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Abstract

We analyze a generalized probabilistic satisfiability problem (GenPSAT) which consists in deciding the satis-
fiability of linear inequalities involving probabilities of classical propositional formulas. GenPSAT is proved
to be NP-complete and we present a polynomial reduction to Mixed-Integer Programming. Capitalizing
on this translation, we implement and test a solver for the GenPSAT problem. As previously observed for
many other NP-complete problems, we are able to detect a phase transition behaviour for GenPSAT.
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1 Introduction

For many years, the satisfiability problem for propositional logic (SAT) has been

extensively studied both for theoretical purposes, such as complexity theory, and

for practical purposes. In spite of its NP-completeness [9], modern tools for solving

SAT are able to cope with very large problems in a very efficient manner, leading

to applications in many different areas and industries [2].

Naturally, people started extending this problem to more expressive frameworks:

for instance in Satisfiability Modulo Theories [10], instead of working in proposi-

tional logic, one can try to decide if a formula is valid in some specific first-order

theory. One other direction is to extend propositional logic with probabilities. The

probabilistic satisfiability problem (PSAT) was originally formulated by George
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Boole [3] and later by Nilsson [18]. This problem consists in deciding the satis-

fiability of a set of assignments of probabilities to propositional formulas. There

has been a great effort on the analysis of the probabilistic satisfiability problem

and on the development of efficient tools for the automated treatment of this prob-

lem [11,14,6,1,12].

In this paper we study a Generalized Probabilistic Satisfiability problem

(GenPSAT) extending the scope of PSAT by allowing linear combinations of prob-

abilistic assignments of values to propositional formulas, and has applications in

the analysis of the security of cryptographic protocols and on estimating the prob-

ability of existence of attacks [17]. Intuitively, GenPSAT consists in deciding the

existence of a probability distribution satisfying a set of classical propositional for-

mulas with probability 1, and a set of linear inequalities involving probabilities of

propositional formulas. The GenPSAT problem was previously identified in the con-

text of the satisfiability of the probabilistic logic in [13], where it was also shown

to be NP-complete. Here, we explore the computational behaviour of this problem

and present a polynomial reduction from GenPSAT to Mixed-Integer Programming,

following the lines of [6,1].

Mixed-Integer Programming (MIP) [19] is a framework to find an optimal solu-

tion for a linear objective function subject to a set of linear constraints over real

and integer variables. We will exploit the close relation between SAT and MIP [4]

in order to reduce GenPSAT problems to suitable MIP problems.

As observed in many NP-complete problems [7], GenPSAT also presents a phase

transition behaviour. By solving batches of parametrized random GenPSAT prob-

lems, we observe the existence of a threshold splitting a phase where almost every

GenPSAT problem is satisfiable, and a phase where almost every GenPSAT problem

is not satisfiable. During such transition, the problems become much harder to

solve [7].

As the main contribution of this work, we develop the theoretical framework

that allows the translation between GenPSAT and MIP problems, which then allows

the implementation of a provably correct solver for GenPSAT. This translation is

able to encode strict inequalities and disequalities into the MIP context. With the

GenPSAT solver in hands, we are able to detect and study the phase transition

behaviour.

The paper is outlined as follows: in Section 2 we briefly recall the PSAT problem;

in Section 3 we carefully define the GenPSAT problem and establish some results

on its complexity; Section 4 is dedicated to finding a polynomial reduction from

GenPSAT to MIP and a prototype tool is provided for an automated analysis of

the problem; in Section 5 we analyze the presence of phase transition; finally, in

Section 6, we assess our contributions and discuss future work.
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2 Preliminaries

Let us begin by fixing a set of propositional variables P = {x1, . . . , xn}. A literal is

either a propositional variable or its negation. A clause is a non-empty disjunction

of one or more literals. A propositional formula is any Boolean combination of

propositional variables.

A propositional valuation is a map v ∶ P → {0,1}, which is extended to proposi-

tional formulas as usual. We say that a set of valuations V satisfies a propositional

formula ϕ if, for each v ∈ V, v(ϕ) = 1. This notion is extended to sets of proposi-

tional formulas as usual. Let V∗ = {v1, . . . , v2n} be the set of all valuations defined

over variables of P . We define a probability distribution π over V∗ as a probability

vector of size 2n.

A simple probabilistic formula is an expression of the form Pr(c) � p, where c is

a clause, p ∈ Q, 0 ≤ p ≤ 1 and � ∈ {=,≤,≥}. We say that a probability distribution π

satisfies a formula Pr(c) � p if

2n∑
i=1

(vi(c) ⋅ πi) � p .

A probability distribution π satisfies a set of simple probabilistic formulas if it

satisfies each one of them.

We now recall the PSAT problem [18,14,11].

Definition 2.1 [PSAT problem] Given a set of propositional variables P and a set

of simple probabilistic formulas Σ = {Pr(ci) � pi ∣ 1 ≤ i ≤ k}, the Probabilistic Satis-

fiability problem (PSAT) consists in determining whether there exists a probability

distribution π over V∗ that satisfies Σ.

The PSAT problem for {Pr(ci) �i pi ∣ 1 ≤ i ≤ k} can be formulated algebraically

as the problem of finding a solution π for the system of inequalities

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

V π � p

∑πi = 1

π ≥ 0

,

where V is the k×2n matrix such that Vij = vj(ci), i.e., Vij = 1 iff the j-th valuation

satisfies the i-th clause, p = [pi] is the k vector of all pi and � = [�i] is the k vector

of all �i.
The SAT problem can be modeled as a PSAT instance where the entries pi of

the probability vector are all identical to 1. The PSAT problem was shown to be

NP-complete [14,13], even when the clauses consist of the disjunction of only two

literals, 2-PSAT.
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3 GenPSAT problem

We now extend the notion of simple probabilistic formula to handle linear inequal-

ities involving probabilities of propositional formulas. A probabilistic formula is an

expression of the form
�∑

i=1

(aiPr(ci)) � p ,

where ci are propositional clauses, � ∈ {≥,<,≠}, � ∈ N and a1, . . . , a�, p ∈ Q. Observe

that formulas with the relational symbols ≤,>,= can be obtained by abbreviation.

In the case where � = 1 and a1 = 1, we obtain a simple probabilistic formula. An

atomic probabilistic formula is a probabilistic formula where each ci is a proposi-

tional variable, i.e., ci ∈ P for each i.

We say that a probability distribution π satisfies a formula ∑�
i=1(aiPr(ci)) � p if

�∑
i=1

⎛
⎝ai

⎛
⎝

2n∑
j=1

vj(ci) ⋅ πj⎞⎠
⎞
⎠ � p .

A probability distribution π satisfies a set of probabilistic formulas if it satisfies

each one of them.

An instance of GenPSAT is a pair (Γ,Σ) where Γ is a set of propositional clauses

(also called hard constraints) and Σ is a set of probabilistic formulas (soft con-

straints). We say that a probability distribution π satisfies a GenPSAT instance(Γ,Σ) if it satisfies the set of probabilistic formulas

Ξ(Γ,Σ) = Σ ∪ {Pr(γ) = 1 ∣ γ ∈ Γ} . (1)

Definition 3.1 [GenPSAT problem] Given a GenPSAT instance (Γ,Σ), the Genera-

lized Probabilistic Satisfiability problem (GenPSAT) consists in determining whether

there exists a probability distribution π over V∗ that satisfies (Γ,Σ).
GenPSAT poses a convenient framework for specifying constraints involving

different probabilistic formulas. For instance, one may want to impose that

2Pr(A) ≤ Pr(B) for two propositional clauses A,B. Such requirements may be

very useful in specifying properties of interesting systems but they cannot be easily

expressed in the PSAT framework. We now showcase GenPSAT’s expressiveness by
encoding the Monty Hall problem [20].

Example 3.2 The Monty Hall problem is a puzzle where we are faced with the

choice of picking one of three doors, knowing that a prize is behind one of them.

After our initial choice, the game host opens one of the remaining doors provided

that the prize is not behind it, and gives us the choice of switching or keeping the

initial guess. The question is: which option is more advantageous?

To model this problem as a GenPSAT instance, let us define the following propo-

sitional variables: Pi holds if the prize is behind door i, Xi holds if our initial choice

is door i, Hi holds if the host reveals door i after our initial choice, for i ∈ {1,2,3}.
Since there are only one door with a prize, one initial choice, and one door revealed
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by the host, we impose the following restrictions:

Γ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⋁
i,j,k∈{1,2,3}

i≠j≠k≠i

(Pi ∧ ¬Pj ∧ ¬Pk), ⋁
i,j,k∈{1,2,3}

i≠j≠k≠i

(Xi ∧ ¬Xj ∧ ¬Xk), ⋁
i,j,k∈{1,2,3}

i≠j≠k≠i

(Hi ∧ ¬Hj ∧ ¬Hk)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

.

Furthermore, the host cannot open neither the chosen door nor the door with the

prize and so we include the followings constraints in Γ:

Pi → ¬Hi and Xi → ¬Hi for each i ∈ {1,2,3} .

We further assume that the prize has uniform probability of being behind each door

and that the initial choice is independent of where the prize is:

Σ = ⋃
i,j∈{1,2,3}

{Pr(Pi) = 1

3
, Pr(Pi ∧Xj) = 1

3
Pr(Xj)}

Concerning the question of which is more advantageous, switching or keeping our

initial choice, we encode winning by switching as

WbS ∶ 3⋀
i=1

(Pi ↔ (¬Xi ∧ ¬Hi)) ,

and winning by keeping as

WbK ∶ 3⋀
i=1

(Pi ↔Xi) .

We want to the decide whether it is always the case that Pr(WbS) ≥ Pr(WbK),
which can be checked by testing the satisfiability of the GenPSAT instance

(Γ,Σ ∪ {Pr(WbS) < Pr(WbK)}) .

As expected, this instance is not satisfiable and the instance (Γ,Σ ∪ {Pr(WbS) ≥
Pr(WbK)}) is satisfiable, allowing us to conclude that it is always advantageous to

switch our initial option.

We can take this analysis one step further, and show that the probability of

winning by switching is 2
3 by checking that the instance (Γ,Σ ∪ {Pr(WbS) ≠ 2

3}) is

unsatisfiable and that the instance (Γ,Σ ∪ {Pr(WbS) = 2
3}) is satisfiable. All these

instances were checked using the tool we implemented, [8]. ◊
Notice that the PSAT problem for Σ can be modeled in GenPSAT by considering

the instance (∅,Σ).
Given a GenPSAT instance (Γ,Σ), where Γ containsm clauses and Σ is composed

of k probabilistic formulas, we follow the lines of Nilsson [18] for a linear algebraic

formulation and consider a (k+m)×2n matrix V = [Vij], where for each i ∈ {1, . . . , k+
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m} and j ∈ {1, . . . ,2n} Vij is defined from the jth valuation vj and from the ith

probabilistic formula
�∑

u=1
aiuPr(ciu) �i pi of Ξ(Γ,Σ) as follows:

Vij = �∑
u=1

aiu ⋅ vj(ciu) .

Furthermore, define two vectors of size k +m, p = [pi] and � = [�i]. GenPSAT is

equivalent to the problem of deciding the existence of a solution π to the system

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

V π � p

∑πi = 1

π ≥ 0

. (2)

Given a set of probabilistic formulas Ω = { �∑
u=1

aiu ⋅ vj(ciu) �i pi ∣ 1 ≤ i ≤ k} and a

set of valuations V = {v1, . . . , vk′}, we define the [Ω,V]-associated matrix as the(k + 1) × k′ matrix M[Ω,V] = [Mij] such that

Mk+1,j = 1 for each 1 ≤ j ≤ k′

and

Mij = �∑
u=1

aiu ⋅ vj(ciu) for 1 ≤ i ≤ k, 1 ≤ j ≤ k′ .

Then, we can rewrite system (2) using the [Ξ(Γ,Σ),V∗]-associated matrix V as

⎧⎪⎪⎨⎪⎪⎩
V π � p

π ≥ 0
(3)

We now show that this problem is NP-complete. For this purpose, we first

present the following lemma.

Lemma 3.3 ([13,5]) If a system of � linear inequalities with integer coefficients

has a non-negative solution, then it has a non-negative solution with at most �

positive entries.

Theorem 3.4 ([13]) GenPSAT is NP-complete.

Proof. We begin by showing that GenPSAT is in NP by providing a polynomial

sized certificate. Notice that Lemma 3.3 can be extended to rational coefficients

simply by normalizing with the greatest denominator. Applying this result to the

system (3) we conclude that there is a (k+m+1)×(k+m+1) matrix W , composed

of columns of V , whose system

⎧⎪⎪⎨⎪⎪⎩
Wπ � p

π ≥ 0
(4)

has a solution iff the original system (3) has a solution. Furthermore, the obtained

solutions from (4) can be mapped to solutions of (3) by inserting zeros in the

appropriate positions. Since the obtained solution from the latter system has k+m+1
elements, it constitutes the NP-certificate for the GenPSAT problem.
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Furthermore, given that the PSAT problem can be modeled in GenPSAT, it

follows that GenPSAT is NP-complete. ◻
We say that a GenPSAT instance (Γ,Σ) is in normal form if Γ is a set of propo-

sitional clauses with 3 literals, i.e., Γ can be seen as a 3CNF formula, and Σ is a set

of atomic probabilistic formulas.

Lemma 3.5 Given a GenPSAT instance (Γ,Σ) there exists an instance (Γ′,Σ′)
in normal form such that (Γ,Σ) is satisfiable iff (Γ′,Σ′) is satisfiable. Moreover,(Γ′,Σ′) is obtained from (Γ,Σ) in polynomial time.

Proof. Let (Γ,Σ) be the GenPSAT instance to be put in normal form. We obtain Σ′

by transforming formulas in Σ into atomic probabilistic formulas. For this purpose,

let ∑�
i=1 aiPr(ci)�p be a formula in Σ and consider the atomic probabilistic formula

obtained by replacing (when needed) each clause ci by a fresh variable yi,

�∑
i=1

aiPr(yi) � p .

Furthermore, the yi variable is added to P and the formula stating the equivalence

between yi and ci, (yi ↔ ci), is collected in a set Δ.

We are left with the transformation of the formula

⋀
γ∈Γ

γ ∧ ⋀
(y↔c)∈Δ

(y↔ c)
into 3-CNF using Tseitin’s transformation [21], which can increase linearly the size

of the formula and add new variables to P . The final Γ′ is the set of conjuncts of

the obtained 3-CNF formula. Since Tseitin’s transformation preserves satisfiability

of formulas, (Γ,Σ) is satisfiable iff (Γ′,Σ′) is satisfiable. ◻
4 Reducing GenPSAT to Mixed-Integer Programming

In this section we explore the close relation between satisfaction of propositional

formulas and feasability of a set of linear constraints over binary variables (see [4]).

With this, we present a reduction of GenPSAT to Mixed-Integer Programming

(MIP), similarly to what was done for PSAT [6] and GPSAT [1]. A MIP problem con-

sists in optimizing a linear objective function subject to a set of linear constraints

over real and integer variables. MIP was shown to be NP-complete, see [19]. Observe

that this translation to MIP also serves as a proof that GenPSAT is in NP.

4.1 Linear Algebraic Formulation for GenPSAT

Lemma 4.1 A GenPSAT instance in normal form (Γ,Σ), with ∣Σ∣ = k, is satisfiable

iff there exists a (k + 1) × k′ matrix W of rank k′ ≤ k + 1 and a set of valuations V0
of size k′ such that:

(i) W is the [Σ,V0]-associated matrix

(ii) V0 satisfies Γ,
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(iii) considering p = [p1, . . . , pk,1] and � = [�1, . . . ,�k,=], the system

⎧⎪⎪⎨⎪⎪⎩
Wπ � p

π ≥ 0
(5)

is satisfiable.

Proof. Let (Γ,Σ) be a satisfiable GenPSAT instance in normal form, with ∣Σ∣ = k

and ∣Γ∣ =m. Then, denoting by V the [Ξ(Γ,Σ),V∗]-associated matrix, the system

⎧⎪⎪⎨⎪⎪⎩
V π � p

π ≥ 0

has a solution. And so, using Lemma 3.3, there is a (k+m+1)×� matrix V ∗, where

� ≤ k +m + 1, and whose system has a positive solution π∗. Notice that the set of

valuations underlying V ∗ certainly satisfies Γ, as π∗j > 0 for each 1 ≤ j ≤ �.

Let W ∗ be the matrix constructed from V ∗ by choosing the first k rows (cor-

responding to the probabilistic formulas in Σ) and the last row (requiring that the

solution sums up to one) of V ∗. Still, the corresponding system has a positive so-

lution. Using Lemma 3.3 once more, we conclude that exists a (k + 1) × k′ matrix

W , with k′ ≤ k + 1, whose system has a positive solution ρ∗. The solution π for (5)

is obtained from ρ∗ by inserting zeros in the appropriate positions.

Reciprocally, assume that there exists a (k+1)×k′ matrixW of rank k′ ≤ k+1 sat-
isfying (i), (ii), (iii), and let π denote the solution for (5). We are looking for a prob-

ability distribution π∗ satisfying (Γ,Σ). For this purpose, let V0 = {vj1 , . . . , vjk′} ⊆ V
denote the set of valuations underlying W according to condition (ii), and define

π∗ = [π∗i ], where
π∗i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
πi if i ∈ {j1, . . . , jk′}
0 otherwise

.

The verification that π∗ satisfies the GenPSAT instance is now immediate:

● given γ ∈ Γ, we check that π∗ verifies Pr(γ) = 1 by observing that the last equality

represented on W on (5) leads to ∑k′

s=1 πjs = 1 and so,

2n∑
j=1

vj(γ) ⋅ π∗j = ∑
{j∣vj(γ)=1}

π∗j =
k′∑
s=1

πjs = 1 .

● given an atomic probabilistic formula∑�
i=1 aiPr(yi)�p in Σ, we recall the definition

of π∗ and that π is a solution for (5) to conclude that

�∑
i=1

ai
⎛
⎝

2n∑
j=1

vj(yi) ⋅ π∗j ⎞⎠ =
�∑

i=1

ai
⎛
⎝

k′∑
s=1

vjs(yi) ⋅ πjs⎞⎠ =
k′∑
s=1

( �∑
i=1

ai ⋅ vjs(yi))πjs � p ,

i.e., π∗ satisfies the formulas in Σ. ◻
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4.2 Translation to MIP

Regarding Lemma 4.1, given a GenPSAT instance (Γ,Σ) in normal form, with ∣Σ∣ = k

and ∣Γ∣ = m, our goal is now to describe a procedure that encodes the problem of

finding a set of valuations V0 and a probability distribution π in the conditions

(i),(ii),(iii), as a MIP problem. We dub this procedure GenToMIP.

Let us denote by H = [hij] the (still unknown) matrix of size n × k′ whose

columns represent the valuations in V0 evaluated on each propositional variable ofP , i.e., hij = vj(xi) for each 1 ≤ i ≤ n and 1 ≤ j ≤ k′. Let α1, . . . , αn represent

the probability of the propositional variables x1, . . . , xn, respectively, and following

the reasoning of [6,1] we model the non-linear constraint
k′∑
j=1

hij ⋅ πj = αi as a linear

inequality
k′∑
j=1

bij = αi , (val1)

by introducing the extra variables bij which are subject to the appropriate con-

straints, namely forcing bij to be zero whenever hij = 0, and ensuring that bij = πj
whenever hij = 1, i.e.,

0 ≤ bij ≤ hij and hij − 1 + πj ≤ bij ≤ πj . (val2)

We ensure that π represents a probability distribution by imposing that

k′∑
j=1

πj = 1 . (sums1)

Still, as each valuation of V0 satisfies Γ, given a clause ( w⋁
r=1

xir) ∨ ( w′⋁
s=1

¬xi′s) of

Γ, we generate a linear inequality for each valuation 1 ≤ j ≤ k′,

( w∑
r=1

hir, j) + ⎛⎝
w′

∑
s=1

(1 − hi′s j)⎞⎠ ≥ 1. (gamma)

Notice that, if we have a total of m clauses in Γ, we generate m×k′ such inequalities.

In order to verify the satisfiability of probabilistic formulas in the MIP frame-

work, consider an atomic probabilistic formula ∑�
i=1 aiPr(yi) � p in Σ. Since � can

either be the relational symbol ≥, < or ≠, we can easily encode the first kind of

inequalities as a MIP linear constraint, but should be careful when dealing with the

remaining relational symbols.

For atomic probabilistic formulas of the form ∑�
i=1 aiPr(yi) ≥ p, we generate the

linear inequality
�∑

i=1

ai ⋅ αi ≥ p . (prob≥)

In the case where � is a strict inequality <, we use a specific variable introduced

into the MIP problem, say ε, to fix the objective function as the maximization of ε,

maximize ε (obj)
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and further introduce the linear constraint
�∑

i=1

(ai ⋅ αi) + ε ≤ p . (prob<)

For atomic probabilistic formulas ϕ of the form ∑�
i=1 aiPr(yi) ≠ p, i.e.

�∑
i=1

aiPr(yi) − p ≠ 0, (6)

we force the left hand side to be either strictly greater or strictly less than zero,

�∑
i=1

(ai ⋅ αi) − p < 0 or
�∑

i=1

(ai ⋅ αi) − p > 0 .

Even though these are linear constraints, the problem would explode if we

treated the disjunction. In this sense, notice that, denoting by C a sufficiently

large number, say C = 1 + ∣p∣ + ∑�
i=1 ∣ai∣, the inequality (6) holds if and only if there

exists a fresh binary variable zϕ such that the following two strict inequalities hold

simultaneously:

�∑
i=1

(ai ⋅ αi) − p < C ⋅ zϕ and − �∑
i=1

(ai ⋅ αi) + p < C −C ⋅ zϕ .

Then, we are left with two strict inequalities, thus reducing this analysis to a pre-

vious case, from which we obtain the constraints

�∑
i=1

(ai ⋅αi)−p+ε ≤ C ⋅zϕ and − �∑
i=1

(ai ⋅ αi) + p + ε ≤ C −C ⋅zϕ . (prob≠)

Denoting by k≥, k<, k≠ the number of probabilistic formulas in Σ when � coin-

cides with ≥, <, ≠, respectively, so far we have introduced:

● n constraints (val1),

● 4 × n × k′ constraints (val2),

● 1 constraint (sums1),

● m × k′ constraints (gamma),

● k≥ constraints (prob≥),

● k< constraints (prob<),

● 2 × k≠ constraints (prob≠).

Hence, we have O(n + n × k′ +m × k′ + k) inequalities over n × k′ binary variables

hij , n×k′ real variables bij , n real variables 0 ≤ αi ≤ 1, k≠ binary variables zϕ, a real

variable ε ≥ 0 and k′ real variables πj ≥ 0. Because of this, the GenToMIP translation

is polynomial.

Proposition 4.2 The GenToMIP procedure transforms a GenPSAT instance in nor-

mal form (Γ,Σ) into a MIP problem whose size is polynomial on the size of (Γ,Σ).
We now need to show that the existence of a set of valuations V0 and a proba-

bility distribution π in the conditions (i),(ii),(iii) of Lemma 4.1 is equivalent to the
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feasibility of the MIP problem obtained through GenToMIP with an optimal value

ε > 0 (when applicable).

This procedure is presented in Algorithm 1, which given a GenPSAT instance,

translates it into a MIP problem and then solves the latter appropriately. For that,

let us assume that we initialize an empty MIP problem and consider the following

auxiliary procedures:

● add const introduces a linear constraint into the MIP problem,

● set obj defines the objective function (either as a maximization or as a minimiza-

tion) when it was previously not defined,

● fresh declares a fresh binary variable into the MIP problem,

● mip sat returns True or False depending on whether the problem is feasible (and

achieves an optimal solution) or not,

● mip objvalue returns the objective value, when an objective function was set.

Proposition 4.3 A GenPSAT instance in normal form (Γ,Σ) is satisfiable iff Al-

gorithm 1 returns Sat.

Proof. Let (Γ,Σ) be a satisfiable GenPSAT instance in normal form, and also V0 ={v1, . . . , vk′} and ρ = [ρi] represent a set of valuations and a probability distribution

given by Lemma 4.1 which satisfy conditions (i)-(iii). Then, consider the following

values and afterwards let us check that they constitute an optimal solution for the

MIP problem constructed at Algorithm 1: for each 1 ≤ i ≤ n and 1 ≤ j ≤ k′, let

h∗ij = vj(xi),
b∗ij = h∗ij ⋅ ρj ,
π∗j = ρj ,

α∗i = ∑
{j∣vj(xi)=1}

ρj ,

ε∗ = minΔ,
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Algorithm 1 GenPSAT solver based on MIP

1: procedure GenPSAT(props {xi}ni=1, form Γ, probform Σ)

2: declare: binary variables: hij for i ∈ {1, . . . , n}, j ∈ {1, . . . , k′}
3: declare: [0,1]-variables: αi, πj , bij for i ∈ {1, . . . , n}, j ∈ {1, . . . , k′}
4: declare: real variable: ε

5: for j = 1 to k′ do

6: for each (⋁r xr) ∨ (⋁s ¬xs) in Γ do

7: add const(∑r hrj +∑s(1 − hsj) ≥ 1) ▷ (gamma)

8: for i = 1 to n do

9: add const(∑j bij = αi) ▷ (val1)
10: for j = 1 to k′ do

11: add const(0 ≤ bij ≤ hij) ▷ (val2)
12: add const(hij − 1 + πj ≤ bij ≤ πj) ▷ (val2)

13: aux ← 0

14: for each ∑ai ⋅ Pr(xi) � q in Σ do

15: switch(�)
16: case “ ≥ ” ∶
17: add const(∑ai ⋅ αi ≥ q) ▷ (prob≥)
18: case “ < ” ∶
19: aux← 1

20: set obj(max ε) ▷ (obj)
21: add const(∑ai ⋅ αi + ε ≤ q) ▷ (prob<)
22: case “ ≠ ” ∶
23: aux← 1

24: z ← fresh() ▷ z is a fresh binary variable

25: C ← 1 + ∣q∣ + ∑ ∣ai∣
26: set obj(max ε) ▷ (obj)
27: add const(∑ai ⋅ αi −C ⋅ z − ε ≥ q −C) ▷ (prob≠)
28: add const(∑ai ⋅ αi −C ⋅ z + ε ≤ q) ▷ (prob≠)

29: add const(∑πi = 1) ▷ (sums1)
30: if mip sat() then
31: if (aux == 0) or (aux == 1 and mip objvalue() > 0) then

32: return Sat
33: return Unsat

where Δ = {q −∑�
i=1(ai ⋅ α∗i ) ∣ (∑�

i=1 aiPr(xi) < q) ∈ Σ} ∪
∪ {C ⋅ z∗ϕ + q −∑�

i=1(ai ⋅ α∗i ) ∣ ϕ ∈ Σ is of the form ∑�
i=1 aiPr(xi) ≠ q} ∪

∪ {C −C ⋅ z∗ϕ − q +∑�
i=1(ai ⋅ α∗i ) ∣ ϕ ∈ Σ is of the form ∑�

i=1 aiPr(xi) ≠ q},
and, for each atomic probabilistic formula ϕ ∈ Σ of the form ∑�

i=1 aiPr(xi) ≠ q,

z∗ϕ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if ∑�

i=1 ai ⋅ α∗i < q

1, if ∑�
i=1 ai ⋅ α∗i > q

.
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Now let us check that each linear constraint introduced into the MIP problem

at Algorithm 1 is satisfied.

(gamma) {h∗ij} satisfy the constraints modeling Γ since each v ∈ V0 satisfies Γ.

(val1) By definition of {b∗ij} and {h∗ij}, we actually have

k′∑
j=1

b∗ij =
k′∑
j=1

h∗ij ⋅ ρj =
k′∑
j=1

vj(xi) ⋅ ρj = ∑
{j∣vj(xi)=1}

ρj = α∗i .

(val2) Since 0 ≤ vj(xi) ≤ 1 and 0 ≤ ρj ≤ 1 we immediately have 0 ≤ b∗ij ≤ h∗ij .

For the other inequality, recall that h∗ij = vj(xi) and that π∗j = ρj and note that:● if h∗ij = 0 then b∗ij = 0 and, since π∗j ≤ 1, it follows that π∗j − 1 ≤ b∗ij ≤ π∗j , i.e.,

h∗ij − 1 + π∗j ≤ b∗ij ≤ π∗j

● if h∗ij = 1 then b∗ij = π∗j and so π∗j ≤ b∗ij ≤ π∗j , i.e., h
∗
ij − 1 + π∗j ≤ b∗ij ≤ π∗j

(sums1) Since π∗j = ρj , we immediately conclude that
k′∑
j=1

π∗j = 1.

To check that the probabilistic formulas are satisfiable, just note that, given a

probabilistic formula (∑�
i=1 aiPr(xi) � q) ∈ Σ,

�∑
i=1

ai ⋅ α∗i =
�∑

i=1

ai
⎛
⎝ ∑
{j∣vj(xi)=1}

ρj
⎞
⎠ =

�∑
i=1

ai
⎛
⎝

2n∑
j=1

vj(xi) ⋅ ρj⎞⎠ .
(prob≥) Let (∑�

i=1 aiPr(xi) ≥ q) ∈ Σ and notice that, since ρ satisfies conditions

(i), (ii), (iii), in particular it satisfies all the probabilistic formulas in Σ, and so

∑�
i=1 ai (∑2n

j=1 vj(xi) ⋅ ρj) ≥ q, which implies that ∑�
i=1 ai ⋅ α∗i ≥ q.

(prob<) Now, let (∑�
i=1 aiPr(xi) < q) ∈ Σ and notice that, in a reasoning very similar

to the previous one, we can conclude that ∑�
i=1 ai ⋅ α∗i < q, i.e.

q − �∑
i=1

(ai ⋅ α∗i ) > 0. (7)

But we should also note that, since ε∗ = minΔ, then ε∗ ≤ q −∑�
i=1(ai ⋅α∗i ), and so

we obtain
�∑

i=1

(ai ⋅ α∗i ) + ε∗ ≤ �∑
i=1

(ai ⋅ α∗i ) + q − �∑
i=1

(ai ⋅ α∗i ) = q .

(prob≠) Finally, let us consider an atomic probabilistic formula ϕ ∈ Σ of the form

∑�
i=1 aiPr(xi) ≠ q, and recall once more that since ρ satisfies each probabilistic

formula of Σ, we have ∑�
i=1(ai ⋅α∗i ) ≠ q, in other words, either q −∑�

i=1(ai ⋅α∗i ) > 0

or q −∑�
i=1(ai ⋅α∗i ) < 0. Recall the constant C defined as C = 1+ ∣q∣ +∑�

i=1 ∣ai∣ and
the definition of z∗ϕ and notice that both

C ⋅ z∗ϕ + q − �∑
i=1

(ai ⋅ α∗i ) > 0 (8)

and

C −C ⋅ z∗ϕ − q + �∑
i=1

(ai ⋅ α∗i ) > 0 (9)
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are verified in either of the above cases. Also note that by definition of ε∗,

ε∗ ≤ C ⋅ z∗ϕ + q −∑�
i=1(ai ⋅α∗i ) and ε∗ ≤ C −C ⋅ z∗ϕ − q +∑�

i=1(ai ⋅α∗i ). Hence, we now

analyze each of the previous cases:
● if q > ∑�

i=1(ai ⋅ α∗i ), then z∗ϕ = 0 and it follows that
�∑

i=1

(ai ⋅ α∗i ) −C ⋅ z∗ϕ − ε∗ ≥ �∑
i=1

(ai ⋅ α∗i ) −C +C ⋅ z∗ϕ + q − �∑
i=1

(ai ⋅ α∗i ) = q −C,

and further,
�∑

i=1

(ai ⋅ α∗i ) −C ⋅ z∗ϕ + ε∗ ≤ �∑
i=1

(ai ⋅ α∗i ) +C ⋅ z∗ϕ + q − �∑
i=1

(ai ⋅ α∗i ) = q.

● if q < ∑�
i=1(ai ⋅ α∗i ), then z∗ϕ = 1 and it follows that

�∑
i=1

(ai ⋅ α∗i ) −C ⋅ z∗ϕ − ε∗ ≥ �∑
i=1

(ai ⋅ α∗i ) −C − (C −C ⋅ z∗ϕ − q + �∑
i=1

(ai ⋅ α∗i )) = q −C,

and further,
�∑

i=1

(ai ⋅ α∗i ) −C ⋅ z∗ϕ + ε∗ ≤ �∑
i=1

(ai ⋅ α∗i ) −C +C ⋅ z∗ϕ + q − �∑
i=1

(ai ⋅ α∗i ) = q.

To finish the direct implication, notice that ε∗ > 0 as a consequence of (7), (8) and

(9), and it takes the maximum possible value since otherwise, let ϕΔ be the formula

in Σ which has the minimum value in Δ. Then, if there was a solution with greater

objective value it would violate the constraint (prob
) for ϕΔ.

Reciprocally, assume that Algorithm 1 returned Sat, and let us denote by h∗ij ,

α∗i , ε
∗ and π∗j the (optimal) solution for the variables hij , αi, ε and πj , for each

1 ≤ i ≤ n, 1 ≤ j ≤ k′ respectively.

Consider the set of valuations V0 = {v1, . . . , vk′} where, for each propositional

variable xi ∈ P , vj(xi) = h∗ij . Due to constraints (gamma) it is immediate to conclude

that each valuation satisfies Γ. Then, let the probability distribution π be defined

over the set of valuations as the 2n vector π = [ρj] where ρj = π∗j for 1 ≤ j ≤ k′

and ρj = 0 for k′ < j ≤ 2n. Note that (sums1) implies that π is a probability vector.

The third condition described in Lemma 4.1 is deduced by simple inspection of the

linear constraints (prob≥), (prob<), (prob≠) and (sums1), by definition of the matrix

associated to Σ over V0 and recalling that the optimal value ε∗ is such that ε∗ > 0. ◻
As a corollary of the previous propositions, we obtain the following result.

Theorem 4.4 The GenToMIP algorithm is a correct translation of GenPSAT to a

MIP problem of polynomial size.

5 Phase Transition

Phase transition is a phenomenon that marks a hardness shift in the solution of

instances of a problem. This behaviour was observed in many NP-complete prob-

lems [7], among which we highlight 3-SAT [16] and PSAT [11,12].

In this section, we study the GenPSAT phase transition, through an implemen-

tation of Algorithm 1 and tests comprised of batteries of random instances. For
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this, we measure the proportion of satisfiable instances as well as the average time

the solver spent to solve them. The software was written in Java, and we used

Gurobi [15], version 6.5.0, to solve the MIP problem. The machine used for the

tests was a Mac Pro at 3,33 GHz 6-Core Intel Xeon with 6 GB of memory. Our

implementation is available in [8].

It was noted that, in random 3-SAT instances [16] there is a clear stage where

the instances are almost surely satisfiable and one where they are almost surely

not satisfiable. This phenomenon is characterized by the existence of a threshold

value for the ratio m/n, where m is the number of clauses, and n is the number of

variables, for which: for smaller values of the ratio, the SAT instances are almost

certainly satisfiable and easily solved, whereas instances with larger ratio values

are almost certainly unsatisfiable and also easily solved. However, with values of

the ratio very closed to this threshold, the instances are, on average, very hard to

solve and there is no certainty on whether the problem is satisfiable or not. As we

have already noted, any 3-SAT problem can be seen as a GenPSAT instance. We

tested our GenPSAT solver with random instances of 3-SAT, and observed that a

phase transition occurs when the ratio m/n is about 4.3, in accordance with [16],

see Figure 1.

Fig. 1 Phase transition for SAT seen as a GenPSAT instance, with n = 20.

A deeper analysis of the probabilistic satisfiability problem PSAT [11,12] has

shown the presence of a phase transition behaviour for PSAT for a ratio m/n, where
m is the number of clauses and n is the number of variables. We tested random

PSAT instances with the number of probabilistic formulas k = 2, n = 15 and m

ranging from 1 to 105 in steps of 2. For each value of m, we generated 100 PSAT
instances. The obtained results are presented in Figure 2.

We highlight that the analysis of the existence of a phase transition with vari-

ation on k (instead of a variation on m) is essential for a deep understanding of

the phase transition of the probabilistic satisfiability problem (instead of the phase

transition of the satisfiability problem for propositional formulas in the presence of

probabilistic formulas). For this purpose, we tested random PSAT instances with

n = 30, m = 40 and k ranging from 1 to 25, and also observed a phase transition
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Fig. 2 PSAT phase transition seen as a GenPSAT instance, with n = 15 and k = 2.

with respect to k/n based on 100 instances for each value of k, see Figure 3.

Fig. 3 PSAT phase transition seen as a GenPSAT instance, with n = 30 and m = 40.

In [1], this phase transition analysis was performed on a generalization of the

probabilistic satisfiability problem, GPSAT, which consists in Boolean combinations

of simple probabilistic formulas.

In what concerns our generalized version of probabilistic satisfiability GenPSAT,
notice that a randomly sampled probabilistic formula can easily be inconsistent by

itself, e.g., when it implies one of the probabilities is greater than 1. Because of

this, the sampling of the coefficients was performed in such a way that this case

does not occur.

GenPSAT gives us a wider scope of ratios to study the phase transition behaviour.

Due to its generalized nature, we have four dimensions to explore: the number of

variables n, the number of clauses m, the number of probabilistic formulas k and

the maximum size of the linear combination into the probabilistic formulas �. We

analyze the presence of phase transition for the ratios k/n and m/n and address the

analysis of the phase transition for the variation of �/n in future work.

By performing random tests, we observe the presence of a phase transition for

the ratio of k/n with a very short stage of satisfiable formulas. This is explained

since a GenPSAT instance is more likely to be unsatisfiable. Figure 4 represents the

phase transition for random GenPSAT instances with n = 20, m = 10 and k ranging
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from 1 to 100 in steps of 2. We generated 100 instances for each value of k.

Fig. 4 Phase transition for random GenPSAT instances, with n = 20 and m = 10.

On the other hand, when the parameters n and k are fixed, we are also able to

detect a phase transition. Figure 5 represents the result of testing random GenPSAT
instances with n = 15, k = 2 and m ranging from 1 to 105 in steps of 2. For each

value of m we generated 100 GenPSAT instances.

Fig. 5 Phase transition for random GenPSAT instances, with n = 15 and k = 2.

6 Conclusion and future work

Throughout this work we explored a generalized version of probabilistic satisfiability,

GenPSAT. Capitalizing on its NP-completeness, we presented a polynomial reduction

from GenPSAT to MIP, which was proved to be correct. Since the translated MIP
problem only suffers a quadratic growth, we were able to solve reasonably sized

instances for different values of the parameters: number of variables, clauses and

probabilistic formulas. Seeing that an instance can be parametrized by different

combinations of these parameters, we are able to make a rich analysis of the phase

transition, by analyzing the behaviour for different ratios. As future work, we leave

open the study of the phase transition taking into account also the size of the linear

combination in the probabilistic formulas, as well as a 4th-dimensional analysis on

the variation of the parameters.

We built a tool that implements this algorithm, which although being able to

solve reasonably sized instances, can be greatly improved and optimized. In this
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sense, we are exploring the reductions of GenPSAT to SMT and SAT, which could

significantly enhance the solver given the performance of the available tools for

these problems. We also leave as future work the study of the relationship between

GenPSAT and weighted MaxSAT.

Soon, we expect to develop applications of GenPSAT to model problems in sev-

eral contexts, namely in the automated analysis of security protocols and estimation

of probabilities for the existence of offline guessing attacks, [17]. For this purpose,

we are currently developing an automated tool that uses the GenPSAT solver to

reason about probabilistic formulas involving equations and domain restrictions.
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