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Abstract
The representation of knowledge is a central task in Artificial Intelligence and has been an active topic of research since
the beginnings of the field. Intensive research and labor has been put into producing resources which encode knowledge
regarding different topics, structured in suitable formats so as to allow robust, automated reasoning over them.

In Natural Language Processing, deep learning models are commonly given unstructured data and seek to learn the
necessary knowledge and abstractions required to represent and understand the underlying mechanisms that govern the
target language processing tasks. A popular method to address this issue is to expand the training process to include more
tasks and data. Yet, it remains one of the challenges of deep learning.

In this respect, a promising research path is to combine the rich knowledge encoded in structured resources with deep
learning methods, enhancing them with the necessary means to more effectively learn the complexities of the target tasks.

In this paper we set out to compare a Neuro-Symbolic model with mainstream Neuro-only models when they are tasked
with solving commonsense reasoning problems, which heavily rely on appropriately represented knowledge: commonsense
reasoning is an essential part of the human experience, encompassing human values and needs, and by resorting to it, we
can organize sensible arguments and decide on effective actions.

The results obtained indicate that there is no clear advantage to either approach, with the Neuro-Symbolic model being
competitive amongst the Neuro-only models, but not superior.
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1. Introduction
Given the challenges of current deep learning approaches
to Natural Language Processing (NLP) and the availabil-
ity of rich structured knowledge sources that have been
developed and matured in the past decades, an emerging
research topic is the promising exploitation of the combi-
nation of structured knowledge bases (KBs) with neural
networks (NNs) in view of seeking to overcome the lim-
itations of each approach when taken separately. This
has led to the research on hybrid systems that include
retrieval-augmented neural models, Neuro-Symbolic sys-
tems and a range of other approaches for combining NNs
and KBs.

Commonsense reasoning provides an interesting chal-
lenge in which the capabilities of Neuro-Symbolic meth-
ods can be matched up against Neuro-only methods. The
reason for this is twofold. On the one hand, the universe
covered by commonsense knowledge is so vast that it is
currently unfeasible to provide a training dataset upon

KINN 2021: Workshop on Knowledge Injection in Neural Networks –
November, 2021
" rmbranco@fc.ul.pt (R. Branco); ambranco@fc.ul.pt (A. Branco);
jrsilva@fc.ul.pt (J. Silva); jarodrigues@fc.ul.pt (J. Rodrigues)

© 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

which to build a NN model that is able to cope with all
that vastness and arrive at the relevant generalizations.
On the other hand, though KBs are also far from complete,
they capture prominent commonsense generalizations
that can be usefully built upon by hybrid systems since
such generalizations, by virtue of being commonsense,
are often not explicitly stated in texts, making it hard for
deep learning methods to learn them from raw textual
data alone.

A recent paper [1] provides an exploratory study on
commonsense reasoning tasks, with one of the findings
suggesting that KBs may have little impact on the down-
stream task performance. A promising Neuro-Symbolic
method named COMET [2, 3] was experimented with,
which injects knowledge into the parameters of a net-
work through a text generation task.

Against this background, we devise a broader exper-
imentation setting aimed at empirically assessing, for
commonsense reasoning, how promising and effective
can be Neuro-Symbolic systems compared to Neuro-only
systems, by covering different tasks and model types.
The experimental space was defined by following these
steps:

• Selecting four prominent NLP tasks in common
sense reasoning. Most commonsense reasoning
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tasks fall under two categories: multiple choice
question answering (Q&A) or machine reading
comprehension. In this exercise, we concentrated
on Q&A commonsense reasoning tasks, cover-
ing different topics and different reasoning types,
setting a demanding environment to probe the
knowledge and ability of different language mod-
els.

• Selecting most prominent examples of non-
hybrid, Neuro-only models from the three differ-
ent families of Transformers, namely encoders-
only, encoders-decoders and decoders-only; the
models are, respectively, RoBERTa [4], T5 [5] and
GPT-2 [6].

• Running these three models over the four selected
tasks, finding the best performing one.

• Selecting a most promising hybrid system,
namely COMET, which leverages a BART [7]
model and enriches it with knowledge coming
from a given KB. The simplicity of the injecting
task and the interesting results obtained on gener-
ating commonsense knowledge makes COMET a
promising method. We also include a fifth model,
BART-Large, in the experimentation, serving as
a baseline for COMET(BART).

• Finally, running this hybrid system over the same
four tasks and comparing its performance against
the best Neuro-only found above.

In this paper, we report on this experimental exercise
and its results, and discuss the empirical evidence gath-
ered in view of the research question motivated above:
in what concerns commonsense reasoning, is there em-
pirical evidence that hybrid models stand to the promise
of having the potential of surpassing the performance of
Neuro-only systems?

The results of our experimentation reported in the
present paper do not uncover a clear winner, as in the
performance scores obtained with the two approaches,
no one stands out as having a clear advantage over the
other, which comes in line with the findings from [1].1

2. Related Work
The Transformer model [8] has become the all-embracing
and flexible approach to a wide range of NLP tasks.
Extensive research has been devoted to refine its ar-
chitecture and training methodology. It has become
commonplace to section the training regime into two
stages [9, 10, 11, 12], namely (i) pre-training, where a
language model is trained on a large corpus of raw text,

1Code is publicly available at: https://github.com/nlx-group/
Commonsense-Reasoning-Neuro-only-vs-Neuro-Symbolic-Methods.

endowing it with some capacity to suitably process nat-
ural language (or at least a good amount of linguistic
phenomena); and (ii) fine-tuning, where the model is
refined with respect to a specific language processing
task.

Ensuing works would improve the methodology, intro-
ducing different pre-training tasks that aid downstream
performance [4, 5, 7]. These efforts have allowed an
accelerating increase in the state of the art on bench-
marks such as GLUE [13] and SuperGLUE [14]. Large
pre-trained language models were shown to be compet-
itive with systems that access external knowledge, in
open-book Q&A challenges which require mostly trivia
knowledge, by accessing their internal “memory” learned
during pre-training [15]. These results raise the ques-
tion of whether pre-training alone can endow language
models with enough commonsense knowledge to tackle
commonsense reasoning tasks.

Motivated by this question, a study [16] was conducted
to assess the intrinsic knowledge and reasoning capabili-
ties of different pre-trained Transformer-based language
models, without fine-tuning. The models were applied to
different commonsense reasoning tasks, by framing them
as sentence scoring tasks. This can be achieved in the fol-
lowing manner: for a given example (e.g. a question and
several possible answers), the perplexity of the language
model when presented a particular question-answer pair
is measured, and the pair with the lowest perplexity (thus
being the one that makes the most sense) is considered
to be the response of the model. The method requires
no fine-tuning, allowing “probing” into the knowledge
contained in the model. It was found that the models
consistently performed better than random, albeit close
to it in some tasks, and that a noticeable gap remains
between the models and the human baselines.

A promising approach to aid the learning process of
commonsense reasoning tasks are Neuro-Symbolic mod-
els. This approach attempts to combines knowledge
stored in KBs with neural networks, providing a richer
prior knowledge.

Early attempts at enriching neural networks with
knowledge coming from KBs made use of Graph Embed-
ding techniques, representing concepts as vectors which
would be used to initialize the embedding layer. Tech-
niques such as Node2Vec [17], TransE [18] and WordNet
Embeddings [19, 20] can leverage the nature of graph
structures to produce embeddings for the nodes through
the strength of the relations between them. Lexical
knowledge coming from ontologies such as WordNet
can be used as a way to enrich neural networks in a
Neuro-Symbolic system [21].

More recently, with the advent of the Transformer,
methods to blend KBs within its parameters leveraged the
self-attention system. Embeddings from external KBs are
combined with the internal states from the Transformer
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block, following some fusion function [22, 23, 24]. This
usually requires the addition of a module that selects
relevant entities, fetches their embeddings and includes
them in a self-attention operation with the sequence
hidden states.

These approaches are limited in three ways: (i) ad-
ditional parameters required to be learned, making the
search space for optimum performance rather expensive;
(ii) given a trained model, accommodating additional enti-
ties, unseen during previous training, requires additional
training, which may prove costly; and (iii) the embed-
ding matrix of KB entities can quickly become a problem,
especially as some popular and extensive KBs can encode
millions of entities, being prohibitively expensive to hold
in memory.

In an interesting new wave of research on common-
sense reasoning inspired by GOFAI,2, more complex KBs
and methods are being developed to tackle the problem.
Open resources for commonsense reasoning, whether
manually built or automatically retrieved, tend to encode
taxonomic knowledge, which is a subset of the types of
commonsense knowledge. In ATOMIC [3, 25], we find an
approach that seeks to improve reasoning by going be-
yond taxonomic knowledge to encoding causal and infer-
ential knowledge. This is important for an agent/model to
reason about what might be the causes for a certain event
to happen, and given that it did, what we can infer from it.
In its most recent update, ATOMIC encodes knowledge of
social-interactions, physical-entity relations, and event-
centered relations. ATOMIC is then used as a resource
to build a dataset to fine-tune different generation mod-
els on a tail generation task, through a method named
COMET (Commonsense Transformers) [2, 3]. Tail gen-
eration task is designed to enable models to learn the
knowledge contained in a KB. The task consists in pre-
senting the model with a concept A and a relation, and
the model must generate a concept B that has such rela-
tionship with concept A.

The reasoning behind the generation task lies in the
fact that the universe of commonsense knowledge is so
vast that we cannot hope to build a resource that is com-
plete. Thus, we need our models to be able to generalize
and generate new knowledge. The results show that
without the use of the ATOMIC KB, pre-trained models
fail to generate new knowledge, hinting at the possibility
that the commonsense knowledge stored in them is very
limited. When fine-tuned on the tail generation task,
the COMET models are able to learn to generate new
knowledge, even for entities that were not previously
seen during training.

2Good Old-Fashioned AI

3. Tasks
We adopt four tasks related to commonsense reasoning,
covering different demands and domains in terms of rea-
soning, framing a challenging environment to evaluate
the capacity of models addressing them, and the effec-
tiveness of the Neuro-Symbolic COMET method. The
four tasks are (i) Argument Reasoning Comprehension,
(ii) AI2 Reasoning Challenge, (iii) Physical Interaction
Question Answering and (iv) CommonsenseQA.

3.1. Argument Reasoning
Comprehension

The Argument Reasoning Comprehension Task
(ARCT) [26] tests the argument reasoning ability of a
model, requiring not only language and logic skills but
also commonsense knowledge.

The underlying structure of an argument, whose un-
covering dates back to Aristotle and his study of argu-
mentation, is defined as a series of premises (reasons) that
support a given claim (conclusion). In another model of
argumentation, an additional fundamental part, named
warrant, is included in the structure [27]. The warrant
establishes the connection between the premises and
claims, such that the latter must logically follow from the
former (sequitur). Warrants are often implicit, under the
assumption that they are shared knowledge between the
addresser and addressee [28]. This makes identification
of warrants an exercise that requires commonsense.

This task is defined as follows: given a reason and
a claim, choose the appropriate warrant from two pos-
sible choices. One of the warrants is a distraction, not
supporting the sequitur from reason to claim.

The dataset was constructed with data from the Room
for Debate, a section in the New York Times,3 where
knowledgeable contributors participate in debates re-
garding contemporary issues. The authors selected 188
debates of controversial issues and used crowdworkers
(referred as turkers) from Amazon Mechanical Turk to
perform an 8-step pipeline to obtain the dataset instances,
resulting in 1970 instances.

Problems of spurious correlations has been detected
in the original dataset, so we will use a cleaned version
of it [29].

3.2. AI2 Reasoning Challenge
The AI2 Reasoning Challenge (ARC) [30] is a multi-choice
question answering task on the topic of natural sciences.
The dataset is comprised of questions from 3rd to 9th-
grade exams in the U.S. and other parts of the world. It
is composed of two sets of questions: the easy and the

3https://www.nytimes.com/roomfordebate

https://www.nytimes.com/roomfordebate


challenge sets. The challenge set contains questions that
cannot be trivially solved with token co-occurrence, as
opposed to those in the easy set that can. Our experimen-
tation will be carried out using the challenge set.

ARC demands models to possess knowledge in differ-
ent dimensions: definitions, facts and properties, struc-
ture, processes and causal, teleology/purpose, algebraic,
and many more; and different reasoning types: ques-
tion logic, linguistic matching, multi-hop, comparison,
algebraic, etc. The diversity in knowledge and reasoning
types required to learn ARC makes it a highly challenging
task.

3.3. Physical Interaction Question
Answering

The Physical Interaction Question Answering task
(PIQA) [31] tests the capabilities of models to answer
commonsense questions regarding the physical world.
Models are presented with a goal, mostly an everyday
situation that a human might want to accomplish, and
two possible solutions to attain the goal. Models will
need to learn, from raw text only, physical commonsense
knowledge.

For humans, acquiring physical commonsense knowl-
edge is part of the human experience. We can interact
with the world, manipulate objects and figure out how
we might use them to solve problem, in a process called
grounding [32]. Unlike humans, models as of yet cannot
interact with the world to learn these properties, which
makes it a real challenge for them to acquire physical
knowledge from raw text only.

Large scale language models struggle with this task,
with the state of the art achieving 83.5%4 accuracy, com-
pared to the human 95% score.

3.4. CommonsenseQA
CommonsenseQA (CSQA) [33] is a multi-choice question
answering dataset that requires commonsense knowl-
edge in different formats, akin to ARC. It encompasses
many different knowledge types: spatial, cause and ef-
fect, has parts, is member of, purpose, social, activity,
definition and preconditions.

It was built by resorting to ConceptNet [34], extracting
subgraphs of concepts which are used to build questions,
through crowdsourcing with Amazon Mechanical Turk.

4. Methodology
Designing a broad evaluation setting enables a richer
comparison between the Neuro-only pre-trained lan-
guage models and the Neuro-Symbolic model. For com-

4Accessed on 2021/07/31: https://yonatanbisk.com/piqa/

parison, we pick a representative from each Transformer
family of models:

Encoder-only We adopted RoBERTa [4] as an encoder-
only exemplar. RoBERTa [4] is a derivative of
BERT [12], conceptualized from a study on the
optimization of BERT models.

Decoder-only The GPT series of models have gained
notoriety in NLP, and we select the most recent
computationally affordable version, GPT-2 [6].
GPT-2 is a left-to-right language model, com-
prised of stacked Transformer decoders. It ex-
cels in text generation and boasts considerable
capabilities in Natural Language Understanding
(NLU) tasks.

Encoder-Decoder For this family of architectures, we
resorted to T5 [5]. T5 is conceptualized as a text-
to-text framework, meaning that both the input
and output are entirely textual, regardless of the
underlying tasks. This affords T5 with immense
flexibility.

To inject finer priors into a language model, in a
Neuro-Symbolic approach, we follow the COMET [2]
method, which leverages a generative task to enrich the
model with a commonsense knowledge base. In the cur-
rent paper, we use COMET(BART), which is a BART-
Large [7] model trained with a tail generation task on
ATOMIC2020 [3], the most recent version of the ATOMIC
knowledge base. In order to better assess the influence
of the knowledge base, we also include a standard BART-
Large in our evaluation.

A different fine-tuning technique is used for RoBERTa,
GPT-2, COMET(BART) and BART-Large, which was
shown as promising for Q&A based commonsense rea-
soning tasks. The fine-tuning process frames problems
into sequence ranking problems [35]. In this framing,
given that the tasks are multiple-choice, the elements of
input pairs of questions and candidate answers, (𝑞𝑖, 𝑎𝑖),
are separately given to the network, which produces a
value, named the relevancy score. The pair with the
maximum relevancy score is the answer given by the
network.

Implementations for the experimentation are based
on Huggingface [36], along with their pre-trained model
weights.

A sequential hyper-parameter search is employed for
the learning rate and batch size. First, the learning rate is
determined through the selection of the model with the
best accuracy on the development set, after fine-tuning
for 10 epochs, with learning rate values picked from the
set {1e-3, 1e-4, 1e-5, 2e-3, 2e-4, 2e-5, 3e-3, 3e-4, 3e-5}.
An appropriate batch size is subsequently searched for,
using the previously determined learning rate. The same
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Table 1
Accuracy (with standard deviation) on the selected tasks. Best result for each task in bold. Human benchmarks for CSQA
obtained from their public leaderboard,5 for ARCT from [26], and for PIQA from [31].

ARCT ARC PIQA CSQA Params

Random 0.5 0.25 0.5 0.2 -
HUMAN 0.909 N/A 0.949 0.889 -

RoBERTa-Large 0.815 ± 0.011 0.411 ± 0.022 0.789 ± 0.006 0.733 ± 0.006 355M
GPT2-Medium 0.540 ± 0.071 0.318 ± 0.009 0.706 ± 0.005 0.551 ± 0.012 345M
T5-Large 0.743 ± 0.006 0.440 ± 0.008 0.772 ± 0.005 0.713 ± 0.007 770M

BART-Large 0.655 ± 0.154 0.382 ± 0.027 0.777 ± 0.005 0.738 ± 0.005 406M
COMET(BART) 0.790 ± 0.005 0.412 ± 0.011 0.783 ± 0.008 0.718 ± 0.008 406M

strategy is followed, searching for a batch size from the
set {4, 8, 16, 32}. The hyper-parameters found for each
model are described in Appendix A.

Models are trained for up to 30 epochs, and the check-
point yielding the best accuracy on the development set
is selected for testing purposes. Due to known instability
across runs in pre-trained language models [12, 37], we
report the mean of five runs, each with different random
seeds, which are described in Appendix A.

PIQA and CSQA, two of our proposed tasks, are active
competitions, and as such their test sets are kept private
so as to prevent cheating. Thus, for these tasks, we re-
port results on the development set. In order to have a
training set and a development set available, we split the
training set into two using stratified splitting to preserve
the original distribution of classes, keeping 90% of the
data as training data and setting aside 10% of the data as
the development set.

All experiments were conducted on a single NVIDIA
Titan RTX with 24Gb VRAM.

5. Results and Discussion
Performance (in accuracy) for the commonsense reason-
ing tasks is shown in Table 5.

A gap between human performance and the perfor-
mance of the models is noticeable, albeit some tasks stand-
out as more challenging for the models than others. For
ARCT, an encouraging gap of 0.094 accuracy separates
the human upper bound from RoBERTa, which is the best
performing model for the task. CSQA and PIQA have a
more significant margin to the human upper bound, with
a gap of 0.156 and 0.151, respectively. Despite the ad-
vances provided by Transformer and the “pre-train then
fine-tune” methodology, which have pushed the state
of the art further and the boundaries of sizes of model
and training data, models are still a long way away from
human aptitude.

5https://www.tau-nlp.org/csqa-leaderboard

A juxtaposition appears concerning ARC and CSQA.
Despite both being multiple-choice problems with (up
to) five possible answers, scores on ARC are half of those
on CSQA. The commonsense knowledge types for CSQA
is more broad, covering a large array of domains, being
a more general task. ARC, on the other hand, focuses on
more complex knowledge about the physical world, as it
was conceived from science exams, and as such features
knowledge about physics and chemistry. This hints at
the possibility that ARC is a harder task to solve.

Regarding our primary research question, which is to
find empirical clues as to whether COMET effectively
boosts performance on commonsense reasoning tasks,
the answer is that it is slightly better than its baseline.
COMET(BART), outperforms its baseline BART-Large
on all but the CSQA task. However, on the ARCT task,
the standard deviation of BART-Large is so large due
to instability that, despite the differences in the mean,
it is unclear whether COMET(BART) provides any real
advantage in this task.6 As such, given that BART-Large
excels on CSQA, and on ARCT it could be that BART-
Large can perform at the level of COMET(BART), if it
were not for the instability, COMET does not provide a
sizeable difference over the baseline, but it does improve
over it.

When comparing COMET(BART) with the different
Transformer families, COMET(BART) consistently holds
the 2nd and 3rd best scores, reaching close to the best
score on PIQA. It was competitive with T5 (Encoder-
Decoder) and GPT-2 (Decoder-only), but scored below
RoBERTa (Encoder-only) in all tasks but ARC. RoBERTa,
while not having had the knowledge injection for finer
priors, still emerges as the most competent reasoner, hav-
ing the best score in ARCT and PIQA, and is a close
second best in CSQA. The worst reasoner was GPT-2,
obtaining poor results in all tasks.

Despite the ability of the Neuro-Symbolic
COMET(BART) to be competitive with most Neuro-only

6A t-test between COMET(BART) and BART-Large yielded
𝑝 > 0.05 for the ARCT, ARC and PIQA results.
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methods, no clear advantage can be given to any of
the two approaches overall, for the proposed tasks.
This finding confirms previous work [1], which has
reached the same conclusion for other tasks. One par-
ticular Neuro-only method stood out, RoBERTa, which
consistently outperformed other Neuro-only methods
and COMET(BART). RoBERTa was pre-trained on the
same corpus as BART, and as such, COMET(BART) was
exposed to the same data and more, due to its refinement
on the ATOMIC knowledge base, meaning differences in
the training data should not be a factor in the differences
between RoBERTa’s and COMET(BART)’s performance.
We conjecture that two factors, alone or in combination,
could account for the observed differences:

• The generative nature of COMET’s pre-training
task, while being ideal for generating new com-
monsense knowledge, proves to be detrimental
to classification tasks, in this instance, for com-
monsense reasoning.

• RoBERTa’s architecture, featuring only the En-
coder, could be better adapted to perform com-
monsense reasoning. Perhaps, a combination of
COMET with RoBERTa could yield better results.7

Overall, the models behaved like capable reasoners,
performing well above the random baseline, despite the
gap to human capabilities. One can pose the question of
whether this performance is consistent across different
types of reasoning in the different tasks. We have ex-
plored the question of consistency in previous work [38].
We have found evidence that models are inconsistent be-
cause they seem to be solving the tasks not with reason-
ing but with shortcuts present in the data. In one instance,
we removed the question portion of the input from the
tasks, and the models were still able to learn to select the
correct answers to questions they were not presented
with. Adversarial attacks also demonstrate that minimal
superficial changes to the input have a significant impact
on their performance. COMET(BART) was just as sus-
ceptible to shortcuts as other models. However, one can
expect that with further research into neuro-symbolism,
the enrichment procedure should endow models with
finer priors such that they should become more resistant
to this behavior.

6. Conclusion
Neuro-Symbolic methods are a promising path to in-
tegrate the rich knowledge represented in structured
knowledge bases with deep learning models, enhancing
their learning capabilities.

7Assuming an adaptation of COMET’s tail generation task to a
classification task is possible.

In this work, we establish a broad and challenging eval-
uation setting to gauge the efficiency of a Neuro-Symbolic
method, COMET, at learning and applying the knowl-
edge learned from the ATOMIC2020 knowledge base,
and how it compares to Neuro-only methods. Five mod-
els (RoBERTa, GPT-2, T5, BART and COMET(BART)),
covering the three families of Transformer models (En-
coder, Decoder and Encoder-Decoder), are tasked with
four challenging commonsense reasoning tasks (ARCT,
ARC, PIQA and CSQA).

The results show no clear advantage between Neuro-
only and Neuro-Symbolic methods. COMET(BART) is
marginally better than its BART-Large baseline, and is
competitive with most Neuro-only methods. RoBERTa
emerges as the superior reasoner, despite not having been
afforded with finer priors like COMET(BART).

These results call for future research on two different
topics: (i) The application of the COMET method to other
models in the vast Transformer family. Despite COMET
being inherently a generative method, its adaptation to
models like RoBERTa, which has shown great promise
in our results, could prove to be beneficial; and (ii) An
intensive systematic review spanning different Neuro-
Symbolic methods, each with their particular techniques,
and their application to commonsense reasoning. This
review would help uncover what type of techniques more
effectively transfer knowledge to models, and aid their
learning.

Acknowledgments
The research reported here was supported by POR-
TULAN CLARIN—Research Infrastructure for the Sci-
ence and Technology of Language https://portulanclarin.
net, funded by Lisboa 2020, Alentejo 2020 and FCT—
Fundação para a Ciência e Tecnologia under the grant
PINFRA/22117/2016.

References
[1] N. Lourie, R. Le Bras, C. Bhagavatula, Y. Choi, Uni-

corn on rainbow: A universal commonsense reason-
ing model on a new multitask benchmark, AAAI
(2021).

[2] A. Bosselut, H. Rashkin, M. Sap, C. Malaviya, A. Ce-
likyilmaz, Y. Choi, Comet: Commonsense trans-
formers for automatic knowledge graph construc-
tion, in: Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics,
2019, pp. 4762–4779.

[3] J. D. Hwang, C. Bhagavatula, R. Le Bras, J. Da,
K. Sakaguchi, A. Bosselut, Y. Choi, Comet-atomic
2020: On symbolic and neural commonsense knowl-
edge graphs, in: AAAI’21, 2021.

https://portulanclarin.net
https://portulanclarin.net


[4] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen,
O. Levy, M. Lewis, L. Zettlemoyer, V. Stoyanov,
Roberta: A robustly optimized bert pretraining ap-
proach, arXiv preprint arXiv:1907.11692 (2019).

[5] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang,
M. Matena, Y. Zhou, W. Li, P. J. Liu, Exploring the
limits of transfer learning with a unified text-to-text
transformer, Journal of Machine Learning Research
21 (2020) 1–67.

[6] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei,
I. Sutskever, Language models are unsupervised
multitask learners (2019).

[7] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mo-
hamed, O. Levy, V. Stoyanov, L. Zettlemoyer, BART:
Denoising sequence-to-sequence pre-training for
natural language generation, translation, and com-
prehension, in: Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, Association for Computational Linguistics,
Online, 2020, pp. 7871–7880.

[8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, I. Polosukhin, At-
tention is all you need, in: Advances in neural
information processing systems, 2017, pp. 5998–
6008.

[9] A. M. Dai, Q. V. Le, Semi-supervised sequence
learning, in: C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama, R. Garnett (Eds.), Advances in Neural
Information Processing Systems, volume 28, Cur-
ran Associates, Inc., 2015.

[10] J. Howard, S. Ruder, Universal language model fine-
tuning for text classification, in: Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), Asso-
ciation for Computational Linguistics, Melbourne,
Australia, 2018, pp. 328–339.

[11] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever,
Improving language understanding by generative
pre-training, 2018.

[12] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT:
Pre-training of deep bidirectional transformers for
language understanding, in: Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), Association for Computational Lin-
guistics, Minneapolis, Minnesota, 2019, pp. 4171–
4186.

[13] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy,
S. Bowman, Glue: A multi-task benchmark and
analysis platform for natural language understand-
ing, in: Proceedings of the 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, 2018, pp. 353–355.

[14] A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh,

J. Michael, F. Hill, O. Levy, S. R. Bowman, Super-
GLUE: A stickier benchmark for general-purpose
language understanding systems, arXiv preprint
1905.00537 (2019).

[15] A. Roberts, C. Raffel, N. Shazeer, How much knowl-
edge can you pack into the parameters of a language
model?, in: Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), Association for Computational Linguis-
tics, Online, 2020, pp. 5418–5426.

[16] X. Zhou, Y. Zhang, L. Cui, D. Huang, Evaluating
commonsense in pre-trained language models., in:
AAAI, 2020, pp. 9733–9740.

[17] A. Grover, J. Leskovec, node2vec: Scalable feature
learning for networks, in: Proceedings of the 22nd
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, 2016, pp. 855–864.

[18] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston,
O. Yakhnenko, Translating embeddings for model-
ing multi-relational data, in: Neural Information
Processing Systems (NIPS), 2013, pp. 1–9.

[19] R. Branco, J. Rodrigues, C. Saedi, A. Branco, Assess-
ing wordnets with WordNet embeddings, in: Pro-
ceedings of the 10th Global Wordnet Conference,
Global Wordnet Association, Wroclaw, Poland,
2019, pp. 253–259.

[20] C. Saedi, A. Branco, J. Rodrigues, J. Silva, Wordnet
embeddings, in: Proceedings of the third workshop
on representation learning for NLP, 2018, pp. 122–
131.

[21] M. Salawa, A. Branco, R. Branco, J. António Ro-
drigues, C. Saedi, Whom to learn from? graph- vs.
text-based word embeddings, in: Proceedings of
the International Conference on Recent Advances
in Natural Language Processing (RANLP 2019), IN-
COMA Ltd., Varna, Bulgaria, 2019, pp. 1041–1051.

[22] M. E. Peters, M. Neumann, R. L. Logan, R. Schwartz,
V. Joshi, S. Singh, N. A. Smith, Knowledge enhanced
contextual word representations, in: EMNLP, 2019.

[23] A. Yang, Q. Wang, J. Liu, K. Liu, Y. Lyu, H. Wu,
Q. She, S. Li, Enhancing pre-trained language rep-
resentations with rich knowledge for machine read-
ing comprehension, in: Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, Association for Computational
Linguistics, Florence, Italy, 2019, pp. 2346–2357.

[24] Z. Zhang, X. Han, Z. Liu, X. Jiang, M. Sun, Q. Liu,
Ernie: Enhanced language representation with in-
formative entities, in: Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, 2019, pp. 1441–1451.

[25] M. Sap, R. Le Bras, E. Allaway, C. Bhagavatula,
N. Lourie, H. Rashkin, B. Roof, N. A. Smith, Y. Choi,
Atomic: An atlas of machine commonsense for if-
then reasoning, in: Proceedings of the AAAI Con-



ference on Artificial Intelligence, volume 33, 2019,
pp. 3027–3035.

[26] I. Habernal, H. Wachsmuth, I. Gurevych, B. Stein,
The argument reasoning comprehension task: Iden-
tification and reconstruction of implicit warrants,
in: Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), Association for Compu-
tational Linguistics, New Orleans, Louisiana, 2018,
pp. 1930–1940.

[27] S. E. Toulmin, The Uses of Argument, Cambridge
University Press, 1958.

[28] J. B. Freeman, Argument Structure:: Representa-
tion and Theory, volume 18, Springer Science &
Business Media, 2011.

[29] T. Niven, H.-Y. Kao, Probing neural network com-
prehension of natural language arguments, in: Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, Association
for Computational Linguistics, Florence, Italy, 2019,
pp. 4658–4664.

[30] P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sab-
harwal, C. Schoenick, O. Tafjord, Think you have
solved question answering? try arc, the ai2 rea-
soning challenge, arXiv preprint arXiv:1803.05457
(2018).

[31] Y. Bisk, R. Zellers, R. LeBras, J. Gao, Y. Choi, Piqa:
Reasoning about physical commonsense in natural
language., in: AAAI, 2020, pp. 7432–7439.

[32] Y. Bisk, A. Holtzman, J. Thomason, J. Andreas,
Y. Bengio, J. Chai, M. Lapata, A. Lazaridou, J. May,
A. Nisnevich, N. Pinto, J. Turian, Experience
grounds language, in: Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), Association for Com-
putational Linguistics, Online, 2020, pp. 8718–8735.

[33] A. Talmor, J. Herzig, N. Lourie, J. Berant, Common-
senseQA: A question answering challenge targeting
commonsense knowledge, in: Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), Association for Computational Lin-
guistics, Minneapolis, Minnesota, 2019, pp. 4149–
4158.

[34] H. Liu, P. Singh, Conceptnet—a practical common-
sense reasoning tool-kit, BT technology journal 22
(2004) 211–226.

[35] X. Liu, P. He, W. Chen, J. Gao, Multi-task deep
neural networks for natural language understand-
ing, in: Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics,
2019, pp. 4487–4496.

[36] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. De-

langue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Fun-
towicz, J. Davison, S. Shleifer, P. von Platen, C. Ma,
Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger,
M. Drame, Q. Lhoest, A. M. Rush, Transformers:
State-of-the-art natural language processing, in:
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, Association for Computational
Linguistics, Online, 2020, pp. 38–45.

[37] M. Mosbach, M. Andriushchenko, D. Klakow, On
the stability of fine-tuning {bert}: Misconceptions,
explanations, and strong baselines, in: International
Conference on Learning Representations, 2021.

[38] R. Branco, A. Branco, J. Silva, J. Rodrigues, Short-
cutted commonsense: Data spuriousness in deep
learning of commonsense reasoning, in: Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing (EMNLP), Associa-
tion for Computational Linguistics, 2021.

A. Training Hyper-Parameters
The random seeds used for evaluation purposes were the
following: 42, 1128, 1143, 1385 and 1415.

The table below describes the hyper-parameters (Batch
Size, Learning Rate, Epochs) used in the experiments.

Task Model Hyper-parameters

ARCT

RoBERTa-Large 16, 1e-5, 25
GPT2-Medium 8, 2e-3, 18

T5 8, 2e-5, 17
BART-Large 16, 2e-4, 12

COMET(BART) 8, 1e-4, 25

ARC

RoBERTa-Large 8, 1e-4, 16
GPT2-Medium 4, 1e-3, 26

T5 8, 2e-5, 12
BART-Large 8, 1e-4, 27

COMET(BART) 8, 3e-5, 22

PIQA

RoBERTa-Large 16, 3e-3, 28
GPT2-Medium 8, 1e-3, 22

T5 8, 1e-5, 9
BART-Large 4, 1e-3, 19

COMET(BART) 32, 3e-4, 16

CSQA

RoBERTa-Large 8, 3e-4, 13
GPT2-Medium 8, 1e-3, 14

T5 8, 2e-5, 5
BART-Large 8, 3e-4, 18

COMET(BART) 8, 1e-4, 14
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