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which generalizes GenPSAT by allowing Boolean combinations of linear inequal-
ities involving probabilities of classical propositional formulas which we use to
develop applications in information security. Namely, in the context of crypto-
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1. Introduction

For many years, the satisfiability problem for propositional logic (SAT)
has been extensively studied both for theoretical purposes, such as compu-
tational complexity theory, and for practical purposes. In spite of its NP-
completeness [2], modern tools for solving SAT are able to cope with very large5

problems in a very efficient manner, leading to applications in many different
areas and industries [3].

Naturally, people started extending this problem to more expressive frame-
works: for instance in Satisfiability Modulo Theories [4], instead of working in
propositional logic, one can try to decide if a formula is valid in some specific10

first-order theory. One other direction is to extend propositional logic with
probabilities. The probabilistic satisfiability problem (PSAT) was originally for-
mulated by George Boole [5] and later by Nilsson [6]. This problem consists in
deciding the satisfiability of a set of assignments of probabilities to propositional
formulas. There has been a great effort on the analysis of the probabilistic sat-15

isfiability problem and on the development of efficient tools for the automated
treatment of this problem [7, 8, 9, 10, 11].

In this paper we study a Generalized Probabilistic Satisfiability problem
(GenPSAT) extending the scope of PSAT by allowing linear combinations of
probabilistic assignments of values to propositional formulas, with applications20

in the analysis of the security of cryptographic protocols and on estimating
the probability of existence of attacks [12]. Intuitively, GenPSAT consists in
deciding the existence of a probability distribution satisfying a set of classi-
cal propositional formulas with probability 1, and a set of linear inequalities
involving probabilities of propositional formulas. The GenPSAT problem was25

previously identified in the context of the satisfiability of the probabilistic logic
in [13], where it was also shown to be NP-complete. Here, we explore the com-
putational behaviour of this problem and present a polynomial reduction from
GenPSAT to Mixed-Integer Programming, following the lines of [9, 10].

Mixed-Integer Programming (MIP) [14] is a framework to find an optimal30

solution for a linear objective function subject to a set of linear constraints over
real and integer variables. We will exploit the close relation between SAT and
MIP [15] in order to reduce GenPSAT problems to suitable MIP problems.

As observed in many NP-complete problems [16], GenPSAT also presents
a phase transition behaviour. By solving batches of parametrized random35

GenPSAT problems, we observe the existence of a threshold splitting a phase
where almost every GenPSAT problem is satisfiable, from a phase where almost
every GenPSAT problem is not satisfiable. During such transition, the problems
become much harder to solve [16].

We then recall a generalization of GenPSAT, GGenPSAT, introduced in [17],40

and whose language allows Boolean combinations of linear inequalities involving
probabilities of classical propositional formulas. We use this powerful language
to develop applications in information security, namely to formally characterize
attackers with side-channel capabilities. Specifically, we study the problem of
deciding whether a formula is perfectly masked against such attackers. We focus45
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on two types of active attackers: attackers with fault-injection capabilities which
are able to partially (or fully) control the masks being used to protect the leak-
age of information and attackers with variable-dependency capabilities which are
able to make two or more, previously independent random variables, dependent.

50

As the main contribution of this work, throughout Sections 2-4, we develop
the theoretical framework that allows the translation between GenPSAT and MIP
problems, which then allows the implementation of a provably correct solver for
GenPSAT. With the GenPSAT solver in hands, we are able to detect and study
the phase transition behaviour of this problem. This work is included in [1].55

Then, in Section 5, which partially integrates [17], we present an extension
of GenPSAT, GGenPSAT, whose language allows for a powerful modelling of
problems in hardware verification and information security. Finally, in Section 6,
we use the GGenPSAT probabilistic formalism to characterize attackers with
side-channel capabilities and then proceed to formalize the notion of a perfectly60

masked circuit against such attackers. Surprisingly, when facing a very powerful
attacker, this problem actually becomes easier and is shown to be in co-NP.

2. The GenPSAT problem

Let us begin by fixing a set of propositional variables P = {x1, . . . , xn}. We
define the set of classical propositional formulas as65

LCPL ::= P | ¬LCPL | LCPL ∧ LCPL .

Observe that the other logical connectives →,∨,↔ can be defined by abbrevi-
ation, as usual. A literal is either a propositional variable or its negation. A
propositional clause is a non-empty disjunction of one or more literals. A propo-
sitional formula is any Boolean combination of propositional variables. We also
denote the size of a classical propositional formula φ by |φ|, and is inductively70

defined as follows: |x| = 1 for x ∈ P; |c(φ1, . . . , φn)| = 1 + |φ1| + . . . + |φn|,
where c is an n-ary connective and φi ∈ LCPL.

A propositional valuation is a map v : P → {0, 1}, which is extended to
propositional formulas as usual. We say that a set of valuations V satisfies a
propositional formula φ if, for each v ∈ V, v(φ) = 1. This notion is extended75

to sets of propositional formulas as usual. Let V∗ = {v1, . . . , v2n} be the set of
all valuations defined over variables of P. We define a probability distribution π
over V∗ as a probability vector of size 2n.

A simple probabilistic formula is an expression of the form Pr(c)⊠ p, where
c is a clause, p ∈ Q, 0 ≤ p ≤ 1 and ⊠ ∈ {=,≤,≥}. We say that a probability80

distribution π satisfies a formula Pr(c)⊠ p if
2n∑
i=1

(vi(c) · πi)⊠ p .

A probability distribution π satisfies a set of simple probabilistic formulas if it
satisfies each one of them.
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We now recall the PSAT problem [6, 8, 7].

Definition 1 (PSAT problem). Given a set of propositional variables P and a set85

of simple probabilistic formulas Σ = {Pr(ci) ⊠ pi | 1 ≤ i ≤ k}, the Probabilistic
Satisfiability problem (PSAT) consists in determining whether there exists a
probability distribution π over V∗ that satisfies Σ.

The PSAT problem for {Pr(ci) ⊠i pi | 1 ≤ i ≤ k} can be formulated alge-
braically as the problem of finding a solution π for the system of inequalities90 

V π ⊠ p∑
πi = 1

π ≥ 0

,

where V is the k × 2n matrix such that Vij = vj(ci), i.e., Vij = 1 iff the j-th
valuation satisfies the i-th clause, p = [pi] is the k vector of all pi and ⊠ = [⊠i]
is the k vector of all ⊠i.

The SAT problem can be modelled as a PSAT instance where the entries pi
of the probability vector are all identical to 1. The PSAT problem was shown95

to be NP-complete [8, 13], even when the clauses consist of the disjunction of
only two literals, 2-PSAT.

We now extend the notion of simple probabilistic formula to handle linear
inequalities involving probabilities of propositional formulas. A probabilistic
formula is an expression of the form100 ∑ℓ

i=1(aiPr(φi)) ▷◁ p ,

where φi ∈ LCPL, ▷◁∈ {≥, <, ̸=}, ℓ ∈ N and ai, p ∈ Q. Observe that for-
mulas with the relational symbols ≤, > can be obtained by abbreviation and
formulas with = are obtained as a combination of probabilistic formulas. An
atomic probabilistic formula is a probabilistic formula where each φi is a propo-105

sitional variable. We say that a probability distribution π satisfies a formula∑ℓ
i=1(aiPr(φi)) ▷◁ p if∑ℓ

i=1

(
ai

(∑2n

j=1 vj(φi) · πj
))

▷◁ p .

A probability distribution π satisfies a set of probabilistic formulas if it satisfies
each one of them.110

An instance of GenPSAT is a pair (Γ,Σ) where Γ is a set of propositional
formulas (also called hard constraints) and Σ is a set of probabilistic formulas
(soft constraints). We say that a probability distribution π satisfies a GenPSAT
instance (Γ,Σ) if it satisfies the set of probabilistic formulas

Ξ(Γ,Σ) = Σ ∪ {Pr(γ) = 1 | γ ∈ Γ} . (1)

Definition 2 (GenPSAT problem). Given a GenPSAT instance (Γ,Σ), the115

Generalized Probabilistic Satisfiability problem (GenPSAT) consists in deter-
mining whether there exists a probability distribution π over V∗ that satisfies
(Γ,Σ).
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GenPSAT poses a convenient framework for specifying constraints involving
different probabilistic formulas. For instance, one may want to impose that120

2Pr(A) ≤ Pr(B) for two propositional formulas A,B. Such requirements may
be very useful in specifying properties of interesting systems but they cannot
be easily expressed in the PSAT framework. We now showcase GenPSAT’s ex-
pressiveness by encoding the Monty Hall problem [18].
Example 1. The Monty Hall problem is a puzzle where we are faced with the125

choice of picking one of three doors, knowing that a prize is behind one of them.
After our initial choice, the game host opens one of the remaining doors provided
that the prize is not behind it, and gives us the choice of switching or keeping
the initial guess. The question is: which option is more advantageous?

To model this problem as a GenPSAT instance, let us define the following130

propositional variables: Pi holds if the prize is behind door i, Xi holds if our
initial choice is door i, Hi holds if the host reveals door i after our initial choice,
for i ∈ {1, 2, 3}. Since there are only one door with a prize, one initial choice,
and one door revealed by the host, we impose the following restrictions:

Γ1 =


∨

i,j,k∈{1,2,3}
i̸=j ̸=k ̸=i

(Pi ∧ ¬Pj ∧ ¬Pk),
∨

i,j,k∈{1,2,3}
i̸=j ̸=k ̸=i

(Xi ∧ ¬Xj ∧ ¬Xk),
∨

i,j,k∈{1,2,3}
i̸=j ̸=k ̸=i

(Hi ∧ ¬Hj ∧ ¬Hk)

 .

135

Furthermore, the host cannot open neither the chosen door nor the door with
the prize and so we also impose the following constraints:

Γ2 =
∪

i∈{1,2,3}

{Pi → ¬Hi, Xi → ¬Hi} .

We further assume that the prize has uniform probability of being behind each
door and that the initial choice is independent of where the prize is:

Σ =
∪
i,j∈{1,2,3}

{
Pr(Pi) =

1
3 , Pr(Pi ∧Xj) =

1
3 Pr(Xj)

}
140

Concerning the question of which is more advantageous, switching or keeping
our initial choice, we encode winning by switching and winning by keeping,
respectively, as

WbS :
∧3
i=1(Pi ↔ (¬Xi ∧ ¬Hi)) , WbK :

∧3
i=1(Pi ↔ Xi) .

We want to the decide whether it is always the case that Pr(WbS) ≥ Pr(WbK),
which can be checked by testing the satisfiability of the GenPSAT instance

(Γ,Σ ∪ {Pr(WbS) < Pr(WbK)}) , where Γ = Γ1 ∪ Γ2 .

As expected, this instance is not satisfiable and the instance (Γ,Σ∪{Pr(WbS) ≥145

Pr(WbK)}) is satisfiable, allowing us to conclude that it is always advantageous
to switch our initial option.

We can take this analysis one step further, and show that the probability of
winning by switching is 2

3 by checking that the instance (Γ,Σ∪{Pr(WbS) ̸= 2
3})

is unsatisfiable and that the instance (Γ,Σ ∪ {Pr(WbS) = 2
3}) is satisfiable. All150

these instances were checked using the tool we implemented, [19]. ♢
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Notice that the PSAT problem for Σ can be modelled in GenPSAT by con-
sidering the instance (∅,Σ).

Given a GenPSAT instance (Γ,Σ), where Γ contains m formulas and Σ is
composed of k probabilistic formulas, we follow the lines of Nilsson [6] for a155

linear algebraic formulation and consider a (k + m) × 2n matrix V = [Vij ],
where for each i ∈ {1, . . . , k +m} and j ∈ {1, . . . , 2n} Vij is defined from the
jth valuation vj and from the ith probabilistic formula

∑ℓ
u=1 a

i
uPr(φ

i
u) ▷◁i pi of

Ξ(Γ,Σ) as follows:

Vij =
∑ℓ
u=1 a

i
u · vj(φiu) .160

Furthermore, define two vectors of size k +m, p = [pi] and ▷◁= [▷◁i]. GenPSAT
is equivalent to the problem of deciding the existence of a solution π to the
system 

V π ▷◁ p∑
πi = 1

π ≥ 0

. (2)

Given a set of probabilistic formulas Ω =

{
ℓ∑

u=1
aiu · vj(φiu) ▷◁i pi | 1 ≤ i ≤ k

}
and a set of valuations V = {v1, . . . , vk′}, we define the [Ω,V]-associated matrix165

as the (k + 1)× k′ matrix M[Ω,V] = [Mij ] such that

Mk+1,j = 1 for each 1 ≤ j ≤ k′
and

Mij =

ℓ∑
u=1

aiu · vj(φiu) for 1 ≤ i ≤ k, 1 ≤ j ≤ k′ .

Then, we can rewrite system (2) using the [Ξ(Γ,Σ),V∗]-associated matrix V as{
V π ▷◁ p

π ≥ 0
(3)

We now show that this problem is NP-complete. For this purpose, we first170

present the following lemma.

Lemma 1 ([13, 20]). If a system of ℓ linear inequalities with integer coefficients
has a non-negative solution, then it has a non-negative solution with at most ℓ
positive entries.

Theorem 1 ([13]). GenPSAT is NP-complete.175

Proof. We begin by showing that GenPSAT is in NP by providing a polynomial
sized certificate. Notice that Lemma 1 can be extended to rational coefficients
simply by normalizing with the greatest denominator. Applying this result to
the system (3) we conclude that there is a (k+m+1)× (k+m+1) matrix W ,
composed of columns of V , whose system180 {

Wπ ▷◁ p

π ≥ 0
(4)

6



has a solution iff the original system (3) has a solution. Furthermore, the ob-
tained solutions from (4) can be mapped to solutions of (3) by inserting zeros
in the appropriate positions. Since the solution of this system has k +m + 1
elements, it constitutes the NP-certificate for the GenPSAT problem.

Furthermore, given that the PSAT problem can be modelled in GenPSAT, it185

follows that GenPSAT is NP-complete.

We say that a GenPSAT instance (Γ,Σ) is in normal form if Γ is a set of
propositional clauses with 3 literals, i.e., Γ can be seen as a 3CNF formula, and
Σ is a set of atomic probabilistic formulas.

Lemma 2. Given a GenPSAT instance (Γ,Σ) there exists an instance (Γ′,Σ′)190

in normal form such that (Γ,Σ) is satisfiable iff (Γ′,Σ′) is satisfiable. Moreover,
(Γ′,Σ′) is obtained from (Γ,Σ) in polynomial time.

Proof. Let (Γ,Σ) be the GenPSAT instance to be put in normal form. We obtain
Σ′ by transforming formulas in Σ into atomic probabilistic formulas. For this
purpose, let

∑ℓ
i=1 aiPr(φi) ▷◁ p be a formula in Σ and consider the atomic195

probabilistic formula obtained by replacing (when needed) each formula φi by
a fresh variable yi,

∑ℓ
i=1 aiPr(yi) ▷◁ p . Furthermore, the yi variable is added

to P and the formula stating the equivalence between yi and φi, (yi ↔ φi), is
collected in a set ∆.

We are left with the transformation of the formula200 ∧
γ∈Γ γ ∧

∧
(y↔c)∈∆(y ↔ c)

into 3-CNF using Tseitin’s transformation [21], which can increase linearly the
size of the formula and add new variables to P. The final Γ′ is the set of con-
juncts of the obtained 3-CNF formula. Since Tseitin’s transformation preserves
satisfiability of formulas, (Γ,Σ) is satisfiable iff (Γ′,Σ′) is satisfiable.205

3. Reducing GenPSAT to Mixed-Integer Programming

In this section we explore the close relation between satisfaction of proposi-
tional formulas and feasability of a set of linear constraints over binary variables
(see [15]). With this, we present a reduction of GenPSAT to Mixed-Integer Pro-
gramming (MIP), similarly to what was done for PSAT [9] and GPSAT [10]. A210

MIP problem consists in optimizing a linear objective function subject to a set
of linear constraints over real and integer variables. MIP was shown to be NP-
complete, see [14]. Observe that this translation to MIP also serves as a proof
that GenPSAT is in NP.

3.1. Linear Algebraic Formulation for GenPSAT215

Lemma 3. A GenPSAT instance in normal form (Γ,Σ), with |Σ| = k, is sat-
isfiable iff there exists a (k + 1)× k′ matrix W of rank k′ ≤ k + 1 and a set of
valuations V0 of size k′ such that:

(i) W is the [Σ,V0]-associated matrix
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(ii) V0 satisfies Γ,220

(iii) considering p = [p1, . . . , pk, 1] and ▷◁= [▷◁1, . . . , ▷◁k,=], the system{
Wπ ▷◁ p

π ≥ 0
(5)

is satisfiable.

Proof. Let (Γ,Σ) be a satisfiable GenPSAT instance in normal form, with |Σ| = k
and |Γ| = m. Then, denoting by V the [Ξ(Γ,Σ),V∗]-associated matrix, the system225 {

V π ▷◁ p

π ≥ 0

has a solution. And so, using Lemma 1, there is a (k +m + 1) × ℓ matrix V ∗,
where ℓ ≤ k + m + 1, and whose system has a positive solution π∗. Notice
that the set of valuations underlying V ∗ certainly satisfies Γ, as π∗

j > 0 for each
1 ≤ j ≤ ℓ.

Let W ∗ be the matrix constructed from V ∗ by choosing the first k rows230

(corresponding to the probabilistic formulas in Σ) and the last row (requiring
that the solution sums up to one) of V ∗. Still, the corresponding system has a
positive solution. Using Lemma 1 once more, we conclude that exists a (k+1)×k′
matrix W , with k′ ≤ k+1, whose system has a positive solution ρ∗. The solution
π for (5) is obtained from ρ∗ by inserting zeros in the appropriate positions.235

Reciprocally, assume that there exists a (k + 1) × k′ matrix W of rank
k′ ≤ k+ 1 satisfying (i), (ii), (iii), and let π denote the solution for (5). We are
looking for a probability distribution π∗ satisfying (Γ,Σ). For this purpose, let
V0 = {vj1 , . . . , vjk′} ⊆ V denote the set of valuations underlying W according
to condition (ii), and define π∗ = [π∗

i ], where240

π∗
i =

{
πi if i ∈ {j1, . . . , jk′}
0 otherwise .

The verification that π∗ satisfies the GenPSAT instance is now immediate:

• given γ ∈ Γ, we check that π∗ verifies Pr(γ) = 1 by observing that the last
equality represented on W on (5) leads to

∑k′

s=1 πjs = 1 and so,
2n∑
j=1

vj(γ) · π∗
j =

∑
{j|vj(γ)=1}

π∗
j =

k′∑
s=1

πjs = 1 .

• given an atomic probabilistic formula
∑ℓ
i=1 aiPr(yi) ▷◁ p in Σ, we recall245

the definition of π∗ and that π is a solution for (5) to conclude that
ℓ∑
i=1

ai

 2n∑
j=1

vj(yi) · π∗
j

 =

k′∑
s=1

(
ℓ∑
i=1

ai · vjs(yi)

)
πjs ▷◁ p ,

i.e., π∗ satisfies the formulas in Σ.
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3.2. Translation to MIP

Regarding Lemma 3, given a GenPSAT instance (Γ,Σ) in normal form, with250

|Σ| = k and |Γ| = m, our goal is now to describe a procedure that encodes the
problem of finding a set of valuations V0 and a probability distribution π in the
conditions (i),(ii),(iii), as a MIP problem. We dub this procedure GenToMIP.

Let us denote by H = [hij ] the (still unknown) matrix of size n × k′ whose
columns represent the valuations in V0 evaluated on each propositional vari-255

able of P, i.e., hij = vj(xi) for each 1 ≤ i ≤ n and 1 ≤ j ≤ k′. Let
α1, . . . , αn represent the probability of the propositional variables x1, . . . , xn,
respectively, and following the reasoning of [9, 10] we model the non-linear con-
straint

∑k′

j=1 hij · πj = αi as a linear inequality
k′∑
j=1

bij = αi , (val1)

by introducing the extra variables bij which are subject to the appropriate con-260

straints, namely forcing bij to be zero whenever hij = 0, and ensuring that
bij = πj whenever hij = 1, i.e.,

0 ≤ bij ≤ hij and hij − 1 + πj ≤ bij ≤ πj . (val2)

We ensure that π represents a probability distribution by imposing that
k′∑
j=1

πj = 1 . (sums1)

265 Still, as each valuation of V0 satisfies Γ, given a clause
(

w∨
r=1

xir

)
∨

(
w′∨
s=1
¬xi′s

)
of Γ, we generate a linear inequality for each valuation 1 ≤ j ≤ k′,(

w∑
r=1

hir, j

)
+

 w′∑
s=1

(1− hi′s j)

 ≥ 1. (gamma)

Notice that, if we have a total of m clauses in Γ, we generate m × k′ such
inequalities.270

In order to verify the satisfiability of probabilistic formulas in the MIP frame-
work, consider an atomic probabilistic formula

∑ℓ
i=1 aiPr(yi) ▷◁ p in Σ. Since

▷◁ can either be the relational symbol ≥, < or ̸=, we can easily encode the
first kind of inequalities as a MIP linear constraint, but should be careful when
dealing with the remaining relational symbols.275

For atomic probabilistic formulas of the form
∑ℓ
i=1 aiPr(yi) ≥ p, we generate

the linear inequality ℓ∑
i=1

ai · αi ≥ p . (prob≥)

In the case where ▷◁ is a strict inequality <, we use a specific variable in-
troduced into the MIP problem, say ε, to fix the objective function as the max-
imization of ε,280 maximize ε (obj)

9



and further introduce the linear constraint
ℓ∑
i=1

(ai · αi) + ε ≤ p . (prob<)

For atomic probabilistic formulas φ of the form
∑ℓ
i=1 aiPr(yi) ̸= p, i.e.

ℓ∑
i=1

aiPr(yi)− p ̸= 0, (6)

we force the left hand side to be either strictly greater or strictly less than zero,285

ℓ∑
i=1

(ai · αi)− p < 0 or
ℓ∑
i=1

(ai · αi)− p > 0 .

Even though these are linear constraints, the problem would explode if we
treated the disjunction. In this sense, notice that, denoting by C a sufficiently
large number, say C = 1 + |p| +

∑ℓ
i=1 |ai|, the inequality (6) holds if and

only if there exists a fresh binary variable zφ such that the following two strict290

inequalities hold simultaneously:
ℓ∑
i=1

(ai · αi)− p < C · zφ and −
ℓ∑
i=1

(ai · αi) + p < C − C · zφ .

Then, we are left with two strict inequalities, thus reducing this analysis to a
previous case, from which we obtain the constraints
ℓ∑
i=1

(ai ·αi)−p+ε ≤ C ·zφ and −
ℓ∑
i=1

(ai · αi) + p+ ε ≤ C−C ·zφ .

(prob ̸=)
Denoting by k≥, k<, k̸= the number of probabilistic formulas in Σ when295

▷◁ coincides with ≥, <, ̸=, respectively, so far we have introduced: n con-
straints (val1), 4 × n × k′ constraints (val2), 1 constraint (sums1), m × k′ con-
straints (gamma), k≥ constraints (prob≥), k< constraints (prob<), 2 × k̸= con-
straints (prob̸=). Hence, we have O(n+n×k′+m×k′+k) inequalities over n×k′
binary variables hij , n × k′ real variables bij , n real variables 0 ≤ αi ≤ 1, k̸=300

binary variables zφ, a real variable ε ≥ 0 and k′ real variables πj ≥ 0. Because
of this, the GenToMIP translation is polynomial.

Proposition 1. The GenToMIP procedure transforms a GenPSAT instance in
normal form (Γ,Σ) into a MIP problem whose size is polynomial on the size of
(Γ,Σ).305

We now need to show that the existence of a set of valuations V0 and a prob-
ability distribution π in the conditions (i),(ii),(iii) of Lemma 3 is equivalent to
the feasibility of the MIP problem obtained through GenToMIP with an optimal
value ε > 0 (when applicable).

This procedure is presented in Algorithm 1, which given a GenPSAT instance,310

translates it into a MIP problem and then solves the latter appropriately. For
that, let us assume that we initialize an empty MIP problem and consider the
following auxiliary procedures:

• add_const introduces a linear constraint into the MIP problem,

10



• set_obj defines the objective function (either as a maximization or as a315

minimization) when it was previously not defined,

• fresh declares a fresh binary variable into the MIP problem,

• mip_sat returns True or False depending on whether the problem is feasible
(and achieves an optimal solution) or not,

• mip_objvalue returns the objective value, if an objective function was set.320

Algorithm 1 GenPSAT solver based on MIP
1: procedure GenPSAT(props {xi}ni=1, form Γ, probform Σ)
2: declare: binary variables: hij for i ∈ {1, . . . , n}, j ∈ {1, . . . , k′}
3: declare: [0, 1]-variables: αi, πj , bij for i ∈ {1, . . . , n}, j ∈ {1, . . . , k′}
4: declare: real variable: ε
5: for j = 1 to k′ do
6: for each (

∨
r xr) ∨ (

∨
s ¬xs) in Γ do

7: add_const(
∑
r hrj +

∑
s(1− hsj) ≥ 1) ▷ (gamma)

8: for i = 1 to n do
9: add_const(

∑
j bij = αi) ▷ (val1)

10: for j = 1 to k′ do
11: add_const(0 ≤ bij ≤ hij) ▷ (val2)
12: add_const(hij − 1 + πj ≤ bij ≤ πj) ▷ (val2)
13: aux ← 0
14: for each

∑
ai · Pr(xi) ▷◁ q in Σ do

15: switch(▷◁)
16: case “ ≥ ” :
17: add_const(

∑
ai · αi ≥ q) ▷ (prob≥)

18: case “ < ” :
19: aux← 1
20: set_obj(max ε) ▷ (obj)
21: add_const(

∑
ai · αi + ε ≤ q) ▷ (prob<)

22: case “ ̸= ” :
23: aux← 1
24: z ← fresh() ▷ z is a fresh binary variable
25: C ← 1 + |q|+

∑
|ai|

26: set_obj(max ε) ▷ (obj)
27: add_const(

∑
ai · αi − C · z − ε ≥ q − C) ▷ (prob ̸=)

28: add_const(
∑
ai · αi − C · z + ε ≤ q) ▷ (prob ̸=)

29: add_const(
∑
πi = 1) ▷ (sums1)

30: if mip_sat() then
31: if (aux == 0) or (aux == 1 and mip_objvalue() > 0) then
32: return Sat
33: return Unsat
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Proposition 2. A GenPSAT instance in normal form (Γ,Σ) is satisfiable iff
Algorithm 1 returns Sat.

Proof. Let (Γ,Σ) be a satisfiable GenPSAT instance in normal form, and also
V0 = {v1, . . . , vk′} and ρ = [ρi] represent a set of valuations and a probability
distribution given by Lemma 3 which satisfy conditions (i)-(iii). Then, consider
the following values and afterwards let us check that they constitute an optimal
solution for the MIP problem constructed at Algorithm 1: for each 1 ≤ i ≤ n
and 1 ≤ j ≤ k′, let

h∗ij = vj(xi),

b∗ij = h∗ij · ρj ,
π∗
j = ρj ,

α∗
i =

∑
{j|vj(xi)=1}

ρj ,

ε∗ = min ∆,

where ∆ = {q −
∑ℓ
i=1(ai · α∗

i ) | (
∑ℓ
i=1 aiPr(xi) < q) ∈ Σ} ∪

∪ {C · z∗φ + q −
∑ℓ
i=1(ai · α∗

i ) | φ ∈ Σ is of the form
∑ℓ
i=1 aiPr(xi) ̸= q} ∪

∪ {C − C · z∗φ − q +
∑ℓ
i=1(ai · α∗

i ) | φ ∈ Σ is of the form
∑ℓ
i=1 aiPr(xi) ̸= q},

and, for each atomic probabilistic formula φ ∈ Σ of the form
∑ℓ
i=1 aiPr(xi) ̸= q,325

z∗φ =

{
0, if

∑ℓ
i=1 ai · α∗

i < q

1, if
∑ℓ
i=1 ai · α∗

i > q
.

Now let us check that each linear constraint introduced into the MIP problem
at Algorithm 1 is satisfied.

(gamma) {h∗ij} satisfy the constraints modelling Γ since each v ∈ V0 satisfies Γ.
330

(val1) By definition of {b∗ij} and {h∗ij}, we actually have
k′∑
j=1

b∗ij =

k′∑
j=1

h∗ij · ρj =
k′∑
j=1

vj(xi) · ρj =
∑

{j|vj(xi)=1}

ρj = α∗
i .

(val2) Since 0 ≤ vj(xi) ≤ 1 and 0 ≤ ρj ≤ 1 we immediately have 0 ≤ b∗ij ≤ h∗ij .

For the other inequality, recall that h∗ij = vj(xi) and that π∗
j = ρj and

note that:335

• if h∗ij = 0 then b∗ij = 0 and, since π∗
j ≤ 1, it follows that π∗

j − 1 ≤
b∗ij ≤ π∗

j , i.e., h∗ij − 1 + π∗
j ≤ b∗ij ≤ π∗

j

• if h∗ij = 1 then b∗ij = π∗
j and so π∗

j ≤ b∗ij ≤ π∗
j , i.e., h∗ij − 1 + π∗

j ≤
b∗ij ≤ π∗

j

(sums1) Since π∗
j = ρj , we immediately conclude that

k′∑
j=1

π∗
j = 1.340
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To check that the probabilistic formulas are satisfiable, just note that, given a
probabilistic formula (

∑ℓ
i=1 aiPr(xi) ▷◁ q) ∈ Σ,

ℓ∑
i=1

ai · α∗
i =

ℓ∑
i=1

ai

 ∑
{j|vj(xi)=1}

ρj

 =

ℓ∑
i=1

ai

 2n∑
j=1

vj(xi) · ρj

 .

(prob≥) Let (
∑ℓ
i=1 aiPr(xi) ≥ q) ∈ Σ and notice that, since ρ satisfies conditions

(i), (ii), (iii), in particular it satisfies all the probabilistic formulas in Σ,345

and so
∑ℓ
i=1 ai

(∑2n

j=1 vj(xi) · ρj
)
≥ q, which implies that

∑ℓ
i=1 ai·α∗

i ≥ q.

(prob<) Now, let (
∑ℓ
i=1 aiPr(xi) < q) ∈ Σ and notice that, in a reasoning very

similar to the previous one, we can conclude that
∑ℓ
i=1 ai · α∗

i < q, i.e.

q −
ℓ∑
i=1

(ai · α∗
i ) > 0. (7)

350 But we should also note that, since ε∗ = min ∆, then ε∗ ≤ q−
∑ℓ
i=1(ai·α∗

i ),
and so we obtain

ℓ∑
i=1

(ai · α∗
i ) + ε∗ ≤

ℓ∑
i=1

(ai · α∗
i ) + q −

ℓ∑
i=1

(ai · α∗
i ) = q .

(prob ̸=) Finally, let us consider an atomic probabilistic formula φ ∈ Σ of the
form

∑ℓ
i=1 aiPr(xi) ̸= q, and recall once more that since ρ satisfies each

probabilistic formula of Σ, we have
∑ℓ
i=1(ai · α∗

i ) ̸= q, in other words,355

either q−
∑ℓ
i=1(ai ·α∗

i ) > 0 or q−
∑ℓ
i=1(ai ·α∗

i ) < 0. Recall the constant
C defined as C = 1 + |q| +

∑ℓ
i=1 |ai| and the definition of z∗φ and notice

that both
C · z∗φ + q −

ℓ∑
i=1

(ai · α∗
i ) > 0 (8)

and360

C − C · z∗φ − q +
ℓ∑
i=1

(ai · α∗
i ) > 0 (9)

are verified in either of the above cases. Also note that by definition of ε∗,
ε∗ ≤ C · z∗φ + q −

∑ℓ
i=1(ai · α∗

i ) and ε∗ ≤ C − C · z∗φ − q +
∑ℓ
i=1(ai · α∗

i ).
Hence, we now analyze each of the previous cases:365

• if q >
∑ℓ
i=1(ai · α∗

i ), then z∗φ = 0 and it follows that
ℓ∑
i=1

(ai·α∗
i )−C ·z∗φ−ε∗ ≥

ℓ∑
i=1

(ai·α∗
i )−C+C ·z∗φ+q−

ℓ∑
i=1

(ai·α∗
i ) = q−C,

and further,
ℓ∑
i=1

(ai ·α∗
i )−C · z∗φ+ ε∗ ≤

ℓ∑
i=1

(ai ·α∗
i )+C · z∗φ+ q−

ℓ∑
i=1

(ai ·α∗
i ) = q.
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• if q <
∑ℓ
i=1(ai · α∗

i ), then z∗φ = 1 and it follows that
ℓ∑
i=1

(ai·α∗
i )−C ·z∗φ−ε∗ ≥

ℓ∑
i=1

(ai·α∗
i )−C−(C−C ·z∗φ−q+

ℓ∑
i=1

(ai·α∗
i )) = q−C,

and further,370

ℓ∑
i=1

(ai · α∗
i )−C · z∗φ + ε∗ ≤

ℓ∑
i=1

(ai · α∗
i )−C +C · z∗φ + q −

ℓ∑
i=1

(ai · α∗
i ) = q.

To finish the direct implication, notice that ε∗ > 0 as a consequence of (7), (8)
and (9), and it takes the maximum possible value since otherwise, let φ∆ be the
formula in Σ which has the minimum value in ∆. Then, if there was a solution
with greater objective value it would violate the constraint (prob▷◁) for φ∆.

Reciprocally, assume that Algorithm 1 returned Sat, and let us denote by375

h∗ij , α∗
i , ε∗ and π∗

j the (optimal) solution for the variables hij , αi, ε and πj , for
each 1 ≤ i ≤ n, 1 ≤ j ≤ k′ respectively.

Consider the set of valuations V0 = {v1, . . . , vk′} where, for each proposi-
tional variable xi ∈ P, vj(xi) = h∗ij . Due to constraints (gamma) it is immediate
to conclude that each valuation satisfies Γ. Then, let the probability distribu-380

tion π be defined over the set of valuations as the 2n vector π = [ρj ] where
ρj = π∗

j for 1 ≤ j ≤ k′ and ρj = 0 for k′ < j ≤ 2n. Note that (sums1) implies
that π is a probability vector. The third condition described in Lemma 3 is
deduced by simple inspection of the linear constraints (prob≥), (prob<), (prob ̸=)
and (sums1), by definition of the matrix associated to Σ over V0 and recalling385

that the optimal value ε∗ is such that ε∗ > 0.

As a corollary of the previous propositions, we obtain the following result.

Theorem 2. The GenToMIP algorithm is a correct polynomial time translation
of GenPSAT to a MIP problem.

4. Phase Transition390

Phase transition is a phenomenon that marks a hardness shift in the solution
of instances of a problem. This behaviour was observed in many NP-complete
problems [16], among which we highlight 3-SAT [22] and PSAT [7, 11].

In this section, we study the GenPSAT phase transition, through an imple-
mentation of Algorithm 1 and tests comprised of batteries of random instances.395

For this, we measure the proportion of satisfiable instances as well as the av-
erage time the solver spent to solve them. The software was written in Java,
and we used Gurobi [23], version 6.5.0, to solve the MIP problem. The machine
used for the tests was a Mac Pro at 3,33 GHz 6-Core Intel Xeon with 6 GB of
memory. Our implementation is available in [19].400

It was noted that, in random 3-SAT instances [22] there is a clear stage
where the instances are almost surely satisfiable and one where they are almost
surely not satisfiable. This phenomenon is characterized by the existence of a
threshold value for the ratio m/n, where m is the number of clauses, and n
is the number of variables, for which: for smaller values of the ratio, the SAT405
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instances are almost certainly satisfiable and easily solved, whereas instances
with larger ratio values are almost certainly unsatisfiable and also easily solved.
However, with values of the ratio very closed to this threshold, the instances
are, on average, very hard to solve and there is no certainty on whether the
problem is satisfiable or not. As we have already noted, any 3-SAT problem can410

be seen as a GenPSAT instance. We tested our GenPSAT solver with random
instances of 3-SAT, and observed that a phase transition occurs when the ratio
m/n is about 4.3, in accordance with [22], see Figure 1.

Figure 1: Phase transition for SAT seen as a GenPSAT instance, with n = 20.

A deeper analysis of the probabilistic satisfiability problem PSAT [7, 11] has
shown the presence of a phase transition behaviour for PSAT for a ratio m/n,415

where m is the number of clauses and n is the number of variables. We tested
random PSAT instances with the number of probabilistic formulas k = 2, n = 15
and m ranging from 1 to 105 in steps of 2. For each value of m, we generated
100 PSAT instances. The obtained results are presented in Figure 2.

Figure 2: PSAT phase transition seen as a GenPSAT instance, with n = 15 and k = 2.

We highlight that the analysis of the existence of a phase transition with420

variation on k (instead of a variation on m) is essential for a deep understanding
of the phase transition of the probabilistic satisfiability problem (instead of the
phase transition of the satisfiability problem for propositional formulas in the
presence of probabilistic formulas). For this purpose, we tested random PSAT
instances with n = 30, m = 40 and k ranging from 1 to 25, and also observed a425

15



phase transition with respect to k/n based on 100 instances for each value of k,
see Figure 3.

Figure 3: PSAT phase transition seen as a GenPSAT instance, with n = 30 and m = 40.
In [10], this phase transition analysis was performed on a generalization

of the probabilistic satisfiability problem, GPSAT, which consists in Boolean
combinations of simple probabilistic formulas.430

In what concerns GenPSAT, notice that a randomly sampled probabilistic
formula can easily be inconsistent by itself, e.g., when it implies one of the
probabilities is greater than 1. Because of this, the sampling of the coefficients
was performed so that this case does not occur.

GenPSAT gives us a wider scope of ratios to study the phase transition435

behaviour. Due to its generalized nature, we have four dimensions to explore:
the number of variables n, the number of clauses m, the number of probabilistic
formulas k and the maximum size of the linear combination into the probabilistic
formulas ℓ. Here, we analyze the presence of phase transition for k/n and m/n.

By performing random tests, we observe the presence of a phase transition440

for the ratio of k/n with a very short stage of satisfiable formulas. This is
explained since a GenPSAT instance is more likely to be unsatisfiable. Figure 4
represents the phase transition for random GenPSAT instances with n = 20,
m = 10 and k ranging from 1 to 100 in steps of 2. We generated 100 instances
for each value of k.445

Figure 4: Phase transition for random GenPSAT instances, with n = 20 and m = 10.
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On the other hand, when the parameters n and k are fixed, we are also able
to detect a phase transition. Figure 5 represents the result of testing random
GenPSAT instances with n = 15, k = 2 and m ranging from 1 to 105 in steps of
2. For each value of m we generated 100 GenPSAT instances.

Figure 5: Phase transition for random GenPSAT instances, with n = 15 and k = 2.

5. Extending GenPSAT450

An extension of GenPSAT to encompass Boolean combinations of the
GenPSAT probabilistic formulas is a natural path to follow. Even more so,
since this language coincides precisely with the language of the probabilistic
logic of Fagin et al. presented in [13].

We now present this extension, called GGenPSAT, introduced in [17], as455

well as some example applications of this formalism to information security
which have been verified using the solver [24]. We should note that this solver,
which extends the scope of application to GGenPSAT, uses a reduction to SMT
contrarily to the solver [19] whose reduction to MIP was presented in Section 3
and in [1]. More details on this particular reduction, the technology used for460

the solver as well as a phase transition study for this problem can be found
in [17, 24].

Having fixed a set of propositional variables P = {x1, . . . , xn} recall that the
set of classical propositional formulas is defined by

LCPL ::= P | ¬LCPL | LCPL ∧ LCPL .

We recall from [13] the set of probabilistic atoms (used herein to define465

Boolean probabilistic formulas) composed by linear inequalities of probabilities
of propositional formulas with rational coefficients:

PAt ::= Q · Pr(LCPL) + . . .+Q · Pr(LCPL) ≥ Q .

The set of Boolean probabilistic formulas is defined as a Boolean combination
of probabilistic atoms as follows:

Prob ::= PAt | ¬Prob | Prob ∧ Prob .
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PSAT
Pr(φ) ▷◁ b

SAT

GPSAT∧∨
Pr(φ) ▷◁ b

GGenPSAT∧∨∑
aiPr(φ) ▷◁ b

GenPSAT∑
aiPr(φ) ▷◁ b

Satisfiability problem of the
Probabilistic Logic [13] ≡

Figure 6: Inclusion diagram of several fragments of the probabilistic logic

Again, the other relational symbols {<,>,≤,=, ̸=} can be defined by abbre-470

viation, as well as the logical connectives →,∨,↔. For the sake of simplicity,
we will denote Boolean probabilistic formulas by probabilistic formulas.

To interpret probabilistic formulas, we consider a probability distribution π
over V∗. The satisfaction relation is inductively defined as:

• π ⊩ q1 ·Pr(φ1)+ . . .+ qℓ ·Pr(φℓ) ≥ q iff
∑ℓ
i=1

(
qi

(∑2n

j=1 vj(φi) · πj
))
≥ q;475

• π ⊩ ¬δ iff π ̸⊩ δ;

• π ⊩ δ1 ∧ δ2 iff π ⊩ δ1 and π ⊩ δ2,

where δ, δ1, δ2 ∈ Prob, q, qi ∈ Q and φi ∈ LCPL where i ∈ {1, . . . , ℓ}. A probabil-
ity distribution π satisfies δ ∈ Prob if π ⊩ δ and satisfies a set of probabilistic
formulas if it satisfies each one of them.480

In the first sections, which contain [1], probabilistic satisfiability was ex-
tended to handle linear inequalities involving assignments of values to proposi-
tional formulas. We now aim to extend the GenPSAT problem in order to cope
with Boolean combinations of probabilistic atoms.

An instance of GGenPSAT is a pair (Γ,Ψ) where Γ is a set of classical propo-485

sitional formulas (also called hard constraints) and Ψ is a set of probabilistic
formulas (soft constraints). We say that a probability distribution π satisfies a
GGenPSAT instance (Γ,Ψ) if it satisfies the set of probabilistic formulas

Ξ(Γ,Ψ) = Ψ ∪ {Pr(γ) = 1 | γ ∈ Γ} . (10)

Despite the similarities between a GenPSAT and a GGenPSAT instance, the
latter allows more expressive probabilistic formulas by allowing Boolean combi-490

nations of probabilistic atoms.

Definition 3 (GGenPSAT problem [17]). Given a GGenPSAT instance (Γ,Ψ),
the Classical Generalized Probabilistic Satisfiability problem consists in deter-
mining if there exists a probability distribution π over V∗ that satisfies (Γ,Ψ).
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GGenPSAT extends the scope of PSAT and GenPSAT by dealing with Boolean495

combinations of probabilistic formulas. In this way, we are not only able to
assign values to probabilities of propositional variables or linear inequalities
involving them, but also able to express powerful probabilistic assertions. For
instance, we can easily model and reason about a framework where a variable x
is either true or false with probability 1 but we do not know which is the case:500

Pr(x) = 0 ∨ Pr(x) = 1 .

Notice that GGenPSAT has been studied in the context of the decision prob-
lem for the probabilistic logic introduced by Fagin, Halpern and Megiddo in [13].
Hence, the computational complexity of this problem is known and addressed
in the following theorem.

Theorem 3 ([13]). GGenPSAT is NP-complete.505

5.1. Applications
We will now showcase novel applications of the GGenPSAT formalism. In

particular we will model examples from hardware verification and side-channel
attacks in the GGenPSAT mindset. The problem specifications that can be run
in the tool, can be found in [24].510

5.1.1. Hardware verification
Formal verification in general has greatly impacted hardware verification,

allowing the minimization of circuit sizes, bug finding and general design prob-
lems. With a probabilistic formalism, we are also able to model unreliable
circuits, as well as determine if a certain circuit satisfies a safety guarantee, e.g.,515

work 96% of the time as expected.
The first example is from [25] and studies the implementation of a circuit

for an 2-1 AND-OR-INVERTER (AOI21). An AOI21 is the function on 3 bits
given by AOI21(α1, α2, α3) = ¬((α1 ∧ α2) ∨ α3). A circuit for this function is
for instance the following:520

↵1

↵2

↵5

↵3

↵6

↵4

_

^

¬

whose implementation is given by the formula

Impl ≜ (α4 ↔ α1 ∧ α2) ∧ (α5 ↔ α3 ∨ α4) ∧ (α6 ↔ ¬α5) .

The validity of this implementation can be easily checked by verifying the
unsatisfiability of

Impl ∧ ¬(α6 ↔ AOI21(α1, α2, α3)) .
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More interestingly, we might want to study the reliability of the whole circuit,525

depending on the reliability of each individual gate. For instance, suppose that
the ∧-gate works as expected at least 97% of the time, the ∨-gate works at
least 99% of the time and the ¬-gate always produces the expected value. This
description of the circuit can be formalized in GGenPSAT as

Ĩmpl ≜ Pr(α4 ↔ α1∧α2) ≥ 0.97∧Pr(α5 ↔ α3∨α4) ≥ 0.99∧Pr(α6 ↔ ¬α5) = 1 .

Suppose we now would like to guarantee that this implementation in fact530

computes the AOI21 function at least 96% of the time, under the previous as-
sumptions on the faulty gates. This is modelled by the following formula

S̃pec ≜ Pr(α6 ↔ ¬((α1 ∧ α2) ∨ α3)) ≥ 0.96 .

Hence, to guarantee that under the reliability of the gates we reach this perfor-
mance, we need to check the satisfiability of

Ĩmpl ∧ ¬S̃pec .

If it is not satisfiable, we are guaranteed that indeed this circuit works as an535

AOI21 at least 96% of the time. This can be formally verified in the GGenPSAT
solver [24] and is indeed an unsatisfiable set of formulas. Furthermore, notice
how this example does not make full use of the expressiveness of the whole
probabilistic logic. In particular, we do not make use of linear combinations of
probabilistic terms. To showcase this, we present an example on applications to540

side-channel analysis.

5.1.2. Boolean masking
Consider a circuit with 3 Boolean inputs which computes the function

φ(k, r1, r2) = k ⊕ (r1 ⊕ r2), where k is a secret that is to be masked using the
exclusive or, ⊕, of two independent Bernoulli( 12 ) random Boolean variables r1, r2.545

Our goal is to determine if this mask actually works, i.e., whether it reveals the
value of k if we sample the value of φ(k, r1, r2) enough times. For this, we
consider the probability of the circuit returning 1 depending on the value of k.
If this probability differs with k, we can sample the circuit to determine k.

To model this problem, we need to find two keys k, k′ such that the probabil-
ity of the formula φ(k, r1, r2) differs from the probability of φ(k′, r1, r2) and thus
forcing that Pr(k⊕(r1⊕r2)) ̸= Pr(k′⊕(r1⊕r2)). To define each key as fixed but
unknown, we enforce that Pr(k) = 0 ∨ Pr(k) = 1 and Pr(k′) = 0 ∨ Pr(k′) = 1.
Modelling uniform random variables is simple in GGenPSAT, Pr(ri) = 1

2 for
i = 1, 2. Regarding the independence of r1 and r2 we should impose that
Pr(r1 ∧ r2) = Pr(r1)Pr(r2) which is not possible since the language does not
have products of probabilistic terms. However, when the probability of each
random variable Pr(ri) is known this can always be expressed, despite leading
to an exponential number of formulas [26]. Thus, independence can be modelled
as Pr(r1 ∧ r2) = 1

4 . Finally, the whole problem can be described in GGenPSAT
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as the following set of assertions:
Pr(k ⊕ (r1 ⊕ r2)) ̸= Pr(k′ ⊕ (r1 ⊕ r2))
Pr(k) = 0 ∨ Pr(k) = 1
Pr(k′) = 0 ∨ Pr(k′) = 1
Pr(ri) =

1
2 for i = 1, 2

Pr(r1 ∧ r2) = 1
4

Encoding this set of assertions in the solver [24] we obtain that the set of550

assertions is unsatisfiable. This means that indeed, this formula is secure under
Bernoulli( 12 ) and independent random masks, since there is no model in which
the weight of the formula k ⊕ (r1 ⊕ r2) depends on the value of k. However, if
we drop the independence restriction, Pr(r1 ∧ r2) = 1

4 , we obtain a satisfiable
instance and thus, the circuit would leak information about the secret key if555

used with non-independent random masks, e.g. r1 = r2 implies φ(k, r1, r2) = k.

6. A Probabilistic Formalization of Attackers with Side-Channel Ca-
pabilities

Even cryptographic protocols which are based on mathematically hard to
solve problems can be easily exploited when enough “physical” information is560

leaked to the outside by the system implementing it – this was the lesson taught
by the seminal paper on the power of side-channel attacks, [27]. Side-channel
attacks happen when an attacker is able to obtain supposedly private data
through information that the system leaks via physical channels such as timing
data [27], power consumption [28], electromagnetic radiation [29, 30] to name565

some impactful side channels. These channels can also be used to exfiltrate data
in a covert manner, where an attacker is able to encode data in these channels.
With such huge attack surface, this area has not stopped developing and has
showed that commonly used implementations of cryptographical protocols and
primitives are not safe against these attacks, RSA, DSS and Diffie-Hellman [27],570

elliptic curve implementations in the GnuPG’s Libgcrypt [31] as well as sym-
metric encryption schemes such as DES [28] and AES [32]. These attacks even
extend to quantum protocols such as quantum key distribution [33], which in
theory are physically secure.

Despite the security guarantees of the protocols, often enough, their security575

proofs do not usually take into account the information leaks the system may
have through physical properties. In the traditional cryptography view of the
world, an attacker only observes the public part of the protocol. For instance, in
a private-key encryption scenario Eve, the attacker, would only have access to
the encryption of the message exchanged between Alice and Bob, see Figure 7.580
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Alice Bob

Eve

enc(m)
m m

Figure 7: The traditional cryptography view of the world.

However, in the real-world, the encryption process takes time, the machine
in which the encryption is being made consumes power, emits heat, electromag-
netic radiation and sound, as depicted in Figure 8. Unless defensive measures
are taken into account more than one of these channels of physical information
about the system may be available to an attacker. Furthermore, the attacker585

can actively force information leaks by injecting or forcing faults in the system.
These fault attacks, introduced in [34], can often lead to full secret recovery,
even on standard ciphers such as AES [35].

Alice Bob

Eve

enc(m)
m m

Cache hits Power 
Consumption

Heat

EM Radiation

Sound Errors

Execution Time

Figure 8: The side-channel view of the world.

There are some usual approaches to thwart these attacks: on one hand there
can be a physical shielding of the device running the cryptographic functions,590

trying to prevent unwanted leakage of information; on the other hand, there can
be a logical shielding of the secrets, e.g., by means of a random mask which is
applied to values during the execution of algorithm [36, 37]. In this section, we
study the latter case, that is, how to develop algorithms with a provably secure
implementation. We also only focus on power side-channel attacks – for instance595

timing side-channel attacks have other countermeasures such as constant-time
code, which are out of the scope of this work.

In this section, we use GGenPSAT to formalize the notion of perfect masking
of a Boolean formula introduced in [38]. Furthermore, we generalize the notion
of perfect masking to encompass an active attacker interfering with the system,600

and consider the problem of deciding if a formula is perfectly masked under
the attack of such an adversary (or a general family of attackers). For this, we
consider two generic families of active attackers: attackers with fault-injection
capabilities which are able to partially (or fully) control the masks being used to
protect the leakage of information and attackers with variable-dependency ca-605

pabilities which are able to make two or more, previously independent random
variables, dependent. The latter attacker can seem devoid of practical conse-
quence but consider the following circuit in which a secret bit k is being masked
by two independent and uniform random variables r1, r2 using xor, k⊕ (r1⊕r2).
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r1

r2

k � (r1 � r2)
k

r1 � r2�

�

610
Suppose that the attacker is able to physically interfere with the wiring of

the circuit in a way that the r1 variable is sometimes overridden by r2:

r1

r2

k � (r2 � r2) = k
k

r2 � r2 = 0�

�

In this scenario, when the fault occurs, the output of the circuit will be
k ⊕ (r2 ⊕ r2) = k, i.e., the mask will fail.615

6.1. Side-channel
Throughout this section, we are focused in studying the following scenario:

there is a Boolean formula φ with plaintext variables x ∈ X, secret key vari-
ables k ∈ K, and random mask variables r ∈ R, that computes a cipher-
text φ(X,K,R). Typically, the Boolean masks are sampled in a uniform and620

independent fashion, however in general this might not happen. For this,
assume that the masks are sampled according to a probability distribution
P : {0, 1}|R| → [0, 1], where |R| denotes the cardinality of the set R.

Given a Boolean formula φ with sets of variables X,Y we may denote it
by φ(X,Y ) to reinforce that X,Y are free variables in φ. Furthermore, an625

instantiation of the variables in X is usually denoted by a bold face letter X ∈
{0, 1}|X|. Thus, φ(X,Y ) where the variables in X are instantiated to X is
denoted by φ(X, Y ). We also denote {0, 1}|X| by dom(X).

We say that a set S has polynomial size in φ, denoted by |S| = poly(|φ|),
when there is a positive polynomial p such that |S| ≤ p(|φ|) and also that630

|ψ| ≤ p(|φ|) for all formulas ψ ∈ S.
We denote by ℘(S) the set of subsets of S and by ℘≥2(S) the set of subsets

of S with cardinality greater than 2.
Definition 4 (Induced Probability Distribution). Given a Boolean formula
φ(X,K,R), and P the probability distribution of R, we denote the probability635

distribution induced by φ with DP,φ : dom(X) × dom(K) → [0, 1]. Specifically,
given a valuation on the plaintexts and keys, v : X ∪K → {0, 1}, the induced
distribution DP,φ(v(X), v(K)) is a random variable D with probability

P(D = 1) =
∑

R∈dom(R)

P(P = R) · v̄R(φ) ,

where v̄R : X ∪K ∪ R → {0, 1} extends the valuation v to R as prescribed by
R ∈ dom(R).640
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Example 2. Consider the Boolean formula φ ≜ x⊕ k ⊕ (r1 ⊕ r2) and assume
that the random mask variables are uniformly, and independently generated.
Then, the induced probability distribution D for the valuation v(x) = 0, v(k) = 1
is

P(D = 1) =
∑

R∈{0,1}2

1

4
· v̄R(φ)

=
1

4
· v̄(1,1)(φ) +

1

4
· v̄(0,0)(φ) +

1

4
· v̄(1,0)(φ) +

1

4
· v̄(0,1)(φ)

=
1

4
· 1 + 1

4
· 1 + 1

4
· 0 + 1

4
· 0

=
1

2
.

Definition 5 (Perfect Masking). Given a Boolean formula φ(X,K,R) and P
the probability distribution of R, we say that φ is perfectly masked under P if

DP,φ(X,K) = DP,φ(X,K
′) ,

for any plaintext X and secret keys K,K′.
Consider the following illustrative example of these concepts.

Example 3 ([38]). Consider the following masking functions and their respec-645

tive output given the values of k, r1 and r2 assuming that r1, r2 are independent
and uniform randomly sampled as defined in Table 1.


o1 = k ∧ (r1 ∧ r2)
o2 = k ∨ (r1 ∧ r2)
o3 = k ⊕ (r1 ∧ r2)
o4 = k ⊕ (r1 ⊕ r2)

k r1 r2 o1 o2 o3 o4
0 0 0 0 0 0 0
0 0 1 0 0 0 1
0 1 0 0 0 0 1
0 1 1 0 1 1 0
1 0 0 0 1 1 1
1 0 1 0 1 1 0
1 1 0 0 1 1 0
1 1 1 1 1 0 1

Table 1: Boolean masking examples: only o4 perfectly masks the secret value k.

By inspection of the output probability distribution we observe that it varies
depending on k for all masking functions except for o4. This is the only function
in which the output distribution is the same for both k = 1 and k = 0. An650

attacker sampling the function would observe the same ratio of zeros and ones
independently of the value k, which is not true for the other masking functions.

Then the problem we want to solve is naturally defined:
Definition 6 (Perfect masking decision problem). Given a Boolean formula
φ with plaintexts X, secret keys K and random mask variables R distributed655

according to P, determine if φ is perfectly masked under P.
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We also remark that this approach to study power side-channel masks im-
plicitly assumes a Hamming Weight model for the attacker abilities. This means
that an attacker is able to successfully distinguish values with different Ham-
ming weights which is a common model used to study power-related side-channel660

attacks since they correlate well enough [39]: a computation on variables with
a high Hamming weight consumes more power than a computation on variables
with a low Hamming weight.

6.2. Modelling perfect masking in GGenPSAT

A formula is perfectly masked if it is not possible to distinguish the distri-665

butions on the outputs when different keys K,K′ are being used. This depends
on the Boolean formula φ which encodes the computation or circuit, as well as
the joint probability distribution P of the random masks r ∈ R. In the case
that P can be modelled in a finite set of GGenPSAT formulas, we denote it by
R(P). Then, in the probabilistic formalism of GGenPSAT, testing if a formula670

is perfectly masked corresponds to determining if the set of formulas,
Pr(φ(X,K,R)) ̸= Pr(φ(X,K ′, R))

Pr(x) = 0 ∨ Pr(x) = 1 for x ∈ X
Pr(k) = 0 ∨ Pr(k) = 1 for k ∈ K ∪K ′

R(P)

(11)

is unsatisfiable, where R(P) is a set of GGenPSAT formulas that model the
probability distribution P of the random masks. Notice that the case where this
formula is unsatisfiable is when there do not exist variables X,K,K′ for which
the probabilities Pr(φ(X,K, R)) and Pr(φ(X,K′, R)) do not coincide and so,675

the probability distribution is indistinguishable, thus making the computation
φ(X,K,R) secure i.e., φ is perfectly masked in the sense of [38].

In this sense, it is natural to model the problem of deciding if a computation
is perfectly masked as a GGenPSAT problem. Each instance is composed by a
set of formulas (11) mainly parametrized by a set of probabilistic formulas R(P)680

specifying the probability distribution on the masks to be considered.
As we will make extensive use of the probabilistic formula scheme of the

form Pr(x) = 0 ∨ Pr(x) = 1, which states that x is essentially propositional in
nature, we introduce it as an abbreviation

prop(x) ≜ (Pr(x) = 0 ∨ Pr(x) = 1) ,

which we also extend to sets of variables X in the natural way685

prop(X) ≜ (
∧
x∈X

Pr(x) = 0 ∨ Pr(x) = 1) .
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This way, we restate the GGenPSAT formulation (11) as

PM(φ,P) :


Pr(φ(X,K,R)) ̸= Pr(φ(X,K ′, R))

prop(X)

prop(K ∪K ′)

R(P)

(12)

where R(P) uniquely characterizes the probability distribution P of the random
mask variables in R. We now prove that indeed this formulation corresponds to
the problem of deciding if a Boolean formula is perfectly masked under P. For
this, we first need an auxiliary lemma.690

Lemma 4. Let ψ(x, Y ) be a Boolean formula with free variables {x} ∪ Y . The
following implications hold:

1. Pr(x) = 0→ Pr(ψ(x, Y )) = Pr(ψ(0, Y ));

2. Pr(x) = 1→ Pr(ψ(x, Y )) = Pr(ψ(1, Y )).

Proof. To prove case 1. assume that Pr(x) = 0 and observe that, denoting by
π the probability distribution over the valuations on {x} ∪ Y ,

Pr(ψ(x, Y )) =
∑
v⊩ψ(x,Y ) πv

=
∑
v⊩ψ(x,Y )∧x πv +

∑
v⊩ψ(x,Y )∧¬x πv

= 0 +
∑
v⊩ψ(x,Y )∧¬x πv

=
∑
v⊩ψ(0,Y ) πv

= Pr(ψ(0, Y ))) .

The second case follows analogously.695

Proposition 3. Given a formula φ(X,K,R) the GGenPSAT problem PM(φ,P)
is unsatisfiable iff φ(X,K,R) is perfectly masked under P.

Proof. Assume that the PM(φ,P) is satisfiable and let π be the probability dis-
tribution over the set of valuations V on X,K,K ′, R that satisfies the constraints
in PM(φ,P). Notice that since π satisfies prop(X) and prop(K ∪K ′), we apply700

Lemma 4 and conclude that there is an assignment X,K,K′ for the variables
in X,K,K ′ such that Pr(φ(X,K,R)) = Pr(φ(X,K, R)) and Pr(φ(X,K ′, R)) =
Pr(φ(X,K′, R)). Therefore,

π ⊩ Pr(φ(X,K, R)) ̸= Pr(φ(X,K′, R)) .

This, on the other hand, means that∑
v⊩φ(X,K,R)

πv ̸=
∑

v⊩φ(X,K′,R)

πv .

Since each valuation is only free for the variables in R, and π ⊩ R(P),705
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∑
v⊩φ(X,K,R)

πv ̸=
∑

v⊩φ(X,K′,R)

πv

⇔
∑

R∈dom(R)

πv̄R · v̄R(φ(X,K, R)) ̸=
∑

R∈dom(R)

πv̄R · v̄R(φ(X,K′, R))

⇔
∑

R∈dom(R)

P(P = R) · v̄R(φ(X,K, R)) ̸=
∑

R∈dom(R)

P(P = R) · v̄R(φ(X,K′, R))

⇔ P(DP,φ(X,K) = 1) ̸= P(DP,φ(X,K
′) = 1)

and so φ is not perfectly masked under P according to Definition 5. For the
direct implication, observe that assuming the unsatisfiability of PM(φ,P), using
Lemma 4, all possible instantiations would need to satisfy Pr(φ(X,K, R)) =
Pr(φ(X,K′, R)) and so, φ would be perfectly masked under P.

Provided this formulation for deciding if a formula is perfectly masked under710

P in GGenPSAT, the computational complexity of this problem becomes, in a
way, parametrized by the size of the set of formulas that defines the probability
distribution of the random mask variables. We recall that GGenPSAT is NP-
complete [17], and thus, if both the number of formulas in R(P) and their size
are polynomially bounded on the size of the original formula φ, the problem of715

deciding if a formula is perfectly masked, which corresponds to determining the
unsatisfiability of PM(φ,P), lies in co-NP.

Proposition 4. Let φ(X,K,R) be a Boolean formula and P a probability distri-
bution on R. If |R(P)| = poly(|φ|), then the problem of deciding if φ is perfectly
masked under P is in co-NP.720

6.3. Characterizing attackers with side-channel capabilities
In this section, we formally characterize four types of attackers with side-

channel capabilities and study the computational problem of deciding if a Boo-
lean formula is perfectly masked against each different type of attacker. The
scenario comprises a Boolean formula which contains plaintext variables X, se-725

cret key variables K and random variables R which are uniformly and mutually
independent distributed. The goal of the attacker is to be able to distinguish
when different keys are being used. We will model four different types of at-
tackers:

1. Passive attacker is only able to observe the result of the computation nodes.730

2. Variable-dependency attacker is able to change the dependence and inde-
pendence of the random masks being used in the computation node.

3. Fault-injection attacker is able to alter the probabilities of each random
mask variable, making them biased or even deterministic.

4. General attacker has the power of a variable-dependency attacker as well735

as a fault-injection attacker.
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6.3.1. Perfect Masking against a Passive Attacker
In the case that the random masks are independent and uniformly dis-

tributed, this problem is easily reducible to counting the number of satisfying
assignments of φ depending on the value of the secret key. If this value differs,740

the formula is not perfectly masked. In [38], the perfect masking problem is
solved by reduction to the satisfiability of a formula in SMT that states that the
number of satisfying assignments of φ is independent of the secret parameters.
Specifically, the authors define an equivalent formulation for the perfect mask-
ing problem as follows: determine if a formula φ(X,K,R) is perfectly masked745

if for all instances of the variables in X,K, X ∈ dom(X) and K,K′ ∈ dom(K)

#SAT(φ(X,K, R)) = #SAT(φ(X,K′, R)) ,

where for fixed values of X,K, #SAT(φ(X,K, R)) is the number of assign-
ments over r ∈ R in which the Boolean formula is satisfiable. If this formula
is unsatisfiable, it means that there is a plaintext X and two keys K,K′ such
that the probability distribution of the Boolean formula φ(X,K, R) differs from750

φ(X,K′, R). This means that information about the secret key is being leaked
and thus the computation is not perfectly masked. We will refer to this as
the perfect masking by counting problem. Implementations wise, [38] solves
#SAT(φ(X,K′, R)) by encoding it in an exponentially sized SMT formula on
the number of variables in R.755

We now describe how to model a passive attacker in the GGenPSAT frame-
work. In this case, the random masks are uniform and independent random vari-
ables, and so, the set R(P) is composed of Pr(r) = 1

2 for all r ∈ R. Furthermore,
we need to specify that all these random variables are mutually independent,
i.e., Pr(

∧
r∈S r) =

1
2|S| for any S ∈ ℘≥2(R).760

Example 4. For a specific example, consider φ({}, {k}, {r1, r2}) = k⊕(r1⊕r2).
Thus, the problem of deciding whether this computation is perfectly masked,
assuming the random masks are mutually independent and uniform, rests on
deciding the satisfiability of the GGenPSAT problem

Pr(k ⊕ (r1 ⊕ r2)) ̸= Pr(k′ ⊕ (r1 ⊕ r2))
prop(k) ∧ prop(k′)
Pr(ri) =

1
2 for i = 1, 2

Pr(r1 ∧ r2) = 1
4

which is unsatisfiable as we have seen in Subsection 5.1.2. This means that
indeed, this formula is secure under uniform and independent random masks.

In the general case, deciding if a Boolean formula φ(X,K,R) is perfectly
masked against a passive attacker rests on determining the satisfiability of the
following GGenPSAT problem PM(φ,Passive):765
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PM(φ,Passive) :


Pr(φ(X,K,R) ̸= Pr(φ(X,K ′, R))
prop(X)
prop(K ∪K ′)
Pr(r) = 1

2 for r ∈ R
Pr(
∧
r∈S r) =

1
2|S| for S ∈ ℘≥2(R)

In the next proposition, we show that this formulation of perfect masking is
equivalent to the one introduced by Wang et al. [38] – the perfect masking by
counting problem. To do this, we first need to show that{

Pr(r) = 1
2 for r ∈ R

Pr(
∧
r∈S r) =

1
2|S| for S ∈ ℘≥2(R)

defines the joint distribution of |R| independent Bernoulli( 12 ) random variables.

Lemma 5. If a probability distribution π over valuations on a set R satisfies{
Pr(r) = 1

2 for r ∈ R
Pr(
∧
r∈S r) =

1
2|S| for S ∈ ℘≥2(R)

then π is the joint probability distribution of |R| independent Bernoulli( 12 ).

Proof. This is a restatement from a result in [40] by noting that these corre-
spond to the cross-moments of the joint random variables and that these 2|R|

parameters characterize precisely this probability distribution. An alternative770

formulation of this would be

Pr(
∧
r∈S

r ∧
∧

r∈R\S

¬r) = 1

2|R| for S ∈ ℘(R) ,

which explicitly defines the full joint probability distribution and therefore fully
characterizes the distribution.

Proposition 5. Given a formula φ(X,K,R) the GGenPSAT problem
PM(φ,Passive) is unsatisfiable iff φ(X,K,R) is perfectly masked according to775

the perfect masking by counting problem.

Proof. Assume that the PM(φ,Passive) is satisfiable and let π be the probability
distribution over the set of valuations V on X,K,K ′, R that satisfies the con-
straints in PM(φ,Passive). Notice that since π satisfies prop(X) and prop(K ∪
K ′), we apply Lemma 4 and conclude that there is an assignment X,K,K′780

for the variables in X,K,K ′ such that Pr(φ(X,K,R)) = Pr(φ(X,K, R)) and
Pr(φ(X,K ′, R)) = Pr(φ(X,K′, R)). Therefore,

π ⊩ Pr(φ(X,K, R)) ̸= Pr(φ(X,K′, R)) .

This, on the other hand, means that∑
v⊩φ(X,K,R)

πv ̸=
∑

v⊩φ(X,K′,R)

πv .
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These only depend on the variables in R and by Lemma 5 we know that π
must be uniform on each valuation. Thus,∑

v⊩φ(X,K,R)

1

2|R| ̸=
∑

v⊩φ(X,K′,R)

1

2|R|

⇔ 1

2|R|

∑
v⊩φ(X,K,R)

1 ̸= 1

2|R|

∑
v⊩φ(X,K′,R)

1

⇔
∑

v⊩φ(X,K,R)

1 ̸=
∑

v⊩φ(X,K′,R)

1

⇔ #SAT(φ(X,K, R)) ̸= #SAT(φ(X,K′, R)) ,

which shows that φ is not perfectly masked by counting.
For the direct implication, observe that assuming the unsatisfiability of785

PM(φ,Passive), using Lemma 4, all possible instantiations would need to satisfy
Pr(φ(X,K, R)) = Pr(φ(X,K′, R)) and so, Lemma 5 would imply,
#SAT(φ(X,K, R)) = #SAT(φ(X,K′, R)).

The number of probabilistic formulas necessary to specify the probability
distribution of the random masks is as many as the number of subsets of R, i.e.,790

2|R|. This amounts to an exponential sized GGenPSAT instance which is not an
improvement regarding the encoding in SMT of [38]. However, as we will see in
the next sections, the expressiveness of GGenPSAT allows us to model situations
in which the attackers actively interfere with the system. Such situations are
intrinsically probabilistic and cannot be easily modelled in SMT or #SAT.795

6.3.2. Perfect Masking against a Variable-dependency Attacker
In this section, we study the problem of deciding the perfect masking of

a Boolean formula against an attacker which is capable of manipulating the
dependency of the different random variables used as masks. These attackers
are able to make variables depend on each other, where originally they were800

independent. In this way, we can construct a family of problems which consist
in deciding perfect masking against each different variable-dependency attacker.

In the GGenPSAT formalism, this is done by considering the problem uncon-
strained by the independency requirements. Consider the following GGenPSAT
problem parametrized by the Boolean formula φ as well as the set Avd ⊆
℘≥2(R), which characterizes the power of the attacker by defining the sets
of variables for which the attacker is able to interfere with

PM(φ,Avd) :



Pr(φ(X,K,R)) ̸= Pr(φ(X,K ′, R))

prop(X)

prop(K ∪K ′)

Pr(r) = 1
2 for r ∈ R

Pr(
∧
r∈S r) =

1
2|S| for all S ∈ ℘≥2(R) \ Avd

In this setting, an attacker is able to manipulate any variable dependency speci-
fied by the setAvd. Also note that a passive attacker is characterized byAvd = ∅.

30



Definition 7. A Boolean formula is perfectly masked against a variable-depen-805

dency attacker Avd if the GGenPSAT problem PM(φ,Avd) is unsatisfiable.

By not imposing any independence restriction, Avd = ℘≥2(R), we model
the strongest possible variable-dependency attacker. As noted previously in
Proposition 4, with Avd = ℘≥2(R), we obtain R(P) = {Pr(r) = 1

2 | r ∈ R},
which has linear size on the size of R, and so this problem becomes co-NP.810

Proposition 6. Given a Boolean formula φ and a variable-dependency attacker
Avd = ℘≥2(R) , deciding if φ is perfectly masked against Avd is in co-NP.

Proof. In this case, determining if φ is perfectly masked against a variable-
dependency attacker corresponds to the unsatisfiability of the GGenPSAT prob-
lem PM(φ,Avd): 

Pr(φ(X,K,R)) ̸= Pr(φ(X,K ′, R))

prop(X)

prop(K ∪K ′)

Pr(r) = 1
2 for r ∈ R

which has linear size in the size of φ. This shows the problem is in co-NP since
the GGenPSAT problem is in NP.

Proposition 7. Consider a Boolean formula φ and a variable-dependency at-815

tacker Avd such that |P≥2(R) \ Avd| = poly(|φ|). The problem of deciding if φ
is perfectly masked against Avd is in co-NP.

Proof. In this case, we have a GGenPSAT problem with |P≥2(R) \ Avd|+ |R|+
2|K| + |X| + 1 probabilistic formulas. By hypothesis, this set has polynomial
size on |φ| and so this problem is in co-NP.820

6.3.3. Perfect Masking against a Fault-injection Attacker
An attacker capable of fault-injection is characterized by its ability to control

program variables and program flow by inserting hardware flaws. In our setting,
we can model this type of behaviour by describing an attacker that is able to
manipulate the random variables of the system. This manipulation can either825

mean that the attacker can skew the uniform distribution of a random mask r,
and, for instance, impose that Pr(r) ≥ b, or even to deterministically control a
variable, i.e., impose that Pr(r) = 0 ∨ Pr(r) = 1 or even that Pr(r) = 1.

We characterize each fault-injection attacker Afi by the set of random vari-
ables it manipulates, also called the insecure random variables and denoted by830

InsR ⊆ R. Furthermore, this set is divided in two disjoint sets InsR = FIns∪PIns:
the set of fully controlled variables FIns and the set of partially controlled vari-
ables, PIns. By a fully controlled variable r, we mean the attacker can impose
any probabilistic assertion on the system regarding that variable. Since the mod-
elling is done by specifying what the attacker must adhere to, no GGenPSAT835

formula is imposed on the FIns variables.
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On the other hand, an attacker can only influence a partially controlled vari-
able in a specific manner determined by a set of GGenPSAT formulas involving
only variables in PIns, ∆(PIns) ⊆ Prob(PIns) that explicitly defines the control
that the attacker has over these variables. For instance an attacker might be able840

to skew the probability distribution of r, but not know exactly how it changed:
Pr(r) < 0.2 ∨ Pr(r) > 0.8. In summary, Afi = ⟨InsR = FIns ∪ PIns, ∆(PIns)⟩.

This way, consider the GGenPSAT problem parametrized by a Boolean for-
mula φ as well as an attacker Afi = ⟨InsR = FIns ∪ PIns, ∆(PIns)⟩,

PM(φ,Afi) :



Pr(φ(X,K,R)) ≠ Pr(φ(X,K ′, R))
prop(X)
prop(K ∪K ′)
ψ where ψ ∈ ∆(PIns)
Pr(r) = 1

2 for r ∈ R \ InsR
Pr(
∧
r∈S r) =

1
2|S| for S ∈ ℘≥2(R \ InsR)

If this problem is unsatisfiable, this means that it is not possible to distin-
guish the behaviour of the Boolean formula φ when different secret keys are
being used, even when manipulating some of the masking variables. In other845

words, this means that the formula is perfectly-masked against an attacker with
fault-injection capabilities.

Definition 8. A formula φ is perfectly masked against a fault-injection attacker
Afi if the GGenPSAT problem PM(φ,Afi) is unsatisfiable.

6.3.4. Perfect Masking against a general attacker850

In this section, we consider a general attacker which can both inject faults,
as well change the dependency of the random variables. An attacker is charac-
terized by their ability to

• manipulate probabilities of the random masks in the set InsR. From this
set, the attacker can either have full control of the variable or only partial855

control. This distinction is specified by partitioning the set of insecure
masks in FIns and PIns. Furthermore, there is a set of GGenPSAT formulas
involving only variables in PIns, ∆(PIns) ⊆ Prob(PIns), that explicitly
defines the control that the attacker has over these variables.

• manipulate variable dependency. We denote byAvd ⊆ ℘≥2(R) the subsets860

of variables for which the attacker is able to manipulate.

Thus, given a Boolean formula φ and an attacker

A = ⟨InsR = FIns ∪ PIns, ∆(PIns), Avd⟩,

denote by PM(φ,A) the GGenPSAT problem defined by the following formulas
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PM(φ,A) :



Pr(φ(X,K,R)) ̸= Pr(φ(X,K ′, R))
prop(X)
prop(K ∪K ′)
ψ where ψ ∈ ∆(PIns)
Pr(r) = 1

2 for r ∈ R \ InsR
Pr(
∧
r∈S r) =

1
2|S| for all S ∈ ℘≥2(R) \ Avd

Definition 9. A Boolean formula φ is perfectly masked against a general at-
tacker A if the GGenPSAT problem PM(φ,A) is unsatisfiable.865

7. Conclusions and Future Work

Throughout this work, we explored a generalized version of probabilistic
satisfiability, GenPSAT. Capitalizing on its NP-completeness, we presented a
polynomial reduction from GenPSAT to MIP, which was proved to be correct.
Since the translated MIP problem only suffers a quadratic growth, we were870

able to solve reasonably sized instances for different values of the parameters:
number of variables, clauses, and probabilistic formulas. Up to this point, our
main contribution was on the extension of the language from PSAT to GenPSAT,
rather than to optimize the performance of the solver. The lack of sharpness ob-
served in GenPSAT phase transition curves could have been caused by a number875

of reasons that range from the low number of instances samples for each data
point (100) to the translation to MIP that was used. This translation although
being correct, might not be the most efficient for this problem. This pertinent
issue is handled in our extension GGenPSAT presented in [17] and addressed in
Section 5. The GGenPSAT problem naturally models Boolean combinations of880

linear inequalities involving probabilities of propositional formulas. The phase
transition curves for GGenPSAT are presented and discussed in [17].

We concluded the paper with applications to formal-verification, namely
satisfiability problems, in the area of cryptography, specifically on side-channel
analysis and their mitigation techniques. A common, and usually efficient tech-885

nique that mitigates power-related side-channel attacks is Boolean masking:
these techniques work by applying a random (and unknown) mask to a compu-
tation step, in order to mask the secret keys and other values that are used in
said computation. However, if these masks are not designed in a proper way,
even when they are correctly applied, they could leak information regarding the890

secrets they are designed to hide. In this work, we modelled the problem of
deciding if a Boolean formula is perfectly masked in the probabilistic formal-
ism. Furthermore, we generalized this scenario to encompass an active attacker
interfering with the Boolean masks, by changing dependency between random
variables, or actually changing their probability distributions. Remarkably, we895

found that solving the problem of deciding if a Boolean formula is perfectly
masked is (in terms of computational complexity) easier to solve in the presence
of more powerful attackers, lowering the complexity of this problem to co-NP.
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In practical terms, this shows that it is easier to decide if a formula is perfectly
masked when powerful attackers are considered and we are actually gaining900

more security guarantees by solving an easier problem. However, naturally, the
set of formulas which are secure against active attackers is much smaller than
when a passive adversary is considered.
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Appendix A.

This paper extends [1]. As such, Sections 2-4 are included in [1]. Then,
Section 5, partially integrates [17] up until Subsection 5.1. All the rest of the
paper, from Subsection 5.1 onwards, is new material.990
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