DELIVERABLED3.4

DELIVERABLE 3.4: REPORT ON THE WEBSERVICES FOR APPLICATIONS

ATLeap

Machine translation is a computational procedure that seeks to provide the translation of utterances from
one language into another language.

Research and development around this grand challenge is bringing this technology to a level of maturity
that already supports useful practical solutions. It permits to get at least the gist of the utterances being
translated, and even to get pretty good results for some language pairs in some focused discourse
domains, helping to reduce costs and to improve productivity in international businesses.

There is nevertheless still a way to go for this technology to attain a level of maturity that permits the
delivery of quality translation across the board.

The goal of the QTLeap project is to research on and deliver an articulated methodology for machine
translation that explores deep language engineering approaches in view of breaking the way to
translations of higher quality.

The deeper the processing of utterances the less language-specific differences remain between the
representation of the meaning of a given utterance and the meaning representation of its translation.
Further chances of success can thus be explored by machine translation systems that are based on
deeper semantic engineering approaches.

Deep language processing has its stepping-stone in linguistically principled methods and generalizations.
It has been evolving towards supporting realistic applications, namely by embedding more data based
solutions, and by exploring new types of datasets recently developed, such as parallel DeepBanks.

This progress is further supported by recent advances in terms of lexical processing. These advances
have been made possible by enhanced techniques for referential and conceptual ambiguity resolution,
and supported also by new types of datasets recently developed as linked open data.

The project QTLeap explores novel ways for attaining machine translation of higher quality that are

opened by a new generation of increasingly sophisticated semantic datasets and by recent advances in
deep language processing.

www.qtleap.eu

OTLeap PROJECT FP7 #610516

P2

DELIVERABLE 3.4: REPORT ON THE WEBSERVICES FOR APPLICATIONS
P3

Funded by
QTLeap is funded by the 7th Framework Programme of the European Commission.

Supported by

And supported by the participating institutions:

Faculty of Sciences, University of Lisbon

) =21
German Research Centre for Artificial Intelligence

Charles University in Prague

& Bulgarian Academy of Sciences

Humboldt University of Berlin

1 UM
R B

University of Basque Country

University of Groningen

Higher Functions, Lda

OTLeap PROJECT FP7 #610516

Revision History

version

0

Review

1.1
Review

date
04.07.2014

22.07.2014

24.07.2014

25.07.2014
28.07.2014

28.07.2014

DELIVERABLE 3.4: REPORT ON THE WEBSERVICES FOR APPLICATIONS

person

Aljoscha Burchardt (WP
coordinator), Eleftherios
Avramidis (contributor),
Martin Popel (reviewer)

Eleftherios Avramidis,
Aljoscha Burchardt,
Ondrej Dusek
(contributor), Antonio
Branco (contributor)
Martin Popel (reviewer)

Aljoscha Burchardt
Antdnio Branco (Project
coordinator)

Aljoscha Burchardt

organisation

DFKI (WP
Coordinator)

FCUL, DFKI,
CUNI, UG, HF
DFKI, CUNI,
FCUL

CUNI (Internal
reviewer)
DFKI

FCUL

DFKI

description

Agree on internal
structure;

Call for Input to
all partners
Discussion of
content, partners
providing input
Stable draft for
internal review

Improvements
suggested by
internal review

Prefinal version
Feedback

Final layout

Statement of originality

has been made through appropriate citation, quotation or both.

This deliverable contains original unpublished work except where clearly indicated
otherwise. Acknowledgement of previously published material and of the work of others

OTLeap PROJECT FP7 #610516

P4

DELIVERABLE 3.4: REPORT ON THE WEBSERVICES FOR APPLICATIONS

REPORT ON THE WEBSERVICES
FOR APPLICATIONS

DOCUMENT QTLEAP-2014-D3.4
ECFP7 PROJECT #610516

DELIVERABLE D3.4

completion

FINAL

status

SUBMITTED
dissemination level

PUBLIC

responsible

ALJOSCHA BURCHARDT (WP3 COORDINATOR)
reviewer

MARTIN POPEL

contributing partners

FCUL, DFKI, CUNI, lICT-BAS, UPV/EHU, UG, HF

authors

ELEFTHERIOS AVRAMIDIS, ALJOSCHA BURCHARDT, ONDREJ DUSEK, ANTONIO BRANCO

© all rights reserved by FCUL on behalf of QTLeap

OTLeap PROJECT FP7 #610516

DELIVERABLE 3.4: REPORT ON THE WEBSERVICES FOR APPLICATIONS

Table of Contents

TINEEOAUCTION. ...ttt ettt ettt et e et e s a b e e st e e sateesaeeenneeenneeas 7
2Technical DESCIIPHION.uiiiiieiieriieeiie ettt ettt ettt ettt e et eeebeenteeebaesabeenseeenseenens 8
2.1 ATCRILECIUTE. ... vieeeiieeeiiee ettt et e et e et e e et e e e e steeeentaeeenseeeesaeeenssaeeansseeennnes 8
2.2 CommuniCation INEETTACE.eeeiuiiiriiieiiieieee ettt et et 8
2.3 AdVANCed fRALUIES.cceieiiieiieiiie ettt ettt e te e et e et eebaesnbeesaseennnees 9
3Status of IMPIEMENTATION.cccuviieiiieeeiiieeciee ettt e e etee et e e et e e e sbeeeeraeeesaeeessseaennns 10
3.1 SEIVET tOPOLOZY..ccuvvieuiieiieeitieiie ettt ettt e e te et e e rteeseaeebeesabeebeessbeenseessneenseennseenseenes 10
3.3 FUIther Planning..........ccccuvieeiiieeiiie ettt e ee e aae e et eeenseeeesaeaeenns 11
4Appendix: MT Monkey API DeSCription.........ccueeeuieeriieeiiieiiieieeiie e eee e 12
4. 1MTMOnkey PUDIIC APL........ooiiiiiieee ettt e e 12
AT TREQUESES. ..ttt ettt ettt ettt et e e sttt e st e e et e e e bt e e e bbe e st e e e eabeeenaree s 12
O T R 1 o 1 1 0 1] 1) OO SRSUPRRRRPUPRRPR 12
A4.1.1.2GET MEhOQ......cuieiieiieieee ettt ettt et enae e s e 12
4.1.1.3POST MEthOd....c.eiiiiiiiiiieiieeeee et st 12
AL 1. 2RESPONSE. c.cnieeeeeeiitte ettt e ettt e e ettt e e e ettt e e e s bea e e e e eabaaeeeeansbaeeeeenbeaeeeenntaaeeeeannes 13
4. 1.2, 1PaAraMELETS. ..ottt ettt ettt st st e et e et eennaeeea 13
SErVICE EITOr COAES. ... uiiiuiiiiiieiieciiieciie ettt ettt ettt et e st eeteesaaeensaeenseenes 14
| 0 0l 2 () TSR 14
4.1.3AdVANCE FRATULES.ccvvieiieeiieeiie ettt ettt ettt e e esbeessbeeesbeeenbee e 14
4.1.3.1Alignment INFOTrMAtION.ccuviiiiiiiieeeiiieeiee ettt e et e e e sereeesaaeeeesaaeeenes 14
4.1.3.2Multiple translation OPtIONS.eevuieriieriieriie ettt ete ettt eeaee e e ens 16
4.1.4Testing from the command line / browser Window...........cccceveeeviieeeiieeenciieeeeieeene 16
4.2MTMonkey internal APL.........ccoiiiii e 16

OTLeap PROJECT FP7 #610516

P6

DELIVERABLE 3.4: REPORT ON THE WEBSERVICES FOR APPLICATIONS

1 Introduction

In order to support the integration of the MT Pilots generated in WP2 in the real usage
scenario (WP3), they will be made available as web services. The web services will
provide the essential translation functionalities while encapsulating the details of the
whole development process, except for the necessary parameters required by the
application.

On the service-provider end, it should nevertheless be possible to deploy attested
translation pipelines and up-to-date processing components with minimal interruption of
the web services’ availability, so that it is possible to gather feedback on the
performance of the application in an agile way (cf. Google’s hybrid approach to
research).

In accordance with the concept of a web service, each project partner provides their
developed MT system(s) wrapped in a web-service in their own server, whereas the
client requests will be centralized at DFKI, the work-package co-ordinator.

After discussing several options like Python server' and Faust server® via email and
personal communication, the consortium decided to use the API provided by MT-Monkey?,
an open-source Python tool, developed by Ondi'ej DuSek and others at CUNI. The main
reasons for choosing MTMonkey were:

* Distributed computing: MTMonkey allows multiple MT instances for the same
translation direction and/or serve requests for multiple translation directions.
This is essential to support load balancing and modular connection of translation
services specialized in different language directions.

* Speed: MTMonkey has its own implementations of sentence segmentation and
(de-)tokenization. They are all written in Python so they are faster than external
calls to, e.g, Perl scripts. Yet, they need some slight modifications to be fully
compatible with, e.g,language-specific tokenizers and truecasers used in the
Moses baselines.

* Support: The fact that the main developers are part of the consortium and that
MTMonkey successfully works with CUNI's TectoMT system will be an
advantage to the project.

* Interoperability: in addition to the decoder wrappers provided by MTMonkey,
some translation systems may provide heavily modified pre- and post-processing
pipelines. To allow optimal communication with such systems, they may be
wrapped in external wrappers that provide an interface compatible with
MTMonkey, so that communication with the rest of the application framework
is fully functional. This ensures further flexibility for the upcoming pilots of the
project.

Additionally, by using this tool we take full advantage of previous EU-funded work, as

1 https://github.com/christianbuck/matecat util/tree/master/python_server
2 http://faust.ms.mff.cuni.cz/translate
3 http://ufal.mff.cuni.cz/mtmonkey

OTLeap PROJECT FP7 #610516

P7

DELIVERABLE 3.4: REPORT ON THE WEBSERVICES FOR APPLICATIONS

this software was part of the multilingual multimodal search and access system of the
FP7 Khresmoi project. Through its application in QTleap, this open-source software can
be verified and extended for use in a wide range of MT use cases.

This document first provides a technical documentation of MTMonkey and then details the
next steps towards a full implementation of the web services.

2 Technical Description

2.1 Architecture

As already outlined, the main goal of our web-service framework is to provide a
distributed architecture for the allocation of the individual MT services. This allows the
development and maintenance of autonomous MT systems, which are nevertheless co-
ordinated and fully compatible on the application level. Such a design mainly provides
freedom to the project partners, which are therefore allowed to employ their individual
expertise on language-specific tools and techniques in order to provide optimal MT
performance to the language directions they are responsible for.

The overall system design is based on a hierarchical client-server architecture, as
illustrated in Figure 1. The operation is centralized via the Application Server, a module
that is responsible for receiving client requests and forwarding them to a set of workers.
Each Worker is an individual service responsible for handling the tasks required for a
particular translation direction. Several language-specific pre- and post-processing
modules may be included in the inherent functions of the worker. Alternatively, pre-
and post-processing functions, including the translation task, may be outsourced to other
individual modules (see Translator, Recaser).

Apart from MT services, a similar worker module can be used for other language
processing/analysis tasks, that may be equally demanding (e.g. parsers, named entity
recognizers, multi-word expressions extractors).

This way, the server architecture allows to expand in order to support a vast amount of
translation directions, by taking advantage of load balancing over multiple
computational servers. The requests to various servers are parallelized and therefore
congestions are avoided.

Worker Sentence
(en—cs) Splitter (en)

Tokenizer

JSON Application with lowercasing
e

Server

Worker

Client (en—de)

Translator
(en—de)

Worker
(en—fr)

Recaser
(de)

Detokenizer
(de)

Figure 1: Overall architecture (source: MTMonkey docﬁinentation)

OTLeap PROJECT FP7 #610516

P8

DELIVERABLE 3.4: REPORT ON THE WEBSERVICES FOR APPLICATIONS

2.2 Communication interface

The Application server provides a public JSON interface, which can be used by other
applications to send translation requests. The translation requests have to specify the
source language, the target language and the text that needs to be translated.
Additionally, they can request the text not to be de-tokenize the translation output (e.g.,
if the output is used for information retrieval directly). This basic request is very simple
and an example is shown in Figure 2.

{
"action": "translate",
"sourcelLang": "en",
"targetLang": "de",
"text": "You have to update the video codecs."

}
Figure 2: Simple JSON request to the Application Server

Internally, the Application Server receives and forwards the text to be translated to the
worker responsible for the respective source and target language. These requests take
place via XML-RPC (or JSON, see Section 3.3). In a second level, the worker itself
sends XML-RPC request to loaded Moses servers which run in the background. The
running worker instances are limited by the RAM and hard drive space.

All communication takes place encoded in UTF-8 in order to fully support the special
characters of all languages.

2.3 Advanced features

Apart from the basic features, which are included in the basic implementation, there are
also advanced features, which may be valuable for the advanced MT pilots that will be
further developed. Currently, the interface supports alignment information between
the source and the target phrases.

Additionally, the current API can accept multiple sentences in one request. The MT
systemin this case does sentence segmentation, so MTMonkey returns multiple
sentences as a response. It is guaranteed that the whole request will be translated on the
same machine, so the MT system has access to all sentences (and can do e.g. cross-
sentence co-reference resolution).

Statistical MT systems often produce more than one translation options, often called n-
best lists. Such lists can also be requested within the communication interface. An
example response from such a translation request is shown in Figure 3.

OTLeap PROJECT FP7 #610516

P9

DELIVERABLE 3.4: REPORT ON THE WEBSERVICES FOR APPLICATIONS

P10
{
"errorCode": 0,
"errorMessage": "OK"
"translation™: [
{
"translated": [
{
"text": "Bitte aktualisieren Sie die Video-Codecs.",
"score": 100,
"rank": 0
2
{
"text": "Sie missen die Video Codecs erneuern.",
"score": 96,
"rank": 1
}
I
}
],
"translationld": "794dab3aaa784419b9081710c5cddb54"
}

Figure 3: Example translation response providing multiple translations

3 Status of implementation

3.1 Server topology

The application server has been set up at blade-3.dfki.uni-sb.de:900. Table 1 includes the
URL addresses of the servers that host the translation web-services.

Languages URL address
Basque-English basajaun.si.ehu.es:3331
English-Basque basajaun.si.ehu.es:3332
Spanish-English basajaun.si.ehu.es:3329
English-Spanish basajaun.si.ehu.es:3330
Bulgarian-English 213.191.204.69:8002
English-Bulgarian 213.191.204.69:8001
Czech-English faust.ms.mff.cuni.cz:8002
English-Czech faust.ms.mff.cuni.cz:8001
Dutch-English zardoz.service.rug.nl:9070
German-English blade-3.dfki.uni-sb.de:8001
English-German blade-2.dfki.uni-sb.de:8001
Portuguese-English nlx-server.di.fc.ul.pt:7002
English-Portuguese nlx-server.di.fc.ul.pt:7001

Table 1: Addresses of the translation servers

OTLeap PROJECT FP7 #610516

DELIVERABLE 3.4: REPORT ON THE WEBSERVICES FOR APPLICATIONS

3.2 Improvements in MTMonkey API and implementation for QTLeap

The project partners agreed to implement several improvements of the MTMonkey API
as well as of its implementation in order to increase interoperability between the
partners, simplify testing and diagnostics, and allow alternative worker
implementations, e.g., involving preexisting custom pre- and postprocessing written in
various programming languages. The API improvements include:

* Per-sentence error messages: If the MT server fails to translate some of the

sentences in the request, the untranslated sentences are accompanied by
explanatory error messages, whereas the original version rejected the whole
request.

* Timing information: The API now includes information about the time it took to
translate the request and the time the request waited to be translated.

* More logical response structure: Unlike the original version, which responded
with a list of variants for the whole translation, the new MTMonkey response
structure is now composed of per-sentence n-best lists. This reflect more closely
the fact that the translation variants of the same sentence are interchangeable.

In addition to implementing the API changes, the MTMonkey code now has the
following enhanced capabilities:

* JSON worker support: Workers may now communicate with the application
server in JSON, in addition to XML-RPC; the request and response structure
then look the same as between clients and the application server. This allows for
simpler development and testing of alternative worker implementations.

* Optional recasers: The original MTMonkey worker version expected to operate
with two Moses XMLRPC server instances - one for translation, the other for
recasing. Since some MT systems are trained to do both operations jointly, we
have made the recasing service optional.

Finally, the API description and installation instructions have been simplified and
clarified.

3.3 Further planning

This document has to be seen as a preliminary plan due to the fact that research for the
further MT pilots is in progress. Development of pilots is expected to add requirements, so
that further interfaces and wrappers may need to be developed at a later stage. Such
modifications, if relevant, are expected to be indicated in the forthcoming reports on the
four MT Pilots, namely deliverables D3.6 (for baseline Pilot 0), D3.8 (for Pilot 1), D3.10
(Pilot 2), D3.12 (Pilot 3) and final D3.13.

As all baseline services are up and running, their integration into the QA system can start
even earlier as foreseen. They will be embedded by M11 (D3.5), and the results of the
embedding and first evaluation will be reported in M12 in D3.6. The final status of the
web-services will be reported in D3.13 (M36) as planned.

OTLeap PROJECT FP7 #610516

P

DELIVERABLE 3.4: REPORT ON THE WEBSERVICES FOR APPLICATIONS

4 Appendix: MT Monkey API Description

(from https://github.com/ufal/mtmonkey/blob/master/APl.md)

4.1 MTMonkey Public API

This API is used from clients to communicate with an MTMonkey application
server. See below for the internal API used between the application server and the
individual workers.

4.1.1 Requests

The MTMonkey service server accepts requests via POST and GET HTTP method
with the following parameters.

4.1.1.1 Parameters

[action: string, function name -- the only option is translate, other may be
used for testing purposes (required)
[sourceLang: string -- ISO 639-1 code of the source language (cs, en, de, fr)

(required)

[targetLang: string -- ISO 639-1 code of the target language (cs, en, de, fr)
(required)

[alignmentinfo: boolean -- request alignment information (optional, default =
"false")

[text: string -- text to be translated in UTF-8 character encoding (required)

[nBestSize: integer -- maximum number of distinct translation variants to
return (optional, default = 1, i.e. one best translation is provided, the
maximum value is set to 10).

[detokenize: boolean -- indicates whether the translation result should be
detokenized according to the rules for the target language (optional, default
= "true")

4.1.1.2 GET Method

Maximum length of GET queries depends on the current web server and client
HTTP library. But it is not recommended to translate sentences longer than 2000
characters via this method. Based on RFC 2616, the server returns 414 (Request-

URI Too Long) status if a URL is longer than 10,000 bytes. An example of a HTTP
GET query is following:

htt p: / / URL/ PATH?sour ceLang=ené&t ar get Lang=f r & ext =TEXT

4.1.1.3 POST Method

The requests via the POST method conform to the JSON format. An example of a

OTLeap PROJECT FP7 #610516

P12

DELIVERABLE 3.4: REPORT ON THE WEBSERVICES FOR APPLICATIONS

request in JSON format is given below:

{
"action": "translate",
"sourceLang": "en",
"targetLang": "de",
"text": "I got a flu."
}

4.1.2 Response

MTMonkey response conforms also the JSON format via HTTP. If the service is
available, the return HTTP code is always 200 OK - even if the server is not able to
translate a given input (in that case there is a special error message sent in the
response, see below). HTTP error codes other then 200 OK retain their usual
meaning (e.g. 500 Internal Error).

4.1.2.1 Parameters

The response structure includes:

[errorCode (number): error code (see below), returned always

[errorMessage (string): a description of the error, returned always

[translation (list of structures): contains the translated data as a list of
sentences, each of which contains the following:

o translated (list of structures): list of translations of one sentence (of
length 1 by default, or longer if n-best lists were requested)

= text (string): translated text in UTF-8 character encoding
= score (number): translation score, expressing quality of
translation, meaningful only for comparison of multiple
translations of the same sentence
= rank (integer): rank of the translation option (ranked
according to the scoring, counting from O0; this may be
omitted as the rank is given by the order in the translated list)
* Further items if alignment information or multiple translation
options are requested (see below).
o src-tokenized (string): tokenization of the source sentence (for the
translation of multiple sentences and/or alignment information)

o src (string): source sentence in its original form (optional)

o errorMessage (string): if the translation of the particular sentence
fails, this may contain a detailed error description (optional)

o errorCode (number):: if the translation of the particular sentence
fails, this may contain a detailed error code (optional)

[translationld: string, globally unique ID of the transaction (may be omitted)

[timeWork: string (float + units), the amount of time the worker took to
translate the request (optional)

[timeWait: string (float + units), the amount of the translation has waited to

OTLeap PROJECT FP7 #610516

P13

DELIVERABLE 3.4: REPORT ON THE WEBSERVICES FOR APPLICATIONS

be processed (optional)

An example response with one translation:

{

"errorCode": 0,

"errorMessage": "K'

"translation": [
"translated": [

"text": "Es

ist in Odnung, aber ich nuss die Pille.",

"score": 100,

"rank": O

1
}

t ransl ationld": "794dab3aaa784419b9081710c5cddb54"

An example response when translation finished with error:

{

"errorCode": 1,

"errorMessage": "Systemis tenporarily down"
}

Service Error Codes
Error Description Meanin
Code P 9
0 OK When everything went well and the query has been

translated.
1 System is temporarily down Particular required workers are currently off. Try again later.
Everything is running but system is currently overloaded.
2 System busy Try again later.
3 Invalid language pair Unknown language pair.
Parse error, missing or invalid — .
5 argument ... Any parse error or missing attribute.
8 Unexpected worker error Worker experienced an unknown error during the
P translation. Try again later.
99 Some sentences could not be|The MT system was not able to translate some of the input
translated sentences.
HTTP Errors

You can also obtain HTTP errors other than 200 OK. They retain their original

meaning.

OTLeap PROJECT FP7 #610516

P14

DELIVERABLE 3.4: REPORT ON THE WEBSERVICES FOR APPLICATIONS

P15
4.1.3 Advanced features

4.1.3.1 Alignment information

In the response (JSON document), the application server can also provide phrase
alignment information (see the alignmentinfo parameter). Phrase alignment is a
matching between phrases (consecutive words) from the source sentence to
phrases in the target (translated) sentence. In other words, each part of a
particular alighment information matches a sequence of consecutive words from
the source sentence with a sequence of consecutive words from the target
sentence. The word sequences are identified by start and end indices, indexing
starts with a zero.

As for tokenization, you obtain the following attributes:

[src-tokenized: string, space separated sequence of input tokens (one per
sentence)

[tokenized: string, space separated sequence of output tokens (one per n-
best list variant)

[alignment-raw: phrase alignment information (one per n-best list variant)

{

"errorCode": 0,

"“errorMessage": "K'

"translation": [

"transl ated": [
"text": "Es ist in Ordnung, aber ich nuss die Pille."
"tokeni zed": "Es ist in Odnung , aber ich nuss die

Pille .",

"alignnment-raw': [

"src-start": O,
"tgt-start": O,
"src-end": 1,
"tgt-end": 1

"src-start": 2,
"tgt-start": 2,
"src-end": 4,
"tgt-end": 5

"src-start": 5,
"tgt-start": 6,
"src-end": 6,
"tgt-end": 7

"src-start": 7,
"tgt-start": 8,
"src-end": 7,
"tgt-end": 8

"src-start": 8,
"tgt-start": 9,
"src-end": 8,
"tgt-end": 9

"src-start": 9,

OTLeap PROJECT FP7 #610516

DELIVERABLE 3.4: REPORT ON THE WEBSERVICES FOR APPLICATIONS

"tgt-start": 10,
"src-end": 9,
"tgt-end": 10
]
] }
"src-tokeni zed": "it 's ok , but i need that pill .",
| }
ransl ationld": "794dab3aaa784419b9081710c5cddb54"

The meaning of indices is as follows:

[src-start: the start of an interval of tokenized words of the source sentence
(we are indexing from 0)

[src-end: the end of an interval of tokenized words (inclusive)

[tgt-start: the start of an interval of tokenized words of the translated
sentence (we are indexing from 0)

[tgt-end: the end of an interval of tokenized words (inclusive)

The indexes refer to tokenized text in src-tokenized and tgt-tokenized.

4.1.3.2 Multiple translation options

If the nBestSize value in the request is set to 2 or more, the service provides the
specified number of the best translation options. Each of them is provided with a
score.

An example of a response with two translation options.

{
"errorCode": O,
"errorMessage": "K'
"translation": [
"translated": [
"text": "Es ist in Ordnung, aber ich nuss die
Pille. ",
"score": 100,
"rank": 0
%,
"text": "Es ist OK, aber ich brauche diese Pille.",
"score": 96,
"rank": 1
}
1,
] }
"translationld": "794dab3aaa784419b9081710c5cddb54"
}

4.1.4 Testing from the command line / browser window

MTMonkey can be easily tested using the standard tool curl [5] as in the example
below:

curl - -H " Cont ent - Type: application/json" - X PCST -d
'‘{ "action":"translate", "sourceLang":"en", "targetlLang":"de", "text": "It

OTLeap PROJECT FP7 #610516

P16

DELIVERABLE 3.4: REPORT ON THE WEBSERVICES FOR APPLICATIONS

works." }' http://URL/ PATH

This command sends a well-formed JSON request via HTTP POST method and
displays the response.

The GET method can be tested directly from the browser by providing the
following URL format:

http://URL/ PATH?act i on=t r ansl at e&sour ceLang=ené&t ar get Lang=de&t ext =I t +wor ks.

4.2 MTMonkey internal API

The internal API is used in the communication between an MTMonkey application
server and the individual workers. Two methods of communication are supported
on the application server side: XML-RPC and JSON. The worker implementation
included in this package communicates via XML-RPC, whereas JSON support has
been added to simplify alternative worker implementations.

An XML-RPC worker should support the following main method:

[process_task (dictionary) - this is used to request a translation, and should
return the translated text. The internal format of both the request and the
response is exactly the same as in the public APL

Alternatively, a JSON worker should accept the same requests and produce the
same responses as described in the public API. The communication channel (XML-
RPC or JSON) must be given to the application server in the configuration file (see
confi g- exanpl e/ appser ver. cf g for details).

In addition, XML-RPC workers may support the following method for testing
purposes:

[alive_check (no parameters) - this returns 1 if the worker is currently
running.

OTLeap PROJECT FP7 #610516

P17

	1 Introduction
	2 Technical Description
	2.1 Architecture
	2.2 Communication interface
	2.3 Advanced features

	3 Status of implementation
	3.1 Server topology
	3.3 Further planning

	4 Appendix: MT Monkey API Description
	4.1 MTMonkey Public API
	4.1.1 Requests
	4.1.1.1 Parameters
	4.1.1.2 GET Method
	4.1.1.3 POST Method

	4.1.2 Response
	4.1.2.1 Parameters
	Service Error Codes
	HTTP Errors

	4.1.3 Advanced features
	4.1.3.1 Alignment information
	4.1.3.2 Multiple translation options

	4.1.4 Testing from the command line / browser window

	4.2 MTMonkey internal API

