class

of problems solved in non-deterministic polynomial time by a Turing machine and by coNP

the class of problems whose complement is in NP [12, 90].

The complexity of CNFSAT-EqCL

The CNFSAT-EqCL solver presented in Algorithm 2.1 exhibits a way to transform a global

formula δ given in CNF by
m⋀
j=1(∀ψj

1 ∨ . . . ∨ ∀ψj
nj ∨ ¬∀ϕj

1 ∨ . . . ∨ ¬∀ϕj
kj
) into a propositional

51

formula with length

⎛
⎝∣Φδ ∣ ⋅

⎛
⎝

m∑
j=1kj + 1

⎞
⎠ +

m∑
j=1
⎛
⎝nj ⋅ ⎛⎝

m∑
j=1kj + 1

⎞
⎠ + kj

⎞
⎠
⎞
⎠ ⋅L ,

where L is the maximum length of the propositional formulas involved in the conjunctions

and disjunctions that compose Q through the several steps of Algorithm 2.1 and which is

at most the length of δ. Since Φδ has polynomial size on the length of δ, provided that Γ

is given by means of a convergent rewriting system, the obtained propositional formula has

polynomial size on the length of δ. Notice that the length of the formula does not exceed

(m ⋅E ⋅kmax{2a+2,3}+G ⋅E ⋅m2) ⋅ ∣δ∣, where m is the number of conjuncts of the CNF formula δ,

G and E are the maximum number of positive and negative literals among all the conjuncts,

k = ∣RelTermδ ∣ and a is the maximum arity of the function symbols occurring in RelTermδ.

Algorithm 2.1 exhibits a polynomial reduction from CNFSAT-EqCL to SAT.

The complexity result for the satisfiability problem CNFSAT-EqCL is parametric and also

depends on the complexity of determining normal forms for terms with respect to the equa-

tional specification of the algebraic basis, which are fundamental to obtain the set of relevant

terms RelTermδ. The complexity of CNFSAT-EqCL is the same as for SAT as long as the

complexity of computing normal forms with respect to Γ (call it the Γ↓-problem) is in P.

Corollary 2.4.14. Assuming that Γ is a convergent equational theory whose Γ↓-problem is

in P, then the satisfiability problem CNFSAT-EqCL is in NP and the validity problem for CNF

formulas in EqCL is in coNP.

Note that when the rewriting system underlying the equational theory Γ is subterm con-

vergent, the complexity class of the Γ ↓-problem is in P. In fact, every term rewrites to a

strict subterm in each rewriting step, so that, in the worst case, a term t takes ∣subterms(t)∣
steps until reaching its normal form, which is linear on the length of t. Since the unification

algorithm also takes linear time (see [76, 92]), it follows that in this case the Γ ↓-problem is

actually in P.

We should stress that SAT can obviously be modeled in EqCL. For this purpose, one

should simply assign an atom ∀(t1 ≈ t2) composed by two fresh terms t1, t2 to each proposi-

tional symbol occurring in the SAT problem.

Corollary 2.4.15. If Γ is a subterm theory, then CNFSAT-EqCL is NP-complete.

We conclude that under the assumption that Γ is a convergent equational theory whose

Γ ↓-problem is in P, the satisfiability problem CNFSAT-EqCL has the same complexity as

CNFSAT (the satisfiability problem for classical propositional logic whose input is given

in conjunctive normal form). Obviously, it would also be the case for 3CNFSAT-EqCL:

52

3CNFSAT-EqCL lies on the same complexity class as 3CNFSAT (the satisfiability problem

for classical propositional logic whose input is given as a conjunction of disjunctions of at

most 3 propositional symbols or their negations).

Recall that, in contrast to 3CNFSAT, 2CNFSAT is known to be in P [101]. However, the

CNFSAT-EqCL solver presented in Algorithm 2.1 does not allow us to conclude that

2CNFSAT-EqCL is also in P. This limitation relies on the general format of the innermost

local formulas in δ and, consequently, on the corresponding propositional formulas composing

each disjunct of Qj which, in general, do not correspond to propositional symbols nor their

negations, so we must not expect the final propositional formula Q to be in 2CNF format.

The complexity of SAT-EqCL

The complexity result for SAT-EqCL follows immediately from the analysis of complexity of

the CNFSAT-EqCL problem and from Lemma 2.4.9.

Corollary 2.4.16. Assuming that Γ is a convergent equational theory whose Γ↓-problem is

in P, then the satisfiability problem SAT-EqCL is in NP and the validity problem for EqCL

is in coNP.

Proof. The satisfiability procedure presented for EqCL reduces the analysis of the satisfiabil-

ity of δ to the analysis of the satisfiability of its equisatisfiable formula tt(δ) written in CNF.

By Lemma 2.4.9, tt(δ) has a linear size on the length of δ and can be obtained in polynomial

time. Consequently, we found out a linear reduction from SAT-EqCL to CNFSAT-EqCL. By

Corollary 2.4.14, we conclude that the SAT-EqCL problem is in NP. Since CNFSAT-EqCL has

a polynomial reduction to the SAT problem, we have also obtained a polynomial reduction

from SAT-EqCL to SAT.

Corollary 2.4.17. If Γ is a subterm theory, then SAT-EqCL is NP-complete.

2.5 Applications to Information Security

Now, we illustrate how to analyze offline guessing attacks to cryptographic protocols using

EqCL.

2.5.1 Offline Guessing Attacks

To analyze offline guessing [18], one assumes that an attacker has observed messages named

m1, . . . ,mk (terms in some algebra). Typically, the attacker may know exactly that the

messages were built as t1, . . . , tk ∈ T (N), but he just cannot know the concrete values of the

random and secret names used to build them. Still, he can try to mount an attack by guessing

53

some weak secret used by the parties executing the protocol. The attack is successful if the

attacker can distinguish whether his guess is correct or not.

In the context of EqCL, we can actually be more ambitious and assume that the attacker

has the ability to guess several weak secrets s1, . . . , sn ∈ N and exploit the algebraic properties

of the protocol and cryptographic primitives to conclude about the exactness of his guesses

s∗1 , . . . , s∗n. The following definition arises very naturally.

Definition 2.5.1. Let m1, . . . ,mk ∈ T (N) represent the messages exchanged by the parties

executing a given cryptographic protocol, and Γ denote the equational specification of the

underlying algebraic basis. We are in the presence of an offline guessing attack to the protocol

if there exists a recipe ϕ ∈ Loc, with subterms(ϕ) ⊆ T ({m1, . . . ,mk, s
∗
1 , . . . , s

∗
n}) such that:

∀(m1 ≈ t1 ∧ ⋅ ⋅ ⋅ ∧mk ≈ tk) /⊢Γ ∀ϕ
and

∀(m1 ≈ t1 ∧ ⋅ ⋅ ⋅ ∧mk ≈ tk) ⊢Γ ∀(s∗1 ≈ s1 ∧ ⋅ ⋅ ⋅ ∧ s∗n ≈ sn → ϕ) .
The recipe is a formula constructed exclusively from messages observed by the attacker

and from guesses for the secret values. Such formula is not derivable in general, but is valid

under the assumption that the attacker correctly guessed the secrets, proving to be a reliable

recipe for the attacker to check whether he actually guessed the secrets.

Note that this formalization generalizes the original notion of offline guessing [18] as it con-

siders multiple guesses whilst allowing the recipe to be more complex than a simple equation.

Similarly to the original formulation, the collision of cryptographic primitives also leads to

offline guessing attacks. For this purpose, note that, given a 2-ary function symbol {⋅}⋅ repre-
senting, for instance, the encryption of a message with a symmetric key, can lead to a collision

if two different messages m1,m2 encrypted with two different keys k1, k2 originate the same

ciphertext: {m1}k1 ≈ {m2}k2 . In cases of collisions with the correct values for the secrets, two

wrong guesses may compensate each other and, despite the attacker has no way to confirm

the correct value of the secrets, constitute an offline guessing attack. We could avoid these

cases by taking recipes that were true under the assumption that the guesses were correct,

but were false whenever the attacker failed to guess some of the secrets. In EqCL, this more

restrictive notion of offline guessing would be formalized by requiring that the attacker would

found a recipe ϕ such that:

∀(m1 ≈ t1 ∧ ⋅ ⋅ ⋅ ∧mk ≈ tk) ⊢Γ ∀(s∗1 /≈ s1 ∧ ⋅ ⋅ ⋅ ∧ s∗n /≈ sn → ¬ϕ) ,
and

∀(m1 ≈ t1 ∧ ⋅ ⋅ ⋅ ∧mk ≈ tk) ⊢Γ ∀(s∗1 ≈ s1 ∧ ⋅ ⋅ ⋅ ∧ s∗n ≈ sn → ϕ) .
However, collisions are usually exploited in very interesting ways to carry out attacks.

Under this evidence, we keep the former approach (Definition 2.5.1) to generalize the original

notion of offline guessing attacks.

54

Of course, the task of analysing the existence of an offline guessing attack to a protocol

is undecidable in general, as the recipe may be arbitrarily complex. Still, for the Dolev-

Yao theory of Example 2.1.7, the equational theory Th(ΓDY) is generated by the convergent

rewriting system obtained by orienting the given equations from left to right. Note that the

resulting system is subterm convergent, as each rule rewrites a term to a strict subterm.

Under such particular conditions, it is known that the problem is decidable, as only a finite

number of ‘dangerous’ recipes need to be tested [2, 3, 18].

Example 2.5.2. Consider the following protocol adapted from Corin and Etalle [43], where

a, b, na, pab ∈ N .

1. a→ b ∶ (a,na)
2. b→ a ∶ {na}pab

In the first step, some party named a sends a message to another party named b in order to

initiate some communication session. The message is a pair containing a’s name and a random

value (nonce) named na, that a generated freshly, and which is intended to distinguish this

request from other, similar, past or future, requests. Upon reception of the first message,

b responds by ciphering na with a secret password pab shared with a. When receiving the

second message, a can decrypt it and recognize b’s response to his request to initiate a session.

It is relatively simple, in this case, to see that the secret shared password pab is vulnerable

to an offline guessing attack. Suppose that the attacker observes the execution of the protocol

by parties a and b, and got hold of the two exchanged messages m1 and m2. He can now

manipulate these messages, using his guess p∗ab of pab, and come up with recipe {m2}−1p∗ab ≈
π2(m1). Indeed, only under the correct guess, should the decryption of m2 with p∗ab coincide
with the second projection of m1, that is, na. We can use EqCL to check that, indeed,

∀(m1 ≈ (a,na) ∧m2 ≈ {na}pab) /⊢ΓDY ∀({m2}−1p∗ab ≈ π2(m1)),
and

∀(m1 ≈ (a,na) ∧m2 ≈ {na}pab) ⊢ΓDY ∀(p∗ab ≈ pab → {m2}−1p∗ab ≈ π2(m1)),
namely using the three E(ΓDY) axioms that encode the equations in ΓDY. △
2.5.2 Privacy on e-voting

Electronic voting protocols constitute a very active research topic nowadays [15, 50, 73, 82,

99]. Obviously, it would be very interesting to obtain a provably secure e-voting protocol,

but several concerns arise very naturally, namely with respect to privacy, authentication or

anonymity, to name just a few. With respect to privacy, the most fundamental requirement

that one can ask for consists in imposing an environment where the intruder cannot distinguish

a user’s vote from any other possible vote coming from the same voter.

55

Let us use EqCL for the analysis of privacy in a very simple voting protocol.

Example 2.5.3. Consider the signature FDY extended with a function symbol h ∈ FDY
1 rep-

resenting the hash of a message, and with constants A,B,C ∈ FDY
0 representing the possible

votes. Let us further consider the set of Horn clauses ΓDY presented in Example 2.1.7.

Then, consider the very simple voting protocol, inspired in [82], where voter a submits his

vote va by sending its hash as follows:

1. a→ s ∶ h(va)
In this case, it is easy to see that the vote va is vulnerable to an offline guessing attack.

Considering that m1 stands for the sent message, note that the attacker can come up with a

guess v∗a for va and manipulate m1 to obtain two recipes m1 and h(v∗a). Actually, under the

correct guess, h(v∗a) should coincide with m1. We can use EqCL to conclude that:

∀(m1 ≈ h(va)) /⊢ΓDY
h
∀(m1 ≈ h(v∗a)),

but

∀(m1 ≈ h(va)) ⊢ΓDY
h
∀(v∗a ≈ va →m1 ≈ h(v∗a)).

Hence, we conclude that in the presence of this voting protocol the attacker is able to find

out users votes by mounting an offline guessing attack and exploring the vulnerability of each

vote. △

2.6 Concluding Remarks

In summary, we combined aspects from classical propositional logic, equational logic and

quantifiers to came up with a language that allowed us to express equational constraints

locally, but also global properties of the set of all intended outcomes. The language of the

logic was built on top of a set of names, whose concrete values were not important but

were confined to the possible concretizations imposed by the outcomes; up to now, outcomes

should be understood as being obtained non-deterministically, however, later on Chapter 4,

when probabilities come into play, they will constitute samples of probability distributions,

thereby justifying this terminology. Parametrized by a Horn-clause equational specification

of the algebraic basis, we have also obtained a sound and complete deductive system for

EqCL. The proof of completeness emerged as a harmonious marriage between techniques from

equational logic, first-order logic and classical propositional logic. Afterwards, we combined

efforts in order to achieve an automated procedure to decide the satisfiability problem for

the logic (SAT-EqCL) provided that the algebraic basis was given by means of a convergent

rewriting system. For this purpose, we presented a polynomial reduction of CNFSAT-EqCL

56

to SAT and then proved that a Tseitin-like transformation exists for the EqCL logic and

could be applied to decide SAT-EqCL. Provided with these fancy reductions, and under the

assumption that the algebraic base is a convergent equational theory whose normal forms can

be found in polynomial time, we proved that the SAT-EqCL is in NP. It goes without saying

that these results could be used to decide the existence of offline guessing attacks whenever

the underlying equational theories are subterm convergent, by capitalizing on the results

in [2, 3, 18]. We presented examples of offline guessing attacks to cryptographic protocols at

the end of the chapter.

Although our decidability results cover a very interesting range of examples, it would be

interesting to explore their extension in order to handle decidable equational theories in gen-

eral, even those for which do not exist any rewriting system decision procedure to decide the

validity problem, as is the case of the decidable equational theory induced by the commutative

axiom (see [51]).

57

Chapter 3

Generalized Probabilistic

Satisfiability

This chapter has a slightly different taste. Now, we do not envisage to present a logic (this was

done with merit of Fagin, Halpern and Megiddo in [58]), but rather to explore a probabilistic

satisfiability problem.

For many years, the satisfiability problem for propositional logic (SAT) has been exten-

sively studied both for theoretical purposes (e.g. complexity theory) and for practical pur-

poses. In spite of its NP-completeness [42], modern tools for solving SAT are able to cope

with very large problems in a very efficient manner, leading to applications in many different

areas and industries [23]. Naturally, people started extending this problem to more expressive

frameworks: for instance in Satisfiability Modulo Theories [49], instead of working in propo-

sitional logic, one can try to decide if a formula is valid in some specific first-order theory.

One other direction is to extend propositional logic with probabilities. The probabilistic sat-

isfiability problem (PSAT) was originally formulated by George Boole [26], and later studied

by Nilsson [88]. This problem consists in deciding the satisfiability of a set of assignments of

probabilities to propositional formulas. There has been a great effort on the analysis of the

probabilistic satisfiability problem and on the development of efficient tools for the automated

treatment of this problem [45,48,59, 60, 64].

In this chapter we study a Generalized Probabilistic Satisfiability problem (GenPSAT)

extending the scope of PSAT by allowing linear combinations of probabilistic assignments

of values to propositional formulas. This problem has applications in the analysis of the

security of cryptographic protocols and on estimating the probability of success of attacks, as

we will see later on Chapter 4. Intuitively, GenPSAT consists in deciding the existence of a

probability distribution satisfying a set of classical propositional formulas with probability 1,

and a set of linear inequalities involving probabilities of propositional formulas. The GenPSAT

59

problem was previously identified in the context of the satisfiability of the probabilistic logic

in [58], where it was also shown to be NP-complete. Here, we explore the computational

behaviour of this problem and present a polynomial reduction from GenPSAT to Mixed-

Integer Programming, following the lines of [45, 48]. Mixed-Integer Programming (MIP) [91]

is a framework to find an optimal solution for a linear objective function subject to a set of

linear constraints over real and integer variables. We will exploit the close relation between

SAT and MIP [32] in order to reduce GenPSAT problems to suitable MIP problems.

As observed in many NP-complete problems [33], GenPSAT also presents a phase transition

behaviour. By solving batches of parametrized random instances, we observe the existence of

a threshold splitting a phase where almost every GenPSAT problem is satisfiable, and a phase

where almost every GenPSAT problem is not satisfiable. During such transition, the problems

become much harder to solve [33].

As the main contribution of this work, we develop the theoretical framework that allows

the translation between GenPSAT and MIP problems, which then allows the implementation

of a provably correct solver for GenPSAT. This translation is able to encode strict inequalities

and disequalities into the MIP context. With the GenPSAT solver in hands, we are able to

detect and study the phase transition behaviour.

The chapter is outlined as follows: in Section 3.1 we briefly recall the PSAT problem;

in Section 3.2 we carefully define the GenPSAT problem and establish some results on its

complexity; Section 3.3 is dedicated to finding a polynomial reduction from GenPSAT to MIP

and a prototype tool is provided for an automated analysis of the problem; in Section 3.4 we

analyze the presence of phase transition. This work was presented in the Workshop on Logical

and Semantic Frameworks with Applications, LSFA 2016, and was submitted for publication,

see [29].

3.1 Preliminaries

Let us begin by fixing a set of propositional symbols P = {x1, . . . , xn}. Recall from classical

propositional logic that a literal is either a propositional symbol or its negation, a clause is

a non-empty disjunction of one or more literals, and a classical propositional formula is any

Boolean combination of propositional symbols. A valuation is a map v ∶ P → {0,1}, which
can be extended to the set of classical propositional formulas. Recall that a set of valuations

V satisfies a propositional formula ϕ if, for each v ∈ V, v(ϕ) = 1.
Throughout this section, let V∗ = {v1, . . . , v2n} denote the set of all valuations defined

over the propositional symbols of P with some fixed enumeration. For simplicity, we denote

a probability distribution π over V∗ as a probability vector of size 2n.

60

Let us denote by simple probabilistic formula an expression of the form Pr(c)6 q, where c

is a clause, q ∈ Q, 0 ≤ q ≤ 1 and 6 ∈ {=,≤,≥}. Notice that a probability distribution π satisfies

a formula Pr(c) 6 q if
2n∑
i=1(vi(c) ⋅ πi) 6 q .

A probability distribution π satisfies a set of simple probabilistic formulas if it satisfies each

one of them.

We now recall the PSAT problem [59,64,88].

Definition 3.1.1 (PSAT problem). Given a set of propositional symbols P and a set of

simple probabilistic formulas Σ = {Pr(ci) 6 qi ∣ 1 ≤ i ≤ k}, the Probabilistic Satisfiability

problem (PSAT) consists in determining whether there exists a probability distribution π over

V∗ that satisfies Σ.

The PSAT problem for {Pr(ci) 6i qi ∣ 1 ≤ i ≤ k} can be formulated algebraically as the

problem of finding a solution π for the system of inequalities

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

V π 6 q

∑πi = 1
π ≥ 0

,

where V is the k × 2n matrix such that Vij = vj(ci), i.e., Vij = 1 iff the j-th valuation satisfies

the i-th clause, q = [qi] is the k vector of all qi and 6 = [6i] is the k vector of all 6i.
The SAT problem can be modeled as a PSAT instance where the entries qi of the probability

vector are all identical to 1. The PSAT problem was shown to be NP-complete [58, 64], even

when the clauses consist of the disjunction of only two literals, 2-PSAT.

3.2 GenPSAT problem

We now extend the notion of simple probabilistic formula to handle linear inequalities involv-

ing probabilities of propositional formulas. A probabilistic formula is an expression of the

form
"∑

i=1(qi ⋅ Pr(ci)) 6 q ,

where ci are propositional clauses, 6 ∈ {≥,<,≠}, % ∈ N and q1, . . . , q", q ∈ Q. Observe that

formulas with the relational symbols ≤,>,= can be obtained by abbreviation. In the case

where % = 1 and q1 = 1, we obtain a simple probabilistic formula. An atomic probabilistic

formula is a probabilistic formula where each ci is a propositional symbol, i.e., ci ∈ P for

each i.

61

We say that a probability distribution π satisfies a formula ∑"i=1(qi ⋅ Pr(ci)) 6 q if

"∑
i=1
⎛
⎝qi
⎛
⎝

2n∑
j=1 vj(ci) ⋅ πj

⎞
⎠
⎞
⎠ 6 q .

A probability distribution π satisfies a set of probabilistic formulas if it satisfies each one of

them.

An instance of GenPSAT is a pair (Υ,Σ) where Υ is a set of propositional clauses (also

called hard constraints) and Σ is a set of probabilistic formulas (soft constraints). We say

that a probability distribution π satisfies a GenPSAT instance (Υ,Σ) if it satisfies the set of

probabilistic formulas

Ξ(Υ,Σ) = Σ ∪ {Pr(γ) = 1 ∣ γ ∈ Υ} . (3.1)

Definition 3.2.1. Given a GenPSAT instance (Υ,Σ), the Generalized Probabilistic Satisfiabi-

lity problem (GenPSAT) consists in determining whether there exists a probability distribution

π over V∗ that satisfies (Υ,Σ).
GenPSAT poses a convenient framework for specifying constraints involving different

probabilistic formulas. For instance, one may want to impose that 2 ⋅ Pr(A) ≤ Pr(B) for

two propositional clauses A,B. Such requirements may be very useful in specifying properties

of interesting systems but they cannot be easily expressed in the PSAT framework. We now

showcase GenPSAT’s expressiveness by encoding the Monty Hall problem [100].

Example 3.2.2. The Monty Hall problem is a puzzle where we are faced with the choice

of picking one of three doors, knowing that a prize is behind one of them. After our initial

choice, the game host opens one of the remaining doors provided that the prize is not behind

it, and gives us the choice of switching or keeping the initial guess. The question is: which

option is more advantageous?

To model this problem as a GenPSAT instance, let us define the following propositional

symbols: Pi holds if the prize is behind door i, Xi holds if our initial choice is door i, Hi holds

if the host reveals door i after our initial choice, for i ∈ {1,2,3}. Since there are only one door

with a prize, one initial choice, and one door revealed by the host, we impose the following

restrictions:

Υ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⋁
i,j,k∈{1,2,3}

i≠j≠k≠i
(Pi ∧ ¬Pj ∧ ¬Pk), ⋁

i,j,k∈{1,2,3}
i≠j≠k≠i

(Xi ∧ ¬Xj ∧ ¬Xk), ⋁
i,j,k∈{1,2,3}

i≠j≠k≠i
(Hi ∧ ¬Hj ∧ ¬Hk)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Furthermore, the host cannot open neither the chosen door nor the door with the prize and

so we include the followings constraints in Υ:

Pi → ¬Hi and Xi → ¬Hi for each i ∈ {1,2,3} .

62

We further assume that the prize has uniform probability of being behind each door and that

the initial choice is independent of where the prize is:

Σ = ⋃
i,j∈{1,2,3}{Pr(Pi) = 1

3
, Pr(Pi ∧Xj) = 1

3
Pr(Xj)}

Concerning the question of which is more advantageous, switching or keeping our initial choice,

we encode winning by switching as

WbS ∶ 3⋀
i=1(Pi ↔ (¬Xi ∧ ¬Hi)) ,

and winning by keeping as

WbK ∶ 3⋀
i=1(Pi ↔Xi) .

We want to the decide whether it is always the case that Pr(WbS) ≥ Pr(WbK), which can be

checked by testing the satisfiability of the GenPSAT instance

(Υ,Σ ∪ {Pr(WbS) < Pr(WbK)}) .

As expected, this instance is not satisfiable and the instance (Υ,Σ∪{Pr(WbS) ≥ Pr(WbK)}) is
satisfiable, allowing us to conclude that it is always advantageous to switch our initial option.

We can take this analysis one step further, and show that the probability of winning by

switching is 2
3 by checking that the instance (Υ,Σ∪ {Pr(WbS) ≠ 2

3}) is unsatisfiable and that

the instance (Υ,Σ∪ {Pr(WbS) = 2
3}) is satisfiable. All these instances were checked using the

tool we implemented, [30]. △
Notice that the PSAT problem for Σ can be modeled in GenPSAT by considering the

instance (∅,Σ).
Given a GenPSAT instance (Υ,Σ), where Υ contains m clauses and Σ is composed of k

probabilistic formulas, we follow the lines of Nilsson [88] for a linear algebraic formulation and

consider a (k+m)×2n matrix V = [Vij], where for each i ∈ {1, . . . , k+m} and j ∈ {1, . . . ,2n} Vij

is defined from the jth valuation vj and from the ith probabilistic formula
"∑

u=1 q
i
u ⋅ Pr(ciu) 6i pi

of Ξ(Υ,Σ) as follows:
Vij = "∑

u=1 q
i
u ⋅ vj(ciu) .

Furthermore, define two vectors of size k +m, q = [qi] and 6 = [6i]. GenPSAT is equivalent to

the problem of deciding the existence of a solution π to the system

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

V π 6 q

∑πi = 1
π ≥ 0

. (3.2)

63

Given a set of probabilistic formulas Ω = { "∑
u=1 q

i
u ⋅ vj(ciu) 6i pi ∣ 1 ≤ i ≤ k} and a set of

valuations V = {v1, . . . , vk′}, we define the [Ω,V]-associated matrix as the (k + 1) × k′
matrix M[Ω,V] = [Mij] such that

Mk+1,j = 1 for each 1 ≤ j ≤ k′
and

Mij = "∑
u=1 q

i
u ⋅ vj(ciu) for 1 ≤ i ≤ k, 1 ≤ j ≤ k′ .

Then, we can rewrite system (3.2) using the [Ξ(Υ,Σ),V∗]-associated matrix V as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
V π 6 q

π ≥ 0 (3.3)

We should stress that the GenPSAT problem is a particular case of the satisfiability problem

for the probabilistic logic introduced by Fagin, Halpern and Megiddo in [58] and that we

presented in Section 1.2. Therefore, it was already proved to be NP-complete (Theorem 1.2.4).

Nevertheless, we present a proof for it and use the well-known result from linear programming

presented in Lemma 1.2.3.

Theorem 3.2.3 ([58]). GenPSAT is NP-complete.

Proof. We begin by showing that GenPSAT is in NP by providing a polynomial sized certificate.

Notice that Lemma 1.2.3 can be extended to rational coefficients simply by normalizing with

the greatest denominator. Applying this result to the system (3.3) we conclude that there is

a (k +m + 1) × (k +m + 1) matrix W , composed of columns of V , whose system

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Wπ 6 q

π ≥ 0 (3.4)

has a solution iff the original system (3.3) has a solution. Furthermore, the obtained solutions

from (3.4) can be mapped to solutions of (3.3) by inserting zeros in the appropriate positions.

Since the obtained solution from the latter system has k +m + 1 elements, it constitutes the

NP-certificate for the GenPSAT problem.

Furthermore, given that the PSAT problem can be modeled in GenPSAT, it follows that

GenPSAT is NP-complete.

We say that a GenPSAT instance (Υ,Σ) is in normal form if Υ is a set of propositional

clauses with 3 literals, i.e., Υ can be seen as a 3CNF formula, and Σ is a set of atomic

probabilistic formulas.

64

Lemma 3.2.4. Given a GenPSAT instance (Υ,Σ) there exists an instance (Υ′,Σ′) in normal

form such that (Υ,Σ) is satisfiable iff (Υ′,Σ′) is satisfiable. Moreover, (Υ′,Σ′) is obtained

from (Υ,Σ) in polynomial time.

Proof. Let (Υ,Σ) be the GenPSAT instance to be put in normal form. We obtain Σ′ by trans-

forming formulas in Σ into atomic probabilistic formulas. For this purpose, let

∑"i=1 qi ⋅ Pr(ci) 6 q be a formula in Σ and consider the atomic probabilistic formula obtained

by replacing (when needed) each clause ci by a fresh variable yi,

"∑
i=1 qi ⋅ Pr(yi) 6 q .

Furthermore, the yi variable is added to P and the formula stating the equivalence between

yi and ci, (yi ↔ ci), is collected in a set ∆.

We are left with the transformation of the formula

⋀
γ∈Υγ ∧ ⋀(y↔c)∈∆(y↔ c)

into 3-CNF using Tseitin’s transformation [107], which can increase linearly the length of the

formula and add new variables to P . The final Υ′ is the set of conjuncts of the obtained

3-CNF formula. Since Tseitin’s transformation preserves satisfiability of formulas, (Υ,Σ) is
satisfiable iff (Υ′,Σ′) is satisfiable.

3.3 Reducing GenPSAT to Mixed-Integer Programming

In this section we explore the close relation between satisfaction of propositional formulas

and feasibility of a set of linear constraints over binary variables (see [32]). With this, we

present a reduction of GenPSAT to Mixed-Integer Programming (MIP), similarly to what was

done for PSAT [45] and GPSAT [48]. A MIP problem consists in optimizing a linear objective

function subject to a set of linear constraints over real and integer variables. MIP was shown

to be NP-complete, see [91]. Observe that this translation to MIP also serves as a proof that

GenPSAT is in NP.

3.3.1 Linear Algebraic Formulation for GenPSAT

Lemma 3.3.1. A GenPSAT instance in normal form (Υ,Σ), with ∣Σ∣ = k, is satisfiable iff

there exists a (k+1)×k′ matrix W of rank k′ ≤ k+1 and a set of valuations V0 of size k′ such
that:

(i) W is the [Σ,V0]-associated matrix

(ii) V0 satisfies Υ,

65

(iii) considering q = [q1, . . . , qk,1] and 6 = [61, . . . ,6k,=], the system

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Wπ 6 q

π ≥ 0 (3.5)

is satisfiable.

Proof. Let (Υ,Σ) be a satisfiable GenPSAT instance in normal form, with ∣Σ∣ = k and ∣Υ∣ =m.

Then, denoting by V the [Ξ(Υ,Σ),V∗]-associated matrix, the system

⎧⎪⎪⎪⎨⎪⎪⎪⎩
V π 6 q

π ≥ 0
has a solution. And so, using Lemma 1.2.3, there is a (k + m + 1) × % matrix V ∗, where

% ≤ k +m + 1, and whose system has a positive solution π∗. Notice that the set of valuations

underlying V ∗ certainly satisfies Υ, as π∗j > 0 for each 1 ≤ j ≤ %.
Let W ∗ be the matrix constructed from V ∗ by choosing the first k rows (corresponding to

the probabilistic formulas in Σ) and the last row (requiring that the solution sums up to one)

of V ∗. Still, the corresponding system has a positive solution. Using Lemma 1.2.3 once more,

we conclude that exists a (k + 1) × k′ matrix W , with k′ ≤ k + 1, whose system has a positive

solution π. The solution π for (3.5) is obtained from π by inserting zeros in the appropriate

positions.

Reciprocally, assume that there exists a (k+1)×k′ matrixW of rank k′ ≤ k+1 satisfying (i),
(ii), (iii), and let π denote the solution for (3.5). We are looking for a probability distribution

π∗ satisfying (Υ,Σ). For this purpose, let V0 = {vj1 , . . . , vjk′} ⊆ V denote the set of valuations

underlying W according to condition ((ii)), and define π∗ = [π∗i], where
π∗i =

⎧⎪⎪⎨⎪⎪⎩
πi if i ∈ {j1, . . . , jk′}
0 otherwise

.

The verification that π∗ satisfies the GenPSAT instance is now immediate:

• given γ ∈ Υ, we check that π∗ verifies Pr(γ) = 1 by observing that the last equality

represented on W on (3.5) leads to ∑k′
s=1 πjs = 1 and so,

2n∑
j=1 vj(γ) ⋅ π

∗
j = ∑{j∣vj(γ)=1}

π∗j = k′∑
s=1πjs = 1 .

• given an atomic probabilistic formula ∑"i=1 qi ⋅Pr(yi)6 q in Σ, we recall the definition of

π∗ and that π is a solution for (3.5) to conclude that

"∑
i=1 qi

⎛
⎝

2n∑
j=1 vj(yi) ⋅ π

∗
j

⎞
⎠ =

"∑
i=1 qi

⎛
⎝

k′∑
s=1 vjs(yi) ⋅ πjs

⎞
⎠ =

k′∑
s=1(

"∑
i=1 qi ⋅ vjs(yi))πjs 6 q ,

i.e., π∗ satisfies the formulas in Σ.

66

3.3.2 Translation to MIP

Regarding Lemma 3.3.1, given a GenPSAT instance (Υ,Σ) in normal form, with ∣Σ∣ = k and

∣Υ∣ =m, our goal is now to describe a procedure that encodes the problem of finding a set of

valuations V0 and a probability distribution π in the conditions (i),(ii),(iii), as a MIP problem.

We dub this procedure GenToMIP.

Let us denote by H = [hij] the (still unknown) matrix of size n × k′ whose columns

represent the valuations in V0 evaluated on each propositional symbol of P , i.e., hij = vj(xi)
for each 1 ≤ i ≤ n and 1 ≤ j ≤ k′. Let α1, . . . ,αn represent the probability of the propositional

symbols x1, . . . , xn, respectively, and following the reasoning of [45,48] we model the non-linear

constraint
k′∑
j=1hij ⋅ πj = αi as a linear inequality

k′∑
j=1 bij = αi , (val1)

by introducing the extra variables bij which are subject to the appropriate constraints, namely

forcing bij to be zero whenever hij = 0, and ensuring that bij = πj whenever hij = 1, i.e.,
0 ≤ bij ≤ hij and hij − 1 + πj ≤ bij ≤ πj . (val2)

We ensure that π represents a probability distribution by imposing that

k′∑
j=1πj = 1 . (sums1)

Still, as each valuation of V0 satisfies Υ, given a clause (w⋁
r=1xir) ∨ (

w′⋁
s=1¬xi′s) of Υ, we

generate a linear inequality for each valuation 1 ≤ j ≤ k′,
(w∑
r=1hir, j) +

⎛
⎝

w′
∑
s=1(1 − hi′s j)⎞⎠ ≥ 1. (gamma)

Notice that, if we have a total of m clauses in Υ, we generate m × k′ such inequalities.

In order to verify the satisfiability of probabilistic formulas in the MIP framework, consider

an atomic probabilistic formula ∑"i=1 qi ⋅ Pr(yi) 6 q in Σ. Since 6 can either be the relational

symbol ≥, < or ≠, we can easily encode the first kind of inequalities as a MIP linear constraint,

but should be careful when dealing with the remaining relational symbols.

For atomic probabilistic formulas of the form ∑"i=1 qi ⋅ Pr(yi) ≥ q, we generate the linear

inequality
"∑

i=1 qi ⋅ αi ≥ q . (prob≥)

67

In the case where 6 is a strict inequality <, we use a specific variable introduced into the

MIP problem, say ε, to fix the objective function as the maximization of ε,

maximize ε (obj)

and further introduce the linear constraint

"∑
i=1(qi ⋅ αi) + ε ≤ q . (prob<)

For atomic probabilistic formulas ϕ of the form ∑"i=1 qi ⋅ Pr(yi) ≠ q, i.e.
"∑

i=1 qi ⋅ Pr(yi) − q ≠ 0, (3.6)

we force the left hand side to be either strictly greater or strictly less than zero,

"∑
i=1(qi ⋅ αi) − q < 0 or

"∑
i=1(qi ⋅ αi) − q > 0 .

Even though these are linear constraints, the problem would explode if we treated the dis-

junction. In this sense, notice that, denoting by C a sufficiently large number, say

C = 1 + ∣q∣ + ∑"i=1 ∣qi∣, the inequality (3.6) holds if and only if there exists a fresh binary

variable zϕ such that the following two strict inequalities hold simultaneously:

"∑
i=1(qi ⋅ αi) − q < C ⋅ zϕ and − "∑

i=1(qi ⋅ αi) + q < C −C ⋅ zϕ .

Then, we are left with two strict inequalities, thus reducing this analysis to a previous case,

from which we obtain the constraints

"∑
i=1(qi ⋅ αi) − q + ε ≤ C ⋅ zϕ and − "∑

i=1(qi ⋅ αi) + q + ε ≤ C −C ⋅ zϕ . (prob≠)

Denoting by k≥, k<, k≠ the number of probabilistic formulas in Σ when 6 coincides with

≥, <, ≠, respectively, so far we have introduced:

• n constraints (val1),

• 4 × n × k′ constraints (val2),
• 1 constraint (sums1),

• m × k′ constraints (gamma),

• k≥ constraints (prob≥),
• k< constraints (prob<),

68

• 2 × k≠ constraints (prob≠).

Hence, we have O(n + n × k′ +m × k′ + k) inequalities over n × k′ binary variables hij , n × k′
real variables bij , n real variables 0 ≤ αi ≤ 1, k≠ binary variables zϕ, a real variable ε ≥ 0 and

k′ real variables πj ≥ 0. Because of this, the GenToMIP translation is polynomial.

Proposition 3.3.2. The GenToMIP procedure transforms a GenPSAT instance in normal form

(Υ,Σ) into a MIP problem whose size is polynomial on the size of (Υ,Σ).

We now need to show that the existence of a set of valuations V0 and a probability

distribution π in the conditions (i),(ii),(iii) of Lemma 3.3.1 is equivalent to the feasibility of

the MIP problem obtained through GenToMIP with an optimal value ε > 0 (when applicable).

This procedure is presented in Algorithm 3.1, which given a GenPSAT instance, translates

it into a MIP problem and then solves the latter appropriately. For that, let us assume that

we initialize an empty MIP problem and consider the following auxiliary procedures:

• add const introduces a linear constraint into the MIP problem,

• set obj defines the objective function (either as a maximization or as a minimization)

when it was previously not defined,

• fresh declares a fresh binary variable into the MIP problem,

• mip sat returns True or False depending on whether the problem is feasible (and achieves

an optimal solution) or not,

• mip objvalue returns the objective value, when an objective function was set.

69

Algorithm 3.1 GenPSAT solver based on MIP

1: procedure GenPSAT(props {xi}ni=1, form Υ, probform Σ)

2: declare: binary variables: hij , for i ∈ {1, . . . , n}, j ∈ {1, . . . , k′}
3: declare: [0,1]-variables: αi, πj , bij , for i ∈ {1, . . . , n}, j ∈ {1, . . . , k′}
4: declare: real variable: ε

5: for j = 1 to k′ do
6: for each (⋁r xr) ∨ (⋁s ¬xs) in Υ do

7: add const(∑r hrj +∑s(1 − hsj) ≥ 1) ▷ (gamma)

8: for i = 1 to n do

9: add const(∑j bij = αi) ▷ (val1)

10: for j = 1 to k′ do
11: add const(0 ≤ bij ≤ hij) ▷ (val2)

12: add const(hij − 1 + πj ≤ bij ≤ πj) ▷ (val2)

13: aux ∶= 0
14: for each ∑ qi ⋅ Pr(xi) 6 q in Σ do

15: switch(6)
16: case “ ≥ ” ∶
17: add const(∑ qi ⋅ αi ≥ q) ▷ (prob≥)
18: case “ < ” ∶
19: aux ∶= 1
20: set obj(max ε) ▷ (obj)

21: add const(∑ qi ⋅ αi + ε ≤ q) ▷ (prob<)
22: case “ ≠ ” ∶
23: aux ∶= 1
24: z ∶= fresh() ▷ z is a fresh binary variable

25: C ∶= 1 + ∣q∣ +∑ ∣qi∣
26: set obj(max ε) ▷ (obj)

27: add const(∑ qi ⋅ αi −C ⋅ z − ε ≥ q −C) ▷ (prob≠)
28: add const(∑ qi ⋅ αi −C ⋅ z + ε ≤ q) ▷ (prob≠)
29: add const(∑πi = 1) ▷ (sums1)

30: if mip sat() then
31: if (aux == 0) or (aux == 1 and mip objvalue() > 0) then
32: return Sat

33: return Unsat

70

Proposition 3.3.3. A GenPSAT instance in normal form (Υ,Σ) is satisfiable iff Algorithm

3.1 returns Sat.

Proof. Let (Υ,Σ) be a satisfiable GenPSAT instance in normal form, and also V0 = {v1, . . . , vk′}
and ρ = [ρi] represent a set of valuations and a probability distribution given by Lemma 3.3.1

which satisfy conditions (i)-(iii). Then, consider the following values and afterwards let us

check that they constitute an optimal solution for the MIP problem constructed at Algorithm

3.1: for each 1 ≤ i ≤ n and 1 ≤ j ≤ k′, let
h∗ij = vj(xi),
b∗ij = h∗ij ⋅ ρj ,
π∗j = ρj ,
α∗i = ∑{j∣vj(xi)=1}

ρj ,

ε∗ = min∆,

where ∆ = {q −∑"i=1(qi ⋅ α∗i) ∣ (∑"i=1 qi ⋅ Pr(xi) < q) ∈ Σ} ∪∪ {C ⋅ z∗ϕ + q −∑"i=1(qi ⋅ α∗i) ∣ ϕ ∈ Σ is of the form ∑"i=1 qi ⋅ Pr(xi) ≠ q} ∪∪ {C −C ⋅ z∗ϕ − q +∑"i=1(qi ⋅ α∗i) ∣ ϕ ∈ Σ is of the form ∑"i=1 qi ⋅ Pr(xi) ≠ q},
and, for each atomic probabilistic formula ϕ ∈ Σ of the form ∑"i=1 qi ⋅ Pr(xi) ≠ q,

z∗ϕ =
⎧⎪⎪⎨⎪⎪⎩

0, if ∑"i=1 qi ⋅ α∗i < q
1, if ∑"i=1 qi ⋅ α∗i > q .

Now let us check that each linear constraint introduced into the MIP problem at

Algorithm 3.1 is satisfied.

(gamma) {h∗ij} satisfy the constraints modeling Υ since each v ∈ V0 satisfies Υ.

(val1) By definition of {b∗ij} and {h∗ij}, we actually have

k′∑
j=1 b

∗
ij = k′∑

j=1h
∗
ij ⋅ ρj = k′∑

j=1 vj(xi) ⋅ ρj = ∑{j∣vj(xi)=1}
ρj = α∗i .

(val2) Since 0 ≤ vj(xi) ≤ 1 and 0 ≤ ρj ≤ 1 we immediately have 0 ≤ b∗ij ≤ h∗ij .

For the other inequality, recall that h∗ij = vj(xi) and that π∗j = ρj and note that:

● if h∗ij = 0 then b∗ij = 0 and, since π∗j ≤ 1, it follows that π∗j − 1 ≤ b∗ij ≤ π∗j , i.e.,
h∗ij − 1 + π∗j ≤ b∗ij ≤ π∗j

● if h∗ij = 1 then b∗ij = π∗j and so π∗j ≤ b∗ij ≤ π∗j , i.e., h∗ij − 1 + π∗j ≤ b∗ij ≤ π∗j
71

(sums1) Since π∗j = ρj , we immediately conclude that
k′∑
j=1π

∗
j = 1.

To check that the probabilistic formulas are satisfiable, just note that, given a probabilistic

formula (∑"i=1 qi ⋅ Pr(xi) 6 q) ∈ Σ,
"∑

i=1 qi ⋅ α
∗
i = "∑

i=1 qi
⎛
⎝ ∑{j∣vj(xi)=1}

ρj
⎞
⎠ =

"∑
i=1 qi

⎛
⎝

2n∑
j=1 vj(xi) ⋅ ρj

⎞
⎠ .

(prob≥) Let (∑"i=1 qi ⋅Pr(xi) ≥ q) ∈ Σ and notice that since ρ satisfies conditions (i), (ii), (iii) it

satisfies all the probabilistic formulas in Σ, and so we have ∑"i=1 qi (∑2n
j=1 vj(xi) ⋅ ρj) ≥ q,

which implies that ∑"i=1 qi ⋅ α∗i ≥ q.
(prob<) Now, let (∑"i=1 qi ⋅ Pr(xi) < q) ∈ Σ and notice that, in a reasoning very similar to the

previous one, we can conclude that ∑"i=1 qi ⋅ α∗i < q, i.e.
q − "∑

i=1(qi ⋅ α
∗
i) > 0. (3.7)

But we should also note that, since ε∗ = min ∆, then ε∗ ≤ q −∑"i=1(qi ⋅ α∗i), and so we

obtain
"∑

i=1(qi ⋅ α
∗
i) + ε∗ ≤ "∑

i=1(qi ⋅ α
∗
i) + q − "∑

i=1(qi ⋅ α
∗
i) = q .

(prob≠) Finally, let us consider an atomic probabilistic formula ϕ ∈ Σ of the form

∑"i=1 qi ⋅ Pr(xi) ≠ q, and recall once more that since ρ satisfies each probabilistic

formula of Σ, we have ∑"i=1(qi ⋅ α∗i) ≠ q, in other words, either q − ∑"i=1(qi ⋅ α∗i) > 0

or q −∑"i=1(qi ⋅ α∗i) < 0. Recall the constant C defined as C = 1 + ∣q∣ +∑"i=1 ∣qi∣ and the

definition of z∗ϕ and notice that both

C ⋅ z∗ϕ + q − "∑
i=1(qi ⋅ α

∗
i) > 0 (3.8)

and

C −C ⋅ z∗ϕ − q + "∑
i=1(qi ⋅ α

∗
i) > 0 (3.9)

are verified in either of the above cases. Also note that by definition of ε∗,
ε∗ ≤ C ⋅ z∗ϕ + q −∑"i=1(qi ⋅α∗i) and ε∗ ≤ C −C ⋅ z∗ϕ − q +∑"i=1(qi ⋅α∗i). We now analyze each

of the previous cases:

• if q > ∑"i=1(qi ⋅ α∗i), then z∗ϕ = 0 and it follows that

"∑
i=1(qi ⋅ α

∗
i) −C ⋅ z∗ϕ − ε∗ ≥ "∑

i=1(qi ⋅ α
∗
i) −C +C ⋅ z∗ϕ + q − "∑

i=1(qi ⋅ α
∗
i) = q −C,

and further,
"∑

i=1(qi ⋅ α
∗
i) −C ⋅ z∗ϕ + ε∗ ≤ "∑

i=1(qi ⋅ α
∗
i) +C ⋅ z∗ϕ + q − "∑

i=1(qi ⋅ α
∗
i) = q.

72

• if q < ∑"i=1(qi ⋅ α∗i), then z∗ϕ = 1 and it follows that

"∑
i=1(qi ⋅ α

∗
i) −C ⋅ z∗ϕ − ε∗ ≥ "∑

i=1(qi ⋅ α
∗
i) −C − (C −C ⋅ z∗ϕ − q + "∑

i=1(qi ⋅ α
∗
i)) = q −C,

and further,
"∑

i=1(qi ⋅ α
∗
i) −C ⋅ z∗ϕ + ε∗ ≤ "∑

i=1(qi ⋅ α
∗
i) −C +C ⋅ z∗ϕ + q − "∑

i=1(qi ⋅ α
∗
i) = q.

To finish the direct implication, notice that ε∗ > 0 as a consequence of (3.7), (3.8) and (3.9),

and it takes the maximum possible value since otherwise, let ϕ∆ be the formula in Σ which

has the minimum value in ∆. Then, if there was a solution with greater objective value it

would violate the constraint (prob,) for ϕ∆.

Reciprocally, assume that Algorithm 3.1 returned Sat, and denote by h∗ij , α∗i , ε∗ and π∗j the

(optimal) solution for the variables hij , αi, ε and πj , for each 1 ≤ i ≤ n, 1 ≤ j ≤ k′ respectively.
Consider the set of valuations V0 = {v1, . . . , vk′} where, for each propositional symbol

xi ∈ P , vj(xi) = h∗ij . Due to constraints (gamma) it is immediate to conclude that each

valuation satisfies Υ. Then, let the probability distribution π be defined over the set of

valuations as the 2n vector π = [ρj] where ρj = π∗j for 1 ≤ j ≤ k′ and ρj = 0 for k′ < j ≤ 2n. Note

that (sums1) implies that π is a probability vector. The third condition described in Lemma

3.3.1 is deduced by simple inspection of the linear constraints (prob≥), (prob<), (prob≠) and

(sums1), by definition of the matrix associated to Σ over V0 and recalling that the optimal

value ε∗ is such that ε∗ > 0.
As a corollary of the previous propositions, we obtain the following result.

Theorem 3.3.4. The GenToMIP algorithm is a correct translation of GenPSAT to a MIP

problem of polynomial size.

3.4 Phase Transition

Phase transition is a phenomenon that marks a hardness shift in the solution of instances of

a problem. This behaviour was observed in many NP-complete problems [33], among which

we highlight 3-SAT [62] and PSAT [59, 60].

In this section, we study the GenPSAT phase transition, through an implementation of

Algorithm 3.1 and tests comprised of batteries of random instances. For this, we measure the

proportion of satisfiable instances as well as the average time the solver spent to solve them.

The software was written in Java, and we used Gurobi [68], version 6.5.0, to solve the MIP

problem. The machine used for the tests was a Mac Pro at 3,33 GHz 6-Core Intel Xeon with

6 GB of memory. Our implementation is available in [30].

It was noted that, in random 3-SAT instances [62] there is a clear stage where the

instances are almost surely satisfiable and one where they are almost surely not satisfiable.

73

This phenomenon is characterized by the existence of a threshold value for the ratio m/n,
where m is the number of clauses, and n is the number of variables, for which: for smaller

values of the ratio, the SAT instances are almost certainly satisfiable and easily solved, whereas

instances with larger ratio values are almost certainly unsatisfiable and also easily solved.

However, with values of the ratio very closed to this threshold, the instances are, on average,

very hard to solve and there is no certainty on whether the problem is satisfiable or not. As

we have already noted, any 3-SAT problem can be seen as a GenPSAT instance. We tested

our GenPSAT solver with random instances of 3-SAT, and observed that a phase transition

occurs when the ratio m/n is about 4.3, in accordance with [62], see Figure 3.1.

Figure 3.1: Phase transition for SAT seen as a GenPSAT instance, with n = 20.

A deeper analysis of the probabilistic satisfiability problem PSAT [59, 60] has shown the

presence of a phase transition behaviour for PSAT for a ratio m/n, where m is the number

of clauses and n is the number of variables. We tested random PSAT instances with the

number of probabilistic formulas k = 2, n = 15 and m ranging from 1 to 105 in steps of 2.

For each value of m, we generated 100 PSAT instances. The obtained results are presented in

Figure 3.2.

Figure 3.2: PSAT phase transition seen as a GenPSAT instance, with n = 15 and k = 2.

74

We highlight that the analysis of the existence of a phase transition with variation on k

(instead of a variation on m) is essential for a deep understanding of the phase transition

of the probabilistic satisfiability problem (instead of the phase transition of the satisfiability

problem for propositional formulas in the presence of probabilistic formulas). For this purpose,

we tested random PSAT instances with n = 30, m = 40 and k ranging from 1 to 25, and also

observed a phase transition with respect to k/n based on 100 instances for each value of k,

see Figure 3.3.

Figure 3.3: PSAT phase transition seen as a GenPSAT instance, with n = 30 and m = 40.

In [48], this phase transition analysis was performed on a generalization of the probabilistic

satisfiability problem, GPSAT, which consists in Boolean combinations of simple probabilistic

formulas.

In what concerns our generalized version of probabilistic satisfiability GenPSAT, notice

that a randomly sampled probabilistic formula can easily be inconsistent by itself, e.g., when

it implies one of the probabilities is greater than 1. Because of this, the sampling of the

coefficients was performed in such a way that this case does not occur.

GenPSAT gives us a wider scope of ratios to study the phase transition behaviour. Due

to its generalized nature, we have four dimensions to explore: the number of variables n,

the number of clauses m, the number of probabilistic formulas k and the maximum size of

the linear combination into the probabilistic formulas %. We analyze the presence of phase

transition for the ratios k/n and m/n and address the analysis of the phase transition for the

variation of %/n in future work.

By performing random tests, we observe the presence of a phase transition for the ratio

of k/n with a very short stage of satisfiable formulas. This is explained since a GenPSAT

instance is more likely to be unsatisfiable. Figure 3.4 represents the phase transition for

random GenPSAT instances with n = 20, m = 10 and k ranging from 1 to 100 in steps of 2.

We generated 100 instances for each value of k.

75

Figure 3.4: Phase transition for random GenPSAT instances, with n = 20 and m = 10.

On the other hand, when the parameters n and k are fixed, we are also able to detect a

phase transition. Figure 3.5 represents the result of testing random GenPSAT instances with

n = 15, k = 2 and m ranging from 1 to 105 in steps of 2. For each value of m we generated

100 GenPSAT instances.

Figure 3.5: Phase transition for random GenPSAT instances, with n = 15 and k = 2.

3.5 Concluding Remarks

Throughout this chapter we explored a generalized version of probabilistic satisfiability,

GenPSAT. Capitalizing on its NP-completeness, we presented a polynomial reduction from

GenPSAT to MIP, which was proved to be correct. Since the translated MIP problem only

suffers a quadratic growth, we were able to solve reasonably sized instances for different values

of the parameters: number of variables, clauses and probabilistic formulas. Seeing that an

instance can be parametrized by different combinations of these parameters, we are able to

make a rich analysis of the phase transition, by analyzing the behaviour for different ratios.

76

The study of the phase transition taking into account also the size of the linear combination

in the probabilistic formulas, as well as a 4th-dimensional analysis on the variation of the

parameters would also be interesting and would provide a richer setting.

We built a tool that implements this algorithm, which although being able to solve

reasonably sized instances, can be greatly improved and optimized. In this sense, we explored

a reduction of GenPSAT to SMT, but it has not revealed to be more efficient in general. We

believe that an improvement on the performance of the GenPSAT solver would go through a

reduction of the number of constraints (val1) and (val2) by strictly assigning a [0,1]-variable
α to the variables that occur in probability formulas, instead of doing it to all the fixed

propositional variables. This would have a direct impact on the quadratic parameters that

characterize the number of generated inequalities by the GenToMIP procedure. Another key

factor stands on the chosen programming language.

77

Chapter 4

Probabilistic Logic over Equations

and Domain Restrictions

Now all the components come into play: we propose and study a probabilistic logic over

an algebraic basis, including equations and domain restrictions, that combines aspects from

classical propositional logic and equational logic with an exogenous approach to quantitative

probabilistic reasoning. This is the probabilistic logic that we envisaged from the beginning

and is aimed at dealing with the kind of reasoning used in the verification of security protocols,

namely in a more general analysis of offline guessing attacks [18] where the usual Dolev-Yao

intruder [53] is extended with some cryptanalytic power [41, 83].

The probabilistic logic over equations and domain restrictions (DEqPrL) is designed as

a global probabilistic logic built on top of a local equational base with domain restrictions.

These two layers are permeated by a quantification mechanism over possible outcomes and

a quantitative probability operator. Intuitively, we refer to algebraic terms using names

whose concrete values are gathered in a set of possible outcomes, which in turn is endowed

with a probability space. The local layer of DEqPrL allows us to reason about equational

constraints and domain restrictions on individual outcomes. At the global layer, we can state

and reason about qualitative and quantitative properties of the set of all possible outcomes.

Not unexpectedly, the quantification we use can be understood as a S5-like modality, which

also explains why we do not need to consider nested quantifiers. Arguably in the same lines,

we will not consider nested probability operators [96]. DEqPrL is an extension of EqCL

(Chapter 2) with probabilities and domain restrictions. Our approach bears important simi-

larities with exogenous logics in the sense of [77], and with probabilistic logics as developed,

for instance, in [58]. We present a sound and (weakly) complete axiomatization for the logic,

parameterized by an equational specification of the algebraic basis coupled with the intended

domain restrictions. We also show that the satisfiability problem for the logic is decidable,

79

under the assumption that its algebraic basis is given by means of a convergent rewriting

system and, additionally, that the axiomatization of domain restrictions enjoys a suitable

subterm property. As a consequence, the validity problem is also decidable. Our decidabi-

lity proof is actually more informative, as we develop a satisfiability algorithm for DEqPrL

by means of a polynomial reduction to the Satisfiability Modulo Theories with respect to the

theory of quantifier-free linear arithmetic over the integers and reals (QF LIRA). This

algorithm is proved to be correct. Afterwards, a solver for the satisfiability problem is

tested in information security problems for verifying and estimating the probability of attacks

to cryptographic protocols. Under the assumption that the rewriting system that defines

the equational basis underlying the logic is also subterm convergent, we also show that the

resulting satisfiability problem is NP, and thus the validity problem is coNP.

The chapter is outlined as follows: in Section 4.1 we define the syntax and semantics of

DEqPrL, in Section 4.2 we provide a suitable deductive system, whose soundness and (weak)

completeness we prove in Section 4.3, assuming that we are given a clausal specification of the

algebraic basis and a finite axiomatization for domain restrictions; Section 4.4 is dedicated to

showing, by reduction to QF LIRA, that satisfiability and validity in our logic are decidable

whenever the equational basis is given by means of a convergent rewriting system and the

axiomatization for domain restrictions enjoys a suitable property; finally, in Section 4.5, we

explore meaningful examples, including an estimation of the probability of offline guessing

attacks to simple security protocols. This work was submitted for publication (see [85]); it is

now presented with some reformulations, including a more detailed analysis of satisfiability

and complexity results.

4.1 Syntax and Semantics

The logic DEqPrL relies on fixing a signature F, a set of variables X, and a finite set D
of domain names. We also introduce a countable set of names N , distinct from algebraic

variables.

We are already familiar with the designation of algebraic and nominal terms for T (X) and
T (N), respectively. Recall that vars(t) stands for the set of variables occurring in t ∈ T (X),
whereas names(t) stands for the set of names that occur in t ∈ T (N). When names(t) = ∅,
we say that t ∈ T (N) is a nameless term.

The local language of the logic is designed to express equational constraints and domain

restrictions; it is built on top of the sets of equations Eq(N) and domain restrictions DRes(N)
defined in Section 1.3. The set Loc of local formulas is defined by the following grammar:

Loc ∶∶= Eq(N) ∣ DRes(N) ∣ ¬Loc ∣ Loc ∧ Loc .

80

Additionally, we want to express global properties of local formulas, either by

quantification or by extracting probabilities. For the purpose, we need a term language

Term consisting of linear probabilistic terms defined by the grammar:

Term ∶∶= Q ⋅ Pr(Loc) +⋯ +Q ⋅ Pr(Loc) ,

which we use to define the set Prob of probabilistic statements as follows:

Prob ∶∶= Term ≥ Q .

Finally, the language of the logic consists of the following set Glob of global formulas:

Glob ∶∶= ∀Loc ∣ Prob ∣ ¬Glob ∣ Glob ∧Glob .

Both our local and global languages are to be interpreted classically: the former over

an equational basis with domain restrictions, and the later over local formulas instead of

propositional symbols. Again, we abbreviate ¬(t1 ≈ t2) by t1 /≈ t2 for any t1, t2 ∈ T (N),
¬(t ∈ D) by t /∈ D for any t ∈ T (N), D ∈ D, and also use the usual abbreviations: ψ1 ∨ ψ2

abbr. ¬(¬ψ1 ∧ ¬ψ2), ψ1 → ψ2 abbr. ¬ψ1 ∨ ψ2, ψ1 ↔ ψ2 abbr. (ψ1 → ψ2) ∧ (ψ2 → ψ1),
where either ψ1,ψ2 ∈ Loc or ψ1,ψ2 ∈ Glob; given ϕ ∈ Loc, ∃ϕ abbreviates ¬∀¬ϕ; linear prob-

abilistic terms have the common abbreviations saying that q ⋅(q1 ⋅Pr(ϕ1)+⋯+q" ⋅Pr(ϕ")) abbr.
(q ⋅⋅⋅ q1) ⋅ Pr(ϕ1) + ⋯ + (q ⋅⋅⋅ q") ⋅ Pr(ϕ"), −q ⋅ w abbr. (−−−q) ⋅ w, w1 + w2 abbr.

q1 ⋅ Pr(ϕ1) + ⋯ + q" ⋅ Pr(ϕ") + q′1 ⋅ Pr(ϕ′1) + ⋯ + q′" ⋅ Pr(ϕ′"), whenever w1 is of the form

q1 ⋅ Pr(ϕ1) + ⋯ + q" ⋅ Pr(ϕ") and w2 is of the form q′1 ⋅ Pr(ϕ′1) + ⋯ + q′" ⋅ Pr(ϕ′"); probabilis-

tic formulas result from the usual abbreviations w1 ≥ w2 + q abbr. w1 − w2 ≥ q, w < q abbr.

¬(w ≥ q), w ≤ q abbr. −w ≥ −q, w > q abbr. −w < −q, w = q abbr. w ≤ q ∧w ≥ q, q1 ≤ w ≤ q2
abbr. w ≥ q1 ∧w ≤ q2, where % ≥ 1, ϕ1, . . . ,ϕ" ∈ Loc, q, q1, q2, . . . , q" ∈ Q,w,w1,w2 ∈ Term.

We introduce a symbol for local true ⊺ abbreviating ϕ∨¬ϕ for some ϕ ∈ Loc and the local

false - representing ¬⊺. We abuse notation and denote the global true, ∀⊺, and global false,

∀-, also by ⊺ and -.
A literal is a global formula in ∀Loc∪¬∀Loc∪Prob∪¬Prob. We say that a global formula is

in disjunctive normal form (DNF) if it is a disjunction of one or more conjunctions of literals;

it is in conjunctive normal form (CNF) if it is a conjunction of one or more disjunctions of

literals.

The language of the logic allows us to make qualitative and quantitative assertions over

local formulas. The universal quantification of a local formula expresses the validity of the local

formula in all possible situations, whereas a probabilistic statement measures the probability

of satisfying local formula(s). Boolean combinations are allowed in both local and global

layers. For instance, the formula (Pr(ϕ) ≤ 2 ⋅ Pr(ψ ∧ ¬ϕ)) ∧ (∀¬ψ → ∀¬ϕ) should be read

81

as: the probability of ϕ does not exceed twice the probability of ψ ∧ ¬ϕ and, either ψ holds

in some situation or else ϕ never holds. Note that, contrarily to the discussion carried out

by Eijck and Schwarzentruber in [108], ∀ϕ implies but is not intended to be equivalent to

Pr(ϕ) = 1.
Example 4.1.1. Recall, from Examples 1.3.19 and 1.3.20 presented on Subsection 1.3.5, the

algebraic characterization of the sum (xor) of single bits given by the equational theory

Γxor = {zero⊕ x ≈ x, suc(x)⊕ y ≈ x⊕ suc(y), suc(suc(x)) ≈ x}
and by the set of domain restrictions

Λxor = {zero ∈ even, (x ∈ even⇒ suc(x) ∈ odd), x ∈ odd⇒ suc(x) ∈ even, x ∈ odd⇒ x /∈ even},
once considered the set of domain names Dxor = {even,odd}. Given a name n ∈ N , we want

to be able to show that a statement like

Pr(n ∈ even) = Pr(suc(n) ∈ odd) ∧ ∀(zero /≈ suc(zero))
is a theorem of the logic whose algebraic basis is axiomatized by Γxor and whose domain

restrictions are given by Λxor.

△
We extend the notion of subterm to global formulas in a standard way, and abuse notation

by denoting subterms(Ψ) = ⋃ψ∈Ψ subterms(ψ), forΨ ⊆ Glob. Similarly, we generalize the notion

of names occurring in a term to local and global formulas. The set of subformulas of either

a local or a global formula ψ is defined in the usual way and is denoted by subform(ψ). As

usual, subform(Ψ) = ⋃ψ∈Ψ subform(ψ).
Recall that: given a nominal term t0 ∈ T (N), a set of names ñ = {n1, . . . , nk} ⊆ N such that

names(t0) ⊆ ñ and t̃ = {t1, . . . , tk} ⊆ T (N), [t0]ñt̃ is the nominal term obtained by replacing

each occurrence of ni by ti, i ∈ {1, . . . , k}, i.e., [t0]ñt̃ = σ(t0) where σ is a substitution such that

σ(ni) = ti for each i. Analogously, given a nominal term t0 ∈ T (N), a set of constant symbols

c̃ = {c1, . . . , ck} ⊆ F0 and t̃ = {t1, . . . , tk} ⊆ T (N) we denote by [t0]c̃t̃ the term that is obtained

by replacing each occurrence of ci by ti, i ∈ {1, . . . , k}. These notions are easily extended to

local and global formulas.

Names can be thought of as being associated to values that are not made explicit, and

which are possibly sampled according to some probability distribution. This is why we have

brought forward the designation of the possible concretizations of names as outcomes in EqCL

(Chapter 2). Thereby, we call outcome to each possible concrete assignment of values to names

also in DEqPrL. Given an F-algebra A with carrier set A, recall that we defined an outcome

as a function ρ ∶ N → A. The interpretation of terms !⋅"ρA ∶ TF(N)→ A is defined as usual.

82

Definition 4.1.2. Given an algebraic domain interpretation (A, IA), the satisfaction relation

for local formulas, ⊩DEqPrL

loc , is defined inductively as follows:

• (A, IA),ρ ⊩DEqPrL

loc t1 ≈ t2 iff !t1"ρA = !t2"ρA;

• (A, IA),ρ ⊩DEqPrL

loc t ∈ D iff !t"ρA ∈ IA(D);
• (A, IA),ρ ⊩DEqPrL

loc ¬ϕ iff (A, IA),ρ /⊩DEqPrL

loc ϕ;

• (A, IA),ρ ⊩DEqPrL

loc ϕ1 ∧ϕ2 iff (A, IA),ρ ⊩DEqPrL

loc ϕ1 and (A, IA),ρ ⊩DEqPrL

loc ϕ2.

We abuse notation and, instead of ⊩DEqPrL

loc , we use ⊩loc to represent the satisfaction relation

for local formulas in DEqPrL. Note that this is an extension of the analogous notion for

EqCL, but now defined for an algebraic domain interpretation rather than simply for an

F-algebra.

In order to interpret global formulas we need to fix an intended set of possible outcomes

for names and to endow it with a probability space, which is instrumental for evaluating

probabilistic statements.

Definition 4.1.3. A DEqPrL-F-structure is a tuple (A, IA,P) where (A, IA) is an algebraic

domain interpretation, and P = (S,A , µ) is a probability space composed by:

• a non-empty set S ⊆ AN of possible outcomes,

• a σ-algebra A containing the sets of outcomes satisfying each local formula,

{Sϕ ∣ ϕ ∈ Loc} ⊆ A , with Sϕ = {ρ ∈ S ∣ (A, IA),ρ ⊩loc ϕ},
• a probability measure µ over A .

Definition 4.1.4. Given a DEqPrL-F-structure (A, IA,P) with P = (S,A , µ), we define the

satisfaction relation for global formulas, ⊩DEqPrL, inductively as follows:

• (A, IA,P) ⊩DEqPrL ∀ϕ iff (A, IA),ρ ⊩loc ϕ for every ρ ∈ S,
• (A, IA,P) ⊩DEqPrL q1 ⋅ Pr(ϕ1) +⋯ + q" ⋅ Pr(ϕ") ≥ q iff q1 ⋅ µ(Sϕ1) +⋯ + q" ⋅ µ(Sϕ$) ≥ q ,
• (A, IA,P) ⊩DEqPrL ¬δ iff (A, IA,P) /⊩DEqPrL δ,

• (A, IA,P) ⊩DEqPrL δ1 ∧ δ2 iff (A, IA,P) ⊩DEqPrL δ1 and (A, IA,P) ⊩DEqPrL δ2.

As usual, given ∆ ⊆ Glob we write (A, IA,P) ⊩DEqPrL ∆ if (A, IA,P) ⊩DEqPrL δ for each δ ∈∆.

83

Our logic is parameterized by a choice of intended algebraic domain interpretations.

Definition 4.1.5. Given a class I of algebraic domain interpretations, the semantic con-

sequence relation of DEqPrL, ⊧I ⊆ (℘(Glob) ×Glob), is such that ∆ ⊧I δ provided that

(A, IA,P) ⊩DEqPrL δ whenever (A, IA,P) ⊩DEqPrL ∆, for every DEqPrL-F-structure (A, IA,P)
with (A, IA) ∈ I.

Note that the semantics of DEqPrL is an enrichment of the semantics of EqCL,

presented in Section 2.1, that emerged to additionally deal with the probabilistic

component and domain restrictions. It goes without saying that we can abuse notation and

call a DEqPrL-F-structure simply as F-structure, as well as drop the superscript for the

satisfaction relation for global formulas in DEqPrL.

Independence cannot in general be expressed in DEqPrL, as its language only allows

for linear combinations of probabilistic terms. This could be achieved, however, without

spoiling too much the nice properties of the logic, by considering coefficients taken from real

closed fields, not necessarily from Q, in the lines of the logic for reasoning about conditional

probability of Fagin, Halpern and Megiddo in [58] and of the exogenous logic of Mateus,

Sernadas and Sernadas presented in [77]. However, it would result in a double exponential

complexity [103], which we would like to avoid. Even so, we can highlight some simple

situations where one can characterize, reason about, or at least approximate the probabilistic

behaviour of independent formulas, as can be seen in the following example.

Example 4.1.6. Verification of the independence of events is easily modeled within our logic:

given an F-structure (A, IA,P), ϕ,ψ ∈ Loc are independent if we can find α,β ∈ Q such that

β ≠ 0 and (A, IA,P) ⊩ Pr(ϕ ∧ ψ) = α ∧ Pr(ψ) = β ∧ Pr(ϕ) = α
β .

More importantly, we can draw some conclusions on the estimation of probabilities by

knowing about the independence of some formulas. If ϕ and ψ are independent, we can

model the expected probabilistic behaviour of both events with a finite set of properties,

defined within the logic: for fixed and appropriately chosen n,m ∈ N, we can introduce n ⋅m
conditions

Indϕ,ψi,j : Pr(ϕ) = 1
i ∧ Pr(ψ) = 1

j → Pr(ϕ ∧ ψ) = 1
i ⋅ 1j

for each i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.
As an application, let us analyze the simpler version of one-time pad encryption scheme,

which consists of encrypting a secret bit by summing to it an uniformly generated key-bit.

Inspired in Example 4.1.1, we consider the signature Fxor, the equational theory

Γxor = {zero⊕ x ≈ x, suc(x)⊕ y ≈ x⊕ suc(y), suc(suc(x)) ≈ x},
84

the set of domain names Dxor = {even,odd} and the set of domain clauses

Λxor = {zero ∈ even, (x ∈ even⇒ suc(x) ∈ odd), x ∈ odd⇒ suc(x) ∈ even, x ∈ odd⇒ x /∈ even}.
Let us denote by I(Γxor,Λxor) the class of algebraic domain interpretations satisfying the

axiomatizations Γxor and Λxor.

Now, consider a bit s, which will be kept secret as result of its encryption with a key-bit k.

The described properties on the estimation of probabilities for the conjunction of independent

events enable us to semantically infer that, under the hypothesis that k is uniformly generated

and that bits s and k are independent,

Hyp = { Pr(k ≈ zero) = 1
2 , Pr(k ≈ suc(zero)) = 1

2 , Inds,k2,2, ∀(s ≈ zero ∨ s ≈ suc(zero)),
∀(k ≈ zero ∨ k ≈ suc(zero)) }

s⊕ k has uniform distribution:

Hyp ⊧I(Γxor,Λxor) (Pr(s⊕ k ≈ zero) = 1

2
∧ Pr(s⊕ k ≈ suc(zero)) = 1

2
) .

Notice that we can generalize the properties Indϕ,ψi,j estimating the probability for the

conjunction of independent event by squeezing its value. For a fixed n ∈ N, q1, . . . , qn ∈ Q such

that q1 < ⋯ < qn = 1, and independent events ϕ,ψ ∈ Loc,
Ĩnd

i1j1
i2j2 : (qi1 ≤ Pr(ϕ) ≤ qi2 ∧ qj1 ≤ Pr(ψ) ≤ qj2)→ qi1 ⋅ qj1 ≤ Pr(ϕ ∧ψ) ≤ qi2 ⋅ qj2 ,

for i1, i2, j1, j2 ∈ {1, . . . , n}, would model the estimation of bounds of the probabilities for the

conjunction of independent events given bounds for the individual probabilities.

△

4.2 Deductive System

In order to obtain a sound and complete deductive system for our logic, we require that the

class I of intended interpretations is such that its algebras are axiomatized by a set Γ of

Horn clauses and the corresponding interpretations for domain names are axiomatized by a

finite set Λ of domain clauses of algebraic terms. We say that Γ and Λ are compatible if

I(Γ,Λ) = {(A, IA) ∣ A ⊪ Γ and (A, IA) ⊪ Λ} ≠ ∅. Whenever Γ,Λ are not compatible, the set of

models is empty and the logic becomes trivial. The interesting cases are, obviously, the ones

where the equational theory and the set of domain restrictions are compatible.

85

Eq1 ∀(t ≈ t)
Eq2 ∀(t1 ≈ t2 → t2 ≈ t1)
Eq3 ∀(t1 ≈ t2 ∧ t2 ≈ t3 → t1 ≈ t3)
Eq4 ∀(t1 ≈ t′1 ∧ ... ∧ tn ≈ t′n → f(t1, ..., tn) ≈ f(t′1, ..., t′n))

EqC1 ∀((ϕ1 → (ϕ2 → ϕ3))→ ((ϕ1 → ϕ2)→ (ϕ1 → ϕ3)))
EqC2 ∀(ϕ1 → (ϕ2 → ϕ1))
EqC3 ∀((¬ϕ1 → ¬ϕ2)→ (ϕ2 → ϕ1))
EqC4 ∀(ϕ1 → ((ϕ1 → ϕ2)→ ϕ2))

N1 ∀(ϕ1 ∧ϕ2)↔ (∀ϕ1 ∧ ∀ϕ2)
N2 ∀¬ϕ→ ¬∀ϕ
N3 ¬∀ϕ→ ∀¬ϕ if names(ϕ) = ∅
N4 ∀(ϕ1 ↔ ϕ2)→ (∀ϕ1 ↔ ∀ϕ2)

C1 δ1 → (δ2 → δ1)
C2 (δ1 → (δ2 → δ3))→ ((δ1 → δ2)→ (δ1 → δ3))
C3 (¬δ1 → ¬δ2)→ (δ2 → δ1)
C4

δ1 δ1→δ2
δ2

DEq ∀((t1 ≈ t2 ∧ t1 ∈ D)→ t2 ∈ D)

I1 w ≥ q ∨w ≤ q
I2 w ≥ q1 → w > q2, if q1 > q2
I3 q1 ⋅Pr(ϕ1)+⋯+q$ ⋅Pr(ϕ$) ≥ q↔ q1 ⋅Pr(ϕ1)+⋯+q$ ⋅Pr(ϕ$)+0 ⋅Pr(ϕ$+1) ≥ q

P1 Pr(ϕ) ≥ 0
P2 Pr(ϕ1 ∧ ϕ2) + Pr(ϕ1 ∧ ¬ϕ2) − Pr(ϕ1) = 0
P3 ∀(ϕ1 → ϕ2)→ Pr(ϕ2) ≥ Pr(ϕ1)
P4 Pr(⊺) = 1

I4 ((q1 ⋅Pr(ϕ1)+⋯+q$ ⋅Pr(ϕ$) ≥ q)∧(q′1 ⋅Pr(ϕ1)+⋯+q′$ ⋅Pr(ϕ$) ≥ q′))→ ((q1+++q′1) ⋅Pr(ϕ1)+⋯+(q$+++q′$) ⋅Pr(ϕ$) ≥ q+++q′)
I5 q1 ⋅ Pr(ϕ1) +⋯ + q$ ⋅ Pr(ϕ$) ≥ q → (q′ ⋅⋅⋅ q1) ⋅ Pr(ϕ1) +⋯ + (q′ ⋅⋅⋅ q$) ⋅ Pr(ϕ$) ≥ (q′ ⋅⋅⋅ q), for any q′ > 0
I6 q1 ⋅ Pr(ϕ1) +⋯ + q$ ⋅ Pr(ϕ$) ≥ q↔ qi1 ⋅ Pr(ϕi1) +⋯ + qi! ⋅ Pr(ϕi!) ≥ q, for any permutation (i1⋯i$) of (1⋯")
D(Λ) ∀(σ(s1)∈D1 ∧ ... ∧ σ(sk1)∈Dk1)→(σ(s′1) ...∈ D′

1 ∨ ... ∨ σ(s′k2
) ...∈ D′

k2
)

E(Γ) ∀(σ(s1) ≈ σ(s′1) ∧ . . . ∧ σ(sn) ≈ σ(s′n)→ σ(s) ≈ σ(s′))
for every t, t1, t2, t3, . . . , tn, t′1, . . . , t′n ∈ T (N), ϕ,ϕ1,ϕ2,ϕ3, . . . ,ϕ$,ϕ$+1 ∈ Loc, δ1, δ2, δ3 ∈ Glob, σ ∈ T (N)X , w ∈ Term,

q, q′, q1, q2, ..., q$, q′1, . . . , q′$ ∈ Q, (s1∈D1, . . . , sk1∈Dk1⇒s′1 ...∈ D′
k1
, . . . , s′k2

...∈ D′
k2
) ∈Λ and (s1 ≈ s′1, . . . , sn ≈ s′n ⇒ s ≈ s′) ∈ Γ.

Figure 4.1: The deductive system H(Γ,Λ).

The deductive system H(Γ,Λ) shown in Figure 4.1 enriches the reasoning underlying HΓ

by including a number of axioms to deal with the probabilistic component and some others to

incorporate and deal with domain restrictions. H(Γ,Λ) contains a single inference rule C4,

modus ponens. The system combines the different dimensions of this logic: axioms Eq1-Eq4

incorporate standard equational reasoning, namely reflexivity, symmetry, transitivity and

congruence; EqC1-EqC4 and C1-C4 incorporate classical reasoning for the local and global

86

layers (just note that locally, modus ponens becomes axiom EqC4); N1-N4 characterize the

relationship between the local and global layers across the universal quantifier; DEq repre-

sents syntactically the expected relation between equations and domain restrictions; I1-I6

incorporate properties of inequalities between rational numbers; P1-P4 represent the stan-

dard properties of probabilities; axioms E(Γ) incorporate the clausal specification Γ, whereas

axioms D(Λ) characterize the constraints for domains given by Λ. We define, as usual, a

deducibility relation ⊢F(Γ,Λ). We drop the superscript F whenever it is clear from context.

Basic arithmetic properties, such as 0 ⋅Pr(ϕ) = 0 or q1 ⋅Pr(ϕ)+ q2 ⋅Pr(ϕ) = (q1+++ q2) ⋅Pr(ϕ),
are deducible in H(Γ,Λ), as well as some expected properties of the probabilistic operator,

namely ∀ϕ → Pr(ϕ) = 1 or ∀(ϕ1 ↔ ϕ2) → Pr(ϕ1) = Pr(ϕ2). Moreover, notice that DEqPrL

is an extension of classical logic at both the local and global layers, so we must be able to

import many properties and results from classical propositional logic. As for EqCL, we are

able to see that deduction metatheorem (MTD) holds, that every local or global formula can

be written equivalently in disjunctive normal form or even that the conjunction introduction

rule (Conj) and the hypothetical syllogism (HSyll) hold. The following Lemma contains some

of these results and might be useful later. Just note that the normality-like axiom takes the

form of theorem N.

Lemma 4.2.1. The following properties hold:

MTD Ψ ∪ {δ} ⊢(Γ,Λ) δ′ if and only if Ψ ⊢(Γ,Λ) δ → δ′

Conj {δ1, δ2} ⊢(Γ,Λ) δ1 ∧ δ2
HSyll {δ1 → δ2, δ2 → δ3} ⊢(Γ,Λ) δ1 → δ3

DNF ⊢(Γ,Λ) δ↔ m⋁
j=1(

nj⋀
i=1 δ

j
i) , for some {δji } i∈{1,...,nj}

j∈{1,...,m}
⊆ (∀Loc ∪ ¬∀Loc)

N ⊢(Γ,Λ) ∀(ϕ1 → ϕ2)→ (∀ϕ1 → ∀ϕ2)
Aux1 ⊢(Γ,Λ) ∀((ϕ1 → ϕ2)↔ ¬(ϕ1 ∧ ¬ϕ2))
Aux2 ⊢(Γ,Λ) δ1 → (δ2 → (δ1 ∧ δ2))
Aux3 ⊢(Γ,Λ) ∀((¬(ϕ1 ∧ ¬ϕ2) ∧ϕ1)↔ ϕ1 ∧ϕ2)
Aux4 ⊢(Γ,Λ) (∀ϕ1 ∧ ∀ϕ2)→ ∀ϕ2

Aux5 ⊢(Γ,Λ) (δ1 ↔ δ2)→ (¬δ1 ↔ ¬δ2)
Aux6 ⊢(Γ,Λ) (δ1 ↔ δ2)→ (δ1 → δ2)
Aux7 ⊢(Γ,Λ) ((δ1 ∧ ¬δ3)→ ¬δ2)→ ((δ1 ∧ δ2)→ δ3)

87

Aux8 ⊢(Γ,Λ) ((δ1 ↔ δ2) ∧ (δ2 ↔ δ3))→ (δ1 ↔ δ3)
Aux9 ⊢(Γ,Λ) (∀(ϕ→ ϕ1) ∧ ∀(ϕ→ ϕ2))→ ∀(ϕ→ (ϕ1 ∧ϕ2))
Aux10 ⊢(Γ,Λ) (∀(ϕ1 → ϕ2) ∧ ∀(ϕ2 → ϕ3))→ ∀(ϕ1 → ϕ3)
PAux1 ⊢(Γ,Λ) ∀(ϕ1 ↔ ϕ2)→ Pr(ϕ1) = Pr(ϕ2)
PAux2 ⊢(Γ,Λ) ∀ϕ→ Pr(ϕ) = 1
PAux3 ⊢(Γ,Λ) Pr(ϕ) = Pr(ϕ)
PAux4 ⊢(Γ,Λ) q1 ⋅ Pr(ϕ) + q2 ⋅ Pr(ϕ) = (q1 +++ q2) ⋅ Pr(ϕ)
PAux5 ⊢(Γ,Λ) 0 ⋅ Pr(ϕ) = 0
PAux6 ⊢(Γ,Λ) w = q → w +w1 = q +w1

PAux7 ⊢(Γ,Λ) Pr(-) = 0
where ϕ,ϕ1,ϕ2,ϕ3 ∈ Loc, Ψ ⊆ Glob, δ, δ′, δ1, δ2, δ3 ∈ Glob, w,w1 ∈ Term.

Proof. As we stressed in the proof of Lemma 2.2.1, the deductions of the former properties

look similar to the corresponding properties in in the classical context. Some of them can be

found in the proof of Lemma 2.2.1.

Notice that PAux1 is immediate from P3; PAux2 and PAux3 follow from PAux1; PAux6 is

immediate from PAux4 and PAux5; whereas PAux7 is easily deduced from P2, P4 and PAux6.

We illustrate the deduction of PAux4 and PAux5.

PAux4 To deduce the equality we sketch the proof of both inequalities and the result follows

by Conj. Assume that q1, q2 > 0. If it is not the case, proceed with the symmetric and use

the abbreviations to revert the inequalities.

s1. Pr(ϕ) = Pr(ϕ) (instance of PAux3)

s2. Pr(ϕ) = Pr(ϕ)→ Pr(ϕ) ≥ Pr(ϕ) (abbr.)

s3. Pr(ϕ) ≥ Pr(ϕ) (apply C4 to s1 and s2)

s4. Pr(ϕ) ≥ Pr(ϕ)→ q1 ⋅ Pr(ϕ) ≥ q1 ⋅ Pr(ϕ) (instance of I5)

s5. q1 ⋅ Pr(ϕ) ≥ q1 ⋅ Pr(ϕ) (apply C4 to s3 and s4)

s6. q1 ⋅ Pr(ϕ) ≥ q1 ⋅ Pr(ϕ)→ q1 ⋅ Pr(ϕ) − q1 ⋅ Pr(ϕ) ≥ 0 (abbr.)

s7. q1 ⋅ Pr(ϕ) − q1 ⋅ Pr(ϕ) ≥ 0 (apply C4 to s5 and s6)

s8. q1 ⋅ Pr(ϕ) − q1 ⋅ Pr(ϕ) ≥ 0→ q1 ⋅ Pr(ϕ) − q1 ⋅ Pr(ϕ) + 0 ⋅ Pr(ϕ) ≥ 0 (instance of I3)

s9. q1 ⋅ Pr(ϕ) − q1 ⋅ Pr(ϕ) + 0 ⋅ Pr(ϕ) ≥ 0 (apply C4 to s7 and s8)

s10. q2 ⋅ Pr(ϕ) − q2 ⋅ Pr(ϕ) + 0 ⋅ Pr(ϕ) ≥ 0 (repeat s4-s9 for q2 > 0)
s11. q2 ⋅ Pr(ϕ) − q2 ⋅ Pr(ϕ) + 0 ⋅ Pr(ϕ) ≥ 0→ q2 ⋅ Pr(ϕ) + 0 ⋅ Pr(ϕ) − q2 ⋅ Pr(ϕ) ≥ 0 (using I6)

88

s12. q2 ⋅ Pr(ϕ) + 0 ⋅ Pr(ϕ) − q2 ⋅ Pr(ϕ) ≥ 0 (apply C4 to s10 and s11)

s13. ((q1 ⋅ Pr(ϕ) − q1 ⋅ Pr(ϕ) + 0 ⋅ Pr(ϕ) ≥ 0) ∧ (q2 ⋅ Pr(ϕ) + 0 ⋅ Pr(ϕ) − q2 ⋅ Pr(ϕ) ≥ 0))→
→ ((q1 +++ q2) ⋅ Pr(ϕ) − q1 ⋅ Pr(ϕ) − q2 ⋅ Pr(ϕ) ≥ 0) (instance of I4)

s14. (q1 ⋅ Pr(ϕ) − q1 ⋅ Pr(ϕ) + 0 ⋅ Pr(ϕ) ≥ 0) ∧ (q2 ⋅ Pr(ϕ) + 0 ⋅ Pr(ϕ) − q2 ⋅ Pr(ϕ) ≥ 0) (apply Conj to s9 and s12)

s15. (q1 +++ q2) ⋅ Pr(ϕ) − q1 ⋅ Pr(ϕ) − q2 ⋅ Pr(ϕ) ≥ 0 (apply C4 to s14 and s13)

The deduction for the other inequality is exactly the same, just noting that in s2 the

abbreviation that matters is that −Pr(ϕ) ≥ −Pr(ϕ).
PAux5 We present a sketch of the deduction of 0 ⋅ Pr(ϕ) = 0.

s1. Pr(ϕ) = Pr(ϕ) (instance of PAux3)

s2. Pr(ϕ) = Pr(ϕ)→ Pr(ϕ) ≥ Pr(ϕ) (abbr.)

s3. Pr(ϕ) ≥ Pr(ϕ) (apply C4 to s1 and s2)

s4. Pr(ϕ) ≥ Pr(ϕ)→ Pr(ϕ) − Pr(ϕ) ≥ 0 (abbr.)

s5. Pr(ϕ) − Pr(ϕ) ≥ 0 (apply C4 to s3 and s4)

s6. Pr(ϕ) − Pr(ϕ) ≥ 0→ −Pr(ϕ) + Pr(ϕ) ≥ 0 (using I6)

s7. −Pr(ϕ) + Pr(ϕ) ≥ 0 (apply C4 to s5 and s6)

s8. ((Pr(ϕ) − Pr(ϕ) ≥ 0) ∧ (−Pr(ϕ) + Pr(ϕ) ≥ 0))→ (0 ⋅ Pr(ϕ) + 0 ⋅ Pr(ϕ) ≥ 0) (instance of I4)

s9. (Pr(ϕ) − Pr(ϕ) ≥ 0) ∧ (−Pr(ϕ) + Pr(ϕ) ≥ 0) (apply Conj to s5 and s7)

s10. 0 ⋅ Pr(ϕ) + 0 ⋅ Pr(ϕ) ≥ 0 (apply C4 to s9 and s8)

s11. 0 ⋅ Pr(ϕ) + 0 ⋅ Pr(ϕ) ≥ 0→ 0 ⋅ Pr(ϕ) ≥ 0 (using I3)

s12. 0 ⋅ Pr(ϕ) ≥ 0 (apply C4 to s10 and s11)

For the other inequality notice that from s12, we can obtain, by abbreviation that

−0 ≥ −0 ⋅ Pr(ϕ), which is obviously the other inequality: 0 ≥ 0 ⋅ Pr(ϕ).
Example 4.2.2. As we have already seen, a standard example of an equational theory used

in information security for formalizing (part of) the capabilities of the Dolev-Yao attacker

consists in taking a signature FDY with {⋅}⋅,{⋅}−1⋅ ∈ FDY
2 representing symmetric encryption

and decryption of a message with a key, {| ⋅ |}⋅,{| ⋅ |}−1⋅ ∈ FDY
2 now representing asymmetric

encryption of a message with a public key or decryption with a private key, pk(⋅),prv(⋅) ∈ FDY
1

representing public and private keys for a principal, (⋅, ⋅) ∈ FDY
2 representing message pairing,

and π1,π2 ∈ FDY
1 representing projections. The equational properties of these operations can

be axiomatized by the subterm theory:

ΓDY = {{{x1}x2}−1x2
≈ x1,{|{|x1|}pk(x2)|}−1prv(x2) ≈ x1,π1(x1, x2) ≈ x1,π2(x1, x2) ≈ x2}.

Considering a suitable set of domain names, for instance we may take

DDY = {sym key,pub key,priv key,principals,plaintext, ciphertext, conc},
we can also impose some usual domain restrictions:

89

ΛDY = { (k ∈ sym key, t ∈ plaintext⇒ {t}k ∈ ciphertext),
(k ∈ sym key, t ∈ ciphertext⇒ {t}−1k ∈ plaintext),(n ∈ principals⇒ pk(n) ∈ pub key), (n ∈ principals⇒ prv(n) ∈ priv key),
(t ∈ plaintext, k ∈ pub key⇒ {|t|}k ∈ ciphertext),
(t ∈ ciphertext, k ∈ priv key⇒ {|t|}−1k ∈ plaintext),(t ∈ plaintext, t′ ∈ plaintext⇒ (t, t′) ∈ conc), (t ∈ conc⇒ t ∈ plaintext),
(t ∈ conc⇒ π1(t) ∈ plaintext), (t ∈ conc⇒ π2(t) ∈ plaintext) } .

The first domain restriction, for instance, is intended to mean that the encryption of a

plaintext with a symmetric key should always lead to a ciphertext. As a result, we can

deduce from DEqPrL conditions to rule out the possibility of an attack, like

∀(k ∈ sym key ∧m ∈ plaintext) ⊢(ΓDY,ΛDY) ∀({{m}k}−1k∗ /∈ plaintext→ k /≈ k∗),
which states that whenever an attempt to guess the secret key k leads to a message outside

the scope of plaintexts, the value of k has certainly not been guessed correctly. We can also

deduce a bound for the probability of an attack to the symmetric scheme:

Pr(k ≈ k∗) = q ⋅ Pr(k∗ ∈ sym key) ⊢(ΓDY,ΛDY) ∀(k∗ ∈ sym key)→ Pr({{m}k}−1k∗ ≈m) ≥ q, (4.1)

asserting that even assuming that a guess k∗ to the secret key k is indeed a symmetric key,

guessing its concrete value is not simpler than decrypting a message encrypted with k. A

deduction of (4.1) follows from a proof (see the sketch below) of:

Pr(k ≈ k∗) = q ⋅ Pr(k∗∈ sym key),∀(k∗∈ sym key)⊢(ΓDY,ΛDY)Pr({{m}k}−1k∗ ≈m) ≥ q,
follows by the use of MTD.

s1. Pr(k ≈ k∗) = q ⋅ Pr(k∗ ∈ sym key) (hypothesis)
s2. ∀(k∗ ∈ sym key) (hypothesis)
s3. ∀(k∗ ∈ sym key)→ Pr(k∗ ∈ sym key) = 1 (PAux2)
s4. Pr(k∗ ∈ sym key) = 1 (C4(s2, s3))
s5. Pr(k∗ ∈ sym key) = 1→ q ⋅ Pr(k∗ ∈ sym key) = q (I5)
s6. q ⋅ Pr(k∗ ∈ sym key) = q (C4(s4, s5))
s7. q ⋅ Pr(k∗ ∈ sym key) = q → Pr(k ≈ k∗) − q ⋅ Pr(k∗ ∈ sym key) = Pr(k ≈ k∗) − q (PAux6)
s8. Pr(k ≈ k∗) − q ⋅ Pr(k∗ ∈ sym key) = Pr(k ≈ k∗) − q (C4(s6, s7))
s9. Pr(k ≈ k∗) = q ⋅ Pr(k∗ ∈ sym key)→ Pr(k ≈ k∗) − q ⋅ Pr(k∗ ∈ sym key) = 0 (abbr.)
s10. Pr(k ≈ k∗) − q ⋅ Pr(k∗ ∈ sym key) = 0 (C4(s9, s10))
s11. (Pr(k ≈ k∗) − q ⋅ Pr(k∗ ∈ sym key) = 0 ∧ Pr(k ≈ k∗) − q ⋅ Pr(k∗ ∈ sym key) = Pr(k ≈ k∗) − q)→

→ Pr(k ≈ k∗) − q = 0 (PAux6)
s12. Pr(k ≈ k∗) − q ⋅ Pr(k∗ ∈ sym key) = 0 ∧ Pr(k ≈ k∗) − q ⋅ Pr(k∗ ∈ sym key) = Pr(k ≈ k∗) − q (Conj(s10, s8))
s13. Pr(k ≈ k∗) − q = 0 (C4(s12, s11))
s14. Pr(k ≈ k∗) − q = 0→ Pr(k ≈ k∗) = q (abbr.)
s15. Pr(k ≈ k∗) = q (C4(s13, s14))
s16. ∀({{m}k}−1k ≈m) (E(ΓDY))
s17. ∀({{m}k}−1k ≈m)→ ∀(k ≈ k∗ → {{m}k}−1k ≈m) (EqC2 +N)
s18. ∀(k ≈ k∗ → {{m}k}−1k ≈m) (C4(s22, s23))

90

s19. ∀(k ≈ k∗ → {{m}k}−1k∗ ≈ {{m}k}−1k) (Eq4)
s20. (∀(k ≈ k∗ → {{m}k}−1k ≈m) ∧ ∀(k ≈ k∗ → {{m}k}−1k∗ ≈ {{m}k}−1k))→→ ∀(k ≈ k∗ → ({{m}k}−1k ≈m ∧ {{m}k}−1k∗ ≈ {{m}k}−1k)) (Aux9)
s21. ∀(k ≈ k∗ → ({{m}k}−1k ≈m ∧ {{m}k}−1k∗ ≈ {{m}k}−1k)) (C4(s19, s20))
s22. ∀(({{m}k}−1k∗ ≈ {{m}k}−1k ∧ {{m}k}−1k ≈m)→ {{m}k}−1k∗ ≈m) (Eq3)
s23. ∀(k ≈ k∗ → {{m}k}−1k∗ ≈m) (using Aux10, s21, s22)
s24. ∀(k ≈ k∗ → {{m}k}−1k∗ ≈m)→ Pr({{m}k}−1k∗ ≈m) ≥ Pr(k ≈ k∗) (P3)
s25. Pr({{m}k}−1k∗ ≈m) ≥ Pr(k ≈ k∗) (C4(s23, s24))
s26. Pr({{m}k}−1k∗ ≈m) ≥ Pr(k ≈ k∗)→ Pr({{m}k}−1k∗ ≈m) − Pr(k ≈ k∗) ≥ 0 (I4)
s27. Pr({{m}k}−1k∗ ≈m) − Pr(k ≈ k∗) ≥ 0 (C4(s25, s26))
s28. Pr(k ≈ k∗) = q → Pr({{m}k}−1k∗ ≈m) − Pr(k ≈ k∗) = Pr({{m}k}−1k∗ ≈m) − q (PAux6)
s29. Pr({{m}k}−1k∗ ≈m) − Pr(k ≈ k∗) = Pr({{m}k}−1k∗ ≈m) − q (C4(s15, s28))
s30. Pr({{m}k}−1k∗ ≈m)−Pr(k ≈ k∗) = Pr({{m}k}−1k∗ ≈m)−q →→ Pr({{m}k}−1k∗ ≈m)−q ≥ Pr({{m}k}−1k∗ ≈m)−Pr(k ≈ k∗) (abbr.)
s31. Pr({{m}k}−1k∗ ≈m) − q ≥ Pr({{m}k}−1k∗ ≈m) − Pr(k ≈ k∗) (C4(s29, s30))
s32. Pr({{m}k}−1k∗ ≈m) − q ≥ Pr({{m}k}−1k∗ ≈m) − Pr(k ≈ k∗)→

→ Pr({{m}k}−1k∗ ≈m) − q − Pr({{m}k}−1k∗ ≈m) + Pr(k ≈ k∗) ≥ 0 (abbr.)
s33. Pr({{m}k}−1k∗ ≈m) − q − Pr({{m}k}−1k∗ ≈m) + Pr(k ≈ k∗) ≥ 0 (C4(s31, s32))
s34. (Pr({{m}k}−1k∗ ≈m) − Pr(k ≈ k∗) ≥ 0 ∧ Pr({{m}k}−1k∗ ≈m) − q − Pr({{m}k}−1k∗ ≈m) + Pr(k ≈ k∗) ≥ 0)→→ Pr({{m}k}−1k∗ ≈m) ≥ q (I3, I4)
s35. Pr({{m}k}−1k∗ ≈m) ≥ q (C4(Conj(s27, s33), s34))

△

4.3 Soundness and Completeness

We now show that H(Γ,Λ) is a sound and weakly complete proof system for the logic based on

the class I(Γ,Λ) of algebraic domain interpretations. In this way, we ensure that the theorems

deduced from HΓ correspond exactly to the valid formulas entailed from the semantics that

we have set out.

Theorem 4.3.1. The deductive system H(Γ,Λ) is sound.

Proof. The proof of soundness follows by induction on the structure of the proofs. It is

straightforward to check the soundness of each axiom and deduction rule against our

semantics, however we detail some of them, due to their different nature.

DEq To check that DEq is valid, consider an F-structure (A, IA,P) with (A, IA) ∈ I(Γ,Λ),
P = (S,A , µ), and let ρ ∈ S represent any possible outcome for which (A, IA),ρ ⊩loc t1 ≈ t2
and (A, IA),ρ ⊩loc t1 ∈ D, i.e., !t1"ρA = !t2"ρA and !t1"ρA ∈ IA(D). We immediately conclude

that !t2"ρA ∈ IA(D).
P3 For P3 let us consider an F-structure (A, IA,P) with (A, IA) ∈ I(Γ,Λ), P = (S,A , µ), such

that (A, IA,P) ⊩ ∀(ϕ1 → ϕ2). This means that every single outcome satisfying ϕ1 also

satisfies ϕ2 or, in other words, Sϕ1 ⊆ Sϕ2 . Since µ is a probability measure, it then

follows that µ(Sϕ1) ≤ µ(Sϕ2), i.e., (A, IA,P) ⊩ Pr(ϕ1) ≤ Pr(ϕ2).
91

Axioms of inequalities follow from the properties of addition and multiplication on the

rational numbers. Hence, we move forward to prove the validity of D(Λ)

D(Λ) For the validity of D(Λ), let us consider a substitution σ ∈ T (N)X , a domain clause

(t1 ∈ D1, . . . , tk1 ∈ Dk1 ⇒ t′1 ...∈ D′
1, . . . , t

′
k2

...∈ D′
k2
) ∈ Λ and an F-structure (A, IA,P) with

(A, IA) ∈ I(Γ,Λ) and P = (S,A , µ). We want to check that

(A, IA,P) ⊩ ∀(σ(t1)∈D1 ∧ ... ∧ σ(tk1)∈Dk1→σ(t′1) ...∈ D′
1 ∨ ... ∨ σ(t′k2) ...∈ D′

k2)
so, let ρ ∈ AN be any outcome in S and assume that (A, IA),ρ ⊩loc σ(t1) ∈ D1∧...∧σ(tk1) ∈
Dk1 . Since the algebraic domain interpretation (A, IA) satisfies all the domain clauses

in Λ provided that (A, IA) ∈ I(Γ,Λ), we only need to remark that !⋅"ρA ○ σ ∶ X → A to

conclude that, indeed, (A, IA),ρ ⊩loc σ(t′1) ...∈ D′
1 ∨ ... ∨ σ(t′k2) ...∈ D′

k2
.

In contrast to EqCL, the introduction of probabilistic terms over the rationals carries the

expected cost of losing the strong version of completeness (see, for instance, [58,77]). Clearly,

our semantic consequence relation is not compact as we have that {w ≤ 1
n ∣ n ∈ N} ⊧(Γ,Λ) w ≤ 0,

but ∆ /⊧(Γ,Λ) w ≤ 0 for any finite set ∆ ⊂ {w ≤ 1
n ∣ n ∈ N}, which implies that our (finitary)

deductive system H(Γ,Λ) cannot aim at strong completeness.

Theorem 4.3.2. The deductive system H(Γ,Λ) is weakly complete.

Proof. As usual, the proof of completeness follows by contraposition and consists in finding

a model for the negation of an unprovable formula. Hence, we assume that /⊢(Γ,Λ) δ and

build an F-structure satisfying ¬δ. The construction combines several known techniques from

equational logic, first-order logic and probabilistic logic, which interact in a non-trivial way.

It extends the approach presented in the proof of completeness of EqCL (Theorem 2.3.3) to

further deal with probabilities and domain restrictions.

Once assumed that /⊢(Γ,Λ) δ, let us begin by writing the consistent formula ¬δ in disjunctive

normal form as ψ1 ∨⋯∨ ψm. Then, we choose a consistent disjunct ψj , of the form

ψ1
j ∧⋯∧ ψnj

j , (4.2)

and define RelF = {ψ1
j , . . . ,ψ

nj

j } ⊆ Glob to be the set of relevant formulas that should be

satisfied in the final F-structure. Again, a Henkin construction [69] will enable us to define

the F-algebra we are looking for. For this purpose, we add to the signature a new constant

cϕ,n for each ϕ ∈ Loc and n ∈ N , obtaining a signature F+ = {F+n}n∈N coinciding with F in all

but

F+0 = F0 ∪ ⎛⎝ ⋃ϕ∈Loc{cϕ,n0 ∣ n0 ∈ N}⎞⎠ .

92

Afterwards, we fix an enumeration for Loc × Loc and further extend the set RelF with

witnesses for negated global formulas and with suitable certifications for non-negative global

formulas, through the following inductive definition:

W0 = RelF

Wi+1 = Wi ∪ {¬∀ϕ1
i → (∀[¬ϕ1

i]ñc̃ϕ1
i

∧ (∀ϕ2
i → ∀[ϕ2

i]ñc̃ϕ1
i

))} for each i ∈ N,
where names(ϕ1

i) ∪ names(ϕ2
i) = ñ = {n1, . . . , nk}, c̃ϕ = {cϕ,n1 , . . . , cϕ,nk}.

Then consider the consistent set W = ⋃i∈NWi ⊆ GlobF+ (see Lemma 2.3.5 for details),

and fix a maximal consistent extension Ξ of W , whose existence is guaranteed by Linden-

baum’s Lemma. Then consider the F+-algebra A = TF+(∅)/≡, where the congruence relation

≡ ⊆ (TF+(∅) ×TF+(∅)) is given by:

t1 ≡ t2 if ∀(t1 ≈ t2) ∈ Ξ .

The relation ≡ is a congruence as consequence of axioms Eq1-Eq4 and theorem N. A domain

interpretation is then taken accordingly to the aforementioned maximal consistent set Ξ:

IA(D) = {[t]≡ ∣ ∀(t ∈ D) ∈ Ξ and t ∈ TF+(∅)} for each D ∈ D.
• A satisfies Γ: by definition of ≡, E(Γ), C4, N, and recalling that Ξ is a maximal

consistent set, it is easy to check that A ⊪ Γ.

• (A, IA) verifies Λ: given (t1 ∈ D1, . . . , tk1 ∈ Dk1 → t′1 ...∈ D′
1, . . . , t

′
k2

...∈ Dk2) ∈ Λ and

ς ∈ AX , notice that ς results from applying a substitution σ ∈ TF+(∅)X and then a

quotient by ≡. Assume that !ti"ςA ∈ IA(Di) for each 1 ≤ i ≤ ki, which means that

for each 1 ≤ i ≤ ki, [σ(ti)]≡ ∈ IA(Di) or, equivalently, ∀(σ(ti) ∈ Di) ∈ Ξ. It means that

∀(σ(t1) ∈ D1 ∧ ⋯ ∧ σ(tk1) ∈ Dk1) ∈ Ξ and, from D(Λ), it follows that

∀(σ(t′1) ...∈ D′
1 ∨ ⋯ ∨ σ(t′k2) ...∈ D′

k2
) ∈ Ξ. But Ξ is maximal consistent with respect to

the deductive system H(Γ,Λ) and σ(t′1), . . . ,σ(t′k2) are nameless terms, so it follows that

exists j ∈ {1, . . . , k2} such that ∀(σ(t′j) ...∈ D′
j) ∈ Ξ.

We note that each negated global formula in the maximal consistent set, ¬∀ϕ ∈ Ξ, leads
to an outcome assigning each name to the equivalence class of the appropriate constant:

ρ¬∀ϕ ∶ N → A

n ↦ [cϕ,n]≡.
Thus, consider the set of possible outcomes S = {ρ¬∀ϕ ∣ ¬∀ϕ ∈ Ξ}. Note that S ≠ ∅ since

the conjugation of the reflexivity axiom Eq1 with the axiom that enables the negation to be

passed through the universal quantifier, N2, implies that ¬∀(t /≈ t) ∈ Ξ, for each t ∈ T (N).
93

In order to define a probability space, we can assume without loss of generality that there

exists at least one probabilistic relevant formula in (4.2), RelF ∩ (Prob ∪ ¬Prob) ≠ ∅. Just to

make sure, note that otherwise we can simply assign a degenerated probability distribution,

assigning probability 1 to some outcome in S and 0 to the others.

That said, a probability space is then defined, in the lines of [58], and starts by choosing

carefully a set of atoms of interest: initially we collect in Ω all the local formulas occurring

inside probabilistic formulas of RelF,

Ω = ⋃
ψ∈RelF∩(Prob∪¬Prob) InPr(ψ), where

InPr(q1 ⋅Pr(ϕ1)+ . . .+ q" ⋅Pr(ϕ") ≥ b) = InPr(¬(q1 ⋅Pr(ϕ1)+ . . .+ q" ⋅Pr(ϕ") ≥ b)) = {ϕ1, . . . ,ϕ"},
and then use it to define the suitable atoms Θ = { ⋀

γ∈Υγ ∧ ⋀
ω∈Ω∖Υ¬ω ∣ Υ ⊆ Ω} . We consider a

representative outcome for each element of θ ∈ Θ, whenever it is possible: if Sθ ≠ ∅, choose
ρθ ∈ Sθ and let us represent the probability assigned to ρθ by xθ; otherwise, if S

θ = ∅, i.e.
(A, IA,P) ⊩ ∀¬θ, fix xθ = 0. The accuracy of Θ immediately implies that ⋃

θ∈ΘSθ = S and

Sθ1 ∩ Sθ2 = ∅, for each θ1 ≠ θ2.
The set Θ has the crucial local formulas to define the system of inequalities

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q1 ⋅ xϕ1 +⋯ + q" ⋅ xϕ$ ≥ q, for each q1 ⋅ Pr(ϕ1) +⋯ + q" ⋅ Pr(ϕ") ≥ q ∈ RelF
q1 ⋅ xϕ1 +⋯ + q" ⋅ xϕ$ < q, for each q1 ⋅ Pr(ϕ1) +⋯ + q" ⋅ Pr(ϕ") < q ∈ RelF
∑

θ∈Θ st θ→ϕxθ = xϕ, for each ϕ ∈ Ω
∑
θ∈Θxθ = 1
xθ = 0, for each θ ∈ Θ such that Sθ = ∅
xθ ≥ 0, for all θ ∈ Θ

(4.3)

We claim that this system of inequalities has a solution. Indeed, using Fagin, Halpern and

Megiddo’s result of soundness and completeness for the axioms of inequality (see Section 4

of [58]), we know that (4.3) is unsatisfiable if and only if it is inconsistent. But it leads to

a contradiction, as we can find a global formula that represents this system of inequalities

within DEqPrL. Let us look at this in more detail!

To write down a global formula that represents the system (4.3), let us fix an order on

elements of Ω: Ω = {ϕ1, . . . ,ϕ∣Ω∣} . Then, consider the successive application of axiom P2 to

deduce that

Pr(ϕ1) = Pr(ϕ1 ∧ϕ2) + Pr(ϕ1 ∧ ¬ϕ2) =
= Pr(ϕ1 ∧ϕ2 ∧ϕ3) + Pr(ϕ1 ∧ϕ2 ∧ ¬ϕ3) + Pr(ϕ1 ∧ ¬ϕ2 ∧ϕ3) + Pr(ϕ1 ∧ ¬ϕ2 ∧ ¬ϕ3) =
= . . . = ∑

θ∈Θ st θ→ϕ1

Pr(θ). (4.4)

94

It means that ⊢(Γ,Λ) Pr(ϕ1) = ∑
θ∈Θ st θ→ϕ1

Pr(θ). We can obtain a similar formula for each ϕ ∈ Ω.
Moreover, since ⋁

θ∈Θ θ ↔ ⊺ and θi ∧ θj ↔ - for any θi, θj ∈ Θ, θi ≠ θj , using axioms P2 and P4

we can deduce that Pr(⋁
θ∈Θ θ) = ∑θ∈ΘPr(θ) and it follows that ∑

θ∈ΘPr(θ) = 1. Before finishing,

notice that PAux2 and P2 imply that

⊢(Γ,Λ) ⋀
θ∈Θ(∀(¬θ)→ Pr(θ) = 0).

Axiom P1 and the previous justifications, allow us to write (4.2) equivalently as:

ψ1
j ∧⋯∧ψnj

j ∧⋀
ϕ∈Ω
⎛⎜⎝Pr(ϕ) = ∑θ∈Θ

θ→ϕ

Pr(θ)⎞⎟⎠∧(∑θ∈ΘPr(θ) = 1)∧(⋀
θ∈Θ∀(¬θ)→ Pr(θ) = 0)∧⋀

θ∈Θ(Pr(θ) ≥ 0). (4.5)

Since we can assign probabilities independently to the different elements in Θ, (4.5) is satis-

fiable if and only if the system of inequalities (4.3) is satisfiable. Under the hypothesis that

the system of inequalities is unsatisfiable, using the results of soundness and completeness

for the axioms of inequality, the system would be inconsistent. But it would mean that we

could derive an inconsistency from (4.5) using I1-I6, C1-C4, which is a contradiction with

the consistency of (4.2). We conclude that the system (4.3) is satisfiable. Let {x∗θ}θ∈Θ be a

solution.

The solution of (4.3) is used to define a probability distribution over the atoms and thus

over the outcomes satisfying them. The probability distribution P ∶ S → [0,1] is defined as

follows: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
P(ρθ) = x∗θ , for each θ ∈ Θ,

P(ρ) = 0 , for each ρ ∈ S ∖ {ρθ ∣ θ ∈ Θ} .
A probability space P = (S,A , µ) is built on top of this probability distribution, considering

the σ-algebra A generated by the set {Sϕ ∣ ϕ ∈ Loc} and the probability measure

µ ∶ A → [0,1]
X ↦ ∑

ρ∈XP(ρ) .
Let us verify that µ is effectively a probability measure:

- Given X ∈ A , µ(X) ≥ 0 since µ(X) = ∑ρ∈X P(ρ), and the system of inequalities (4.3)

together with the definition of P implies that P(ρ) ≥ 0 for each ρ ∈ S.
- We conclude that µ(S) = 1 by observing that S ∈ A as result of S = St≈t, and further

µ(S) = ∑
ρ∈SP(ρ), which leads to the expected measure 1 for the entire set of possible

outcomes by simply recalling the definition of P and writing

µ(S) =∑
ρ∈S
P(ρ) = ∑

ρ∈S∖{ρθ ∣θ∈Θ}
P(ρ) + ∑

θ∈Θ
P(ρθ) = 0 + ∑

θ∈Θ
x∗θ .

95

Since {x∗θ}θ∈Θ is a solution for (4.3) we actually have µ(S) = ∑θ∈Θ x∗θ = 1.
- Given a countable collection of pairwise disjoint sets {Xi}i∈I ⊆ A , the equality

µ(⋃
i∈IXi) = ∑

i∈I µ(Xi) holds as a consequence of sets {Xi}i∈I being pairwise disjoint

and from the following straightforward equalities,

∑
i∈I µ(Xi) =∑

i∈I ∑ρ∈Xi

P(ρ) = ∑
ρ∈⋃

i∈IXi

P(ρ) = µ(⋃
i∈IXi) .

Just note that each of the previous sums has a finite number of non-zero elements.

Now that an F-structure (A, IA,P) has emerged, it remains to prove that it actually satisfies

all the relevant formulas in RelF. For that purpose, we leave an auxiliary remark whose proof

follows easily by induction on the structure of ϕ.

Remark 4.3.3. Given ¬∀ϕ0 ∈ Ξ and a local formula ϕ ∈ Loc with names(ϕ) = ñ,
∀[ϕ]ñc̃ϕ0 ∈ Ξ if and only if A, IA ⊪ [ϕ]ñc̃ϕ0 .

We conclude the proof verifying that we have indeed a model for RelF. Recall that

RelF ⊆ ∀Loc ∪ ¬∀Loc ∪ Prob ∪ ¬Prob, consider γ ∈ RelF and let us analyze the four cases:

- if γ is of the form ∀ϕ with names(ϕ) = ñ, we want to prove that for every ρ ∈ S,

(A, IA),ρ ⊩loc ϕ. Given ρ ∈ S, recall that it was motivated by some ¬∀ϕ0 ∈ Ξ, say that

ρ = ρ¬∀ϕ0 . Since ∀ϕ ∈ RelF ⊆ Ξ it follows that ∀[ϕ]ñc̃ϕ0 ∈ Ξ by construction of W . Using

Remark 4.3.3 we conclude that A, IA ⊪ [ϕ]ñc̃ϕ0 , which according to definition of ρ¬∀ϕ0

implies that (A, IA),ρ¬∀ϕ0 ⊩loc ϕ.

- if γ is of the form ¬∀ϕ, with names(¬ϕ) = names(ϕ) = ñ, notice that ρ¬∀ϕ ∈ S. Moreover,

since ¬∀ϕ ∈ Ξ, it follows that ∀[¬ϕ]ñc̃ϕ ∈ Ξ. Remark 4.3.3 implies that A, IA ⊪ [¬ϕ]ñc̃ϕ ,
which by definition of ρ¬∀ϕ leads to (A, IA),ρ¬∀ϕ ⊩loc ¬ϕ, so (A, IA,P) ⊩ ¬∀ϕ.

- If γ ∈ Prob is of the form q1 ⋅ Pr(ϕ1) +⋯ + q" ⋅ Pr(ϕ") ≥ q, we have:

(A, IA,P) ⊩ q1 ⋅ Pr(ϕ1) +⋯ + q" ⋅ Pr(ϕ") ≥ q
iff q1 ⋅ µ(Sϕ1) +⋯ + q" ⋅ µ(Sϕ$) ≥ q
iff q1 ∑

ρ∈Sϕ1 P(ρ) +⋯ + q" ∑ρ∈Sϕ$ P(ρ) ≥ q
iff q1 ∑

θ∈Θ s.t.
θ→ϕ1

P(ρθ) +⋯ + q" ∑
θ∈Θ s.t.
θ→ϕ$

P(ρθ) ≥ q
iff q1 ∑

θ∈Θ s.t.
θ→ϕ1

x∗θ +⋯ + q" ∑
θ∈Θ s.t.
θ→ϕ$

x∗θ ≥ q.
The last inequality is valid since q1 ⋅ Pr(ϕ1) +⋯ + q" ⋅ Pr(ϕ") ≥ q ∈ RelF and {x∗θ}θ∈Θ is a

solution for (4.3), hence the first assertion holds as well.

96

- If γ ∈ ¬Prob is of the form ¬(q1 ⋅ Pr(ϕ1) +⋯ + q" ⋅ Pr(ϕ") ≥ q), notice that

(A, IA,P) ⊩ ¬(q1 ⋅ Pr(ϕ1) +⋯ + q" ⋅ Pr(ϕ") ≥ q)
iff (A, IA,P) /⊩ q1 ⋅ Pr(ϕ1) +⋯ + q" ⋅ Pr(ϕ") ≥ q
iff q1 ⋅ µ(Sϕ1) +⋯ + q" ⋅ µ(Sϕ$) < q
iff q1 ∑

ρ∈S s.t.(A,IA),ρ⊩locϕ1
P(ρ) +⋯ + q" ∑

ρ∈S s.t.(A,IA),ρ⊩locϕ$
P(ρ) < q

iff q1 ∑
θ∈Θ s.t.
θ→ϕ1

x∗θ +⋯ + q" ∑
θ∈Θ s.t.
θ→ϕ$

x∗θ < q

Provided that {x∗θ}θ∈Θ is a solution for (4.3) and ¬(q1Pr(ϕ1) + . . . + q"Pr(ϕ") ≥ q ∈ RelF,
the last expression holds.

We end the proof of completeness observing that all of this leads to our original motivation

for the proof: (A, IA,P) ⊩ ¬δ.
This concludes the soundness and completeness results for DEqPrL. We are now able

to use indistinctively the syntactic consequence relation ⊢(Γ,Λ) and the semantic consequence

relation ⊧I(Γ,Λ) provided that the class I(Γ,Λ) of intended interpretations is such that its alge-

bras are axiomatized by a set Γ of Horn clauses over X and the corresponding interpretations

for domain names are axiomatized by a finite set Λ of domain clauses of algebraic terms.

4.4 Decidability and Complexity

As observed for EqCL, DEqPrL cannot be expected to be decidable, as equational theories

can easily be undecidable [13]. We show, however, that DEqPrL is decidable if we require

the base equational theory to be convergent, and additionally the underlying domain clauses

to have the subterm property. We further provide an automated procedure for decidability.

Again, we may wonder whether the logic would also be decidable with more general

restrictions on the equational theory and on domain restrictions. It would be interesting

to explore how general could be the underlying (decidable) equational theory in order to

preserve the decidability of the logic. However, as the majority of the equational theories

underlying information security examples are generated by convergent rewriting systems, we

only focus on equational theories generated by convergent rewriting systems and in domain

restrictions with the subterm property. All the more, we take advantage of the rewriting

systems underlying equational theories to draw a decidability result. With this purpose, let

us assume, from now on, that Γ is a convergent equational theory and Λ is a set of domain

clauses with the subterm property.

97

4.4.1 Satisfiability

We devote this subsection to the analysis of the satisfiability problem for DEqPrL

(SAT-DEqPrL). The SAT-DEqPrL problem consists in deciding the existence of a model for a

global formula.

As we observed in the context of EqCL, satisfiability solvers usually require a parti-

cular format for the input formula. In this sense, we start by analyzing two satisfiability

problems: the DNFSAT-DEqPrL is the satisfiability problem for DEqPrL whose input for-

mula is in disjunctive normal form, whereas the CNFSAT-DEqPrL is the satisfiability problem

for DEqPrL for which the input formula is required to be in conjunctive normal form.

Afterwards, we proceed with the analysis of SAT-DEqPrL for arbitrary global formulas.

As a preliminary approach, easier to understand, we start by providing an algorithm

that translates DNFSAT-DEqPrL problems into GenPSAT problems (introduced in Chapter 3).

Afterwards, we extend the approach and provide a reduction of CNFSAT-DEqPrL to

Satisfiability Modulo Theories (SMT). We end up this series of satisfiability results using

a Tseitin-like transformation to analyse SAT-DEqPrL.

Moving to the propositional context

To describe an algorithm that reduces SAT-DEqPrL either to GenPSAT, to SAT or to SMT, we

need to translate local formulas to the propositional context. We follow the same reasoning as

for EqCL (see Section 2.4.12), but besides including equations into the propositional context,

we should also incorporate the algebraic reasoning underlying the domain restrictions. In this

sense, let us consider a set of propositional symbols corresponding to equations between nom-

inal terms Eq(N)p = {pt1≈t2 ∣ t1, t2 ∈ T (N)} and a set of propositional symbols corresponding

to domain restrictions DRes(N)p = {pt∈D ∣ t ∈ T (N),D ∈ D}, and then define the translation

of an arbitrary local formula ϕ ∈ Loc to a propositional formula propϕ inductively, by:

• if ϕ is of the form t1 ≈ t2, propϕ is precisely pt1≈t2 ;
• if ϕ is of the form t ∈ D then propϕ is pt∈D;
• if ϕ is of the form ¬ϕ1 then propϕ is ¬propϕ1

;

• if ϕ is of the form ϕ1 ∧ϕ2 then propϕ is propϕ1
∧ propϕ2

.

We also extend this propositional notation to probabilistic formulas: given a probabilistic

formula δ of the form q1 ⋅Pr(ϕ1) +⋯ + q" ⋅Pr(ϕ") 6 q with 6 ∈ {≤,≥,<,>}, propδ represents the
probabilistic propositional formula q1 ⋅ Pr(propϕ1

) +⋯ + q" ⋅ Pr(propϕ$) 6 q.

Once more, we must import the algebraic requirements underlying the equational rea-

soning in the presence of domain restrictions to the propositional context. For this purpose,

98

assume that we want to test the satisfiability of δ ∈ Glob and consider the set of relevant

nominal terms for δ,

RelTermδ = subterms({δ} ∪∆≈∈) ∪ {t↓∣ t ∈ subterms({δ} ∪∆≈∈)} , where

∆≈∈ ={σ(t)≈σ(t′) ∣ (t→ t′)∈R,σ ∈ subterms(δ)X}∪{σ(t) ...∈ D ∣ (t ...∈ D)∈ RHS,σ ∈subterms(δ)X}
and RHS = {t ...∈ D′

1 ∣ (t1 ∈ D1, ..., tk1 ∈ Dk1 ⇒ t ...∈ D′
1..., t ...∈ D′

k2
) ∈ Λ}. RelTermδ incorporates

all the subterms of δ, their normal forms with respect to the convergent rewriting system R

underlying Γ and, finally, the equational theory and the domain clauses instantiated on the

subterms.

We achieve a sufficiently broad scope by defining the propositional symbols of interest as

those that represent either equations between terms in RelTermδ or domain restrictions for

such terms, which are gathered in the set

Bδ = BEq ∪BDRes, (4.6)

where BEq = {pt1≈t2 ∣ t1, t2 ∈ RelTermδ} and BDRes = {pt∈D ∣ t ∈ RelTermδ,D ∈ D}. Both

equational statements and domain restrictions must obey some relations to be imposed on

their representatives. These restrictions are established in Φδ, defined as follows:

Φδ = {pt≈t↓ ∣ t ∈ RelTermδ} ∪ {pt1≈t2 → pt2≈t1 ∣ t1, t2 ∈ RelTermδ} ∪
{(pt1≈t2 ∧ pt2≈t3)→ pt1≈t3 ∣ t1, t2, t3 ∈ RelTermδ} ∪
{(pt1≈t′1 ∧ ... ∧ ptn≈t′n)→ pf(t1,...,tn)↓≈f(t′1,...,t′n)↓ ∣ t1, t′1, ..., tn, t′n, f(t1, ..., tn) ↓, f(t′1, ..., t′n)↓∈ RelTermδ}∪
{(pt1≈t2 ∧ pt1∈D)→ pt2∈D ∣ t1, t2 ∈ RelTermδ,D ∈ D} ∪
{pσ(t1)↓∈D1

∧...∧pσ(tk1)↓∈Dk1
→ p

σ(t)↓ ...∈ D′1∨...∨pσ(t)↓ ...∈ D′k2

∣ σ ∈(RelTermδ)X,
(t1∈ D1,..., tk1∈ Dk1⇒t ...∈ D′

1,..., t
...∈ D′

k2
)∈Λ}.

(4.7)

We should emphasize that, since subterms(δ) has linear size on the length of δ

and the equational theory is convergent, RelTermδ is well defined and has polynomial

size on the length of δ. Denoting ∣RelTermδ ∣ = k and ∣D∣ = z, Φδ has at most

k + k2 + k3 + k2a+2 + k2 ⋅ z + λ(ktmax ⋅ zdmax) elements, where a is the maximum arity of the

function symbols occurring in RelTermδ, ∣Λ∣ = λ and tmax,dmax are the maximum number of

terms and the maximum number of domain names occurring in a constraint in Λ. Sometimes

we drop the superscript δ, provided that it is clear from context.

The subterm property provides control over the set Φδ, as long as it ensures that the

domain restrictions over a term in RelTerm is only conditioned by domain restrictions over

terms certainly in RelTerm. Thus, elements in Φδ are the necessary to reason about the

domain restrictions that influence δ.

99

DNFSAT-DEqPrL problem

The DNFSAT-DEqPrL problem consists in deciding the existence of a model for a global

formula δ ∈ Glob given in disjunctive normal form.

To test the satisfiability of a global formula δ ∈ Glob given in DNF by
m⋁
j=1

nj⋀
i=1 δ

j
i , one computes

the set Bδ of propositional symbols described in (4.6), the set Φδ of propositional formulas

described in (4.7) and then use Algorithm 4.1 to decide whether the given formula is satisfi-

able or not. Note that we should apply a satisfiability procedure to test the satisfiability of

each disjunct. Each disjunct is a conjunction of global formulas either from ∀Loc, ¬∀Loc or

(Prob ∪ ¬Prob). Specifying explicitly those components, δ is given by:

m⋁
j=1 (∀ϕ

j
1 ∧ . . . ∧ ∀ϕj

nj
∧ ¬∀ϕj

1 ∧ . . . ∧ ¬∀ϕj
kj
∧ ξj1 ∧ . . . ∧ ξjsj) .

Algorithm 4.1 DNFSAT-DEqPrL solver based on SAT and GenPSAT

1: procedure DNFSATDEqPrL

2: input: DNF global formula δ:
m⋁
j=1 (∀ψj

1 ∧ ... ∧ ∀ψj
nj ∧ ¬∀ϕj

1 ∧ ... ∧ ¬∀ϕj
kj
∧ ξj1 ∧ ... ∧ ξjsj)

3: output: Sat or Unsat depending on whether δ is satisfiable or not

4: for j = 1 to m do ▷ test each disjunct

5: Hj ∶= Φδ ∪ {propψj
1
, . . . ,propψj

nj
} ▷ hard constraints

6: Sj ∶= {propξj1 , . . . ,propξjsj } ▷ soft constraints

7: for % = 1 to kj do ▷ incorporate each ¬∀ϕj
" in Hj

8: if sat solver(⋀
propψ∈Hj

propψ ∧ ¬propϕj
$
) == Unsat then

9: break

10: if % == kj + 1 and genpsat solver(Hj , Sj) == Sat then
11: return Sat ▷ return Sat if all the iterations are successful for some disjunct

12: return Unsat ▷ return Unsat if some iteration fails on every disjunct

Given a global formula δ ∈ Glob in disjunctive normal form, the DNFSAT-DEqPrL tests the

satisfiability of δ by reduction to both a GenPSAT solver and a SAT solver. The GenPSAT

solver is represented in Algorithm 4.1 by an auxiliary procedure genpsat solver and returns

Sat or Unsat depending on wether the GenPSAT instance given as input is satisfiable or not;

the SAT solver is represented by an auxiliary procedure sat solver that returns Sat or Unsat

depending on wether the input propositional formula is satisfiable or not. Notice that we

have fixed a convergent equational theory Γ and a set of domain clauses Λ with the subterm

property, so that the sets of propositional formulas Bδ and Φδ are well defined and have

polynomial length on the length of δ. Each disjunct is written as a conjunction of literals

100

from (∀Loc ∪ ¬∀Loc) ∪ (Prob ∪ ¬Prob). The qualitative literals (not involving probabilities)

should incorporate the propositional set of the GenPSAT instance, whereas the quantitative

literals constitute the probabilistic component of the GenPSAT instance. Recall that satisfying

a formula of the form ∀ϕ imposes that ϕ must be verified in all possible outcomes, whereas

satisfying a formula like ¬∀ϕ requires that at least one possible outcome satisfies ¬ϕ. For

this reason, the satisfiability of each disjunct is tested with a SAT solver in several iterations

(one for each literal in ¬∀Loc) and then with a GenPSAT solver, to test the consistency of the

probabilistic literals. When all iterations are successful for some disjunct, we conclude that δ

is satisfiable.

Let us illustrate this simple algorithm with a simple example.

Example 4.4.1. Let us fix the signature Fxor, the equational theory Γxor and the axiomatiza-

tion Λxor that we introduced in Example 4.1.1. We use Algorithm 4.1 to test the satisfiability

of the DNF global formula:

(Pr(n ≈ zero) ≤ 2
3 ⋅ Pr(n ∈ even) ∧ ∀n ∈ even ∧ ¬Pr(n ≈ zero) ≤ 2

3)∨∨ (Pr(n ≈ zero) ≤ 2
3 ⋅ Pr(n ∈ even) ∧ ∀n ∈ even ∧ ¬∀suc(n) ∈ odd).

We start by observing that RelTermδ = {n, zero, suc(n)} and stressing that, for instance,

(propn∈even → propsuc(n)∈odd) ∈ Φδ.
Testing the first disjunct of the formula, we come up with the GenPSAT instance (H1, S1)

given by:

H1 = Φδ ∪ {propn∈even},
S1 = {Pr(propn≈zero) ≤ 2

3 ⋅ Pr(propn∈even),Pr(propn≈zero) > 2
3},

which is unsatisfiable provided that the classical propositional formulas are evaluated with

probability 1, which derives an inconsistency. For the second iteration, we have:

H2 = Φδ ∪ {propn∈even},
S2 = {Pr(propn≈zero) ≤ 2

3 ⋅ Pr(propn∈even)}.
Recalling that (propn∈even → propsuc(n)∈odd) ∈ Φδ and propn∈even ∈H2, we easily realize that this

iteration is aborted provided that the classical propositional formula

⋀
propψ∈H2

propψ ∧ ¬propsuc(n)∈odd, that is sent to the SAT-solver, is not satisfiable.

Hence, we conclude that the given formula is unsatisfiable. △
The correctness of the satisfiability algorithm is addressed in the following Lemma.

Lemma 4.4.2. If Γ is a convergent equational theory and Λ is a set of domain clauses with

the subterm property, a global formula δ ∈ Glob in DNF is satisfiable iff Algorithm 4.1 returns

Sat.

101

Proving this Lemma requires showing that satisfiability at the propositional level carries

over to DEqPrL. For this purpose, given δ ∈ Glob, we follow the lines of what was done in the

proof of Lemma 2.4.3 and redefine the translation of outcomes with values in an F-algebra A
with carrier set A to valuations in the propositional context. For this purpose, let v(⋅) be the

transformation of outcomes into valuations, v(⋅) ∶ AN → {0,1}B such that, given ρ ∈ AN , the

corresponding valuation vρ ∶ B → {0,1} is now defined by:

⎧⎪⎪⎨⎪⎪⎩
vρ(pt∈D) = 1 iff !t"ρA ∈ IA(D)
vρ(pt1≈t2) = 1 iff !t1"ρA = !t2"ρA.

The proof that this translation is correct follows easily by induction on ϕ.

Lemma 4.4.3. For each ϕ ∈ subform(δ) ∩ Loc and ρ ∈ AN , A,ρ ⊩loc ϕ iff vρ (propϕ) = 1.
For the reciprocal implication, we need a small Lemma, that guarantees a kind of finite

model property to the GenPSAT instances (Hj , Sj), with j ∈ {1, . . . ,m}.
Lemma 4.4.4. If there exists a probability distribution over {0,1}Bδ satisfying (Hj , Sj), then
exists a probability distribution that also satisfies (Hj , Sj) but has a finite number of non-zero

assignments of probabilities to valuations, for each j ∈ {1, . . . ,m}.
Proof. This proof is based on a reasoning very similar to what was done in the proof of

completeness of DEqPrL. Let j ∈ {1, . . . ,m} and π ∶ {0,1}Bδ → [0,1] be a probability

distribution that satisfies (Hj , Sj). We define a new probability distribution π′ with a finite

number of non-zero assignments over valuations by considering the jth disjunct of δ:

∀ψj
1 ∧ . . . ∧ ∀ψj

nj
∧ ¬∀ϕj

1 ∧ . . . ∧ ¬∀ϕj
kj
∧ ξj1 ∧ . . . ∧ ξjsj .

Let Ω be the set of the local formulas occurring inside the probabilistic literals ξj1, . . . , ξ
j
sj ,

Ω = InPr(ξj1) ∪ . . . ∪ InPr(ξjsj), and define the suitable atoms

Θp = ⎧⎪⎪⎨⎪⎪⎩⋀γ∈Υpropγ ∧ ⋀
ω∈Ω∖Υ¬propω ∣ Υ ⊆ Ω ∪ {ψj

1, . . . ,ψ
j
nj
}⎫⎪⎪⎬⎪⎪⎭ .

We assign a valuation vθ for each θ ∈ Θp such that V θ = {v ∈ {0,1}Bδ ∣ v(θ) = 1} ≠ ∅ and

consider the set of valuations V ⊆ {0,1}Bδ arising from this construction:

V = {vθ ∣ θ ∈ Θ and V θ ≠ ∅}.
Notice that V ≠ ∅ due to the suitable construction of Θ, which implies that ⋃

θ∈ΘV θ = {0,1}Bδ .
A probability distribution π′ ∶ {0,1}Bδ → [0,1] is then defined based on π,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
π′(vθ) = ∑

v∈V θ π(v), for each θ ∈ Θ such that V θ ≠ ∅
π′(v) = 0, for the remaining v ∈ {0,1}Bδ ∖ V .

102

It remains to prove that π′ is actually a probability distribution over {0,1}Bδ : obviously it

is always non-negative, i.e., π′(v) ≥ 0 for every valuation v, and only assigns a finite number

of non-zero probabilities to valuations; then notice that ⋃
θ∈ΘV θ = {0,1}Bδ and V θ1 ∩ V θ2 = ∅

whenever θ1 ≠ θ2, and let us check that the probability distribution sums up to 1:

1 = ∑
v∈{0,1}Bδ

π(v) = ∑
θ∈Θ

π′(vθ) = ∑
v∈V π

′(v) + ∑
v∈{0,1}Bδ∖V

π′(v) = ∑
v∈{0,1}Bδ

π′(v).
To conclude that the probability distribution π′ satisfies the GenPSAT instance (Hj , Sj) notice
that, given ψ ∈ Ω ∪ {ψj

1, . . . ,ψ
j
nj},

∑
v∈{0,1}Bδ

v(ψ) ⋅ π′(v) = ∑
vθ∈V
θ→ψ

π′(vθ) = ∑
v∈V v(ψ) ⋅ π(v).

Hence, π′ satisfies (Hj , Sj).
In order to proceed with the reciprocal implication, we will need to keep safe the

propositional information while defining a suitable F-structure satisfying δ. For this pur-

pose, let us consider an appropriate finite set of valuations V ⊆ {0,1}Bδ containing the valu-

ations satisfying ⋀
propψ∈Hj

propψ∧¬propϕj
$
, for each % ∈ {1, . . . , kj} and some others for which are

assigned non-zero probabilities that constitute a probability distribution satisfying the

GenPSAT instance (Hj , Sj).
We outline a candidate F-algebra for a model for δ by extending the signature F with new

constants cv,n, for each n ∈ N and v ∈ V , that should keep hold the propositional behaviour

into the logic: the extended signature F∗ coincides with F in all but

F∗0 = F0 ∪ ⋃
v∈V {cv,n ∣ n ∈ N} . (4.8)

In order to keep safe the propositional information, we collect a record, into the logic, of all

propositional symbols provided each valuation. For the purpose, we consider an enumeration

of the set B ×V indexed by i ∈ I ⊆ N, and save such information in the set M = ⋃
i∈IMi, defined

inductively by:

M0 = {∀(σ(t) ≈ σ(t′)) ∣ t ≈ t′ ∈ Γ,σ ∈ TF∗(∅)X}∪
{∀(σ(t1) ∈ D1 ∧ . . . ∧ σ(tk1) ∈ Dk1 → σ(t) ...∈ D′

1 ∨ . . . ∨ σ(t) ...∈ D′
k2
) ∣

σ ∈ TF∗(∅)X , (t1 ∈ D1, . . . , tk1 ∈ Dk1 → t ...∈ D′
1, . . . , t ...∈ D′

k2
) ∈ Λ}

Mi+1 =
⎧⎪⎪⎨⎪⎪⎩

Mi ∪ {∀[ϕi]ñc̃vi ,n}, if vi(pϕi) = 1
Mi ∪ {∀¬[ϕi]ñc̃vi ,n}, if vi(pϕi) = 0 for i ∈ I and ñ = names(ϕi).

(4.9)

Remark 4.4.5. Notice that by N2, N3: ⊢(Γ,Λ) ∀¬[ϕi]ñc̃vi,n ↔ ¬∀[ϕi]ñc̃vi,n .
103

We now address the consistency of M = ⋃i∈I Mi ⊆ Glob∅F∗ regarding the extended signature

F∗ and an empty set of names.

Lemma 4.4.6. If Algorithm 4.1 returns Sat, then M = ⋃
i∈IMi ⊆ Glob∅F∗ is consistent.

Remark 4.4.7. Given t1, t2 ∈ RelTermδ, we have pt1≈t2 ∈ Bδ. Hence, considering a valuation v ∈
V we necessarily have that either ∀([t1]ñ12

c̃v,n12
≈ [t2]ñ12

c̃v,n12
) ∈M or ∀([t1]ñ12

c̃v,n12
/≈ [t2]ñ12

c̃v,n12
) ∈M,

where ñ12 = names(t1) ∪ names(t2). The same holds for the domain restrictions: given D ∈ D,
either ∀([t1]ñc̃v,n ∈ D) ∈M or ∀([t1]ñc̃v,n /∈ D) ∈M, where ñ = names(t1).

We prepare the proof of Lemma 4.4.6 by considering a substitution of constants back to

names,

2 ∶ {cv,n ∣ n ∈ N, v ∈ V })→ N

cv,n *→ n .

Let us abuse notation and denote by 2 the extension of this substitution to the set of local

formulas over the extended signature F∗ and an empty set of names, Loc∅F∗ .
Lemma 4.4.8. Let M0 be the set of global formulas defined in (4.9). Given a local formula

ϕ ∈ Loc∅F∗ such that subterms(2(ϕ)) ⊆ RelTermδ, we have:

M0 ⊢(Γ,Λ) ∀ϕ iff Φδ ⊢HCPL prop0(ϕ).
Proof. The reciprocal implication is immediate by recalling the definition of Φδ and based on

axioms from H(Γ,Λ), hence we focus on the direct implication.

Assume that M0 ⊢(Γ,Λ) ∀ϕ and let us prove, by induction on the structure of this

deduction, that each case leads to Φδ ⊢HCPL prop0(ϕ).
• If ∀ϕ ∈M0 then ϕ is either of the form

σ(t) ≈ σ(t′) or σ(t1) ∈D1 ∧ . . . ∧ σ(tk1) ∈Dk1 → σ(t) ...∈ D′
1 ∨ . . . ∨ σ(t) ...∈ D′

k2

for some σ ∈ TF∗(∅)X , but then 2○σ ∈ T (N)X and the following cases hold, respectively:

(i) either (t ≈ t′) ∈ Γ, and (p0○σ(t)≈0○σ(t)↓), (p0○σ(t′)≈0○σ(t′)↓) ∈ Φδ, but since

2 ○ σ(t) ↓ = 2 ○ σ(t′) ↓ it follows that Φδ ⊢HCPL p0○σ(t)≈0○σ(t′),
(ii) or (t1 ∈D1, . . . tk1 ∈Dk1 → t ...∈ D′

1, . . . , t ...∈ D′
k2
) ∈ Λ and so the propositional formula

(p0○σ(t1)↓ ∈D1∧. . .∧p0○σ(tk1)↓ ∈Dk1 → p
0○σ(t)↓ ...∈ D′

1
∨. . .∨p

0○σ(t)↓ ...∈ D′
k2

) ∈ Φδ, which
implies that (p0○σ(t1)↓∈D1

∧ . . .∧p0○σ(tk1)↓∈Dk1
→ p

0○σ(t)↓ ...∈ D′
1
∨ . . .∨p

0○σ(t)↓ ...∈ D′
k2

) ∈
Φδ that, together with the fact that p0○σ(t′)≈0○σ(t′)↓ ∈ Φδ and since for each t′ ∈
{t1 . . . , tk1 , t}, Φδ ⊢HCPL p0○σ(t′)≈0○σ(t′)↓ → (p0○σ(t′)∈D ↔ p0○σ(t′)↓∈D), allows us to

conclude that:

Φδ ⊢HCPL p0○σ(t1)∈D1
∧ . . . ∧ p0○σ(tk1)∈Dk1

→ p
0○σ(t) ...∈ D′

1
∨ . . . ∨ p

0○σ(t) ...∈ D′
k2

.

104

• If ∀ϕ is an axiom, then it is either an instance of:

◇ Eq1-Eq4, where we immediately conclude that Φδ ⊢HCPL prop0(ϕ);
◇ DEq which would imply prop0(ϕ) ∈ Φδ;
◇ D(Λ), which reduces to the analysis in (ii) ;

◇ E(Γ), which reduces to the analysis in (i) ;

◇ EqC1-EqC4, where we conclude that Φδ ⊢HCPL prop0(ϕ) as an immediate application

of the axioms of propositional logic.

• If ∀ϕ results from applying inference rule C4 to δ1 and δ1 → δ2, then δ2 should coincide

with ∀ϕ and M0 ⊢(Γ,Λ) {δ1, δ1 → δ2}. We have several cases to analyze, we overview

some of them:

◇ if δ1 → δ2 is an instance of Eq2-Eq4 (after the application of N and C4), then the

deduction is clearly deducible in the propositional context since Φδ contains all

such properties;

◇ the case where ∀ϕ is deduced using EqC1-EqC4 (after applying N and C4), or

C1-C3, is covered by the propositional reasoning, leading to Φδ ⊢HCPL prop0(ϕ);
◇ deductions from D(Λ) are under the scope of the propositional context as we saw

before;

◇ the propositional analogue of DEq in Φδ allows us to conclude that Φδ ⊢HCPL

prop0(ϕ) when δ1 → δ2 is an instance of DEq (after applying N and C4);

◇ if δ1 → δ2 follows from N1 and takes the form ∀ϕ1 ∧ ∀ϕ2 → ∀(ϕ1 ∧ ϕ2), since

ϕ1 ∧ ϕ2 ∈ Loc∅F∗ , then ϕ1,ϕ2 ∈ Loc∅F∗ , and from M0 ⊢(Γ,Λ) ∀ϕ1 ∧ ∀ϕ2, by induction

hypothesis, we have Φδ ⊢HCPL prop0(ϕ1) ∧ prop0(ϕ2), so Φδ ⊢HCPL prop0(ϕ1∧ϕ2);
◇ if δ1 → δ2 follows from N1 but is of the form ∀(ϕ1 ∧ ϕ2) → ∀ϕi for some i ∈ {1,2},

then it is straightforward;

◇ if δ1 → δ2 is an instance of N3 then it is of the form ¬∀ψ → ∀¬ψ and since

¬ψ ∈ Loc∅F∗ , then ψ ∈ Loc∅F∗ ; recall that M0 ⊢(Γ,Λ) ¬∀ψ so, by induction hypothesis,

Φδ /⊢ prop0(ψ) which means that Φδ ⊢ prop0(¬ψ).
Proof of Lemma 4.4.6. Assume that Algorithm 4.1 returns Sat and let us prove, by induction

on i, that Mi is consistent for every i ∈ I. Let us begin observing that M0 is consistent

since otherwise we would derive - from M0 and, in that case, using Lemma 4.4.8, we would

be able to deduce prop1 from Φδ, which is a contradiction with the initial assumption that

Algorithm 4.1 returns Sat.

105

Let i ∈ I and assume that Mi−1 is consistent but Mi is inconsistent. We analyze both cases

that potentially lead to the inconsistency: vi(pϕi) = 1, vi(pϕi) = 0.
Case 1: Assume vi(pϕi) = 1. Since Mi is inconsistent, Mi ⊢(Γ,Λ) δ for any δ ∈ Glob∅F∗ . In

particular:

Mi ⊢(Γ,Λ) ∀¬[ϕi]ñc̃vi,n
which, since Mi = Mi−1 ∪ {∀[ϕi]ñc̃vi,n} and recalling Remark 4.4.5, implies that

Mi−1 ⊢(Γ,Λ) ∀¬[ϕi]ñc̃vi,n . Let us check that it would lead to vi(pϕi) = 0, which is a

contradiction. Recalling that either ϕi ∈ EqF(N) or ϕi ∈ DResF(N), we can use induc-

tion on the structure of the proof to conclude the first case.

• If ∀¬[ϕi]ñc̃vi,n ∈ Mi−1 then it is a consequence of originally ∀¬[ϕi]ñc̃vi,n ∈ M0: no-

tice that for different valuations the constants are distinct, so [ϕi]ñc̃vi,n ≠ [ψ]ñc̃vi,n for

any v ≠ vi and for any ψ ∈ Loc; for different formulas ψ ≠ ϕi we should also have

[ψ]ñc̃vi,n ≠ [ϕi]ñc̃vi,n , since the constants are different for distinct names. But then,

since ∀¬[ϕi]ñc̃vi,n ∈M0, pϕi ∈ Bδ and vi satisfies Φ
δ we should have vi(pϕi) = 0.

• Since ϕi ∈ Eq(N) ∪DRes(N), the only chance for ∀¬[ϕi]ñc̃vi,n to be an instance of an

axiom would be D(Λ), which would reduce us to the previous case.

• If it is the result of applying C4 to δ1, δ1 → δ2, then δ2 should coincide with ∀¬[ϕi]ñc̃vi,n
and Mi−1 ⊢(Γ,Λ) {δ1, δ1 → δ2}. We have several cases depending on δ1 → δ2. We

analyze some of them and the others are left to the reader:

◇ If δ1 → δ2 is an instance of Eq2 (together with N, C3 and C4) then ϕi should be of

the form t1 ≈ t2. Since t1, t2 ∈ RelTermδ, the propositional representation of Eq2 is

in Φδ, and vi satisfies Φ
δ. Notice yet that δ1 is of the form ∀¬[t2 ≈ t1]ñc̃vi,n and by

induction hypothesis vi(pt2≈t1) = 0, so vi(pt1≈t2) = 0. Analogously, we can address

the case were δ1 → δ2 is an instance of Eq4.

◇ If δ1 → δ2 is an instance of classical axiom EqC2 (applying N and C3) then δ1

should be of the form ¬(ψ → ∀[ϕi]ñc̃vi,n) which means Mi−1 ⊢(Γ,Λ) ψ ∧ ∀¬[ϕi]ñc̃vi,n
and it follows that Mi−1 ⊢(Γ,Λ) ∀¬[ϕi]ñc̃vi,n , which by induction hypothesis implies

vi(pϕi) = 0.
◇ If δ1 → δ2 is an instance of EqC4 (with N) then δ1 should be of the form

¬((∀[ϕi]ñc̃vi,n → ∀ϕ) → ∀ϕ) which implies Mi−1 ⊢(Γ,Λ) (∀[ϕi]ñc̃vi,n → ∀ϕ) ∧ ¬∀ϕ,
that can be written as Mi−1 ⊢(Γ,Λ) ∀¬[ϕi]ñc̃vi,n . By induction hypothesis it follows

that vi(pϕi) = 0.
Case 2: Assume vi(pϕi) = 0. Since Mi is inconsistent, Mi ⊢(Γ,Λ) δ for any δ ∈ Glob∅F∗ . In

particular:

Mi ⊢(Γ,Λ) ∀[ϕi]ñc̃vi,n ,
106

which, since Mi = Mi−1 ∪ {∀¬[ϕi]ñc̃vi,n} and recalling Remark 4.4.5, implies that

Mi−1 ⊢(Γ,Λ) ∀[ϕi]ñc̃vi,n . We check, again by induction on the structure of the proof, that

it implies vi(pϕi) = 1, which is a contradiction. Note that ϕi ∈ EqF(N) or ϕi ∈ DResF(N).
• If ∀[ϕi]ñc̃vi,n ∈ Mi−1 then it should result from ∀[ϕi]ñc̃vi,n ∈ M0 by the same reason as

for case 1. And, the same way, we are able to conclude that vi(pϕi) = 1.
• Since ϕi ∈ Eq(N) ∪DRes(N), ∀[ϕi]ñc̃vi,n could be an instance of E(Γ) or D(Λ) (which

would report us to the previous case) or an instance of Eq1. In the last case ϕi

should be of the form t ≈ t for some t ∈ RelTermδ. Since vi satisfies Φ
δ, we would have

vi(pϕi) = 1.
• If it is the result of applying C4 to δ1, δ1 → δ2 then δ2 should coincide with ∀[ϕi]ñc̃vi,n
and Mi−1 ⊢(Γ,Λ) {δ1, δ1 → δ2}. We have several cases depending on δ1 → δ2. Again,

we analyze some of them:

◇ If δ1 → δ2 is an instance of Eq2 (applying N), then ϕi is of the form t2 ≈ t1 with

t1, t2 ∈ RelTermδ, and δ1 should be of the form ∀[t1 ≈ t2]ñc̃vi,n , which by induction

hypothesis would imply vi(pt1≈t2) = 1, and so vi(pϕi) = 1.
◇ If δ1 → δ2 is an instance of Eq3 (applying N), then ϕi should be t1 ≈ t3 and

δ1 should be ∀(t1 ≈ t2) ∧ ∀(t2 ≈ t3). But notice that t1 ↓, t3 ↓∈ RelTermδ and

t2 ↓= t1 ↓= t3 ↓, so we would have, by reflexivity and transitivity that

vi(pt1≈t2↓ ∧ pt2↓≈t3) = 1, which together with the propositional representative of

transitivity in Φδ implies vi(pt1≈t3) = 1.
◇ If δ1 → δ2 is an instance of Eq4 (applying N), then ϕi is an equation of the form

f(t1, . . . , tn) ≈ f(t′1, . . . , t′n) with t1, . . . , tn, t
′
1, . . . , t

′
n ∈ RelTermδ and δ1 is given

by ∀(t1 ≈ t′1) ∧ . . . ∧ ∀(tn ≈ t′n) (if some ti or t′j is a normal form, consider in

its substitution the subterm of δ that originated it). By induction hypothesis

vi(pt1≈t′1 ∧ ... ∧ ptn≈t′n) = 1, which together with the propositional representative of

Eq4 implies that vi(pϕi) = 1.
◇ If δ1 → δ2 is a consequence of N1, then δ1 is of the form ∀([ϕi]ñc̃vi,n ∧ ψ2). But

notice that Mi−1 ⊢(Γ,Λ) ∀([ϕi]ñc̃vi,n ∧ ψ2) implies Mi−1 ⊢(Γ,Λ) ∀[ϕi]ñc̃vi,n , which by

induction hypothesis implies vi(pϕi) = 1.
◇ If δ1→ δ2 is an instance of DEq (applying N), then ϕi is of the form t2 ∈ D with

t2 ∈ RelTermδ and δ1 is ∀(t1 ≈ t2) ∧ ∀(t1 ∈ D). Notice that Mi−1 ⊢(Γ,Λ) δ1,
i.e., Mi−1 ⊢(Γ,Λ) ∀(t1 ≈ t2) ∧ ∀(t1 ∈ D) and by induction hypothesis we have

vi(pt1↓≈t2 ∧ pt1↓∈D) = 1, which by the propositional representative of Φδ implies

that vi(pt2∈D) = 1.
107

Both cases lead to a contradiction, so Mi should be consistent for each i ∈ I, and so M is

consistent regarding F∗.
We are now ready to use all of these technical details in the proof of Lemma 4.4.2.

Proof of Lemma 4.4.2. Assume that Γ is a convergent equational theory, Λ is a set of domain

clauses with the subterm property and let δ ∈ Glob be any global formula in DNF. To prove

the direct implication, consider an F-structure (A, IA,P) with P = (S,A , µ) and satisfying δ:

(A, IA,P) ⊩ m⋁
j=1

nj⋀
i=1 δ

j
i . This means that there exists j ∈ {1, . . . ,m} such that (A, IA,P) ⊩ nj⋀

i=1 δ
j
i .

Since each δji is a literal, we can rewrite it as

(A, IA,P) ⊩ ∀ψj
1 ∧ . . . ∧ ∀ψj

nj
∧ ¬∀ϕj

1 ∧ . . . ∧ ¬∀ϕj
kj
∧ ξj1 ∧ . . . ∧ ξjsj . (4.10)

We need to verify that for each % ∈ {1, . . . , kj}, there exists a valuation satisfying

⋀
propψ∈Hj

propψ ∧ ¬propϕj
$
and, furthermore, that there exists a probability distribution π over

the set of all valuations {0,1}Bδ , satisfying the GenPSAT instance (Hj , Sj).
For the first assertion, let ρ¬∀ϕj

$ be the outcome such that (A, IA),ρ¬∀ϕj
$ ⊩loc ¬ϕj

" . Notice

that (4.10) implies that for each s ∈ {1, . . . , nj}, (A, IA),ρ¬∀ϕj
$ ⊩loc ψ

j
s. Using Lemma 4.4.3, it

is immediate to conclude that v
ρ
¬∀ϕj

$
satisfies ⋀

propψ∈Hj

propψ ∧ ¬propϕj
$
.

For the latter assertion, notice that we can assume that there exists at least one

probabilistic literal in (4.10). Otherwise, testing (Hj , Sj) would be equivalent to test Hj

in SAT and we were done. That said, we need to find out a probability distribution over

the set of all valuations {0,1}Bδ satisfying (Hj , Sj). Again, we follow a reasoning similar

to the proof of completeness of DEqPrL: collect in Ω the local formulas occurring inside

the probabilistic literals ξj1, . . . , ξ
j
sj , Ω = InPr(ξj1) ∪ . . . ∪ InPr(ξjsj), define the suitable atoms

Θ = { ⋀
γ∈Υγ ∧ ⋀

ω∈Ω∖Υ¬ω ∣ Υ ⊆ Ω} , and then assign an outcome ρθ for each θ ∈ Θ such that Sθ ≠ ∅.
Now consider the set of valuations V ⊆ {0,1}Bδ arising from this construction:

V = {vρθ ∣ θ ∈ Θ and Sθ ≠ ∅}. (4.11)

Notice that V ≠ ∅ due to the suitable construction of Θ, which implies that ⋃
θ∈ΘSθ = S ≠ ∅.

A probability distribution π ∶ {0,1}Bδ → [0,1] is then defined based on µ,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
π(vρθ) = µ(Sθ), for each θ ∈ Θ such that Sθ ≠ ∅
π(v) = 0, for the remaining v ∈ {0,1}Bδ ∖ V .

It remains to prove that π is actually a probability distribution over {0,1}Bδ : obviously

it is always non-negative, i.e., π(v) ≥ 0 for every valuation v; then recall that ⋃
θ∈ΘSθ = S and

108

Sθ1∩Sθ2 = ∅ whenever θ1 ≠ θ2, and let us check that the probability distribution sums up to 1:

1 = ∑
θ∈Θ

µ(Sθ) = ∑
θ∈Θ

π(vρθ) = ∑
v∈V π(v) + ∑

v∈{0,1}Bδ∖V
π(v) = ∑

v∈{0,1}Bδ
π(v).

Once defined the probability distribution, let us check that the GenPSAT instance (Hj , Sj)
is satisfiable, i.e., each propositional formula in Hj is satisfied with probability 1 and the

probability formulas in Sj are also satisfied. To ease notation, let us use Wϕ to denote the

set of valuations in W ⊆ {0,1}Bδ satisfying propϕ, W
ϕ = {v ∈W ∣ v(propϕ) = 1}.

• For each s ∈ {1, . . . , nj}, we have (A, IA,P) ⊩∀ψj
s, hence we also have (A, IA,P) ⊩ Pr(ψj

s) = 1.
The successive application of P2, as was remarked in (4.4), allows us to write it equivalently

as (A, IA,P) ⊩ ∑
θ∈Θ s.t. θ→ψj

s

Pr(θ) = 1, i.e., ∑
θ∈Θ s.t. θ→ψj

s

µ(Sθ) = 1. But then,

∑
v∈{0,1}Bδ

v (propψj
s
) ⋅ π(v) = ∑

v∈V ψj
s

π(v) = ∑
θ∈Θ s.t. θ→ψj

s

π(vρθ) = ∑
θ∈Θ s.t. θ→ψj

s

µ(Sθ) = 1.

• Clearly, π satisfies Φδ with probability 1 since (A, IA,P) satisfies all instances of Eq1-Eq4,

DEq, E(Γ), D(Λ), and a reasoning similar to the previous one can be applied.

• Finally, for each r ∈ {1, . . . , sj}, let ξjr be a literal of the form q1 ⋅Pr(ϕ1)+ . . .+qn ⋅Pr(ϕn)6q,
with 6 ∈ {≥,<}. By (4.10), (A, IA,P) ⊩ q1 ⋅ Pr(ϕ1) + . . . + qn ⋅ Pr(ϕn) 6 q, which, recalling

once more (4.4), can be written as q1 ⋅ ∑
θ∈Θ st θ→ϕ1

µ(Sθ)+⋯+qn ⋅ ∑
θ∈Θ st θ→ϕn

µ(Sθ)6q or even,

recalling the definition of π, as

q1 ⋅ ∑
θ∈Θ st θ→ϕ1

π(vρθ) +⋯ + qn ⋅ ∑
θ∈Θ st θ→ϕn

π(vρθ) 6 q.

But note that for each 1 ≤ i ≤ n, {vρθ ∣ θ ∈ Θ and θ → ϕi} = {v ∈ {0,1}Bδ ∣ v(ϕi) = 1} and we

can write the previous inequality as

q1 ⋅ ∑
v∈V ϕ1 π(v) +⋯ + qn ⋅ ∑v∈V ϕk π(v) 6 q,

or, recalling the null assignment of probabilities for elements of {0,1}Bδ ∖ V , as

q1 ⋅ ⎛⎜⎝ ∑v∈V ϕ1 π(v) + ∑
v∈({0,1}Bδ∖V)ϕ1

π(v)⎞⎟⎠ +⋯ + qn ⋅
⎛⎜⎝ ∑v∈V ϕn π(v) + ∑

v∈({0,1}Bδ∖V)ϕn
π(v)⎞⎟⎠ 6 q,

i.e., q1 ⋅ ∑
v∈V ϕ1 π(v) +⋯ + qn ⋅ ∑v∈V ϕn π(v) 6 q, and so π satisfies ξjr .

109

For the reciprocal implication, assume that Algorithm 4.1 returns Sat and let V1 be the

set of valuations satisfying ⋀
propψ∈Hj

propψ ∧ ¬propϕj
$
for each % ∈ {1, . . . , kj}, V1 = {v1, . . . , vkj}.

Then use Lemma 4.4.4 and let π be a probability distribution satisfying the GenPSAT

instance (Hj , Sj) assigning a finite number of non-zero probabilities to valuations. Let V2

denote the finite set of valuations for which π assigns non-zero probabilities. Please note that,

since each propositional formula in Hj is satisfied with probability 1, and V2 encompasses the

valuations to which is assigned non-zero probability, it follows that all valuations in V2 satisfy

the propositional formulas in Hj . Let V = V1 ∪ V2.

As we briefly explained, a model for δ is found by extending the signature F with new

constants cv,n, for each n ∈ N and v ∈ V , that should keep hold the propositional behaviour

into the logic. For this purpose, let F∗ be an extension of F respecting (4.8). Then, consider

the consistent set M = ⋃
i∈IMi ⊆ Glob∅F∗ defined inductively on (4.9) and take a maximal

consistent set Ξ∗ extending M , whose existence is guaranteed by Lindenbaum’s Lemma.

Consider the F∗-algebra A = TF∗(∅)/≡∗ derived from the congruence relation defined by t1 ≡∗ t2
iff ∀(t1 ≈ t2) ∈ Ξ∗. The interpretations for domain names are taken according to the maximal

consistent set Ξ∗; IA ∶ D → ℘(A) is defined as IA(D) = {[t]≡ ∣ ∀(t ∈ D) ∈ Ξ∗ and t ∈ TF∗(∅)}
for each D ∈ D.

Afterwards, we translate valuations into outcomes, defining an outcome ρv ∶ N → A for

each valuation v ∈ V as ρv(n) = [cv,n]≡. Recall that !⋅"ρvA ∶ T (N)→ A is defined, accordingly, as

!t"ρ
v

A = [[t]ñc̃v,n]≡, where ñ = names(t) and c̃v,n are the respective constants. The set of outcomes

is defined as the union of two components, S = S1 ∪ S2, arising from V1 and V2, respectively:

S1 = {ρv ∣ v ∈ V1} and S2 = {ρv ∣ v ∈ V2}. Note that S2 ≠ ∅ provided that V2 ≠ ∅ (see

Lemma 4.4.4).

Regarding the probabilistic component, we first define a probability distribution over the

outcomes in S and then use it to define the probability space. For the purpose, we import

the probabilities on the propositional level through the probability distribution P ∶ S→ [0,1]
defined by: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

P(ρv) = π(v), for each ρv ∈ S2,
P(ρ) = 0, for ρ ∈ S ∖ S2.

A probability space P = (S,A , µ) is then defined using the discrete σ-algebra A over S, and

the probability measure µ ∶ A → [0,1] defined by µ(X) = ∑
ρ∈XP(ρ).

The conclusion that (A, IA,P) is actually an F-structure follows by the straightforward

verification that µ is a probability measure.

• A satisfies Γ immediately by definition of M0 and of the congruence relation ≡∗.

110

• (A, IA) verifies Λ: given (t1 ∈ D1, . . . , tk1 ∈ Dk1 → t′1 ...∈ D′
1, . . . , t

′
k2

...∈ Dk2) ∈ Λ and

σ′ ∈ AX , notice that σ′ results from applying a substitution σ ∈ TF∗(∅)X and then

a quotient by ≡∗. Assume that !ti"σ
′

A ∈ IA(Di) for each 1 ≤ i ≤ ki, which means that

[σ(ti)]≡∗ ∈ IA(Di) or, equivalently, ∀(σ(ti) ∈ Di) ∈ Ξ∗. It means that

∀(σ(t1) ∈ D1 ∧⋯∧ σ(tk1) ∈ Dk1) ∈ Ξ∗, and from M0 it follows that

∀(σ(t′1) ...∈ D′
1 ∨⋯∨ σ(t′k2) ...∈ D′

k2) ∈ Ξ∗.
But Ξ∗ is maximal consistent with respect to the deductive system H(Γ,Λ) and σ(t′1),...,
σ(t′k2) are nameless terms, so it follows that there exist j ∈ {1, . . . , k2} such that

∀(σ(t′j) ...∈ D′
j) ∈ Ξ∗.

Once defined the F-structure (A, IA,P), let us check that for each t, t1, t2 ∈ RelTerm, D ∈ D,
v ∈ V , and denoting by ñ12 = names(t1) ∪ names(t2) and ñ = names(t),

(A, IA),ρv ⊩loc ϕ iff v (pϕ) = 1 for each ϕ ∈ Eq(N) ∪DRes(N):
(A, IA),ρv ⊩loc t1 ≈ t2 iff !t1"ρ

v

A = !t2"ρ
v

A

iff [t1]ñ12
c̃v,n12

≡ [t2]ñ12
c̃v,n12

iff ∀([t1]ñ12
c̃v,n12

≈ [t2]ñ12
c̃v,n12

) ∈ Ξ∗
iff ∀([t1]ñ12

c̃v,n12
≈ [t2]ñ12

c̃v,n12
) ∈M (by Remark 4.4.7)

iff v (pt1≈t2) = 1
(A, IA),ρv ⊩loc t ∈ D iff !t"ρ

v

A ∈ IA(D)
iff [[t]ñc̃v,n]≡ ∈ IA(D)
iff ∀([t]ñc̃v,n ∈ D) ∈ Ξ∗
iff ∀([t]ñc̃v,n ∈ D) ∈M (by Remark 4.4.7)

iff v (pt∈D) = 1
By induction we easily conclude that for each ϕ ∈ subform(δ) ∩ Loc and v ∈ V,

(A, IA),ρv ⊩loc ϕ iff v (propϕ) = 1. (4.12)

It remains to prove that, actually, (A, IA,P) is a model for δ. For that, recall that δ is given

in DNF by
m⋁
j=1 (∀ψj

1 ∧ . . . ∧ ∀ψj
nj ∧ ¬∀ϕj

1 ∧ . . . ∧ ¬∀ϕj
kj
∧ ξj1 ∧ . . . ∧ ξjsj) and let us check that we

have a model for the jth disjunct.

• For each s ∈ {1, . . . , nj} and v ∈ V , ψj
s ∈ subform(δ) ∩ Loc and v (propψj

s
) = 1, so, by (4.12),

(A, IA),ρv ⊩loc ψ
j
s, and it follows that (A, IA,S) ⊩ ∀ψj

s.

111

• For each % ∈ {1, . . . , kj}, ϕj
" ∈ subform(δ) ∩ Loc, and there exists v" ∈ V1 such that

v" (propϕj
$
) = 0. Then (A, IA),ρv$ /⊩loc ϕ

j
" and so (A, IA,S) ⊩ ¬∀ϕj

" .

• Finally, since π satisfies the GenPSAT instance (Hj , Sj), given r ∈ {1, . . . , sj}, in particular,

π satisfies ξjr . Let ξ
j
r be a probabilistic formula of the form q1 ⋅Pr(ϕ1) +⋯ + qn ⋅Pr(ϕn) 6 q,

with 6 ∈ {≥,<}, it follows that
q1 ⋅ ∑

v∈V ϕ1 π(v) +⋯ + qn ⋅ ∑v∈V ϕn π(v) 6 q

which, by (4.12) and by definition of P , is equivalent to
q1 ⋅ ∑

ρv∈Sϕ1
P(ρv) +⋯ + qn ⋅ ∑

ρv∈Sϕn
P(ρv) 6 q

that can be written as q1 ⋅ µ(Sϕ1) + ⋯ + qn ⋅ µ(Sϕn) 6 q and is exactly what we want:

(A, IA,P) ⊩ ξjr .
Notice that, given a global formula δ ∈ Glob written in DNF, Algorithm 4.1 makes a poly-

nomial number of calls to a couple of oracles: a SAT oracle and a GenPSAT oracle. It results in

high complexity costs. The DNFSAT-DEqPrL solver that we present is in PNP. Furthermore,

rewriting a given global formula into disjunctive normal form can lead to an explosion on the

length of the formula. For these reasons, even though Algorithm 4.1 is intuitive and easily

explained, it does not constitute the most efficient way to decide SAT-DEqPrL.

CNFSAT-DEqPrL problem

Despite the high complexity costs that we achieved with the presented DNFSAT-DEqPrL

algorithm, it has given us a valuable hint in the search for a more efficient satisfiability

algorithm. As we already know, we should focus on the problem whose input is given in CNF.

The CNFSAT-DEqPrL problem consists in deciding the existence of a model for a global

formula δ ∈ Glob given in conjunctive normal form. We analyze the CNFSAT-DEqPrL problem

inspired on the developments for GenPSAT presented in Chapter 3 and explore a polynomial

reduction to the Satisfiability Modulo Theories (SMT) with respect to the theory of quantifier-

-free linear arithmetic over the integers and reals (QF LIRA) [20].

On the details of the input formula: Assume that we are given a global formula

δ ∈ Glob given in CNF by
m⋀
j=1

nj⋁
i=1 δ

j
i . Since each conjunct of δ is a disjunction of literals in

∀Loc ∪ ¬∀Loc ∪ Prob ∪ ¬Prob, we can rewrite it as:
m⋀
j=1(∀ψ

j
1 ∨ . . . ∨ ∀ψj

nj
∨ ¬∀ϕj

1 ∨ . . . ∨ ¬∀ϕj
kj
∨ ξj1 ∨ . . . ∨ ξjsj) , (4.13)

where, for each r ∈ {1, . . . , sj}, the probabilistic literal ξjr is assumed to take the following

form: q(r,j,1) ⋅ Pr(ϕ(r,j,1)) +⋯ + q(r,j,"jr) ⋅ Pr(ϕ(r,j,"jr)) 6jr q(r,j), with 6jr ∈ {≥,<}.

112

Witnessing existential literals: Following the same motivation to address the need of

witnesses for existential literals as for CNFSAT-EqCL in Section 2.4, we need, at least, as many

copies of Bδ (4.6) as the number of existential formulas ¬∀Loc occurring in δ. In its description,

δ counts with ∑m
j=1 kj literals of ¬∀Loc, so the final set of propositional symbols should contain

all the required copies,
m⋃
j′=1

kj′⋃
"′=1{p[j

′,"′] ∣ p ∈ Bδ}. When kj′ = 0, kj′⋃
"′=1{p[j

′,"′] ∣ p ∈ Bδ} represents
the empty set.

Probability also deserves a witness: As we know, the probabilistic feature envisage a

probability distribution over the set of valuations. In this sense, we should not limit our

valuations to strictly represent witnesses for existential literals. Hence, we further need to

consider an extra copy of Bδ.
Interpreting ∀Loc and ¬∀Loc in the propositional context: Satisfying an element

of the form ∀ϕ imposes that ϕ must be verified in all possible outcome, whereas satisfying

a formula as ¬∀ϕ requires that at least one possible outcome satisfies ¬ϕ. Therefore, our

reduction to the propositional context must carry this sensitivity. In this way, the satisfiability

of those literals is tested using several labeled copies of propositional variables (one copy

for each literal of the form ¬∀Loc plus the original copy), as if they had embedded several

valuations. The labels are extended from the propositional variables to the propositional

formulas as expected.

Perfect tuning with GenPSAT: Prompted by the inclusion of SAT in GenPSAT, the

satisfiability of propositional formulas (representing literals in ∀Loc) is tested by assigning

to it probability 1. Accordingly, and inspired on the GenPSAT normal forms (see Chapter 3),

we realize that the probabilistic (propositional) formulas to be tested should be atomic. For

this purpose, we shall replace the propositional formulas occurring inside probabilistic (propo-

sitional) formulas by ghost propositional symbols. The existential literals are not supposed

to influence probabilities (they have their own witnesses), so we discard them for a moment.

Let us collect in SLoc all the appropriate local formulas, suggested by δ:

SLoc = m⋃
j=1({ψ

j
1, . . . ,ψ

j
nj
} ∪ sj⋃

r=1{ϕ(r,j,1), . . . ,ϕ(r,j,"jr)}) ,
and in G the corresponding propositional symbols:

G = m⋃
j=1({pψj

1
, . . . , pψj

nj
} ∪ sj⋃

r=1{pϕ(r,j,1) , . . . , pϕ(r,j,$jr)}) .
Furthermore, for each ψ ∈ SLoc, the [0,1]-variable αψ is intended to represent the probability

of ψ.

113

Incorporating Φδ: As we have already seen, in order to obtain a correct translation into

the propositional context, we should impose the requirements collected in Φδ (4.7). For this

purpose, all the considered copies of Bδ must verify those restrictions (with probability 1).

And so, we should keep a special propositional ghost symbol for this purpose, pφ, and a

variable to represent its probability, αφ.

The translation to QF LIRA: All these things considered, let

B̃ = Bδ ∪ m⋃
j′=1

kj′⋃
"′=1{p

[j′,"′] ∣ p ∈ Bδ} ∪ G ∪ {pφ}
represent the set of propositional symbols for our problem and denote by M the number of

elements of G ∪ {pφ}, M ≤ m∑
j=1(nj + sj∑

r=1 %
j
r) + 1. For ease of notation, let

ν ∶ SLoc ∪ {φ}→ {1, . . . ,M}
represent a bijection from the SLoc coupled with the symbol φ to the set {1, . . . ,M} such that

ν(φ) =M . Note that the inverse bijection ν−1 is such that ν−1({1, . . . ,M}) = SLoc ∪ {φ}.
Inspired in Subsection 3.3.2, let H = [hij] denote a (still unknown) matrix of size

M × (M + 1) whose columns represent the valuations over B̃ evaluated on each propositional

(ghost) symbol of G ∪ {pφ}, i.e., hik = vk (pν−1(i)) for each 1 ≤ i ≤ M and 1 ≤ k ≤ M + 1.
The (M + 1)-vector π = [πk] represents a probability distribution over {v1, . . . , vM+1}. As we

already mentioned, αψ represents the probability of each ψ ∈ SLoc and αφ aims to represent

the probability of Φδ.

In order to model all the possible valuations {v1, ..., vM+1}, we consider M +1 copies of B̃:
B∗ = M+1⋃

k=1 {
(k)p ∣ p ∈ B̃}.

Given F ⊆ B̃, we denote by (k)F the set {(k)p ∣ p ∈ F}.
The idea is to test the satisfiability of δ through the assertion

(prob)
m⋀
j=1
⎛
⎝

nj⋁
s=1 (αψj

s
= 1) ∨ kj⋁

"=1(
M+1⋁
k=1
(k)prop[j,"]¬ϕj

$

) ∨ sj⋁
r=1
⎛
⎝
"jr∑
s=1 q(r,j,s)αϕ(r,j,s) 6jr q(r,j)

⎞
⎠
⎞
⎠

subject to the additional assertions:

(prop pos)
M+1⋀
k=1 ((k)pψj

s
↔ (m⋀

j′=1
kj′⋀
"′=1

(k)prop[j′,"′]
ψj
s

∧ (k)propψj
s
)), for each ψj

s ∈ SLoc;

(prop prob)
M+1⋀
k=1 ((k)pϕ(r,j,s) ↔ (k)propϕ(r,j,s)), for each ϕ(r,j,s) ∈ SLoc;

114

(prop phi)
M+1⋀
k=1 ((k)pφ ↔ ⋀

φ∈Φδ (
m⋀
j′=1

kj′⋀
"′=1

(k)φ[j′,"′] ∧ (k)φ));
(prob phi) (αφ = 1);
(val1) (M+1∑

k=1 bik = αν−1(i)), for each i ∈ {1, . . . ,M};
(val2) ((0 ≤ bik ≤ hik) ∧ (hik − 1 + πk ≤ bik ≤ πk)), for each i ∈ {1, ...,M} and k ∈ {1, ...,M +1};
(cons) (hik = 1↔ (k)pν−1(i)), for each i ∈ {1, . . . ,M} and k ∈ {1, . . . ,M + 1};
(sums1) (M+1∑

i=1 πk = 1) .
So far we have introduced:

• 1 assertion (prob);

• ∑m
j=1 nj assertions (prop pos);

• ∑m
j=1 (∑sj

r=1 %jr) assertions (prop prob);

• 1 assertions (prop phi);

• M assertions (val1);

• M × (M + 1) assertions (val2);
• M × (M + 1) assertions (cons);
• 1 assertions (sums1).

Hence, we have O(M + M × (M + 1)) assertions, each of polynomial

size on the length of δ, over M × (M + 1) binary variables hij , M × (M + 1) real

variables bij , M real variables 0 ≤ αψ ≤ 1, (M + 1) real variables 0 ≤ πk ≤ 1 and

(M + 1) ⋅ (∣Bδ ∣ + ∣Bδ ∣ ⋅ m∑
j=1kj′ +M) propositional variables, where M = m∑

j=1(nj + sj∑
r=1 %

j
r) + 1.

Because of this, the presented translation to QF LIRA is polynomial.

The solver: We test the satisfiability of δ by translating it into a QF LIRA problem and

then solving the latter appropriately. The procedure is presented in Algorithm 4.2.

Given a global formula δ ∈ Glob written in conjunctive normal form, the CNFSAT-DEqPrL

solver tests the satisfiability of δ by reduction to a QF LIRA problem with polynomial size

on the length of δ. Note that we have fixed a convergent equational theory Γ and a set of

domain clauses Λ with the subterm property, so that the sets of propositional formulas Bδ
115

and Φδ are well defined and have polynomial size on the length of δ. The procedure consists

in initializing an empty QF LIRA problem and then use the following auxiliary procedures:

• assert introduces an assertion into the QF LIRA problem;

• qf lira solver returns Sat or Unsat depending on whether the problem is satisfiable or

not.

When the resulting QF LIRA problem is satisfiable, we conclude that δ is also satisfiable.

Algorithm 4.2 CNFSAT-DEqPrL solver based on SMT −QF LIRA

1: procedure CNFSATDEqPrL

2: input: CNF global formula δ:
m⋀
j=1 (∀ψj

1 ∨ ... ∨ ∀ψj
nj ∨ ¬∀ϕj

1 ∨ ... ∨ ¬∀ϕj
kj
∨ ξj1 ∨ ... ∨ ξjsj)

3: output: Sat or Unsat depending on whether δ is satisfiable or not

4: assume: M ∶= m∑
j=1(nj + sj∑

r=1 %
j
r) + 1

5: ν ∶ SLoc ∪ {φ}→ {1, . . . ,M} is a bijection

6: declare: propositional variables:
M+1⋃
k=1 ((k)Bδ∪

m⋃
j′=1

kj′⋃
"′=1{(k)p[j

′,"′] ∣ p ∈ Bδ} ∪ (k)G ∪ {(k)pφ})
7: binary variables: hik, for i ∈ {1, . . . ,M}, k ∈ {1, . . . ,M + 1}
8: [0,1]-variables: αν−1(i),πk, bik, for i ∈ {1, . . . ,M}, k ∈ {1, . . . ,M + 1}
9: for j = 1 to m do

10: assert(M+1⋀
k=1

nj⋀
s=1((k)pψj

s
↔ (m⋀

j′=1
kj′⋀
"′=1

(k)prop[j′,"′]
ψj
s

∧ (k)propψj
s
))) ▷ (prop pos)

11: assert
⎛
⎝
M+1⋀
k=1

sj⋀
r=1

"jr⋀
s=1 ((k)pϕ(r,j,s) ↔ (k)propϕ(r,j,s))⎞⎠ ▷ (prop prob)

12: for i = 1 to M do

13: assert(M+1∑
k=1 bik = αν−1(i)) ▷ (val1)

14: for k = 1 to M + 1 do

15: assert ((0 ≤ bik ≤ hik) ∧ (hik − 1 + πk ≤ bik ≤ πk)) ▷ (val2)

16: assert (hik = 1↔ (k)pν−1(i)) ▷ (cons)

17: assert
⎛
⎝

m⋀
j=1
⎛
⎝

nj⋁
s=1(αψj

s
=1) ∨ kj⋁

"=1(
M+1⋁
k=1
(k)prop[j,"]¬ϕj

$

) ∨ sj⋁
r=1
⎛
⎝
"jr∑
s=1 q(r,j,s)αϕ(r,j,s)6jr q(r,j)

⎞
⎠
⎞
⎠
⎞
⎠▷ (prob)

18: assert(M+1⋀
k=1 ((k)pφ ↔ ⋀

φ∈Φδ (
m⋀
j′=1

kj′⋀
"′=1

(k)φ[j′,"′] ∧ (k)φ))) ▷ (prop phi)

19: assert (αφ = 1) ▷ (prob phi)

20: assert(M+1∑
k=1 πk = 1) ▷ (sums1)

21: return qf lira solver() ▷ return Sat if the assertions are satisfiable, Unsat otherwise

116

For the sake of illustration, we now use this algorithm to decide whether a global formula

is satisfiable or not. Later on, we will illustrate the importance of each variable of the QF LIRA

problem in the construction of a model.

Example 4.4.9. Recall Example 4.1.1 and consider the signature Fxor, the equational theory

Γxor and the axiomatization Λxor. Let us test the satisfiability of the CNF global formula:

Pr(n ≈ zero) ≤ 2

3
⋅ Pr(n ∈ even) ∧ ∀(n ∈ even) ∧ (¬Pr(n ≈ zero) ≤ 2

3
∨ ¬∀suc(n) ∈ odd) ,

with n ∈ N. We start by noting that RelTermδ = {n, zero, suc(n)} and defining Φδ. The parame-

ters that come into play when the formula is seen in the CNF form (4.13),
m⋀
j=1 (∀ψj

1 ∨ ... ∨ ∀ψj
nj ∨ ¬∀ϕj

1 ∨ ... ∨ ¬∀ϕj
kj
∨ ξj1 ∨ ... ∨ ξjsj) , are:

j = 1 ∶ n1 = 0 k1 = 0 s1 = 1 %11 = 2
j = 2 ∶ n2 = 1 k2 = 0 s2 = 0
j = 3 ∶ n3 = 0 k3 = 1 s3 = 1 %13 = 1

Note that

SLoc={n≈zero, n∈even}
and consider the bijection ν ∶ SLoc ∪{φ} → {1,2,3} such that ν(n ≈ zero) = 1, ν(n ∈ even) = 2,
ν(φ) = 3.

To clarify the following observations, let us remind all the relevant assertions that will

allow us to draw a conclusion about the satisfiability of the formula:

(prob)
m⋀
j=1
⎛
⎝

nj⋁
s=1 (αψj

s
= 1) ∨ kj⋁

"=1(
M+1⋁
k=1
(k)prop[j,"]¬ϕj

$

) ∨ sj⋁
r=1
⎛
⎝
"jr∑
s=1 q(r,j,s)αϕ(r,j,s) 6jr q(r,j)

⎞
⎠
⎞
⎠

(prop pos)
M+1⋀
k=1 ((k)pψj

s
↔ (m⋀

j′=1
kj′⋀
"′=1

(k)prop[j′,"′]
ψj
s

∧ (k)propψj
s
)), for each ψj

s ∈ SLoc;

(val1) (M+1∑
k=1 bik = αν−1(i)), for each i ∈ {1, . . . ,M};

(val2) ((0 ≤ bik ≤ hik) ∧ (hik − 1 + πk ≤ bik ≤ πk)), for each i ∈ {1, ...,M} and k ∈ {1, ...,M +1};
(cons) (hik = 1↔ (k)pν−1(i)), for each i ∈ {1, . . . ,M} and k ∈ {1, . . . ,M + 1}.

For the given formula, the assertion (prob) reads like

(αn≈zero ≤ 2

3
⋅ αn∈even) ∧ (αn∈even = 1) ∧ (αn≈zero > 2

3
∨ 4⋁

k=1
(k)prop[3,1]¬suc(n)∈odd) ,

which together with the remaining assertions carefully described in Algorithm 4.2 is unsatis-

fiable. To check that, assume that it would have a solution (denoted by x∗ for each variable

x) and let us derive a contradiction.

117

Begin noting that by (val1), bν−1(n∈even),k ranges in the interval [0,πk] for each

k ∈ {1, . . . ,5}. Once α∗n∈even = 1, then every bν−1(n∈even),k should coincide with πk and, by

(val2), h∗ν−1(n∈even),k = 1 for every k ∈ {1,2,3,4,5}. Then, by (cons), (k)pn∈even holds. But, by

(prop pos) this means that for each k, (k)prop[3,1]n∈even ∧ (k)propn∈even also holds.

Observing that (n ∈ even→ suc(n) ∈ odd) ∈ Φδ, it follows that for each k,

(k)prop[3,1]suc(n)∈odd ∧ (k)propsuc(n)∈odd holds. (4.14)

Then, we have that (k)prop[3,1]¬suc(n)∈odd does not hold for every k. On the other hand, since

α∗n≈zero ≤ 2
3 , there is no way for the last conjunct to hold and we conclude that the formula is

unsatisfiable. △
Now that we checked how to apply the procedure, let us prove its correctness.

Lemma 4.4.10. If Γ is a convergent equational theory and Λ is a set of domain clauses with

the subterm property, a global formula δ ∈ Glob in CNF is satisfiable iff Algorithm 4.2 returns

Sat.

Proof of Lemma 4.4.10. Assume that Γ is a convergent equational theory, Λ is a set of domain

clauses with the subterm property and let δ ∈ Glob be any global formula in CNF. To prove

the direct implication, consider an F-structure (A, IA,P) with P = (S,A , µ) and satisfying δ:

(A, IA,P) ⊩ m⋀
j=1

nj⋁
i=1 δ

j
i . Since each δji is a literal, we can rewrite it as

(A, IA,P) ⊩ m⋀
j=1(∀ψ

j
1 ∨ . . . ∨ ∀ψj

nj
∨ ¬∀ϕj

1 ∨ . . . ∨ ¬∀ϕj
kj
∨ ξj1 ∨ . . . ∨ ξjsj). (4.15)

Recall the construction carried out in the proof of completeness of DEqPrL, and which

was revisited in the proofs of Lemmas 4.4.2 and 4.4.4. Let Ω be the set of the local formulas

occurring inside the probabilistic literals occurring in δ, Ω = m⋃
j=1 InPr(ξj1) ∪ . . . ∪ InPr(ξjsj), and

define the suitable atoms Θ = { ⋀
γ∈Υγ ∧ ⋀

ω∈Ω∖Υ¬ω ∣ Υ ⊆ Ω} . We assign an outcome ρθ ∈ S for

each θ ∈ Θ such that Sθ ≠ ∅ and consider the set of valuations V1 ⊆ {0,1}Bδ arising from this

construction:

V1 = {vρθ ∣ θ ∈ Θ and Sθ ≠ ∅}.
Notice that V1 ≠ ∅ due to the suitable construction of Θ, which implies that ⋃

θ∈ΘSθ = S.
Furthermore, let us collect in V2 one valuation that attests the satisfiability of each exis-

tential literal, when it does exist, and a valuation arising from any other outcome in S when

this disjunct is not satisfiable:

V2 = m⋃
j=1

kj⋃
"=1({vρϕj$ ∣ (A, I

A),ρϕj
$ ⊩loc ¬ϕj

"} ∪ {vρ ∣ ρ ∈ S and (A, IA,P) ⊩ ∀ϕj
"}) .

118

Consider the set of valuations over the wider set of propositional symbols B̃,
V ∗
1 = {v∗ρθ ∣ θ ∈ Θ,Sθ ≠ ∅}

where, for each θ ∈ Θ with Sθ ≠ ∅, v∗ρθ ∶ B̃ → {0,1} is the valuation based on vρθ that

incorporates the information of every valuation that attests the satisfiability of existential

literals and is collected in V2. Thus, v
∗
ρθ is defined by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v∗ρθ(p) = vρθ(p)
v∗ρθ (p[j,"]) = v

ρ
ϕ
j
$
(p)

v∗ρθ (pϕ(r,j,s)) = vρθ (propϕ(r,j,s))
v∗ρθ (pψj

s
) = m∏

j=1
kj∏
"=1 vρϕj$ (propψj

s
) ⋅ vρθ (propψj

s
)

v∗ρθ (pφ) = ∏
φ∈Φ

m∏
j=1

kj∏
"=1 vρϕj$ (φ) ⋅ vρθ(φ)

A probability distribution π ∶ {0,1}B̃ → [0,1] is then defined using µ,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
π(v∗ρθ) = µ(Sθ) , for each θ ∈ Θ such that Sθ ≠ ∅
π(v) = 0 , for the remaining v ∈ {0,1}B̃ ∖ V ∗

1 .

We observe that π is obviously a probability distribution over {0,1}B̃ since it is always non-

negative and, recalling that ⋃
θ∈ΘSθ = S and Sθ1 ∩ Sθ2 = ∅ whenever θ1 ≠ θ2, π sums up to

1:

∑
v∈{0,1}B̃

π(v) = ∑
θ∈Θ

π(v∗ρθ) = ∑
θ∈Θ

µ(Sθ) = 1.
It remains to check that the assertions are satisfied. To check that (val1) and (val2) are

satisfied, let us begin by establishing the probabilities of each propositional symbol in G: given

i ∈ {1, . . . ,M},
α∗ν−1(i) = ∑

v∗∈V ∗1
v∗(p

ν−1(i))=1

π(v∗).

Then, consider the system of linear inequalities

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

H π = α∗
∑πi = 1
π ≥ 0

(4.16)

119

where H is a M ×K matrix of binary variables whose columns represent the valuations of V1

evaluated on each propositional (ghost) symbol of G∪ {pφ}. Notice that, since Ω has
m∑
j=1

sj∑
k=1 %

j
r

local formulas, V1 has at most 2

m∑
j=1

sj∑
k=1 "

j
r

valuations. K represents the number of elements

of V1. Furthermore, π is a K-vector of [0,1]-variables that aims to represent a probability

distribution, and α∗ is the (M + 1)-vector of reals α∗ = [α∗ν−1(i)].
A solution for (4.16) is found by considering an enumeration for the valuations in V1 and

then defining H∗ = [h∗ik] with
h∗ik = v∗k (pν−1(i))

and the K-vector π∗ = [πk] with
π∗k = π(v∗k).

Using Lemma 1.2.3, we also conclude that there exists a solution for (4.16) with at most

M + 1 positive entries, which obviously satisfies (sums1) and, considering

b∗ik = h∗ik ⋅ π∗k ,
also satisfies (val1) and (val2). Assume without loss of generality that the non-negative entries

referred by Lemma 1.2.3 are within the first M + 1 columns of H∗ and, from now on, let H∗
and π∗ represent only the first M + 1 valuations {v∗1 , . . . , v∗M+1}.

Now, for each i ∈ {1, . . . ,M} and k ∈ {1, . . . ,M+1}, let us assign boolean values to (k)pν−1(i)
according to v∗k : (k)pν−1(i) is true iff v∗k (pν−1(i)) = 1.
The satisfiability of (prop pos), (prop prob) and (prop phi) is an immediate consequence of the

definition of v∗k , for each k ∈ {1, . . .M}.
For the remaining assertions, recall that (A, IA,P) is a model for δ. Hence, for each

j ∈ {1, . . . ,m}, at least one of the following cases occur:

• either there exists % ∈ {1, . . . , kj} such that (A, IA,P) ⊩ ¬∀ϕj
" and, in that case,

exists v
ρ
ϕ
j
$
∈ V2 such that v

ρ
ϕ
j
$
(¬propϕj

$
) = 1 and so, for each v∗ρθ ∈ V ∗

1 ,

v∗ρθ (¬prop[j,"]ϕj
$

) = 1, which implies that for each k ∈ {1, . . . ,M + 1}, v∗k (¬prop[j,"]ϕj
$

) = 1

and so (k)prop[j,"]¬ϕj
$

holds;

• or there exists s ∈ {1, . . . , nj} such that (A, IA,P) ⊩ ∀ψj
s, so, for every ρ ∈ S,

(A, IA),ρ ⊩loc ψ
j
s. Since every valuation in V1 ∪ V2 derives from an outcome in S, it

follows that every valuation in V1 ∪ V2 satisfies propψj
s
and by definition of α∗

ψj
s
we have

α∗
ψj
s
= 1;

120

• or there exists r ∈ {1, . . . , sj} such that (A, IA,P) ⊩ ξjr , where ξjr is a probabilistic

literal of the form q(r,j,1) ⋅ Pr (ϕ(r,j,1)) +⋯ + q(r,j,ljr) ⋅ Pr (ϕ(r,j,ljr)) 6jr q(r,j). Assume that

ν (ϕ(r,j,s)) = ts for each s ∈ {1, . . . , %jr}, and pay attention to the following sequence of

(in)equalities:

"jr∑
s=1 q(r,j,s)α

∗
ϕ(r,j,s) = "jr∑

s=1 q(r,j,s)α
∗
ν−1(ts) =

"jr∑
s=1 q(r,j,s)

K∑
k=1 b

∗
ts,k
= "jr∑

s=1 q(r,j,s) (
K∑
k=1h

∗
ts,k

⋅ π∗k) =
= "jr∑

s=1 q(r,j,s)
⎛
⎝ ∑v∗∈V ∗

1

v∗ (pν−1(ts)) ⋅ π(v∗)⎞⎠ =
"jr∑
s=1 q(r,j,s)

⎛⎜⎝ ∑θ∈Θ
Sθ≠∅

vρθ (propν−1(ts)) ⋅ π(vρθ)⎞⎟⎠ =

= "jr∑
s=1 q(r,j,s)

⎛⎜⎜⎝ ∑
θ∈Θ st Sθ≠∅
θ→ϕ(r,j,s)

π(vρθ)
⎞⎟⎟⎠ =

"jr∑
s=1 q(r,j,s)

⎛⎜⎜⎝ ∑
θ∈Θ st Sθ≠∅
θ→ϕ(r,j,s)

µ(Sθ)⎞⎟⎟⎠ =

= "jr∑
s=1 q(r,j,s)µ(Sϕ(r,j,s)) 6jr q(r,j) .

Hence we conclude that (prob) is satisfiable.

Additionally, each valuation in V1 ∪ V2 satisfies Φδ since (A, IA,P) satisfies all instances

of Eq1-Eq4, DEq, E(Γ), D(Λ), and it follows that α∗φ = 1 and so (prob phi) is satisfied. We

conclude that Algorithm 4.2 returns Sat.

For the reciprocal implication, assume that Algorithm 4.2 returns Sat. Let w denote the

valuation over B∗ that assigns Boolean values to the propositional symbols in B∗ and satisfies

the assertions (prop pos), (prop prob), (prop phi), and let us mark as x∗ the solution for each

variable x in assertions (val1), (val2), (prob), (prob phi), (sums1) and also (prob).

Below are presented several steps, where we refine the valuation w until reaching a final

set of valuations V, derived from w, defined over the set of propositional symbols Bδ.
First Step: Let W = {w1, . . . ,wM+1} be the set of valuations such that, for each

k ∈ {1, . . . ,M + 1}, wk ∶ B̃ → {0,1} is defined from w as:

wk(p) = w ((k)p) .
Then, consider the probability distribution π ∶W → [0,1] such that π(wk) = π∗k .

Second Step: Consider a subset W0 = {wk1 , . . . ,wkz} ⊆ W of the valuations with positive

probability: W0 = {w ∈W ∣ π(w) > 0}. Due to assertion (sums1), W0 ≠ ∅.
It is time to highlight some remarks. Notice that for each j ∈ {1, . . . ,m}:
(i) either there exists s ∈ {1, . . . , nj} such that α∗

ψj
s
= 1, which implies that h∗

ν(ψj
s),k = 1

for every k ∈ {k1, . . . , kz}, and so (k)pψi
s
holds for every k ∈ {k1, . . . , kz} and, by

(prop pos), wk (prop[j,"]
ψj
s
) = wk (propψj

s
) = 1, for every k ∈ {k1, ..., kz}, j ∈ {1, ...,m}

and % ∈ {1, ..., kj};
121

(ii) or there exists % ∈ {1, . . . , kj} for which there exists k[j,"] such that (k[j,$])prop[j,"]¬ϕj
$

holds;

(iii) or either there exists r ∈ {1, . . . , sj} for which
"jr∑
s=1 q(r,j,s) ⋅ α∗ϕ(r,j,s) 6jr q(r,j). Assume

that, for each s ∈ {1, . . . , %jr}, ts = ν(ϕ(r,j,s)), and let us ease notation and denote by

V ϕ = {w ∈ V ∣ w (pϕ) = 1}. These leads to the following equivalences:

"jr∑
s=1 q(r,j,s) ⋅ α∗ϕ(r,j,s) 6jr q(r,j)

iff
"jr∑
s=1 q(r,j,s) (

M+1∑
k=1 b∗ts,k) 6jr q(r,j)

iff
"jr∑
s=1 q(r,j,s)

⎛⎜⎜⎜⎝
∑

k∈{k1,...,kz}
h∗
ts,k

=1
π∗k
⎞⎟⎟⎟⎠
6jr q(r,j)

iff
"jr∑
s=1 q(r,j,s)

⎛⎜⎝ ∑
w∈Wϕ(r,j,s)

0

π(w)⎞⎟⎠ 6
j
r q(r,j)

iff
"jr∑
s=1 q(r,j,s) (∑

w∈Wϕ(r,j,s)
π(w)) 6jr q(r,j).

Furthermore, since α∗φ = 1, vk(φ[j,"]) = vk(φ) = 1, for every k ∈ {k1, . . . , kz}, j ∈ {1, . . . ,m}
and % ∈ {1, . . . , kj}.

Third Step: Now consider a finest set of valuations over the set of propositional

symbols Bδ:
V = m⋃

j=1
kj⋃
"=1{v[j,"] ∣

(k[j,$])prop[j,"]¬ϕj
$

holds} ∪ {vk1 , . . . , vkz} ⊆ {0,1}Bδ ,
where, for each p ∈ Bδ,

v[j,"](p) = wk[j,$] (p[j,"])
vk1(p) = wk1(p)⋮
vkz(p) = wkz(p)

Let π0 denote the probability distribution π0 ∶ V → [0,1] defined by:

π0(vk1) = π∗k1⋮
π0(vkz) = π∗kz
π0(v) = 0 for any v ∈ V ∖ {vk1 , . . . , vkz}

Notice that ∑
v∈V π0(v) = 1.

122

Now we aim at deriving a model for δ form the valuations in V. For this purpose, we

follow the same reasoning as for DNFSAT-DEqPrL and extend F with new constants cv,n, for

each n ∈ N and v ∈ V . Let F∗ be an extension of F as described in (4.8). Then, consider the

consistent set M = ⋃
i∈IMi ⊆ Glob∅F∗ defined inductively on (4.9) and take a maximal consistent

set Ξ∗ extending M , whose existence is guaranteed by the Lindenbaum’s Lemma. Consider

the quotient F∗-algebra A = TF∗(∅)/≡∗ derived from the congruence relation defined by t1 ≡∗ t2
iff ∀(t1 ≈ t2) ∈ Ξ∗. The interpretations for domain names are taken according to the maximal

consistent set Ξ∗, IA ∶ D → ℘(A) is defined as IA(D) = {[t]≡ ∣ ∀(t ∈ D) ∈ Ξ∗ and t ∈ TF∗(∅)}
for each D ∈ D.

Then, we translate valuations into outcomes, defining an outcome ρv ∶ N → A for each

valuation v ∈ V as ρv(n) = [cv,n]≡. The set of outcomes is the set S = {ρv ∣ v ∈ V}. Note

that S ≠ ∅ provided that W0 ≠ ∅. Regarding the probabilistic component, let us import the

probabilities on the propositional level through the probability distribution P ∶ S → [0,1]
defined by P(ρv) = π0(v) for each ρv ∈ S. A probability space P = (S,A , µ) is then defined

using the discrete σ-algebra A over S, and the probability measure µ ∶ A → [0,1] defined by

µ(X) = ∑
ρ∈XP(ρ).

The conclusion that (A, IA,P) is actually an F-structure follows by the straightforward

verification that µ is a probability measure. The verification that A satisfies Γ, that (A, IA)
verifies Λ and that

(A, IA),ρv ⊩loc ϕ iff v (pϕ) = 1 for each ϕ ∈ Eq(N) ∪DRes(N):
results from the same observations used in the context of DNFSAT-DEqPrL. Again, we con-

clude that for each ϕ ∈ subform(δ) ∩ Loc and v ∈ V,
(A, IA),ρv ⊩loc ϕ iff v(propϕ) = 1. (4.17)

From (4.17), we conclude that (A, IA,P) is model for δ just by recalling remarks (i)-(iii).

The satisfiability proof gives us a way to effectively define the valuations that will lead to

the final model of a satisfiable global formula. Let us illustrate this construction in a small

example.

Example 4.4.11. Consider the signature Fxor, the equational theory Γxor and the axiomati-

zation Λxor that we have been using and was introduced in Example 4.1.1. Furthermore, let

us consider the satisfiable CNF global formula

Pr(n ≈ zero) ≤ 2

3
⋅ Pr(¬n ∈ even) ∧ ¬∀(n ∈ even) ∧ ¬∀(n ∈ odd).

Note that SLoc={n≈zero,¬n∈even} and consider ν(n ≈ zero) = 1, ν(¬n ∈ even) = 2, ν(φ) = 3.
123

Now, for instance, the assertion (prob) presented in page 114 would read like:

(αn≈zero ≤ 2

3
⋅ α¬n∈even) ∧ (3⋁

k=1
(k)prop[2,1]¬n∈even) ∧ (3⋁

k=1
(k)prop[3,1]¬n∈odd).

Consider a solution for the QF LIRA problem composed by the values x∗ for each variable x

and by a valuation w over B∗, and let us sketch the construction of the model.

Along the reciprocal implication we are driven among the several valuations that will

afterwards lead to the outcomes that constitute the model for the given formula. We start

by realizing the existence of a valuation vk[2,1] such that vk[2,1](prop[2,1]¬n∈even) = 1 and another

valuation vk[3,1] such that vk[3,1](prop[3,1]¬n∈odd) = 1. Then, we are able to show up the final set

of valuations, v[2,1], v[3,1], v1, v2, v3, v4, over Bδ, defined by:

v[2,1](p) = wk[2,1](p[2,1]),
v[3,1](p) = wk[3,1](p[3,1]),

vk(p) = wk(p), for each p ∈ Bδ, k ∈ {1,2,3,4}.
The probability distribution π0 is, in this way, strictly assigned to the last set of valuations:

π0(v[2,1]) = 0,

π0(v[3,1]) = 0,

π0(vk) = π∗k , for each k.

Note that at least one valuation satisfies each propositional formula corresponding to the

existential conjuncts and the probability distribution is faithful to the probabilistic constraints.

The model for the given global formula arises by a construction similar to the one described

in the proof of completeness. △
Tseitin-like transformation on DEqPrL

So far, we have described two algorithms to decide the satisfiability of a global formulas. For

DNFSAT-DEqPrL, we argued that although we did not present the most efficient algorithm,

transforming a global formula into DNF would not also be the best choice, as it eventually

would lead to an explosion in the length of the formula. The same arguments can be used

against the transformation of a global formula into CNF. Luckily, we also have a Tseitin-like

transformation for DEqPrL, which provides us a method to transform any global formula

into an equisatisfiable CNF formula with linear size on the length of the original formula, and

allows us to take advantage of the CNFSAT-DEqPrL solver.

Following the same idea as for EqCL (see Section 2.4.1), the idea is to introduce additional

atoms ∀(nδ′1 ≈ nδ′2) for every non-atomic subformula δ′ of δ, ensure that ∀(nδ′1 ≈ nδ′2)↔ δ′ and,
in the end, additionally ensure that the former formula is satisfied by imposing ∀(nδ1 ≈ nδ2).

124

In this sense, given a global formula δ ∈ Glob, we consider the set of all subformulas of δ that

are not atoms, subform(δ)∖(∀Loc∪Prob), and fix a pair of new (and distinct) names for each

of them. To ease notation, we denote by GA(δ′) the atom corresponding to the subformula

δ′ ∈ (subform(δ) ∖ (∀Loc ∪ Prob)). Furthermore, we abuse notation and also denote an atom

δ′ ∈ (subform(δ) ∩ (∀Loc ∪ Prob)) by GA(δ′). In short,

GA(δ′) = ⎧⎪⎪⎨⎪⎪⎩
δ′ if δ′ ∈ (∀Loc ∪ Prob)
∀(nδ′1 ≈ nδ′2) otherwise

For each subformula δ′ ∈ (subform(δ)∖ (∀Loc∪Prob)), we define the additional conjuncts

tc(δ′) representing the equivalence GA(δ′)↔ δ′ in CNF according to the structure of δ′:
tc(¬ψ) = (GA(¬ψ) ∨GA(ψ)) ∧ (¬GA(¬ψ) ∨ ¬GA(ψ));
tc(ψ1∧ψ2)=(¬GA(ψ1∧ψ2)∨GA(ψ1))∧(¬GA(ψ1∧ψ2)∨GA(ψ2))∧(GA(ψ1∧ψ2)∨¬GA(ψ1)∨¬GA(ψ2));
tc(ψ1 ∨ψ2)=(GA(ψ1∨ψ2)∨¬GA(ψ1))∧ (GA(ψ1∨ψ2)∨¬GA(ψ2))∧ (¬GA(ψ1∨ψ2)∨GA(ψ1)∨GA(ψ2)).

We define the Tseitin-like transformation on DEqPrL simply as:

tt(δ) = GA(δ) ∧ ⋀
δ′∈(subform(δ)∖(∀Loc∪Prob)) tc(δ

′).
Notice that the obtained CNF formula has linear size on the length of δ, since subform(δ)

has linear size on the length of δ and the transformation tc(⋅) increments the length of the

formula only by a constant. Furthermore, just like for EqCL (see Lemma 2.4.9), as a corollary

of the previous construction we have the following Lemma.

Lemma 4.4.12. Given δ ∈ Glob, there exists an equisatisfiable formula δ′ ∈ Glob in conjunctive

normal form whose length is linear on the length of δ and can be computed in polynomial time.

Example 4.4.13. In the context of Example 4.2.2, for instance, we can use the Tseitin-like

transformation for DEqPrL to obtain an equisatisfiable formula in CNF for

(∀(k ≈ k∗) ∨ Pr(k ≈ k∗) ≥ α)→ Pr ({{n}k}−1k∗ ≈ π2(a,n)) ≥ α,
for some 0 ≤ α ≤ 1, as follows: begin by rewriting the formula without the connective →,
introduced by abbreviation, and then identify its non-atomic subformulas:

¬
δ1LMMMNMMMO(∀(k ≈ k∗) ∨ Pr(k ≈ k∗) ≥ α)PMMMQMMR
δ2

∨ Pr ({{n}k}−1k∗ ≈ π2(a,n)) ≥ α
PMMMQMMMR

δ

.

The CNF formula equisatisfiable to δ is:

tt(δ) = GA(δ) ∧ tc(δ1) ∧ tc(δ2) ∧ tc(δ),
125

where

tc(δ1) = (GA(δ1) ∨ ¬∀(k ≈ k∗)) ∧ (GA(δ1) ∨ ¬Pr(k ≈ k∗) ≥ α) ∧ (¬GA(δ1) ∨ ∀(k ≈ k∗) ∨ Pr({{n}k}−1k∗ ≈ π2(a,n)) ≥ α),
tc(δ2) = (GA(δ2) ∨GA(δ1)) ∧ (¬GA(δ2) ∨ ¬GA(δ1)),
tc(δ) = (GA(δ) ∨ ¬GA(δ2)) ∧ (GA(δ) ∨ ¬Pr ({{n}k}−1k∗ ≈ π2(a,n)) ≥ α) ∧ (¬GA(δ) ∨ Pr({{n}k}−1k∗ ≈ π2(a,n)) ≥ α).

△
SAT-DEqPrL problem

In general, we are looking for a procedure to decide the SAT-DEqPrL problem. Fortunately,

the Tseitin-like transformation for DEqPrL and the CNFSAT-DEqPrL solver will greatly ease

our task. Given a global formula δ ∈ Glob, we seek out an equisatisfiable formula δ′ in CNF

and then use the CNFSAT-DEqPrL solver to decide about the existence of a model for δ′ (and
for δ).

Theorem 4.4.14. If Γ is a convergent equational theory and Λ is a set of domain clauses

with the subterm property, then the SAT-DEqPrL problem is decidable.

Proof. Given a global formula δ ∈ Glob, we use the Tseitin-like transformation for DEqPrL

to convert δ into an equisatisfiable formula tt(δ) in conjunctive normal form. Then, we run

the CNFSAT-DEqPrL solver presented in Algorithm 4.2 on tt(δ). If CNFSAT-DEqPrL returns

Sat then tt(δ) has a model, and so δ has a model; if it returns Unsat, then tt(δ) is unsatisfiable
and δ is also unsatisfiable.

4.4.2 Validity

The decidability of the logic follows as an immediate corollary of the satisfiability result.

Theorem 4.4.15. If Γ is a convergent equational theory and Λ is a set of domain clauses

with the subterm property, then the logic is decidable.

Proof. Since the deduction metatheorem holds, given a finite set ∆ ⊆ Glob and a formula

ϕ ∈ Glob, proving ∆ ⊢(Γ,Λ) ϕ is equivalent to proving that ⊢(Γ,Λ) ((⋀ψ∈∆ψ) → ϕ), so we

proceed by checking the decidability of the validity problem. Let δ ∈ Glob be an arbitrary

formula. We decide whether ⊢(Γ,Λ) δ or /⊢(Γ,Λ) δ by testing the satisfiability of ¬δ: if ¬δ is

satisfiable, since the logic is sound, we conclude that /⊢(Γ,Λ) δ; if ¬δ is not satisfiable, we can

use completeness to conclude that ⊢(Γ,Λ) δ.
Let us illustrate our decision procedure on a concrete example.

126

Example 4.4.16. Recall the signature Fxor, the equational theory Γxor and the axiomatiza-

tion Λxor. Given n ∈ N, we conclude that the formula

(Pr(n ≈ zero) ≤ 2

3
⋅ Pr(n ∈ even) ∧ ∀(n ∈ even))→ (Pr(n ≈ zero) ≤ 2

3
∧ ∀(suc(n) ∈ odd))

is valid provided that we proved in Example 4.4.9 that its negation is not satisfiable.

Similarly, we can use Example 4.4.11 to conclude that:

Pr(n ≈ zero) ≤ 2

3
⋅ Pr(¬n ∈ even) /⊢(Γxor,Λxor) ∀(n ∈ even) ∨ ∀(n ∈ odd). △

4.4.3 Complexity

The satisfiability result highlights a way of deciding SAT-DEqPrL by reduction to a QF LIRA

solver, under the assumption that Γ is a convergent equational theory and Λ is a set of

domain clauses with the subterm property. In fact, our analysis revealed a reduction from

SAT-DEqPrL to CNFSAT-DEqPrL and, furthermore, from CNFSAT-DEqPrL to QF LIRA. Given

the satisfiability result, we explored soundness and completeness of DEqPrL to derive the

decidability result. We will now analyse complexity of the procedures previously obtained.

The complexity of CNFSAT-DEqPrL

As we already observed, the CNFSAT-DEqPrL solver presented in Algorithm 4.2 exhibits a way

to transform a global formula δ written in CNF as
m⋀
j=1(∀ψj

1 ∨ . . . ∨ ∀ψj
nj ∨ ¬∀ϕj

1 ∨ . . . ∨ ¬∀ϕj
kj
)

into O(M +M × (M + 1)) QF LIRA assertions, where M = ∑m
j=1 (nj + kj +∑sj

r=1 %jr) + 1. Since

Φδ has polynomial size on the length of δ, provided that Γ is given by means of a convergent

rewriting system and Λ is a set of domain clauses with the subterm property, each assertion

has polynomial size on the length of δ. For these reasons, Algorithm 4.2 exhibits a polynomial

reduction from CNFSAT-DEqPrL to QF LIRA.

The complexity result for the satisfiability problem CNFSAT-DEqPrL is parametric and

also depends on the complexity of determining normal forms for terms with respect to the

equational specification of the algebraic basis, which are fundamental to obtain the set of

relevant terms RelTermδ. The complexity of CNFSAT-DEqPrL is the same as for QF LIRA

as long as the complexity of computing normal forms with respect to Γ (we dubbed it the

Γ↓-problem) is in P.

Corollary 4.4.17. Assuming that Γ is a convergent equational theory whose Γ↓-problem is in

P and Λ is a set of domain clauses with the subterm property, then the satisfiability problem

CNFSAT-DEqPrL is in NP and the validity problem for DNF formulas in DEqPrL is in coNP.

127

Note that when the rewriting system underlying the equational theory Γ is subterm con-

vergent, the complexity class of the Γ ↓-problem is in P. In fact, every term rewrites to a

strict subterm in each rewriting step, so that, in the worst case, a term t takes ∣subterms(t)∣
steps until reaching its normal form, which is linear on the length of t. Since the unification

algorithm also takes linear time (see [76, 92]), it follows that in this case the Γ ↓-problem is

actually in P.

We should also remark that, as for EqCL, SAT can obviously be modeled in DEqPrL, by

assigning an atom ∀(t1 ≈ t2) composed by two fresh terms t1, t2 to each propositional symbol

to be considered.

Corollary 4.4.18. If Γ is a subterm theory and Λ is a set of domain clauses with the subterm

property, then CNFSAT-DEqPrL is NP-complete.

The complexity of SAT-DEqPrL

The complexity result for SAT-DEqPrL follows immediately from the analysis of complexity

of the CNFSAT-DEqPrL problem and from Lemma 4.4.12.

Corollary 4.4.19. Assuming that Γ is a convergent equational theory whose Γ↓-problem is in

P and Λ is a set of domain clauses with the subterm property, then the satisfiability problem

SAT-DEqPrL is in NP and the validity problem for DEqPrL is in coNP.

Proof. The satisfiability procedure presented for DEqPrL reduces the analysis of the satis-

fiability of δ to the analysis of the satisfiability of its equisatisfiable formula tt(δ) written in

CNF. Lemma 4.4.12 allows us to conclude that tt(δ) has linear length on the length of δ and

can be computed in polynomial time. Consequently, we found out a linear reduction from

SAT-DEqPrL to CNFSAT-DEqPrL. Provided that Γ is a convergent equational theory whose

Γ↓-problem is in P and Λ is a set of domain clauses with the subterm property, we conclude

that SAT-DEqPrL is in NP.

Corollary 4.4.20. If the equational theory of Γ is generated by a subterm convergent rewriting

system and Λ is a set of domain clauses with the subterm property, then the SAT-DEqPrL

problem is NP-complete.

4.4.4 Implementation

We implemented a DNFSAT-DEqPrL solver by reduction to QF LIRA. The software was writ-

ten in Python, and used Maude [37] for the rewriting reductions, and Yices [55] to solve the

LIRA problem. The machine used for the tests was a Mac Pro at 3,33 GHz 6-Core Intel Xeon

with 6 GB of memory. This work was developed with Carlos Caleiro and Filipe Casal. Our

implementation is available in [28].

128

With a DNFSAT-DEqPrL solver in hands, we were able to test the examples that we have

been proposing along this thesis. We now recall some examples that we have seen; they were

tested with the implemented tool and their formulations can be found in [28].

• Example 2.5.2: Recall the characterization of the capabilities of the Dolev-Yao in-

truder where the cryptographic primitives satisfy the equational theory ΓDY. We used

the implemented DNFSAT-DEqPrL solver to verify the existence of an offline guessing

attack to the cryptographic protocol presented in Example 2.5.2. For this purpose, we

wanted to test whether:

∀(m1 ≈ (a,na) ∧m2 ≈ {na}pab) /⊢ΓDY ∀({m2}−1p∗ab ≈ π2(m1)),
and ∀(m1 ≈ (a,na) ∧m2 ≈ {na}pab) ⊢ΓDY ∀(p∗ab ≈ pab → {m2}−1p∗ab ≈ π2(m1)),

We proved that, by testing the satisfiability of:

∀(m1 ≈ (a,na) ∧m2 ≈ {na}pab) ∧ ¬∀({m2}−1p∗ab ≈ π2(m1)),
and ∀(m1 ≈ (a,na) ∧m2 ≈ {na}pab) ∧ ¬∀(p∗ab ≈ pab → {m2}−1p∗ab ≈ π2(m1)),

respectively. As expected, the solver returns Sat to the former formula and Unsat for

the latter. The running times were 51 seconds and 4 minutes, respectively.

• Example 4.2.2: Now, remind the setting where the Dolev-Yao intruder is extended

with some cryptanalytic capabilities. In this context, the algebraic properties were

axiomatized by ΓDY and ΛDY.

We checked if whenever an attempt to guess the secret key k led to a message outside

the scope of plaintexts, would mean that the value of k was not guessed correctly, i.e.,

∀(k ∈ sym key ∧m ∈ plaintext) ⊢(ΓDY,ΛDY) ∀({{m}k}−1k∗ /∈ plaintext→ k /≈ k∗). (4.18)

To decide that, we ran the implemented solver with the negation of the implication as

input, i.e.,

∀(k ∈ sym key ∧m ∈ plaintext) ∧ ¬∀({{m}k}−1k∗ /∈ plaintext→ k /≈ k∗)
and we concluded that it is actually unsatisfiable, so (4.18) holds.

We also used the implemented DNFSAT-DEqPrL solver to conclude that even assuming

that a guess k∗ to the secret key k is indeed a symmetric key, guessing its concrete value

is not simpler than decrypting a message encrypted with k. We tested the satisfiability

of the following formula with q = 0.4:
Pr(k ≈ k∗) = q ⋅ Pr(k∗ ∈ sym key) ∧ ∀(k∗ ∈ sym key) ∧ ¬Pr({{m}k}−1k∗ ≈m) ≥ q.

The running times were 4.7 seconds and 12 seconds, respectively.

129

• Example 4.4.1: Recall the algebraic characterization of the sum of single bits by

the equational theory Γxor and with the domain restrictions Λxor introduced in Exam-

ple 4.1.1. We concluded that, indeed, the global formula ξ presented in Example 4.4.16,

(Pr(n ≈ zero) ≤ 2

3
⋅ Pr(n ∈ even) ∧ ∀(n ∈ even))→ (Pr(n ≈ zero) ≤ 2

3
∧ ∀(suc(n) ∈ odd)) ,

is a theorem of DEqPrL by testing the satisfiability of ¬ξ in the implemented software

and attesting that it was actually unsatisfiable. The running times for each disjunct

were 0.2 seconds and 0.5 seconds.

4.5 Applications to Information Security

Now we model some information security examples in DEqPrL and observe how important

are the implementation details on the estimation of probabilities of the success of attacks to

cryptographic protocols.

4.5.1 Offline Guessing Attacks with some Cryptanalysis

Let us recall the context of an offline guessing attack to a cryptographic protocol introduced in

Definition 2.5.1. In a wider and more expressive formulation, we can model an attacker who,

besides all the algebraic knowledge he has about the protocol and cryptographic primitives,

is endowed with some cryptanalytic capabilities.

Recall that, to analyze offline guessing one assumes that an attacker has observed messages

named m1, . . . ,mk which were built as t1, . . . , tk ∈ T (N), but the attacker cannot know the

concrete values of the random and secret names used to build them. Still, he can try to mount

an attack by guessing some secrets s1, . . . , sn ∈ N used by the parties executing the protocol.

The attack is successful if the attacker can distinguish whether his guesses s∗1 , . . . , s∗n are correct

or not. In DEqPrL, we can state a wider notion of offline guessing using cryptanalysis as

described below.

Definition 4.5.1. Let m1, . . . ,mk ∈ T (N) represent the messages exchanged by the parties

executing a given cryptographic protocol, and Γ denote the equational specification of the

underlying algebraic basis and Λ collects the domain restrictions on terms. The protocol is

susceptible to an offline guessing attack using cryptanalysis if there exists a recipe ϕ ∈ Loc,
with subterms(ϕ) ⊆ T ({m1, . . . ,mk, s

∗
1 , . . . , s

∗
n}) such that:

∀(m1 ≈ t1 ∧ ⋅ ⋅ ⋅ ∧mk ≈ tk) /⊢(Γ,Λ) ∀ϕ
and

∀(m1 ≈ t1 ∧ ⋅ ⋅ ⋅ ∧mk ≈ tk) ⊢(Γ,Λ) ∀(s∗1 ≈ s1 ∧ ⋅ ⋅ ⋅ ∧ s∗n ≈ sn → ϕ) .
130

Although this definition seems very similar to Definition 2.5.1, note that now the recipe

is a formula involving equations and domain restrictions and is constructed exclusively from

messages observed by the attacker and from guesses for the secret values. The idea is the

same: the recipe should not be derivable in general, but should be valid under the assumption

that the attacker correctly guessed the secrets, proving to constitute a reliable formula for the

attacker to check whether he actually guessed the secrets.

Again, this task is undecidable in general as the recipe may be arbitrarily complex, but

recall that for subterm convergent rewriting systems the problem is decidable, as only a finite

number of ‘dangerous’ recipes need to be tested [2, 3, 18].

The analysis of the existence of offline guessing attacks turns to be even more interesting

when probabilities come into play, as the attacker will be able to narrow the set of possible

secrets. In these lines, under appropriate probabilistic conditions and applying axiom P3, one

should be able to estimate the probability of offline guessing attacks within the logic.

Example 4.5.2. As an application, we can recall the protocol

1. a→ b ∶ (a,na)
2. b→ a ∶ {na}pab

presented in Example 2.5.2 and which was proved to be attackable in EqCL (and so, in

DEqPrL).

The existence of an offline guessing attack for this protocol led to an improvement of the

exchanged messages by concatenating a confounder c with the nonce and encrypting with the

public key pk(b) afterwards, giving rise to Gong’s protocol [66]:

1. a→ b ∶ {|(na, c)|}pk(b)
2. b→ a ∶ {na}pab .

Gong’s protocol was proved to be secure against offline guessing [43,66], in the sense that the

probability of an attack is negligible. We will observe that such security highly depends on

the practical implementation of the protocol. This is one of the great achievements that we

obtain with DEqPrL: we are able to cover some implementation details formally within the

logic and conclude how do they compromise security.

Let us extend the set of domain names D = DDY ∪ {conf} and, further, assume that the

confounder c is sampled uniformly from a set with M elements, and that the set of symmetric

keys from which pab is uniformly chosen has N elements. The estimation of the probability

of an offline guessing attack on the independent names pab and c, with guesses p∗ab and c∗, is
given by:

Hyp ⊢(ΓDY,ΛDY) Pr(pab ≈ p∗ab ∧ c ≈ c∗) ≤ Pr({|({m2}−1p∗ab , c∗)|}pk(b) ≈m1) ,

131

where the set of hypothesis consists of the uniform probabilities and independence of p∗ab and
c∗, of a record of the exchanged messages and of some cryptanalytic properties,

Hyp = {∀(c∗ ∈ conf)→ Pr(c ≈ c∗) = 1
M , ∀(p∗ab ∈ sym key)→ Pr(pab ≈ p∗ab) = 1

N , Ind
p∗ab,c∗
N,M ,

∀(c∗ ∈ conf), ∀(p∗ab ∈ sym key), ∀(m1 ≈ {|(na, ci)|}pk(b) ∧ m2 ≈ {na}pab)} .
According to the independence property for p∗ab and c∗, the probability of guessing c and

pab, and therefore the probability of success of an offline guessing attack is given by

Hyp ⊢(ΓDY,ΛDY) 1

N ⋅M ≤ Pr({|({m2}−1p∗ab , c∗)|}pk(b) ≈m1) .

Often, symmetric keys are defined as being weak keys, meaning that they are chosen from

small sample spaces. In this sense, N is usually small. On the contrary, the commonly called

unguessable values are believed to be chosen from very big sets. However, in the practical

implementation of protocols it does not always happen, and we can model it in our logic.

Notice that if M is also a small number, the probability of an attack is not negligible, as it is

minimized by the non-negligible value 1
N ⋅M .

△
4.5.2 On the Implementation Details

The reduced range of values taken by some critical parameters in the concrete implementation

of cryptographic protocols can seriously compromise their security. Recently (see [10]) it was

shown that some modern implementations of Diffie-Hellman key exchange are vulnerable to

attacks from adversaries with reasonable resources.

A Diffie-Hellman key exchange consists of a preliminary agreement of a large prime p and

a generator g by agents a and b, then both parties generate random integers xa and xb. Once

all the values are fixed, a sends the exponentiation of g with xa modulo p to b, and b sends

the exponentiation of g with its private key xb modulo p to a. At the end of the protocol, a

and b are sharing the secret (gxa)xbmod p = (gxb)xamod p.

1. a→ b ∶ gxa mod p

2. b→ a ∶ gxb mod p

Computing discrete logarithms remains the best known cryptanalytic attack to the secu-

rity of Diffie-Hellman. In general, discrete log computations for arbitrary primes are known to

take enough time to ensure that any session expires before the intruder carries out an attack,

but Logjam [10] presents a technique that uses number field sieve and allows one to compute

the discrete log of primes in a specified 512-bit group in about one minute, by means of a pre-

computation of the first three steps of number field sieve for that specific group. In fact, this

132

vulnerability was already known since 1992 [22], but was applied by Logjam [10] to down-

grade a TLS connection to use 512-bit Diffie-Hellman export-grade cryptography, through a

man-in-the-middle network attacker. Let us analyze formally, within DEqPrL, how would a

cryptanalytic attack through the discrete log compromise the security of Diffie-Hellman.

Example 4.5.3. Consider a Diffie-Hellman key exchange protocol:

1. a→ b ∶ gxa mod p

2. b→ a ∶ gxb mod p

Let us assume the attacker possesses enough computational resources to manage a pre-

computation of the first steps of number field sieve for a chosen group of 512-bit prime. Recall

that the discrete logs in that group are then computed in a feasible amount of time. So, we

can consider, in our signature, a function symbol representing the discrete log for each of

those primes.

Consider the signature FDH containing:

• DLOG(⋅)(⋅, ⋅) ∈ FDH
3 representing an oracle for the discrete log of the subscript argument;

• (⋅)(⋅) ∈ FDH
2 representing exponentiation;

• (⋅) mod (⋅) ∈ FDH
2 representing the remainder of the division of the first by the second

argument.

In the context of Diffie-Hellman key exchange, the equational properties of these operations

are given by:

ΓDH = {((xx1)x2 mod x3) ≈ ((xx2)x1 mod x3)}.
Now let us fix some domains, representing the chosen group of 512-bit primes for the

implementation, the set of generators, the set of private keys and the set of ciphertexts:

DDH = { 512 prime, gen, priv key, ciphertext }.
We axiomatize the domain restrictions simply as:

ΛDH = { (x ∈ priv key, g ∈ gen, p ∈ 512 prime⇒ (gx mod p) ∈ ciphertext) }.
The probability of a cryptanalytic attack using discrete log can be expressed in

DEqPrL as:

HypDH ⊢(ΓDH,ΛDH) Pr(DLOGp(g,m1) ≈ xa) ≥ Pr(p ∈ 512 prime) , where

133

HypDH={∀(m1 ≈ gxamod p ∧m2 ≈ gxbmod p) ,∀(p ∈ 512 prime→DLOGp(x1, xx2
1 mod p) ≈ x2)} ,

meaning that the probability of an offline guessing attack is bounded below by the probability

of the intruder’s smart choice for the group to which he develops the precomputation actually

fall within the choice of the person who implemented the protocol.

Obviously, the attacker would not waste resources precomputing discrete logarithms

unlikely to be used. There are groups of 512-bit primes known to be much popular than

others, so the probability of the intruder’s smart choice be within one of the implementer’s

choice can be significantly large, thereby influencing the probability of sucess of an attack.

This formalization should be seen as a simple illustration of how the cryptanalytic attacks

can be modeled within DEqPrL. △
4.5.3 Privacy on e-voting

Recall the context of electronic voting protocols introduced in Subsection 2.5.2 and the always

present privacy concern. Obviously, in Chapter 2 we underestimated privacy of e-voting

protocols by strictly considering the case where the attacker was able to find out the user’s

vote. Easily, we realize that given a voting protocol we also would like to avoid cases where,

even without guessing the concrete votes of users, the attacker could be able to conclude that

two voters voted the same. We illustrate this case with an example.

Example 4.5.4. Recall Example 2.5.3, where we presented a very simple voting protocol in

which users where asked to submit their votes, chosen among three possible values represented

by A,B,C ∈ FDY
0 , by sending an hash of their votes. Then, let n ∈ FDY

0 ∖{A,B,C} be a fixed

constant and let us inspire in the work of Mödersheim et al.[82] to improve this voting protocol

by masking user’s vote. Recall the characterization of the cryptographic primitives by the

set of Horn clauses ΓDY
h extending ΓDY with the collision-free property for the hash function

h ∈ FDY
1 :

ΓDY
h = ΓDY ∪ {h(x) ≈ h(y)⇒ x ≈ y}.

Also, let us extend the set of domain clauses ΛDY with domain restrictions for h and n:

ΛDY
h = ΛDY ∪ {(x ∈ plaintext⇒ h(x) ∈ ciphertext), n ∈ plaintext}.

Consider the protocol where a voter a submits his vote va through an hash of the pairing

(n, va) and a voter b submits his vote in the same way:

1. a→ s ∶ h((n, va))
2. b→ s ∶ h((n, vb))

134

We easily observe that privacy is violated as long as the attacker can compare both messages

and draw conclusions on whether a and b voted the same:

∀(m1 ≈ h((n, va)) ∧m2 ≈ h((n, vb))) ⊢(ΓDY
h ,ΛDY

h) ∀(m1 ≈m2 ↔ va ≈ vb).
Then, we conclude that in the presence of this voting protocol, where the mask n is the

same for every voter, the intruder violates privacy with probability 1, as he is able to compare

the votes from different users.

But we can take a step further on the estimation of the probability of an offline guessing

attack, and conclude that the intruder has the possibility of effectively find out a user’s vote.

For this purpose, let us assume that:

• the probability of an user to vote A,B,C is αA,αB,αC , with αA + αB + αC = 1;
• the probability of guessing the constant n is αn;

• the choice of the vote is independent of the choice of n.

Under these assumptions, we can effectively use DEqPrL to estimate the probability of an

offline guessing attack as the product of the probability of guessing the vote va with the

probability of guessing n:

Hyp ⊢(ΓDY
h ,ΛDY

h) Pr(m1 ≈ h((n∗, v∗a))) = αva ⋅ αn ,

where

Hyp = { ∀(m1 ≈ h((n, va)) ∧m2 ≈ h((n, vb))) , Pr(v∗a ≈ va) = αva , Pr(n∗≈ n) = αn ,

(Pr(v∗a ≈ va) = αva ∧ Pr(n∗≈ n) = αn)→ Pr(v∗a ≈ va ∧ n∗≈ n) = αva ⋅ αn }.
We could be wondering whether we could only achieve a lower bound for this probability,

instead of the equality, by thinking that different components would lead to the same pairing.

But note that it can never happen, provided the congruence property for the projections on

the components.

We conclude that once the mask can be guessed, the secrecy of the vote is at risk. In the

same lines, we could easily extend the analysis of the existence of offline guessing attacks to

voting protocols where different and independent numbers n were chosen for each voter. △

4.6 Concluding Remarks

In a nutshell, we combined aspects from classical, equational, and probabilistic reasoning to

construct a logic suited for the qualitative and quantitative analysis of equational constraints

and domain restrictions over a set of outcomes. We began by defining a language that would

135

allow us to make qualitative and quantitative assertions over local formulas. Once the seman-

tics has been fixed, by endowing the set of possible outcomes with a probability space, we have

also obtained a sound and weakly complete deductive system for DEqPrL, parametrized by a

Horn-clause specification of the algebraic basis and by a set of domain clauses to characterize

the domain restriction. Then, we paved the way to get a satisfiability result, by presenting a

procedure for deciding DNFSAT-DEqPrL with calls to a GenPSAT oracle; we generalized the

approach and found a polynomial reduction from CNFSAT-DEqPrL to QF LIRA, provided that

the algebraic basis is given by means of a convergent rewriting system and, additionally, that

the axiomatization of domain restrictions enjoys a suitable subterm property. The complexity

result followed naturally from the previous constructions. The decidability result also took

advantage from the way in which the strategy was conducted, as it enabled the implementa-

tion of a prototype tool for DEqPrL using a QF LIRA solver. This tool was tested in some

simple examples and the running times were satisfactory on them, however there is still room

for improvement with this implementation, namely in what concerns the interaction between

the several softwares used. At the end of the chapter, we tested DEqPrL by verifying and

estimating the probability of attacks to cryptographic protocols in the presence of an at-

tacker with an informed way of cryptanalysis. In these examples we were able to model some

implementation details that turned out to be very relevant for the analysis of security.

Again, even though our decidability results cover a very interesting range of examples, it

would be interesting to explore their extension in order to handle decidable equational theories

in general, i.e. not necessarily defined by means of convergent rewriting systems [51].

136

Chapter 5

Conclusions and Future Work

The main aim of this thesis was to provide a logic that would allow us to formalize the kind of

reasoning inherent to the verification of security protocols, particularly in the context of offline

guessing attacks. In order to take confidence on the interaction of the several components

that came into play, we took a stepwise approach. We started by developing a logic involving

equations, classical reasoning, and quantifiers (Chapter 2), then we pinpointed the need to

explore a generalized probabilistic satisfiability problem (Chapter 3) and only then we were

finally able to present the envisaged probabilistic logic over an algebraic basis with equations

and domain restrictions (Chapter 4).

At the end of each chapter we have presented brief conclusions and remarks; where

possible, we left open questions for future work, which arose as a result of a deeper

understanding of the matter under consideration. Now we recall the main contributions

of this thesis and point out some limitations, room for improvement and future research.

In Chapter 2 we presented EqCL - a logic that combines aspects from classical

propositional logic, equational logic and quantifiers. We presented a sound and complete

axiomatization parametrized by an equational specification of the algebraic basis. Then, we

explored the satisfiability problem for EqCL and found a polynomial reduction to the SAT

problem for classical propositional logic, under the assumption that the underlying equational

theory was convergent. So far, this was the major milestone: we were able to automate the

kind of reasoning used in the verification of, for instance, offline guessing attacks in a wide

range of information security examples, like those that involve subterm convergent rewriting

systems. In such (not that restraining) conditions, the satisfiability problem was proved to

be NP-complete. This left open the opportunity to implement a prototype tool to decide this

satisfiability problem by using off-the-shelf solvers, and techniques that are similar to those

used in the SMT literature. Later, we had implemented an even wider prototype tool also

137

involving a quantitative analysis by using Yices to solve the LIRA problems. We believe that

an implementation of the satisfiability procedure for EqCL using a modern tool for solving

SAT would lead to a more efficient performance, provided the very efficient way in which the

SAT solvers are currently designed, albeit its NP-completeness.

In the context of the satisfiability problems, a generalization of the probabilistic

satisfiability problem [59, 60] was instrumental for dealing with more expressive probabilistic

expressions involving probabilistic formulas. In Chapter 3 we presented the GenPSAT problem

and provided the theoretical framework that allowed the translation between GenPSAT and

MIP problems. This enabled the implementation of a provably correct solver for GenPSAT.

This translation was able to encode strict inequalities and disequalities into the MIP context.

With the GenPSAT solver in hands, we detected and analyzed the phase transition behaviour.

For the problems also covered by other solvers (e.g. SAT problems, PSAT problems) we cannot

compete, in efficiency, with the existing solvers. We explored a reduction of GenPSAT to SMT

and used both Yices and Z3 trying to achieve better running times, but it has not revealed to

be more efficient in general. Imposing assertions (val2) strictly on the propositional variables

used to define probabilistic restrictions, instead of doing it in every single fixed propositional

variable, seems to enhance the performance in some cases. Of course, the importance of the

choice of the programming language and the way it interacts with the MIP solver cannot be

swept aside. That said, our prototype tool should be valued by its expressiveness and not by

its efficiency on existing problems with off-the-shelf optimized solvers.

Once we came back to the equational context, in Chapter 4, DEqPrL has arisen naturally.

DEqPrL is a probabilistic logic over an algebraic basis, including equations and domain

restrictions, that combines aspects from classical propositional logic and equational logic

with an exogenous approach to quantitative probabilistic reasoning. We presented a sound

and (weak) complete deductive system, parametrized by an equational specification of the

algebraic basis coupled with the intended domain restrictions. Then, we came up with

a satisfiability procedure, under the assumption that the equational basis was given by

means of a convergent rewriting system and, additionally, that the axiomatization of domain

restrictions enjoyed a suitable subterm property. Such satisfiability procedure was developed

through a polynomial reduction to QF LIRA, inspired by the developments with GenPSAT.

An implementation of the satisfiability problem took shape and was developed using Maude

for the rewriting reductions and Yices to solve the LIRA problem. It was tested on the

examples we had put forward. There is still room for improvement with this implementation,

for many reasons: we assumed that the input was given in DNF, which suffer the limita-

tions that we already examined; the software calls Maude and Yices many times, which slows

138

down the running time. For lack of time we did not have the opportunity to implement the

CNFSAT-DEqPrL procedure described in Algorithm 4.2, but would be interesting to do it.

Finding a polynomial reduction to SAT would also be very useful for performance purposes.

The logic DEqPrL was applied to meaningful examples in information security and was

proven to be very effective in incorporating some implementation details formally and in

drawing conclusions about their impact in security, namely by verifying and estimating the

probability of sucess of attacks to some cryptographic protocols. The application of the logic to

many more information security examples would be very interesting! The combination of the

procedure for the satisfiability problem for DEqPrL with the results in [2,3,18] that come up

with the ‘dangerous’ recipes to test offline guessing attacks would be an asset to automatically

decide the existence of offline guessing attacks or estimate its probability in cryptographic

protocols whose cryptographic primitives are given by subterm convergent rewriting systems.

Even so, a general tool like this will never be as effective as dedicated techniques [19,36,39,40].

139

Bibliography

[1] M. Abadi and B. Blanchet. Analyzing security protocols with secrecy types and logic

programs. Journal of the ACM, 52(1):102–146, 2005.

[2] M. Abadi and V. Cortier. Deciding knowledge in security protocols under (many more)

equational theories. In Proceedings of the 18th IEEE Computer Security Foundations

Workshop (CSFW’05), pages 62–76. IEEE, 2005.

[3] M. Abadi and V. Cortier. Deciding knowledge in security protocols under equational

theories. Theoretical Computer Science, 367(1):2–32, 2006.

[4] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus.

In Proceedings of the 4th ACM Conference on Computer and Communications Security,

pages 36–47. ACM, 1997.

[5] M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational

soundness of formal encryption). Journal of Cryptology, 15(2):103–127, 2002.

[6] P. Adão, G. Bana, J. Herzog, and A. Scedrov. Soundness of formal encryption in the

presence of key-cycles. In Proceedings of the 10th European Symposium on Research in

Computer Security, volume 3679 of Lecture Notes in Computer Science, pages 374–396.

Springer, 2005.

[7] P. Adão, G. Bana, J. Herzog, and A. Scedrov. Soundness and completeness of formal en-

cryption: The cases of key cycles and partial information leakage. Journal of Computer

Security, 17(5):737–797, 2009.

[8] P. Adão, P. Mateus, T. Reis, and L. Viganò. Towards a quantitative analysis of security

protocols. Electronic Notes in Theoretical Computer Science, 164(3):3–25, 2006.

[9] P. Adão, P. Mateus, and L. Viganò. Protocol insecurity with a finite number of sessions

and a cost-sensitive guessing intruder is NP-complete. Theoretical Computer Science,

538:2–15, 2014.

141

[10] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A. Halderman,

N. Heninger, D. Springall, E. Thomé, L. Valenta, et al. Imperfect forward secrecy:

How Diffie-Hellman fails in practice. In Proceedings of the 22nd ACM SIGSAC Confer-

ence on Computer and Communications Security, pages 5–17. ACM, 2015.

[11] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuéllar, P. H.

Drielsma, P. C. Héam, O. Kouchnarenko, J. Mantovani, et al. The AVISPA tool for the

automated validation of internet security protocols and applications. In International

Conference on Computer Aided Verification, volume 3576 of Lecture Notes in Computer

Science, pages 281–285. Springer, 2005.

[12] S. Arora and B. Barak. Computational complexity: a modern approach. Cambridge

University Press, 2009.

[13] F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University Press,

1999.

[14] M. Backes, D. Hofheinz, and D. Unruh. CoSP: A general framework for computa-

tional soundness proofs. In Proceedings of the 16th ACM Conference on Computer and

Communications Security, pages 66–78. ACM, 2009.

[15] M. Backes, C. Hritcu, and M. Maffei. Automated verification of remote electronic

voting protocols in the applied pi-calculus. In Proceedings of the 21st Computer Security

Foundations Symposium, pages 195–209. IEEE, 2008.

[16] G. Bana, P. Adão, and H. Sakurada. Computationally complete symbolic attacker in

action. In LIPIcs-Leibniz International Proceedings in Informatics, volume 18. Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik, 2012.

[17] D. Basin, M. D’Agostino, D. M. Gabbay, S. Matthews, and L. Viganò. Labelled deduc-

tion. Springer Science & Business Media, 2012.

[18] M. Baudet. Deciding security of protocols against off-line guessing attacks. In Proceed-

ings of the 12th ACM Conference on Computer and Communications Security, pages

16–25. ACM, 2005.

[19] M. Baudet, V. Cortier, and S. Delaune. YAPA: A generic tool for computing intruder

knowledge. In International Conference on Rewriting Techniques and Applications,

pages 148–163. Springer, 2009.

[20] B. Becker, C. Dax, J. Eisinger, and F. Klaedtke. LIRA: Handling constraints of linear

arithmetics over the integers and the reals. In International Conference on Computer

142

Aided Verification, volume 4590 of Lecture Notes in Computer Science, pages 307–310.

Springer, 2007.

[21] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of sym-

metric encryption. In Proceedings of the 38th Symposium on Foundations of Computer

Science, pages 394–403. IEEE, 1997.

[22] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss,

A. Pironti, P. Y. Strub, and J. K. Zinzindohoue. A messy state of the union: Taming

the composite state machines of tls. In Symposium on Security and Privacy 2015, pages

535–552. IEEE, 2015.

[23] A. Biere, M. Heule, and H. van Maaren. Handbook of Satisfiability, volume 185. IOS

Press, 2009.

[24] G. Birkhoff. On the structure of abstract algebras. In Mathematical Proceedings of

the Cambridge Philosophical Society, volume 31, pages 433–454. Cambridge University

Press, 1935.

[25] B. Blanchet. A computationally sound mechanized prover for security protocols. IEEE

Transactions on Dependable and Secure Computing, 5(4):193–207, 2008.

[26] G. Boole. An investigation of the laws of thought: on which are founded the mathematical

theories of logic and probabilities. Dover Publications, 1854.

[27] M. Burrows, M. Abadi, and R. M. Needham. A logic of authentication. In Proceedings

of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,

volume 426, pages 233–271. The Royal Society, 1989.

[28] C. Caleiro, F. Casal, and A. Mordido. DNFSAT-DEqPrL solver, 2016. Available online

at https://github.com/fcasal/satdeqprl.git.

[29] C. Caleiro, F. Casal, and A. Mordido. Generalized probabilistic satisfiability. SQIG

- Instituto de Telecomunicações and IST - U Lisboa, Portugal, 2016. Submitted

for publication. Available online at http://sqig.math.ist.utl.pt/pub/CaleiroC/16-CCM-

genpsat.pdf.

[30] C. Caleiro, F. Casal, and A. Mordido. GenPSAT solver, 2016. Available online at

https://github.com/fcasal/genpsat.git.

[31] R. Canetti. Universally composable security: A new paradigm for cryptographic pro-

tocols. In Proceedings of the 42nd Symposium on Foundations of Computer Science,

pages 136–145. IEEE, 2001.

143

[32] V. Chandru and J. Hooker. Optimization methods for logical inference, volume 34. John

Wiley & Sons, 2011.

[33] P. Cheeseman, B. Kanefsky, and W. M. Taylor. Where the really hard problems are.

In Proceedings of IJCAI 1991, pages 331–337, 1991.

[34] A. Church. Introduction to mathematical logic, volume 13. Princeton University Press,

1996.

[35] V. Chvátal. Linear programming. Macmillan, 1983.

[36] Ş. Ciobâcă, S. Delaune, and S. Kremer. Computing knowledge in security protocols

under convergent equational theories. In International Conference on Automated De-

duction, pages 355–370. Springer, 2009.

[37] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı-Oliet, J. Meseguer, and J. F. Que-

sada. Maude: specification and programming in rewriting logic. Theoretical Computer

Science, 285(2):187–243, 2002.

[38] P. M. Cohn. Universal algebra, volume 6. Springer Science & Business Media, 2012.

[39] B. Conchinha, D. Basin, and C. Caleiro. Efficient decision procedures for message

deducibility and static equivalence. In Proceedings of 7th International Workshop on

Formal Aspects in Security and Trust, volume 6561 of Lecture Notes in Computer Sci-

ence, pages 34–49. Springer, 2010.

[40] B. Conchinha, D. Basin, and C. Caleiro. FAST: An efficient decision procedure for

deduction and static equivalence. In Proceedings of 22nd International Conference

on Rewriting Techniques and Applications, volume 10 of LIPIcs, pages 11–20. Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik, 2010.

[41] B. Conchinha, D. Basin, and C. Caleiro. Symbolic probabilistic analysis of off-line

guessing. In European Symposium on Research in Computer Security, volume 8134 of

Lecture Notes in Computer Science, pages 363–380. Springer, 2013.

[42] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of the third

annual ACM Symposium on Theory of Computing, pages 151–158. ACM, 1971.

[43] R. J. Corin and S. Etalle. A simple procedure for finding guessing attacks. 2004.

[44] V. Cortier, S. Kremer, and B. Warinschi. A survey of symbolic methods in computa-

tional analysis of cryptographic systems. Journal of Automated Reasoning, 46(3-4):225–

259, 2011.

144

[45] F. G. Cozman and L. F. di Ianni. Probabilistic satisfiability and coherence checking

through integer programming. In Proceedings of the European Conference on Symbolic

and Quantitative Approaches to Reasoning and Uncertainty, volume 7958 of Lecture

Notes in Computer Science, pages 145–156. Springer, 2013.

[46] H. B. Curry and R. Feys. Combinatory Logic, volume I of Studies in Logic and the

Foundations of Mathematics, 1958.

[47] A. Datta, A. Derek, J. C. Mitchell, V. Shmatikov, and M. Turuani. Probabilistic

polynomial-time semantics for a protocol security logic. In Proceedings of the 32nd

International Colloquium on Automata, Languages, and Programming, volume 3580 of

Lecture Notes in Computer Science, pages 16–29. Springer, 2005.

[48] G. De Bona, F. G. Cozman, and M. Finger. Generalized probabilistic satisfiability

through integer programming. Journal of the Brazilian Computer Society, 21(1):1–14,

2015.

[49] L. De Moura and N. Bjørner. Satisfiability modulo theories: introduction and applica-

tions. Communications of the ACM, 54(9):69–77, 2011.

[50] S. Delaune, S. Kremer, and M. Ryan. Verifying privacy-type properties of electronic

voting protocols. Journal of Computer Security, 17(4):435–487, 2009.

[51] N. Dershowitz, M. Okada, and G. Sivakumar. Canonical conditional rewrite systems. In

Proceedings of the 9th International Conference on Automated Deduction, volume 310

of Lecture Notes in Computer Science, pages 538–549. Springer, 1988.

[52] W. Diffie and M. Hellman. New directions in cryptography. IEEE transactions on

Information Theory, 22(6):644–654, 1976.

[53] D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions on

Information Theory, 29(2):198–208, 1983.

[54] P. H. Drielsma, S. Mödersheim, and L. Vigano. A formalization of off-line guessing

for security protocol analysis. In International Conference on Logic for Programming

Artificial Intelligence and Reasoning, pages 363–379. Springer, 2005.

[55] B. Dutertre and L. De Moura. The Yices SMT Solver. Tool paper at

http://yices.csl.sri.com/tool-paper.pdf, 2006.

[56] H. Ehrig and B. Mahr. Fundamentals of algebraic specification 1. EATCS Monograph

in Theoretical Computer Science.

145

[57] T. Fabrega, F. Javier, J. C. Herzog, and J. D. Guttman. Strand spaces: Proving security

protocols correct. Journal of Computer Security, 7(2-3):191–230, 1999.

[58] R. Fagin, J. Y. Halpern, and N. Megiddo. A logic for reasoning about probabilities.

Information and Computation, 87(1):78–128, 1990.

[59] M. Finger and G. De Bona. Probabilistic satisfiability: Logic-based algorithms and

phase transition. In Proceedings of the International Joint Conference on Artificial

Intelligence (IJCAI’11), pages 528–533, 2011.

[60] M. Finger and G. De Bona. Probabilistic satisfiability: algorithms with the presence

and absence of a phase transition. Annals of Mathematics and Artificial Intelligence,

75(3-4):351–389, 2015.

[61] H. Ganzinger and R. Nieuwenhuis. Constraints and theorem proving. In Constraints

in Computational Logics: theory and applications, volume 2002 of Lecture Notes in

Computer Science, pages 159–201. Springer, 2001.

[62] I. P. Gent and T. Walsh. The hardest random SAT problems. In KI-94: Advances in

Artificial Intelligence, pages 355–366. Springer-Verlag, 1994.

[63] G. Gentzen. Investigations into logical deduction. American philosophical quarterly,

1(4):288–306, 1964.

[64] G. Georgakopoulos, D. Kavvadias, and C. H. Papadimitriou. Probabilistic satisfiability.

Journal of Complexity, 4(1):1–11, 1988.

[65] C. P. Gomes, H. Kautz, A. Sabharwal, and B. Selman. Satisfiability solvers. Foundations

of Artificial Intelligence, 3:89–134, 2008.

[66] L. Gong, M. A. Lomas, R. M. Needham, and J. H. Saltzer. Protecting poorly chosen

secrets from guessing attacks. IEEE Journal on Selected Areas in Communications,

11(5):648–656, 1993.

[67] G. A. Gratzer. Universal algebra. Springer Science & Business Media, 2008.

[68] Inc. Gurobi Optimization. Gurobi optimizer reference manual, 2015.

[69] L. Henkin. The completeness of the first-order functional calculus. The Journal of

Symbolic Logic, 14(03):159–166, 1949.

[70] R. Impagliazzo and B. M. Kapron. Logics for reasoning about cryptographic construc-

tions. In Proceedings of the 44th Symposium on Foundations of Computer Science, pages

372–383. IEEE, 2003.

146

[71] C. Kirchner and H. Kirchner. Equational logic and rewriting. Logic and Computation,

9:255–282, 2014.

[72] R. Kowalski. Logic for problem solving, volume 7. Ediciones Dı́az de Santos, 1979.

[73] S. Kremer and M. Ryan. Analysis of an electronic voting protocol in the applied pi

calculus. In European Symposium on Programming, pages 186–200. Springer, 2005.

[74] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR.

In International Workshop on Tools and Algorithms for the Construction and Analysis

of Systems, pages 147–166. Springer, 1996.

[75] G. Lowe. A hierarchy of authentication specifications. In Proceedings of the 10th Com-

puter Security Foundations Workshop, pages 31–43. IEEE, 1997.

[76] A. Martelli and U. Montanari. Unification in linear time and space: A structured presen-

tation. Internal Report B76-16, Istituto di Elaborazione della Informazione, Consiglio

Nazionale delle Ricerche, 1976.

[77] P. Mateus, A. Sernadas, and C. Sernadas. Exogenous semantics approach to enriching

logics. Essays on the Foundations of Mathematics and Logic, 1:165–194, 2005.

[78] G. F. McNulty. A field guide to equational logic. Journal of Symbolic Computation,

14(4):371–397, 1992.

[79] C. Meadows. Formal methods for cryptographic protocol analysis: Emerging issues and

trends. IEEE Journal on Selected Areas in Communications, 21(1):44–54, 2003.

[80] K. Meinke and J. V. Tucker. Universal algebra. University of Wales (Swansea). Math-

ematics and Computer Science Division, 1991.

[81] E. Mendelson. Introduction to mathematical logic. CRC press, 2009.

[82] S. A. Mödersheim, T. Groß, and L. Viganò. Defining privacy is supposed to be easy. In

Proceedings of the 19th International Conference on Logic for Programming Artificial

Intelligence and Reasoning, volume 8312 of Lecture Notes in Computer Science, pages

619–635. Springer, 2013.

[83] B. Montalto and C. Caleiro. Modeling and reasoning about an attacker with cryptana-

lytical capabilities. Electronic Notes in Theoretical Computer Science, 253(3):143–165,

2009.

147

[84] A. Mordido and C. Caleiro. An equation-based classical logic. In Proceedings of the 22nd

International Workshop on Logic, Language, Information, and Computation, volume

9160 of Lecture Notes in Computer Science, pages 38–52. Springer, 2015.

[85] A. Mordido and C. Caleiro. Probabilistic logic over equations and domain restrictions.

SQIG - Instituto de Telecomunicações and IST - U Lisboa, 2015. Submitted for publica-

tion. Available online at http://sqig.math.ist.utl.pt/pub/CaleiroC/15-MC-probeq.pdf.

[86] R. M. Needham and M. D. Schroeder. Using encryption for authentication in large

networks of computers. Communications of the ACM, 21(12):993–999, 1978.

[87] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo Theories:

From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL (T). Journal

of the ACM, 53(6):937–977, 2006.

[88] N. J. Nilsson. Probabilistic logic. Artificial intelligence, 28(1):71–87, 1986.

[89] P. Padawitz. Computing in Horn clause theories, volume 16. Springer Science & Business

Media, 2012.

[90] C. H. Papadimitriou. Computational complexity. John Wiley and Sons Ltd., 2003.

[91] C. H. Papadimitriou and K. Steiglitz. Combinatorial optimization: algorithms and

complexity. Courier Corporation, 1982.

[92] M. S. Paterson and M. N. Wegman. Linear unification. In Proceedings of the 8th Annual

ACM Symposium on Theory of Computing, pages 181–186. ACM, 1976.

[93] L. C. Paulson. The inductive approach to verifying cryptographic protocols. Journal of

Computer Security, 6(1, 2):85–128, 1998.

[94] D. Pavlovic and C. Meadows. Bayesian authentication: Quantifying security of the

Hancke- -Kuhn protocol. Electronic Notes in Theoretical Computer Science, 265:97–

122, 2010.

[95] G. Peano. Arithmetices principia: nova methodo. Fratres Bocca, 1889.

[96] J. Pearl. Do We Need Higher-order Probabilities And, If So, what Do They Mean?

UCLA, Computer Science Department, 1987.

[97] D. Pigozzi. Equational logic and equational theories of algebras. 1975.

[98] E. L. Post. Introduction to a general theory of elementary propositions. American

Journal of Mathematics, 43(3):163–185, 1921.

148

[99] I. Ray and N. Narasimhamurthi. An anonymous electronic voting protocol for voting

over the internet. In Proceedings of the 3rd Internation Workshop on Advanced Issues

of E-Commerce and Web-Based Information Systems, pages 188–190. IEEE, 2001.

[100] J. Rosenhouse. The Monty Hall problem: the remarkable story of Math’s most con-

tentious brain teaser. Oxford University Press, 2009.

[101] T. J. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th

annual ACM Symposium on Theory of Computing, pages 216–226. ACM, 1978.

[102] A. Sernadas and C. Sernadas. Foundations of logic and theory of computation. College

Publications, 2008.

[103] J. R. Shoenfield. Mathematical logic, volume 21. Addison-Wesley Reading, 1967.

[104] D. R. Stinson. Cryptography: theory and practice. CRC press, 2005.

[105] A. Tarski. Equational logic and equational theories of algebras. Studies in Logic and

the Foundations of Mathematics, 50:275–288, 1968.

[106] A. Tarski. Logic, semantics, metamathematics: papers from 1923 to 1938. Hackett

Publishing, 1983.

[107] G. S. Tseitin. On the complexity of derivation in propositional calculus. In Automation

of Reasoning, pages 466–483. Springer, 1983.

[108] J. Van Eijck and F. Schwarzentruber. Epistemic probability logic simplified. Advances

in Modal Logic, 10:158–177, 2014.

[109] L. Viganò. Labelled non-classical logics. Springer Science & Business Media, 2013.

[110] R. Wójcicki. Theory of logical calculi: basic theory of consequence operations, volume

199. Springer Science & Business Media, 2013.

149

	Introduction
	Preliminaries
	Logic
	Language
	Consequence relation
	Examples

	Probabilistic Logic
	Syntax and Semantics
	Deductive System
	Soundness and Completeness
	Satisfiability and Complexity

	Equational Logic
	Terms, Equations, and Algebras
	Syntax and Semantics
	Deductive System
	Soundness and Completeness
	Extensions of Equational Logic

	Equation-Based Classical Logic
	Syntax and Semantics
	Deductive System
	Soundness and Completeness
	Decidability and Complexity
	Satisfiability
	Validity
	Complexity

	Applications to Information Security
	Offline Guessing Attacks
	Privacy on e-voting

	Concluding Remarks

	Generalized Probabilistic Satisfiability
	Preliminaries
	GenPSAT problem
	Reducing GenPSAT to Mixed-Integer Programming
	Linear Algebraic Formulation for GenPSAT
	Translation to MIP

	Phase Transition
	Concluding Remarks

	Probabilistic Logic over Equations and Domain Restrictions
	Syntax and Semantics
	Deductive System
	Soundness and Completeness
	Decidability and Complexity
	Satisfiability
	Validity
	Complexity
	Implementation

	Applications to Information Security
	Offline Guessing Attacks with some Cryptanalysis
	On the Implementation Details
	Privacy on e-voting

	Concluding Remarks

	Conclusions and Future Work
	Bibliography

