
 Open Access. © 2022 the author(s), published by De Gruyter. This work is licensed under the
Creative Commons Attribution 4.0 International License.
https://doi.org/10.1515/9783110767377-005

Luís Gomes✶, Ruben Branco, João Silva, and António Branco
Open and Inclusive Language Processing
Language Processing Services by PORTULAN to Meet the Widest
Needs of CLARIN users

Abstract: As a research infrastructure for human language, the mission of CLARIN
is to serve its users and respond to their research needs, in all their diversity of
backgrounds and aims, with the appropriate access level to the functionalities
of a wide range of language processing tools. Building on solutions designed,
matured, and explored at the Portuguese national node PORTULAN CLARIN, the
goal of this chapter is to expand on those solutions and, by providing a detailed
description of them, to report on how CLARIN has been undertaking its mission
in that respect. Hopefully, this will help to further improve what the infrastruc-
ture can do for its users and for the advancement of research in the science and
technology of language.

Keywords: research infrastructure, language science, language technology, lan-
guage processing services, web services, PORTULAN CLARIN

Acknowledgment: The results reported here were partially supported by PORTULAN CLARIN —
 Research Infrastructure for the Science and Technology of Language, funded by Lisboa2020,
Alentejo2020 and FCT — Fundação para a Ciência e Tecnologia under the grant PINFRA/22117/2016.

✶Corresponding author: Luís Gomes, PORTULAN CLARIN and University of Lisbon, Departamento
de Informática, Faculdade de Ciências de Lisboa, Lisbon, Portugal, e-mail: luis.gomes@di.fc.ul.pt
Ruben Branco, PORTULAN CLARIN and University of Lisbon, Departamento de Informática, Faculdade
de Ciências de Lisboa, Lisbon, Portugal, e-mail: ruben. branco@di.fc.ul.pt
João Silva, PORTULAN CLARIN and University of Lisbon, Departamento de Informática, Faculdade
de Ciências de Lisboa, Lisbon, Portugal, e-mail: jsilva@di.fc.ul.pt
António Branco, PORTULAN CLARIN and University of Lisbon, Departamento de Informática,
 Faculdade de Ciências de Lisboa, Lisbon, Portugal, e-mail: antonio.branco@di.fc.ul.pt

https://doi.org/10.1515/9783110767377-005
mailto:ruben.�branco@di.fc.ul.pt
mailto:jsilva@di.fc.ul.pt
mailto:antonio.branco@di.fc.ul.pt

108   Luís Gomes et al.

1 Introduction
PORTULAN CLARIN Research Infrastructure for the Science and Technology of
Language1 belongs to the Portuguese National Roadmap of Research Infrastruc-
tures of Strategic Relevance2 and is part of the international research infrastruc-
ture CLARIN ERIC.3 Its mission is to support researchers, innovators, citizen
scientists, students, language professionals, and general users whose activities
draw on research results from the Science and Technology of Language, by dis-
tributing scientific resources, supplying technological support, providing consul-
tancy, and fostering scientific dissemination.

In this chapter, we focus in one of these mission lines, namely the provision of
technological support, in particular under the form of open and inclusive language
processing services. Our goal here is to expand on the solutions designed, matured,
and explored at PORTULAN CLARIN and, by providing a detailed description of
them, to report on how CLARIN has been undertaking its mission in that respect.
We expect that this will help to further improve what the CLARIN infrastructure
can do for its users and for the advancement of research in the science and tech-
nology of language, specifically in articulation with other chapters in this book,
including Hajič et al. (2022), Zinn and Dima (2022), and Kupietz, Diewald, and Mar-
garetha (2022).

Tokenization, part-of-speech tagging, parsing, or concordancing are just a
few examples, among many others, of language processing tools that can serve
as processing services the users of a research infrastructure for the science and
technology of language. In PORTULAN CLARIN, every such web-based language
processing service is accessible as an online service: users just need to copy the
excerpt of interest to be processed from some third-party digital source, paste it
into a designed text field, push a button to run the tool, then copy the result that
will be displayed, and finally paste it to some digital support. The greatest advan-
tage of this type of user interface is its unsurpassed simplicity, together with the
fact that users can see the results of their requests immediately and understand
the functionality of the tool at stake. This interface constrains users, however, to
work with short inputs only and provides no combinatorial affordance.

In a more evolved user interface, tools are accessible as file-processing ser-
vices. This is the type of interface that has been available through the CLARIN
switchboard (Zinn 2018). Users upload files of their choice in a dialog box, push

1 https://portulanclarin.net/
2 https://www.fct.pt/apoios/equipamento/roteiro/index.phtml.en
3 https://www.clarin.eu/content/participating-consortia

https://portulanclarin.net/
https://www.fct.pt/apoios/equipamento/roteiro/index.phtml.en
https://www.clarin.eu/content/participating-consortia

Open and Inclusive Language Processing   109

the upload button below that box, and finally download the returned file with the
output. Although they are not provided with any combinatorial affordance here,
as in the online services, users are, however, not limited to short inputs, and for
most practical purposes most users will not feel limited by the size of the inputs.

In another user interface, language processing tools are available under the
modality of a notebook service. Notebooks allow users to interleave paragraphs of
descriptive text with snippets of code; can be opened in a browser and the code
run online by resorting to some non-local server that would otherwise have to
be provided locally by the user. As in the file-processing interface, users are no
longer limited to short inputs, with the added advantage that now combinatorial
affordances are available by adjusting the seed code made available, for which
some minimal programming skills are needed.

In yet another user interface that is more demanding in terms of technical skills,
a tool can be used as a web service through a remote procedure call (RPC) interface.
From within a program, written in any programming language of their preference,
users can invoke a function to which they pass the input text to be processed and
that returns the respective processed output. Like the notebook services, this is
also a type of interface that is not yet available through the CLARIN switchboard
(see Zinn and Dima 2022). As its greatest advantage, this interface grants users full
combinatorial affordance while requiring some minimal programming skills.

This chapter is focused on the workbench with language processing services
of PORTULAN CLARIN. For a broader and higher level view of PORTULAN, please
refer to Branco et al. (2020).

The remainder of this chapter is organized as follows: In Section 2, we present
in more detail the different types of interfaces, mentioned above, as they have
been implemented in PORTULAN CLARIN. Then, in Section 3 we will expand on
the technical options that were adopted and implemented, and in Section 4 we
discuss the current status of the workbench formed by the collection of language
processing services made available, before concluding with Section 5.

2  Language processing services for the widest
user profiles

2.1 Online services

Every tool in the PORTULAN CLARIN workbench has an online service type of inter-
face. This is the central interface for each tool and it serves the following purposes:

110   Luís Gomes et al.

1. to allow users to experiment with the tool by changing its input and options
and immediately see the effect in the output;

2. to offer one-click usage examples to help users start experimenting with the
least amount of effort;

3. to grant access to several forms of documentation;
4. to provide an entry point to the file-processing or web services interfaces.

Figure 1: Example of the online service interface. Our guidelines for positioning elements in
the interface follows a top-down layout with five groups, (a) to (e), superimposed to this screen
shot, and not part of the interface.

Open and Inclusive Language Processing   111

As an example, Figure 1 presents the interface of the LX-DepParser tool,4 which
is a prototypical interface for sentence-based text-processing tasks, such as POS
tagging, dependency and constituency parsing, or semantic role labelling, etc.

Every online service interface follows the same general layout, which can be
sectioned vertically in 5 groups of elements, identified in Figure 1 using letters
(a) to (e) for easier reference. In the topmost position, in group (a), we find a
row of buttons that give access to examples, the file-processing and web services
interfaces, and documentation. The subsequent groups follow the order of user
interaction with each of the interface elements: input for the tool is accepted in
group (b); options affecting the behaviour and output format of the tool are speci-
fied in group (c); processing of current input is started or cleared in group (d); and
finally, the results are shown in group (e).

The “Examples” button is the first button on the interface, and thus one of
the most prominent, because it provides the best starting point for newly arrived
users to start interacting with the tool. Running an example via a simple button
click requires no effort from the users, whereas if the common practice of provid-
ing examples only as part of the documentation had been followed, users would
be required to copy and paste inputs and options from the documentation into
the interface. Not only is copying and pasting examples a much more fastidious
process than the solution adopted here, but it is also an error-prone one, par-
ticularly if the tool has several options affecting its behaviour that need to be
changed, which ultimately could hinder the main purpose of examples: to aid
users understand what the tool does and how they can use it.

The “File Processing”, “Notebook” and “Web Service” buttons each open a
dialog interface, which will be described in detail in Sections 2.2, 2.3 and 2.4, respec-
tively.

The documentation button opens a window that will be displayed on top of the
online service interface, containing relevant information about the tool, such as:

 – a description of the tool, the problem it solves, and the method used;
 – the datasets used to train the underlying models, when applicable;
 – the tagsets used by the tool, when applicable;
 – the input and output formats;
 – a user manual or tutorial, where it is justified by the complexity of the tool;
 – references to scientific publications describing the tool or its components;
 – authorship and contact information;
 – acknowledgements;
 – licensing terms.

4 https://portulanclarin.net/workbench/lx-depparser/ (based on Branco et al. (2011)).

https://portulanclarin.net/workbench/lx-depparser/

112   Luís Gomes et al.

Figure 2: Tagset of LX-DepParser shown side by side with the interface, for user’s convenience.
Also note that a different output format was selected from the one shown in Figure 1. This
interface allows the user to easily compare the output formats available for each tool by looking
at the same output encoded in different formats.

The documentation window is presented in a modal form over the tool inter-
face, which means that all page elements not belonging to the documentation
window, will appear behind a semi-transparent grey background, allowing users
to focus on the documentation without being disturbed by any other elements on
the page.

Additionally, because the documentation is often long, a hyperlinked table
of contents is automatically inserted at the top of the window, allowing users to
jump to any section. A floating button, with an upward-pointing arrow, appears
at the top left-hand corner of the screen whenever the document is scrolled down.
By clicking this button, users may jump back to the table of contents from any
point in the document. These navigation aids are implemented in the interface
logic that is shared across all tools in the workbench, contributing to a more
uniform and thus less distracting user experience when reading documentation.

Besides being included in the main documentation, tagsets can also be
accessed directly by clicking the respective “Tagset” button, the rightmost in
group (a) of Figure 1. Once pressed, this button will slightly change its appear-
ance to indicate it has been depressed and a new panel opens on the right-hand
side of the interface, sharing half of the horizontal space that was previously fully
dedicated to the interface, as shown in Figure 2. Having the tagset shown side by
side with the output of the tool is much more convenient to users than having to
go back and forth between the documentation view and the interface. To close the

Open and Inclusive Language Processing   113

tagset panel, users either press the same button that was used to open it, which
will revert to its normal appearance, or they press the “close” button, represented
by a cross, at the top right-hand corner.

For some tools, instead of a tagset, this side panel may show other types of
referencial documentation, such as a cheat sheet for a query syntax, as is the case
for the CINTIL Concordancer tool.5

Among the output formats of each tool there is usually one termed friendly,
which is the default and is specifically targeted at human users, as opposed to
being suited to further processing by another automatic tool. This friendly format
is often graphical in nature, such as the dependency tree output in Figure 1. By
contrast, the other formats are generally textual, even if they encode some form
of graph structure, and thus harder to interpret for humans; an example is the
tabular output shown within the grey rectangle in Figure 2, which encodes a short
sentence and its annotated dependency tree graph.

To conclude this section, it is worth mentioning that the layout presented
in Figure 1 is a general guideline for organizing components in online service
interfaces, which aims at increasing consistency across the interfaces of different
tools, but ultimately, these guidelines should always be overridden as needed for
the benefit of the interface.

For example, in the LX-Translator6 online service, shown in Figure 3, which is
an interface for a bi-directional machine translation system, there is not one text
input box but two, one for each language, displayed side by side. Each of these
boxes is used for both input and output, which breaks the guideline of displaying
the output on a dedicated area at the bottom of the page. At the beginning, both
text boxes are empty and the user may input text in either one, click the “Trans-
late” button below, and the translation will appear in the other box. For providing
examples, we have decided to place one “Example” button below each input/
output text box, which breaks another guideline – the one that tells us to place
the example button prominently in the top row of buttons. However, by breaking
this rule, the new placement makes it obvious which text box will be filled with
the respective example input text and which will be the translation direction trig-
gered by each of these example buttons.

5 https://portulanclarin.net/workbench/cintil-concordancer/ (based on Barreto et al. (2006)).
6 https://portulanclarin.net/workbench/lx-translator/ (based on Santos et al. (2019)).

https://portulanclarin.net/workbench/cintil-concordancer/
https://portulanclarin.net/workbench/lx-translator/

114   Luís Gomes et al.

Figure 3: Interface of the LX-Translator online service, illustrating a case where the overall
design guidelines may have to be weakened for the benefit of the interface usability, depending
on the functionality of the service at stake.

2.2 File-processing services

The file-processing interface, or fileproc for short, is a multi-step workflow that
is launched by clicking on the “File Processing” button at the top of the online
service interface. Figure 4 depicts this workflow, using screenshots of the dialog
windows presented to the user at each step.

The first dialog window allows the user to select an input file from their com-
puter to be processed and proceed to upload the file by clicking the “Upload”
button. At this point, the workflow takes one of two possible courses, depending
on the size of the file that is being uploaded.

Small input files are handled by the path on the left-hand side of Figure 4,
and we call these short (file-processing) jobs. Large input files are handled by the
path on the right-hand side of Figure 4, and we call these long jobs. The threshold
size, used to determine if a file is to be considered small or large is computed for
each tool separately, based on the maximum amount of data that it can process
in under two minutes. Further ahead we will discuss the reasoning that led to this
specific time threshold.

If the file is small enough that it can be processed in under two minutes,
then we consider this to be a short job and processing will start immediately after
the file is uploaded. The user is informed of the processing progress through
a progress bar, as shown in step 2(a) of Figure 4. As soon as the processing is

Open and Inclusive Language Processing   115

3(b)

1

5(b)

2(a)

3(a)

branch (a)
file smaller than
the threshold size

2(b)

4(b)

branch (b)
file larger than the

threshold size

Figure 4: File-processing service interface workflow. Depending on the size of the user supplied
input file, the user interaction follows one of two main branches: (a) the file is smaller than
a fixed threshold, or (b) otherwise. The threshold size varies from one processing service
to another and is determined as the average number of bytes that each specific service can
process under two minutes.

116   Luís Gomes et al.

 complete, the user will be able to download the processed output files by clicking
the “Download” button shown in window 3(a) of Figure 4.

Going back to the end of step 1, if the file being uploaded is large enough such
that its processing time is estimated to be longer than two minutes, then we con-
sider this to be a long job and the processing will take place in the background,
without requiring the user to suspend other activities waiting for its completion.
Instead, in this type of job, when the processing is complete, the user will receive
an email with a URL for downloading the output file.

Since PORTULAN CLARIN does not require its users to be registered, there
is no information about the user requesting this concrete file-processing service.
Thus, in order to carry on with the processing, it is necessary to know the email
address where the message should be sent. For this purpose, a simple email
address validation method was implemented that sends an automatically gen-
erated code into the email address specified by the user in the dialog shown in
screenshot 2(b), which should then be copied over by the user from the email
into a text field, as shown in screenshot 3(b) of Figure 4. Because the codes are
randomly generated long strings, if the code inserted by the user matches the
one that was sent, we assume that the user has had access to the specified email
account and did not guess the code by chance.

Once the user’s email address has been validated, the job processing begins
and the user is notified that the job has been successfully submitted and that
an email message will be sent upon the job’s completion. See screenshot 4(b) of
Figure 4.

When the processing of a long job finishes, an email like the one shown in
the 5(b) screenshot of Figure 4 is sent to the user. The download URL included in
the email message will be valid for five days. As soon as the user finishes down-
loading the output file, both the email address associated with the job and the
output file will be deleted from the server (and thus the URL will no longer be
valid). If, five days after the email was sent, the user did not download the output
file, it will be automatically removed from the server along with the user’s email
address.

Now that we have considered the two workflow paths, for short and long
jobs, let us take a look at the two-minute time threshold which is used to decide
whether a file-processing job should be considered short or long. This thresh-
old has been adjusted through experimentation, although in a highly subjective
manner because it depends on many factors, including the users themselves. Two
minutes is about the point at which we find it is more costly, in terms of inconven-
ience to users, to require them to go through the extra steps to validate an email
address and wait for an email with the URL for downloading the output files,
rather than simply wait for the processing to complete.

Open and Inclusive Language Processing   117

Compared to the online service interface, presented in detail in the previ-
ous section, here in the file-processing mode the user does not have to choose
an output format. Instead, we opted to include all output formats in the output
file, which will be a zip archive containing one directory for each format. The
reasoning for this decision is that the time required by a tool to process the input
data largely exceeds the time required to convert the processed output into all
available output formats. Thus, not only this is convenient for the users, who do
not have to worry about which output format to choose, but it also avoids unnec-
essary re-processing of the same input data if a user finds out, after a job has been
processed into one output format, that a different one is needed.

The accepted formats for the input file will depend on the tool at stake, but in
general, the file should be either a UTF-8 encoded plain text file, or a zip archive
containing any number of UTF-8 encoded plain text files. In the case of a zip
archive, the files may be organized within a directory tree structure, which will be
preserved during the processing.

The output file will always be a zip archive, containing several directories,
one for each output format. If the input file was a zip archive containing multi-
ple files organized within a directory tree structure, the same structure will be
replicated under each output format directory. Otherwise, if a single text file was
given as input, then each directory in the output zip archive will contain a single
processed output file in the corresponding output format.

2.3 Notebook services

The notebook interface is launched by clicking on the “Notebook” button at the
top of the online service interface.

A Jupyter notebook (hereafter notebook, for short) is a type of document that
contains sections of executable code, called cells, interspersed with visualiza-
tions of results from the execution of such cells and narrative text with rich for-
matting (headings, lists, bold, italic, equations, etc.). An example notebook is
shown in Figure 5. Notebooks may be written in a tutorial style, embodying the
literate programming paradigm envisioned by Knuth (1984), which also makes
them a valuable tool for teaching. Furthermore, because notebooks may be mod-
ified and re-executed interactively, they are also an excellent tool for learning
through experimentation.

For several tools in the workbench, the respective notebook service may be
explored with only a couple of mouse clicks: a user starts by clicking the “Note-
book” button in the tool’s online service interface, which brings up a dialog with

118   Luís Gomes et al.

relevant information and further options to launch the notebook on free support-
ing servers, such as the Binder offered by Project Jupyter et al. (2018) or Google.

These notebooks are intended to serve as quick and easy starting points for
users to start developing their own experiments, and for that purpose, we believe
that very short and artificial code examples would not be the most adequate.
Instead, we often include code for downloading and cleaning example data to
be processed, code for processing the data with a tool from the workbench via
its web services interface, and code for some kind of subsequent analysis of the
processed data.

Figure 5: Example notebook illustrating basic features. At the top, there is some text with rich
formatting. Within the grey rectangle there is some code. When run, it produces the output that
it is displayed in the same page, and which can be input to subsequent code.

With this type of interface with language processing services in PORTULAN work-
bench, no software needs to be installed on the users’ computers: a web browser
is all that is needed. By lowering the technical requirements, we believe note-
books will foster users’ interest and will help to leverage new research ideas and
experimentation.

Open and Inclusive Language Processing   119

2.4 Web services

The web services interface is a remote procedure call (RPC) type of interface,
through which it is possible to interact with one or several tools in the workbench
by means of computer programs. We chose to implement this service using JSON-
RPC, which is a lightweight and programming language-agnostic protocol for
which implementations are readily available in many programming languages.

The web services interface is available for most tools in the workbench.
Exceptions that do not offer this type of interface are, for example, tools that nat-
urally lend themselves more to an interactive usage, through their online service
interface, rather than to a data-processing usage scenario. For example, the
CINTIL Concordancer7 and the CINTIL Treebank Searcher8 are examples of two
such tools.

To start using web services, for any given workbench tool that supports them,
a user will click the “Web Service” button in the tool’s online service interface,
which will bring up a dialog as the one shown in Figure 6. This dialog contains
detailed information about the requirements that have to be met before this
service can be used, as well as a simple and self-contained Python program that
can be used as a starting point for users with little programming experience to
develop their own programs.

One of the requirements to use a web service is an access key that each user
must obtain by clicking the “Request key” button on this dialog. This key is used
to implement a basic access control mechanism with the primary goal of prevent-
ing any individual user from abusing, either intentionally or inadvertently, the
finite computational resources available on PORTULAN CLARIN to serve all its
users. By clicking on the “Request key” button, users will go through an email
validation process identical to the one required when submitting long file-pro-
cessing jobs, as described in the previous section. After their email address has
been validated, users are sent an email with an access key and information about
usage quotas associated with it: the total number of requests allowed, the total
number of characters allowed (accumulated over all requests), and the expiry
date for the key.

Whenever a user requests a new key using an email address that was used
before, if the previous key is still valid (i.e. it has not expired and its usage quotas
have not been exhausted), that key is returned in the response email, along with

7 https://portulanclarin.net/workbench/cintil-concordancer/ (based on Barreto et al.(2006)).
8 https://portulanclarin.net/workbench/cintil-treebank-searcher/ (based on Branco et al.(2010)).

https://portulanclarin.net/workbench/cintil-concordancer/
https://portulanclarin.net/workbench/cintil-treebank-searcher/

120   Luís Gomes et al.

the remainder usage quota. Thus, at any point in time, only one valid key is asso-
ciated with any given email address.

Because any user can have access to several email addresses, this access control
mechanism does not prevent a single user from having multiple access keys, each
associated with a different address. However, creating new email addresses and
requesting access keys requires some effort, which should be enough to discourage
fortuitous abuse.

Besides the total number of requests and of characters allowed during the
lifespan of a key, there is also a maximum number of requests and characters
allowed per hour. If any of these maximum hourly rates are reached, subsequent
requests will receive an appropriate error code and message, until enough time
has passed since the last successful request such that both hourly rates become
lower than their maximum allowed values.

Figure 6: Example web service dialog containing detailed instructions and example Python
code (truncated in this screenshot) for using the LX-DepParser web service interface.

Open and Inclusive Language Processing   121

3  Exploring the current stage of technological
development

In order to be able to set up a computational infrastructure that seamlessly sup-
ports the four different modes of interaction described in the previous sections
for dozens of different tools, non-trivial technical options need to be adopted and
implemented. These options need to ensure that appropriate levels of factori-
zation can be achieved and that sufficient levels of readability are ensured. We
focus here on the design decisions that have the most impact globally.

3.1 HTTP and nginx

The PORTULAN workbench is implemented as a micro-service distributed system
with a user-facing HTTP server, a frontend server and several backend servers.

The user-facing HTTP server is the only part of this distributed system that
is directly exposed to the internet and it is responsible for negotiating SSL con-
nections with the browser, serving static content such as images, CSS (Cascading
Style Sheets) and JavaScript files and acting as a reverse HTTP proxy to the fron-
tend server.

For this HTTP server, we adopted nginx9 for its clean configuration syntax,
low resource usage and excellent performance. SSL certificates are issued by
Let’s Encrypt,10 a nonprofit Certificate Authority, and managed through Certbot.11
From a security perspective, having all HTTP requests served or proxied through
a single user-facing HTTP server reduces the attack surface, at least for HTTP pro-
tocol-based exploits, and eases security audits.

3.2 Python and Django

We adopted Python as the main programming language, which not only gives one
access to an immense array of high-quality libraries and frameworks, and a thriv-
ing ecosystem of development tools, but also, since it is an immensely popular
and accessible language, ensures that the code base is maintainable, expanda-
ble, and accessible by a larger number of people.

9 https://www.nginx.com/
10 https://letsencrypt.org/
11 and https://certbot.eff.org/

https://www.nginx.com/
https://letsencrypt.org/
https://certbot.eff.org/

122   Luís Gomes et al.

The frontend server is implemented as a WSGI-compliant12 application and is
served by the gunicorn server.13 We adopted the WSGI-compliant Django frame-
work,14 which promotes code factorization and organization, both essential
aspects for large-scale projects such as the PORTULAN workbench.

A Django-based server runs a collection of Django applications,15 and each
application holds code and files for a specific part of the the frontend service as a
whole. In the context of the PORTULAN CLARIN’s workbench, each tool is imple-
mented as a separate Django application. Additionally, some cross-cutting func-
tionalites of the workbench are implemented as Django applications, such as the
workbench index page where all tools are listed, email validation, and CAPTCHA
validation.

Mirroring this modular organization, workbench tools and cross-cutting
functionalities are developed and maintained in independent Git repositories
and packaged as separate Python packages. During deployment, these packages
are installed and upgraded with the Python package management tool (pip),
based on a requirements file which specifies the exact version of each package
to be installed.

Thus, during production, whenever a problem occurs and a bug report is
filled in our GitLab16 service, we know exactly what version of each component
was installed at the time when the problem occured. This is crucial for reproduc-
ing reported errors and pinpointing their exact source within the code, because
the latest development versions of packages may no longer exhibit the same
error, either because the problem was fixed as part of a refactorization or because
it is being masked by some other change.

At its core, a Django application is a set of views, models, and templates.
 – Views are functions or methods responsible for handling HTTP requests. The

core logic of any Django application is either implemented within views or
can be traced to calls made from them.

 – Models are classes that define the properties and structure of data that needs
to be persistent in a database. Through inheritance and dynamic method

12 https://www.python.org/dev/peps/pep-3333/
13 https://gunicorn.org/
14 https://www.djangoproject.com/
15 The word application has several meanings in the context of web development and thus
prone to generate confusion. A WSGI application refers to a whole web application. A Django
application implements a part of the whole web application, which may be composed of many
Django applications.
16 GitLab is an open-source development platform that provides web-based interface for man-
aging Git-based code repositories, a ticket system, and much more. PORTULAN CLARIN hosts a
private GitLab server, only accessible to staff members.

https://www.python.org/dev/peps/pep-3333/
https://gunicorn.org/
https://www.djangoproject.com/

Open and Inclusive Language Processing   123

 resolution, Django provides a Pythonic interface to its object-relational-
mapper (ORM) for querying, retrieving, inserting, updating, and deleting
records from a relational database. Model objects are typically instantiated
and manipulated from views.

 – Templates are, in essence, files containing static HTML code17 enriched with
special syntax describing how and where dynamic content will be inserted.
The Django template syntax provides basic control flow structures, such as
conditionals and loops, an inclusion mechanism that allows templates to be
included as part of other templates, and an inheritance mechanism, allow-
ing templates to inherit and extend functionality from other templates. Tem-
plates are typically used within views to generate the HTML to be sent to the
browser as the body of an HTTP response.

Taking advantage of class and template inheritance, logic that is shared across
all tools in the workbench is factored out, such as CAPTCHA validation, email
validation, general interface layout, common components, etc. This factoriza-
tion speeds up the integration of new tools into the workbench by reducing the
amount of new code that has to be written for each of them, and ensuring that
each bug needs to be fixed only in one place.

3.3 JavaScript, jQuery, VueJS, and Bootstrap

Equally important in building web applications, the JavaScript code running on
the web browser is used to manipulate the structure and content of a page after
the initial HTML has been transferred from the server.

Furthermore, by making asynchronous HTTP requests from JavaScript code,
web applications can be made smoother and more efficient because only small
chunks of data need to be transferred from the server, instead of reloading the
entire page. For example, when a user submits a snippet of text to be processed
through an online service interface, an HTTP request is sent to the server through
JavaScript, containing the snippet to be processed. Likewise, through JavaScript,
while the HTTP request is ongoing, a visual activity indicator may be displayed
next to the button that was clicked to trigger the request, and thus letting the
user know that something is happening as a consequence of the click. As soon as
the server replies, the processed result will be inserted in the appropriate place

17 In fact, a template may contain any type of textual content, not only HTML, but this is the
most common use for templates.

124   Luís Gomes et al.

within the page and the visual activity indicator is removed. All of these page
content manipulations are made using JavaScript code. Most of the HTML that
makes up the page is transferred only once into the browser, when the user nav-
igates into that page.

We have adopted the jQuery18 library, which introduces a large set of function-
alities that simplify manipulation of HTML elements programmatically. Recently,
we have also been progressively adopting the VueJS framework,19 which pro-
vides a new, more efficient, and easier-to-use mechanism to manipulate HTML
elements in the browser, and enables component-based code organization and
reuse.

For the styling of HTML elements, we adopted the Bootstrap20 framework
which provides a comprehensive, well-documented and easy-to-use set of CSS
classes that comply with modern web design requirements, such as being able to
adapt to the small screens of mobile devices.

3.4 Backend and containers

Let us now turn our attention to the backend services of the PORTULAN infra-
structure. Some tools in the workbench have dedicated backend servers that
encapsulate the core logic of the tool. Other tools are directly integrated into the
frontend server.

Taking into consideration the architecture and inner workings of WSGI
servers, for performance and reliability reasons21 the Django worker processes
should have short startup times and moderate memory usage. Thus, the decision
as to whether a tool should be integrated in its own backend server depends on
the following conditions:

 – if it requires a CPU-heavy or long initialization;
 – if it requires a large amount of memory;
 – if it is multi-threaded, which becomes a problem if any other tool is not

thread-safe;
 – if it is not thread-safe, which becomes a problem if any other tool is

 multi-threaded;

18 https://jquery.com/
19 https://vuejs.org/
20 https://getbootstrap.com/
21 The two main reasons are: (1) the WSGI server may dynamically spin up/down Django worker
processes depending on the number of concurrent HTTP requests and (2) the WSGI server may
restart each Django worker after it serves a pre-configured maximum number of requests.

https://jquery.com/
https://vuejs.org/
https://getbootstrap.com/

Open and Inclusive Language Processing   125

 – if it is implemented in a programming language other than Python and any
of the following is true:

 – it does not offer a command line interface;
 – its initialization time is not negligible in comparison to the time it takes

to process a typical input unit (e.g. a snippet of text);
 – if it is no longer being actively developed or maintained. The reasons under-

lying this condition are quite different from the previous ones, and will be
detailed below, when we discuss the need for containers.

If one or more of the above conditions is true for any given tool, then it should be
integrated into a separate backend server that exposes the tool functionality over
an appropriate JSON-RPC or XML-RPC interface. We adopted these two standard
RPC protocols because they are programming language-agnostic and implemen-
tations are readily available for most programming languages.

Other backend services include a Postgres22 relational database server, a
memcache23 server used for Django session data, and a postfix server for sending
emails.

Each server of the PORTULAN CLARIN workbench distributed system, which
includes the user-facing nginx server, the Django frontend server, and all the
backend services, is deployed in a separate Docker24 container.

Containers are groups of one or more25 processes running under a certain
level of isolation from other processes on the same host. This isolation is managed
by the operating system kernel and extends only as far as controlling access to
resources such as files, memory, devices, and CPU time. Thus, all containerized
and regular processes are served by the same kernel and can potentially share
any resource available on the host.

By contrast, in a virtual machine, a whole new guest kernel is executed
within a process running on the host kernel, and then new processes are run
and managed by the guest kernel, which incurs a considerable memory and CPU
overhead. Processes running within a virtual machine do not have direct access
to resources available on the host (such as files, memory, devices, etc.), and vice
versa. In order to share resources between the host and guest kernels there are
several possible workarounds, but they always incur in yet another memory and
CPU overhead.

22 https://www.postgresql.org/
23 https://memcached.org/
24 https://www.docker.com/
25 Docker containers usually run a single process.

https://www.postgresql.org/
https://memcached.org/
https://www.docker.com/

126   Luís Gomes et al.

Containers are the best fit for our needs because they are extremely light-
weight, and allow us to run each server in its own tailored environment while
sharing files across containers.

As mentioned above, one of the conditions that compels us to segregate a
tool into its own backend server is if the tool is no longer being actively developed
or maintained. The fundamental reason is because, at some point in the future,
the specific versions of libraries and other dependencies of an unmaintained tool
will no longer be available for installation in an up-to-date operating system, or
even if they are, they may clash with more recent versions required by other tools.

Docker images are standalone executable packages that include everything
needed to run a container: code, system tools, system libraries, and settings.
Thus, by including all the dependencies of a tool within a dedicated docker
image, we create a perfect environment for each tool.

With Docker Swarm,26 groups of containers are configured and managed as
services, which communicate with each other through Docker-managed private
networks. Service containers can be spread across any number of available
swarm nodes, that is networked machines that have Docker installed and have
been added to the swarm. The swarm also provides some mechanisms for main-
taining availability of services: should a container crash, the swarm will restart it;
or if one host becomes unavailable, the swarm will relocate containers that were
running on it to other available hosts.

4  Current status of the PORTULAN CLARIN
workbench

At the time of writing this chapter, dozens of tools have been integrated into the
workbench, with more to come.27

Tools are spread across the categories listed in Table 1, and new categories
will be added as needed to accommodate new tools. As described in Section 3,

26 https://docs.docker.com/engine/swarm/
27 The PORTULAN CLARIN workbench comprises a number of tools that are based on a large
body of research work contributed by different authors and teams, which continues to grow
and is acknowledged here: Barreto et al. (2006); Branco et al. (2010); Cruz, Rocha, and Cardoso
(2018); Veiga, Candeias, and Perdigão (2011); Branco and Henriques (2003); Branco et al. (2011);
Branco and Nunes (2012); Silva et al. (2009); Branco et al. (2014); Rodrigues et al. (2016); Branco
and Silva (2006); Rodrigues et al. (2020); Costa and Branco (2012); Santos et al. (2019); Miranda
et al. (2011).

https://docs.docker.com/engine/swarm/

Open and Inclusive Language Processing   127

the workbench provides an automatically generated index with links to individ-
ual tools grouped by their category. In its current form, this index is a simple list
of categories, with brief descriptions and hyperlinks to the tools available under
each category.

This simple design is reminiscent of the initial stages of development of the
workbench, when only a handful of categories was involved. Despite its sim-
plicity, this design continues to serve its purpose adequately, even though the
number of categories has nearly doubled since that initial development stage.
However, as the number of categories continues to grow, albeit at a slower pace,
at some point in the future we may have to redesign this index, perhaps by intro-
ducing a combination of faceted filtering, free text searching, or another level of
categorization.

We bring this up to exemplify how design decisions have been made through-
out the development of the workbench: if in doubt, we first try to implement the
simplest design that fulfills a given purpose. We defer adding complexity to the
interface, until it becomes clear, through usage, that the simpler design is not
as effective as it needs to be. And at that point, we will be in a better position to
design a good interface, not only because we already have a lean working base
design that we can use as starting point, but also because we know its shortcom-
ings.

In order to gather feedback from potential users, the workbench was dissem-
inated among the PORTULAN CLARIN implementation partners and at a number
events where the infrastructure has been presented. Feedback was very positive
regarding the interface and its usability, even though, during the dissemination
events, engaging with the audiences in a productive way may turn out to be a
challenge due to the different scientific and technical backgrounds of the partic-
ipants.

Suggestions that have been submitted for new tools to be incorporated in
the workbench have not tended towards novel or complex language technology
applications, but towards what is comparatively simple in functionality, such as
a concordancer capable of running over any user-submitted corpora.28 We find
such suggestions extremely valuable and will be working towards incorporating
them into the workbench.

The workbench gets roughly one-third of the unique page views in PORTU-
LAN CLARIN,29 with the constituency and dependency parsers being the most

28 The concordancer that is currently available runs over a pre-indexed fixed corpus.
29 The PORTULAN CLARIN repository of language resources (data and software), in turn, is only
slightly more popular, with 40% of the unique page views.

128   Luís Gomes et al.

popular tools. Following the parsers is LX Semantic Similarity, a tool for measur-
ing the semantic similarity of words.

5 Conclusion
In this chapter we have described the multi-interface approach implemented at
PORTULAN, which we believe opens up language processing services to a wider
array of users, coming from and carrying the most diverse backgrounds and
motivations. We advise against making language processing services available
through a single interface, designed with a specific user profile in mind, which
would necessarily be too inflexible for some users or too complex for others.
Instead, we propose four different interfaces, each one demanding an increased
level of technical skill from the user, but empowering the user in return.

Table 1: Tool categories.

Concordancing . . . Retrieval of contexts of occurrence of expressions in
annotated texts.

Constituency parsing . . . Analysis of syntactic constituents in sentences.
Dependency parsing . . . Analysis of grammatical functions in sentences.
Grammatical quantitative
analysis . . .

Occurrence counting of grammatical elements in texts.

Named entity recognition . . . Detection and semantic classification of names in texts.
Nominal inflection . . . Lemmatization and inflection of nominal expressions.
Orthographic
normalization . . .

Conversion to orthographic standard.

POS tagging . . . Tokenization and morphosyntactic tagging of expressions
in texts.

Phonological transcription . . . Conversion of graphemic into phonological representation.
Proficiency classification . . . Quantitative analysis and proficiency level classification of

texts.
Semantic role labelling . . . Analysis of semantic roles of syntactic constituents in

sentences.
Semantic similarity . . . Semantic similarity between words.
Sentence splitting . . . Segmentation of texts into sentences and paragraphs.
Sentiment analysis . . . Analysis of emotional polarity in texts.
Sub-syntactic analysis . . . Tokenization, lemmatization, inflection analysis, and

morphosyntactic tagging of expressions in texts.
Syllabification . . . Syllabification of expressions.

Open and Inclusive Language Processing   129

Temporal analysis . . . Analysis of events and of temporal information in texts.
Tokenization . . . Segmentation of texts into lexical tokens.
Transcription . . . Written representation of speech.
Translation . . . Translation of a sentence from a source language to a target

language.
Treebank searching . . . Retrieval of syntactic patterns and expressions in

annotated sentences.
Verbal conjugation . . . Conjugation of verbs.
Verbal lemmatization . . . Lemmatization of verbal expressions.
Wordnet browsing . . . Browsing of wordnet lexical semantic network.

The most basic type of interface, which we termed online service, is designed
to be attractive and to invite users to self-guided exploration, for example by
providing one-button-click examples. The second type of interface, termed file
processing, is akin to the CLARIN Switchboard and allows the user to upload a
large input file and have it processed with minimal effort. The third type of inter-
face, Jupyter notebooks, gives users a starting point for designing and developing
their own experiments. Notebooks may be edited and executed through a browser
without requiring installation on users’ computers. The fourth and most techni-
cally demanding, but also the most empowering interface, the web service, is a
language-agnostic remote procedure call interface to be used from within a com-
puter program written in any programming language.

After expanding on the design and rationale of these four types of interfaces,
we shared key aspects of the implementation, which include far-reaching and
long lasting decisions such as the choice of a programming language, overall
architecture, frameworks, communication protocols, process containerization,
code organization, and development and deployment practices.

Lastly, we reported on the current status of the workbench and feedback that
we have had from users.

Bibliography
Barreto, Florbela, António Branco, Eduardo Ferreira, Amália Mendes, Maria Fernanda

Nascimento, Filipe Nunes & João Silva. 2006. Open resources and tools for the shallow
processing of Portuguese: The TagShare project. Proceedings of the 5th international
conference on language resources and evaluation (lrec), 1438–1443.

Table 1 (continued)

130   Luís Gomes et al.

Branco, António, Sérgio Castro, João Silva & Francisco Costa. 2011. CINTIL DepBank handbook:
Design options for the representation of grammatical dependencies. Technical Report
DI-FCUL-TR-2011-03, University of Lisbon.

Branco, António, Francisco Costa, João Silva, Sara Silveira, Sérgio Castro, Mariana Avelãs, Clara
Pinto & João Graça. 2010. Developing a deep linguistic databank supporting a collection of
treebanks: the CINTIL DeepGramBank. Proceedings of the 7th international conference on
language resources and evaluation (lrec), 1810–1815.

Branco, António, Amália Mendes, Paulo Quaresma, Luís Gomes, João Silva & Andrea
Teixeira. 2020. Infrastructure for the science and technology of language PORTULAN
CLARIN. Proceedings of the 1st international workshop on language technology platforms,
1–7. Marseille, France: European Language Resources Association.

Branco, António & Filipe Nunes. 2012. Verb analysis in a highly inflective language with an
MFF algorithm. Proceedings of the 11th international conference on the computational
processing of portuguese (propor), Lecture Notes in Artificial Intelligence no. 7243, 1–11.
Springer.

Branco, António, João Rodrigues, João Silva, Francisco Costa & Rui Vaz. 2014. Assessing
automatic text classification for interactive language learning. Proceedings of the ieee
international conference on information society (isociety), 72–80.

Branco, António & João Silva. 2006. A suite of shallow processing tools for Portuguese:
LX-Suite. Proceedings of the 11th conference of the european chapter of the association for
computational linguistics (eacl), 179–182.

Branco, António & Tiago Henriques. 2003. Aspects of verbal inflection and lemmatization:
Generalizations and algorithms. Proceedings of xviii annual meeting of the portuguese
association of linguistics (apl), 201–210.

Costa, Francisco & António Branco. 2012. Aspectual type and temporal relation classification.
Proceedings of the 13th conference of the european chapter of the association for
computational linguistics, 266–275.

Cruz, A. F., G. Rocha & H. L. Cardoso. 2018. Exploring spanish corpora for portuguese
coreference resolution. 2018 fifth international conference on social networks analysis,
management and security (snams), 290–295.

Google. Google Colab. https://research.google.com/colaboratory/faq.html (accessed 20
September 2021).

Hajič, Jan, Eva Hajičová, Barbora Hladká, Jozef Mišutka, Ondřej Košarko & Pavel Straňák. 2022.
LINDAT/CLARIAH-CZ: Where we are and where we go. In Darja Fišer & Andreas Witt (eds.),
CLARIN. The infrastructure for language resources. Berlin: De Gruyter.

Project Jupyter, Matthias Bussonnier, Jessica Forde, Jeremy Freeman, Brian Granger, Tim
Head, Chris Holdgraf, Kyle Kelley, Gladys Nalvarte, Andrew Osheroff, M Pacer, Yuvi Panda,
Fernando Perez, Benjamin Ragan Kelley & Carol Willing. 2018. Binder 2.0 – Reproducible,
interactive, sharable environments for science at scale. In Fatih Akici, David Lippa, Dillon
Niederhut & M Pacer (eds.), Proceedings of the 17th Python in Science Conference, 113–120.

Knuth, Donald Ervin. 1984. Literate programming. The computer journal 27 (2): 97–111.
Kupietz, Marc, Nils Diewald & Eliza Margaretha. 2022. Building paths to corpus data:

A multi-level least effort and maximum return approach. In Darja Fišer & Andreas Witt
(eds.), CLARIN. The infrastructure for language resources. Berlin: De Gruyter.

Miranda, Nuno, Ricardo Raminhos, Pedro Seabra, Joao Sequeira, Teresa Gonçalves & Paulo
Quaresma. 2011. Named entity recognition using machine learning techniques. Epia-11,
15th portuguese conference on artificial intelligence, 818–831.

https://research.google.com/colaboratory/faq.html

Open and Inclusive Language Processing   131

Rodrigues, João, Francisco Costa, João Silva & António Branco. 2020. Automatic syllabification
of portuguese. Revista da Associação Portuguesa de Linguística, no. 1.

Rodrigues, João, António Branco, Steven Neale & João Silva. 2016. LX-DSemVectors:
Distributional semantics models for the Portuguese language. Proceedings of the 12th
international conference on the computational processing of portuguese (propor’16),
259–270.

Santos, Rodrigo, João Silva, António Branco & Deyi Xiong. 2019. The direct path may not be
the best: Portuguese-chinese neural machine translation. Proceedings of the 19th epia
conference on artificial intelligence, 757–768.

Silva, João, António Branco, Sérgio Castro & Ruben Reis. 2009. Out-of-the-box robust parsing
of Portuguese. Proceedings of the 9th international conference on language resources and
evaluation (lrec), 75–85.

Veiga, Arlindo, Sara Candeias & Fernando Perdigão. 2011. Generating a pronunciation
dictionary for European Portuguese using a joint-sequence model with embedded stress
assignment. Proceedings of the 8th Brazilian symposium in information and human
language technology.

Zinn, Claus. 2018. The language resource switchboard. Computational Linguistics 44 (4):
631–639.

Zinn, Claus & Emanuel Dima. 2022. The CLARIN Language Resource Switchboard: Current
state, impact, and future roadmap. In Darja Fišer & Andreas Witt (eds.), CLARIN. The
infrastructure for language resources. Berlin: De Gruyter.

