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Abstract. Deep linguistic grammars provide complex grammatical represen-
tations of sentences, capturing, for instance, long-distance dependencies and
returning semantic representations, making them suitable for advanced natural
language processing. However, they lack robustness in that they do not grace-
fully handle words missing from the lexicon of the grammar. Several approaches
have been taken to handle this problem, one of which consists in pre-annotating
the input to the grammar with shallow processing machine-learning tools. This is
usually done to speed-up parsing (supertagging) but it can also be used as a way
of handling unknown words in the input. These pre-processing tools, however,
must be able to cope with the vast tagset required by a deep grammar. We in-
vestigate the training and evaluation of several supertaggers for a deep linguistic
processing grammar and report on it in this paper.
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1 Introduction

Parsing is one of the fundamental tasks in Natural Language Processing and a critical
for many applications. Many of the most commonly used parsers rely on probabilistic
approaches and are obtained by inferring a language model over a dataset of annotated
sentences. Though these parsers always produce some analysis of their input sentences,
they do not go into deep linguistic analysis.

Deep grammars seek to make explicit highly detailed linguistic phenomena and pro-
duce complex grammatical representations for their input sentences. In particular, they
are able to capture long-distance dependencies and produce the semantic representation
of a sentence. Although there is a great variety of parsing algorithms (see [1] for an
overview), they all require a lexical look-up initialization step that, for each word in
the input, returns all its possible syntactic categories. From this it follows that if any
of the words in a sentence is not present in the lexicon—an out-of-vocabulary (OOV)
word—a full parse of that sentence is impossible to obtain. Given that novelty is one of
the defining characteristics of natural languages, unknown words will eventually occur.
Hence, being able to handle OOV words is of paramount importance if one wishes to use
a parser to analyze unrestricted texts with an acceptable coverage. Another important
issue is that of words that may bear more than one syntactic category. The combina-
torial explosion of lexical and syntactic ambiguity may also hinder parsing due to the
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increased requirements in terms of parsing time and memory usage. Thus, even if there
are no OOV words in the input, assigning syntactic categories to words prior to parsing
may be desirable for efficiency reasons.

For shallower approaches, like constituency parsing, it suffices determining the part-
of-speech (POS), so pre-processing the input with a POS tagger is a common and
effective way to tackle either of these problems. However, the information contained
in the lexicon of a deep grammar is much more fine-grained, including, in particular,
the subcategorization frame of the word, which further constraints what can be taken as
a well-formed sentence by imposing several restrictions on co-occurring words. Thus,
what for a plain POS tagger corresponds to a single tag is often expanded into hundreds
of different distinctions, and hence tags, when at the level of detail required by a deep
grammar. For instance, the particular grammar we use for the study reported here has
a lexicon with roughly 160 types of verb and 200 types of common noun[] While the
grammar may proceed with the analysis knowing only the POS category of a word, it
does so at the cost of vastly increased ambiguity which may even lead the grammar
to accept ungrammatical sentences as valid. This has lead to research that specifically
targets annotation with a tagset suitable for deep grammars.

In this paper we investigate several machine-learning approaches to supertagging and
compare them with state-of-the-art results. In particular, we experiment with a support
vector machine algorithm, a novel approach to supertagging.

2 Related Work

The two main approaches to assigning lexical types for a deep grammar can be divided
in terms of how they resolve lexical ambiguity. In lexical acquisition are approaches
that try to discover all the types a given unknown word may occur with, effectively
creating a new lexical entry. However, at run-time, it is still up to the grammar using the
newly acquired entry to choose which of its possible types is the correct one for each
particular occurrence of that word. In supertagging are approaches that assign, typically
on-the-fly at run-time, a single lexical type to a particular occurrence of a word. Their
rationale is not to acquire a new entry to record in the lexicon, but to allow the grammar
to keep parsing despite the occurrence of OOV words, or to ease parsing by reducing
ambiguity. The approach reported in this paper falls under the umbrella of supertagging.

2.1 Supertagging

POS tagging relies on a small window of context to achieve a limited form of syntactic
disambiguation [2]. As such, it is commonly used prior to parsing as a way of reducing
ambiguity by restricting words to a certain category, leading to a greatly reduced search
space, faster parsing and less demanding memory requirements. Supertagging can be
seen as an extension of this idea to a richer tagset, in particular to one that includes
information on subcategorization frames.

! For instance, in the deep grammar we are using for the study reported here, the lexical
type noun-common-2comps_de-com is assigned to common nouns that have two
complements, the first introduced by “de” and the second by “com”.
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In [3]], a supertagger using a trigram model was applied to a Lexicalized Tree
Adjoining Grammar (LTAG), where each lexical item is associated with one or more
trees that localize information on dependencies, even long-range ones, by requiring that
all and only the dependents be present in the structure [4]. Training data was obtained
by taking sentences from the Wall Street Journal and parsing them with XTAG, a wide-
coverage LTAG. In addition, in order to reduce data-sparseness, POS tags were used
in training instead of words. Evaluation was performed over 100 held-out sentences
from the Wall Street Journal. For a tagset of 365 items, this supertagger achieved 68%
accuracy. In a later experiment, this is improved to 92% by smoothing model parameters
and additional data [5]. The supertagger can also assign the n-best tags, which increases
the chances of it assigning the correct supertag at the cost of leaving more unresolved
ambiguity. With 3-best tagging, it achieved 97% accuracy.

In [6J7U8]], a supertagger is used with a Combinatory Categorial Grammar (CCG),
which uses a set of logical combinators to manipulate linguistic constructions. For our
purposes here, it matters only that lexical items receive complex tags that describe the
constituents they require to create a well-formed construction. The set of 409 categories
to be assigned was selected by taking those that occur at least 10 times in sections 02—
21 of a CCG automatic annotation of Penn Treebank. Evaluation was performed over
section 00, and achieved 92% accuracy. As with [3]], assigning multiple tags increases
accuracy. However, instead of using a fixed n-best number of tags—which might be to
low, or too high, depending on case at hand—the CCG supertagger assigns all tags with
a likelihood within a factor g of the best tag. A value for 8 as small as 0.1 is enough to
boost accuracy up to 97% with an average of only 1.4 tags per word.

2.2 Supertagging for HPSG

[9] present an supertagger for the Alpino Dutch grammar based on hidden Markov
models. An interesting feature of their approach is that the training data (2 million
sentences of newspaper text) is the output of the parser, thus avoiding the need for
a hand-annotated dataset. A gold standard was created by having Alpino choose the
best parse for a set of 600 sentences. When assigning a single tag (from a tagset with
2,392 tags), the supertagger achieves an accuracy close to 95%. It is unclear to what
extent this can be affected by some bias in the disambiguation module, given that the
lexical types in the training dataset and in the gold standard are both automatically
picked by Alpino.

[[LO]] use a supertagger with the Enju grammar for English. The novelty in their work
comes from filtering invalid tag sequences produced by the supertagger before running
the parser. In this approach, a CFG approximation of the HPSG is created with the key
property that the language it recognizes is a superset of the parsable supertag sequences.
Hence, if the CFG is unable to parse a sequence, that sequence can be safely discarded.
This approach achieved a labeled precision and recall for predicate-argument relations
of 90% and 86%, respectively, over 2,300 sentences with up to 100 words in section 23
of the Penn Treebank.

[L1] uses a supertagger with ERG, another grammar for English. Evaluated over
1,798 sentences, it achieves an accuracy of 91% with a tagset of 615 lexical types.
Also for ERG, [[12] trains two supertaggers over a 158,000 token dataset, one using the
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Table 1. Sentence, token and type counts for the various dataset sizes

tokens lexical types
dataset sent. all verbs nouns all verbs nouns
base 5,422 51,483 6,453 [12.5%] 9,208 [17.9%] 581 129 140

+ Pablico 10,727 139,330 14,540 [10.4%] 25,301 [18.2%] 626 133 157
+ Wiki 15,108 205,585 20,869 [10.2%] 37,066 [18.0%] 646 139 160
+Folha 21,217 288,875 29,683 [10.3%] 52,337 [18.1%] 668 140 165

TnT POS tagger [13] and another using the C&C supertagger [6/7U8]], and experiments
with various tag granularities. For instance, assigning only POS—a tagset with only
13 tags—is the easiest task, with 97% accuracy, while highly granular supertags formed
by POS concatenated with selectional restrictions increases the number of tags to 803,
with accuracy dropping to 91%.

3 The Grammar and the Dataset

The deep grammar used here is LXGram, an HPSG grammar for Portuguese [14115].
It supported the annotation of a corpus by providing the set of possible analyses for
a sentence (the parse forest), which is then disambiguated by manually picking the
correct analysis from among those returned. This ensures that the syntactic and semantic
annotation layers are consistent. The corpus is composed mostly by text from the
Publico newspaper, which was previously annotated with manually verified shallow
information, such as POS and lemmas. After running LXGram and disambiguating the
result, we were left with 5,422 sentences annotated with all the information provided
by LXGram, though, for this paper, we only keep the lexical type assigned to each
token. Type distribution is highly skewed. For instance, the 2 most frequent common
noun types cover 57% of all the common noun tokens. Such distributions are usually
a problem for machine-learning approaches since the number of instances of the rare
categories is too small to properly estimate the parameters of the model.

3.1 Dataset Extension

Ahead we will be interested in determining learning curves for the various classifiers
under study, but the current dataset is still small. We thus opted for extending it with
automatically annotated data obtained by taking additional sentences from Publico
(4,381), the Portuguese Wikipedia (5,305) and the Folha de Sdo Paulo newspaper
(6,109), processing them with a POS tagger, and running them through LXGram. The
cumulative sizes are shown in Table[Il

This is made possible because LXGram has a stochastic disambiguation module that
chooses the most likely analysis in the parse forest, instead of requiring a manual choice
by a human annotator [[15]. Manual evaluation of a 50 sentence sample indicates that
this module picks the correct reading in 40% of the cases. If this ratio holds, 60% of the
sentences will have an analysis that is wrong in some way, though it is not clear how
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this translates into errors in the assigned lexical types. For instance, when faced with
a case of PP-attachment ambiguity, the module may pick the wrong attachment, which
gives the wrong analysis though the lexical types assigned to the tokens may be correct.

The lexical types in the corpus are a subset of all types known to the grammar. Table[T]
shows the token count for verbs and nouns and, in brackets, their relative frequency. In
addition, it provides a breakdown of the number of types for each dataset. As expected,
in a true Zipfian way, the dataset must have a major increase in size for the more rare
types to appear. For instance, though there nearly a 6-fold difference in tokens between
the base and the largest datasets, the latter only contains 11 verb and 25 noun types
more. The reader may recall, from Section[]] that the lexicon of LXGram has 160 types
of verb and 200 types of common noun. The largest corpus comes close to covering
all of these, but there are still a few that, by not occurring in the dataset, cannot be
learned. It is worth noting that, for the experiments reported in this paper, and in order
to mitigate data-sparseness issues, words were replaced by their lemmas.

4 The Supertaggers

Assigning HPSG lexical types can be envisaged as POS tagging with an unusually
detailed tagset. Hence, the most direct way to quickly create a supertagger is to train
an off-the-shelf POS tagger over a corpus where tokens are annotated with the HPSG
lexical type assigned by the grammar. Though there is a great variety of approaches
to POS tagging, they all now achieve roughly the same scores, indicating that a
performance ceiling has likely been reached by machine learning approaches to this
task A For the current study we opted for the following tools:

TnT is well known for its efficiency and for achieving state-of-the-art results despite
having a simple underlying model. It is based on a second-order hidden Markov
model extended with linear smoothing of parameters to address data-sparseness
issues and suffix analysis for handling unknown words [[13]].

SVMTool is a tagger based on support-vector machines (SVM). It is extremely flexible
in allowing to define which features should be used in the model (e.g. size of
word window, number of POS bigrams, etc.) and the tagging strategy (left to right,
bidirectional, number of passes, etc). Due to this flexibility, it is described as being
a tagger generator [18]].

C&C is a package that includes a CCG parser, a computational semantics tool and
a supertagger. It is the latter component, the supertagger, that will be used in our
study. It is based on the maximum entropy model described in [6]. From the three
tools, it is the only one actually described as being a supertagger. It expects, for
instance, that the input tokens be already annotated with base POS categories.

2 This might not be exactly true. Studies have found that, albeit for a simpler task, learning
curves still grow as corpora increases exponentially in size into the billion of tokens [16U17].
However, it is doubtful that a manually revised POS tagged corpora of such size could be
created to test whether this effect holds for POS tagging.
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Table 2. Accuracy scores (%) for various dataset sizes

all types verb types noun types
dataset TnT C&C SVM TnT C&C SVM TnT C&C SVM

base 88.99 78.65 88.83 90.01 69.72 90.83 87.11 75.46 88.55
+ Pidblico 90.02 80.93 90.30 89.48 74.06 91.08 92.65 85.31 93.20
+ Wiki 90.80 82.45 91.20 89.58 76.18 91.52 93.84 87.98 94.20
+Folha  91.52 83.60 92.06 90.94 78.03 92.63 94.95 90.48 95.18
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Fig. 1. Learning curves for all types, verb types and noun types

All were run using default parameters. SVMTool used the simplest setting, “MO
LR” [ The results discussed in the following Section can thus be seen as a baseline for
these tools over this task.

5 Evaluation

Evaluation was performed following a 10-fold cross-validation approach over a random
shuffle of the sentences in the corpus. Table [2l shows the results obtained over the base
dataset of 5,422 sentences. TnT and SVMTool have very similar performance scores,
with non-significant differences in accuracy (cf. Fig. Il for confidence intervals). C&C
shows worse performance even though it relies on a more complex model and makes use
of the POS tags that are already in the textf] Though this might at first seem surprising,
it is in line with [12], where C&C also performed worse than TnT. The best results are
also close to those of [11] and [[12], who got similar overall accuracy scores in their
experiments.

To assess the impact of extra training data, we turn to the automatically extended
datasets described in Section[3.Jl The accuracy scores are summarized in Table 2l while
Fig. [Tl shows the corresponding plots with the addition of errors bars that represent a
95% confidence interval.

3 Model 0, left-to-right tagging direction. See [19] for an explanation of these settings.
4 Recall that the datasets were pre-annotated with POS tags.
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There is an improvement in the performance of all taggers as the dataset increases in
size. The C&C supertagger was seen to have worse performance over the base dataset.
This might be due to it using a more complex model, which needs additional data to
properly estimate the parameters, and extra training data would allow it to close the gap
to the other tools. The learning curves, however, indicate that this is not the case since
the performance of C&C does not seem to be increasing at a fast enough rate for that to
happen. TnT and SVMTool show similar scores as the corpus increases in size. Upon
reaching the largest dataset, SVMTool pushes ahead with an advantage that, though
only of 0.5% points, is likely significant for such a dataset size. The conclusion that
can be taken from the remaining tests is similar to what was seen when evaluating over
all lexical types—C&C is the worst supertagger, while TnT and SVMTool have similar
performance scores. The curves over verb types are quite flat, C&C being the only one
that shows any significant improvement, though it might be that, due to its low scores,
it still has much room for increasing its accuracy. Since accuracy over verbs does not
improve much, the raising curve that is seen over all lexical types is due to an increase
in accuracy over other categories, such as common nouns, which show a much more
marked improvement.

Each tool has different strengths. SVMTool is better than TnT at annotating verbs,
having higher accuracy when tagging this category from early on. This is not so with
common nouns, where TnT actually closes up the initial gap to SVMTool and both end
up having an indistinguishable score. The best supertagger, SVMTool, shows very good
results. Despite having ran using the simplest model, it has better performance than the
other supertaggers.

6 Final Remarks and Future Work

In this paper we report on experiments where three supertaggers for a Portuguese HPSG
grammar were induced over differently sized datasets. Over the larger dataset, the best
supertaggers showed state-of-the-art accuracy of 91-93%, similar to that obtained in
related work for English, in particular [11] and [12]]. SVM technology had yet to be
applied to supertagging. The experiments reported here show that, like in other NLP
areas where it was used, it improves over existing techniques. Given how SVM easily
incorporates many features, and the flexibility of SVMTool, future work will test how
features and tagging strategy can be adjusted to improve performance. For instance,
despite having better performance, the configuration used seems poorly suited for an
effective annotation of verbs. This makes developing features specifically suited for
discriminating the various verb types a promising avenue of research.
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