
Very high accuracy rule-based
nominal lemmatization with a minimal lexicon

António Branco and João Silva
University of Lisbon, Department of Informatics

NLX–Natural Language and Speech Group
http://nlx.di.fc.ul.pt

1 Introduction

In natural language processing, lemmatization is a procedure by which an inflec-
tionally normalized form (the lemma) is automatically assigned to word forms. The par-
ticular task that is addressed in this paper is that of Nominal Lemmatization, targeting
only Adjectives and Common Nouns.

Note that the other tokens from the other nominal categories — such as Articles,
Demonstratives, etc. — form a closed list, and can thus be easily lemmatized by a sim-
ple list look-up procedure. In this paper, our concern will thus be the tokens from the
open nominal categories.

This paper describes a shallow processing, rule-based algorithm for Nominal
Lemmatization in Portuguese with minimal word lists. Additionally, evaluation results
are presented scored from an efficient implementation of this algorithm.

In Section 2, we describe the lemmatization task in greater detail and the issues
that it raises. In Section 3, we outline the shallow processing algorithm that is used
while Section 4 deals with the methods used to minimize the lexicon that is required. In
Section 5, we present some of the harder cases which are caused by ambiguity. In Sec-
tion 6, evaluation results, together with details about the performance of the implemen-
tation, are presented. In Section 7 we provide links to on-line demos and services that
use the lemmatizer. Finally, in Section 8, the results are discussed and some prospects
for future work are presented.

2 Description of the problem

By providing a normalized representation for word forms, the lemma is an ex-
tremely important piece of linguistic information for the subsequent processing stages,
in particular for those involving syntactic and semantic processing. The main motiva-
tion for doing lemmatization is thus to allow for more efficient searches in a lexicon:
instead of having to list every inflected form of a word, the lexicon only has to include
an entry for the lemma.

In this regard, lemmatization is similar to the task of stemming, where several dif-
ferent word forms are also conflated into a single form. This seems to lead to some con-
fusion in terminology, and sometimes a task is considered to be lemmatization when, in
fact, it is stemming. In (Silva & Oliveira, 2001), for instance, the authors claim to study
several “lematizadores” for Portuguese which are actually stemmers.

However, stemming and lemmatization are quite different tasks. Their major dif-
ference, which must be underlined, is this: in stemming, it is not necessary for the re-
sulting form (the stem) to be a genuine word, as stemming is typically used for Informa-
tion Retrieval (IR), and its purpose is only to group “similar” words. As Porter (1980)
states, “[T]he suffixes are being removed simply to improve IR performance, and not as
a linguistic exercise.”

The lemma, however, is not simply an ad-hoc sub-string that is common to various
word forms, but a word form in a conventionalized “format.” In Portuguese, the lemma
for Adjectives and Common Nouns is the masculine singular form, if it exists. If this
form does not exist, the lemma is the singular form. If this form also does not exist, the
lemma matches the word form. Some cases illustrating these conventions are shown
below:

gatas (fem. plu.) → gato (Eng.: cat, masc. sing.)
cobras (fem. plu.) → cobra (Eng.: snake, fem. sing.)
termas (fem. plu.) → termas (Eng.: spa, fem. plu.)

The lemma corresponds thus to the form that is found in a dictionary for a given

word and the key problem one has to tackle in a computational approach to lemmatiza-
tion is the inevitable incompleteness of a lexicon, regardless of that lexicon containing
form-lemma or lemma-form mappings.

A form-lemma lexicon involves an exhaustive listing of every possible word form
and its corresponding lemma. A lemma-form lexicon — the approach followed in Jspell
(Almeida & Pinto, 1994; Simões & Almeida, 2000) — captures inflection regularities
through rules. It uses a dictionary of lemmas, where each lemma is associated to a trans-
formation rule that allows the generation of new word forms. To find the lemma for a
given word form, one looks for a lemma in the dictionary which, through its respective
rule, can originate the given word form. Neither approach is practically viable since the
lexicon, being open to the inclusion of new words, cannot be definitely complete.

Thus, when addressing the task of nominal lemmatization, it is worth noting that
the direct approach of assigning lemmas by means of a mere lexical look-up is far from
being the most convenient methodology. We need an approach that is able to seamlessly
handle unknown or new words.

3 Algorithm outline

To implement the nominal lemmatizer, we build upon the morphological regulari-
ties found in word inflection and use a set of transformation rules that “undo” the form
changes due to inflection.

As it can be seen in Figure 1, a single transformation rule can encapsulate a large
number of lemma assignments, which would otherwise have to be explicitly listed.

Rule Covered cases

-ta → -to

…
aberta → aberto
adulta → adulto
alta → alto

…

Figure 1: A transformation rule

A transformation rule will thus cover most cases for the corresponding termina-
tion. There will be, however, exceptions that should be accounted for. For example, the
word porta (Eng.: door) is a feminine Common Noun whose lemma is porta but
applying the rule from Figure 1 would give the lemma porto. Exceptions such as this
have to be collected for each rule.

Thus, the basic rationale for the rule-based lemmatizer described here is to gather a
set of transformation rules that, depending on the termination of a word, replace that
termination by another, and complement this set of rules with a list of exceptions. Ne-
ologisms are expected to comply with the regular morphology and are accounted for by
the rules.

3.1 Transformation rules

Transformation rules are replacement rules used to “undo” the morphographemic
changes caused by the inflection process. So, for instance, if words ending in -to are
typically inflected into words ending in -ta to obtain the feminine form, the reverse
transformation should be present in the lemmatization rules.

For example, doing this for all four possible Gender and Number combinations
one can obtain for the words ending in -to (viz. -to, -tos, -ta and -tas) leads to
the set of rules exemplified in Figure 2.

-to (masc. sing.)1

-tos (masc. plu.) → -to
-ta (fem. sing.) → -to
-tas (fem. plu.) → -to

Figure 2: “Direct” lemmatization rules

These can be easily implemented by creating a procedure that, for each given
word, scans the set of rules for a match, i.e. a rule whose left-hand side matches the
termination of the given word. Upon finding a rule, the corresponding termination of the
word is replaced by the string on the right-hand side of the rule.

1 Words ending in –to do not need to be transformed, since they are already in the desired form.

3.2 Exceptions

To collect exceptions we resort to machine-readable dictionaries (MRD) that allow
searching for words on the basis of their termination. Given that dictionaries include
lemmas, and never regular inflected forms, it is possible to collect the needed excep-
tions simply by searching for words with terminations matching the termination of in-
flected words.

For instance, to find exception to the rule –ta → -to, we search for words end-
ing in -ta. Since the dictionary does not list inflected forms, every word ending in -ta
that is found must be an exception.

These collected exceptions are entered into an internal word list of the lemmatizer
and each is coupled with its specific transformation rule.

Exceptions whose lemma matches the word form are associated to a “dummy”
transformation that does not change the word form. For example, porta is associated
with a –ta → -ta transformation.

The size of the list of exceptions may reach several hundreds of entries. Although
this might seem at first blush a large size, one should bear in mind the following points:

− The number of words covered by a transformation rule is much larger than the

number of exceptions one needs to collect for that rule.
− New words that enter the lexicon tend to follow the general rule for inflection and,

consequently, for lemmatization. As a result, the list of exceptions is considerably
stable and needs to be less frequently updated than an exhaustive look-up table of
word forms and their lemmas.

Note also that while we use the term “list of exceptions,” these are not stored in-

ternally in a linear list, since this is a notoriously inefficient data-structure. The lemma-
tizer uses a balanced binary tree to store exceptions, allowing for an efficient look-up of
a large number of entries.

4 Minimizing the lexicon

Using the algorithm outlined in the previous chapter, one drastically reduces the
size of the lexicon that is necessary, since only exceptions have to be explicitly listed.
Nevertheless, one of our objectives is to reduce the lexicon as much as possible. The
techniques we use for doing this are addressed in the next sections.

4.1 Rule hierarchy

The number of exceptions one needs to collect for a given rule can be decreased as
extra, more specific rules can be used to capture regularities found within the exceptions
themselves.

For instance, terminations matching -ia are usually transformed into -io (femi-
nine into masculine) to obtain the lemma. When collecting the exceptions for this rule
one can find, among others, the whole family of words ending in the Greek suffix

-fobia (Eng.: -phobia) whose lemma matches the word form. So, instead of listing
them as exceptions for the -ia → -io rule, one can simply add the new rule
-fobia → -fobia to handle all those cases.

In terms of the implementation of the algorithm, note that to allow for this, the
choice of which transformation rule to apply must use the longest match criteria, so that
the longer, more specific termination will necessarily be chosen.

4.2 Recursive, single-step rules

The set of lemmatization rules shown in Figure 2 transforms any of the various in-
flected word forms from the -to “family” directly into the corresponding lemma.

By doing this transformation directly, special care must be taken when collecting
the exceptions for the –tas → -to rule since a dictionary search for words ending in
-tas will not provide all the necessary exceptions.

This happens because these exceptions must also include the words that are excep-
tions to the –ta → -to rule but when inflected for plural.

For example, the word porta, as seen before, is one of the exceptions to the
-ta → -to rule. Consequently, its plural form, portas (Eng.: doors), is an excep-
tion to the -tas → -to rule, but — being an inflected form — it will not be listed in
a dictionary.

Obtaining the exceptions in plural form is rather easy as one needs only apply a
simple transformation to every exception in singular form (e.g. -ta → -tas). There
is, however, an easier way of handling these cases, namely through the use of recursive,
single-step lemmatization rules, which is an approach that does not require extending
the exceptions list.

Single-step rules are transformations that only affect a single feature (Gender or
Number). From the set of rules shown above, the last one (viz. -tas → -to) is not a
single step-rule, since it transforms a feminine plural form into a masculine singular
form in a single transformation step.

The set of direct rules from Figure 2 can be rewritten into the set of single-step
rules seen below, in Figure 3. The single-step rules are similar to the set of direct rules
above, differing only in the rule for feminine plural word forms, which now transforms
these words into their feminine singular form.

-to (masc. sing.)
-tos (masc. plu.) → -to
-ta (fem. sing.) → -to
-tas (fem. plu.) → -ta

Figure 3: Single-step lemmatization rules

However, when the word that is to be lemmatized is in the feminine plural form, a
single-step transformation might not be enough to produce a lemma. Recursive lemma-
tization rules are repeatedly applied, transforming a word into another, until an excep-
tion has been found or until there is no rule that can be applied.

adultas → adulta → adulto
portas → porta

Figure 4: Recursive application of single-step rules

For example, adultas (Eng.: adults, feminine plural) would firstly be trans-
formed into adulta (Eng.: adult, feminine singular) — and, in a second transforma-
tion step, into adulto (Eng.: adult, masculine singular), at which point no more rules
are applicable and that form is returned as being the lemma — while portas would be
transformed into porta, matching the exception and returning that form as the lemma.

By using recursive single-step rules, it is not necessary to extend the exceptions
list with inflected forms of exceptions. In addition, it is straightforward to extend the
algorithm to apply such rules: it is sufficient to run the transformation procedure on its
own output until no rule can be applied or until an exception is found.

4.3 Handling non-inflectional affixes

Besides its various inflected forms, a word can also have non-inflectional affixes,
greatly increasing the number of possible forms that the lemmatizer must handle.

In this section, we discuss how to handle non-inflectional prefixes and suffixes and
how to resolve the complexity that arises when both occur simultaneously in the same
word form.

4.3.1 Stripping prefixes

Prefixed words raise a difficulty when dealing with the search for exceptions to a
transformation rule.

Taking again porta as an example of an exception, every word formed by com-
bining it with a prefix is also an exception to the -ta → -to rule, like anteporta,
autoporta, etc. This entails that, in addition to porta, all words formed by prefix-
ing porta must also be included in the exceptions to the –ta → -to rule.

Adding all such prefixed words to the list of exceptions is not an appropriate ap-
proach, as the number of prefixes, even though not unlimited, is still very large and,
more important, prefixes can be accumulate, as in autosuperporta.2

As a better solution to this problem, the algorithm is designed to temporarily re-
move prefixes from words when obtaining the lemma. After getting the lemma, the pre-
fixes that were removed are returned back to their original place.

This requires a list of possible prefixes. When the starting characters of a word
match one of the listed prefixes, these characters are temporarily removed. The process
is repeated until it is not possible to remove any further prefixes.

It is important to note that, before removing any prefix, the word form is checked
against the exceptions list. This is done to account for word such as antena (Eng.:

2 Even though some of these prefixed forms might be unusual, they are perfectly valid from a purely morpho-
logical point of view.

antenna) which, although beginning with a sequence of characters matching a listed
prefix (cf. ante-), it is not a prefixed word.

autosupergata autosuperporta superantena
↓ ↓ ↓

supergata superporta antenna
↓ ↓ (exception)

gata porta ↓
(apply rule) (exception) superantena

↓ ↓
autosupergato autosuperporta

(a) (b) (c)

Figure 5: Prefix stripping

The prefix stripping process is illustrated in Figure 5 by means of three examples:

(a) gata (Eng.: cat, feminine singular), a common noun which should be lemmatized

into the masculine singular form gato. After stripping auto- and super-, one
gets gata, which has no more prefixes to get stripped. The –ta → -to rule can
then be applied, giving the result gato.

(b) porta, an exception, which should be lemmatized into porta. After stripping
both prefixes, one gets porta, which is one of the listed exceptions.

(c) antena, an exception, which should be lemmatized into antena. This is similar
to the previous case, but it illustrates a case where a possible prefix (ante-) was
not removed, as the word form was listed in the exceptions list.

4.3.2 Degree suffixes

Degree suffixes (for Diminutive and Superlative) seem, at first, to be easily han-
dled by the same mechanism used for inflection suffixes but specific difficulties should
be taken into account.

For instance, gatinho (Eng.: [small] cat) is easily lemmatized into gato by a
-inho → -o rule. Also, any exceptions to this rule, like vizinho (Eng.: neighbor)
are easily collected by using MRDs. In addition, as seen before, to minimize the number
of exceptions one needs to collect, single-step recursive rules can be used, such as
-inha → -inho, to account for inflected forms, like gatinha (Eng.: [feminine
small] cat).

However, there are some situations that cannot be as easily handled by this
mechanism. For the sake of concreteness, we will take the words vizinha (Eng.:
[feminine] neighbor) and portinha (Eng.: [small] door) as an example of such a
situation.

− Having the -inha → -inho rule described above avoids having to list viz-

inha explicitly as an exception. But, by using this rule, the word portinha
would be transformed into portinho and, in a second step, lemmatized as

porto. To prevent this from happening, one has to list portinha explicitly as an
exception to the -inha → -inho rule.

− As an alternative, one could instead use -inha → -a as a default rule, which
would correctly lemmatize portinha. However, in this case, we would need to
list vizinha as an exception, to prevent it from being lemmatized into viza.

Accordingly, regardless of which rule is chosen to be the default one, one has to

list extra exceptions. To avoid this, a possible approach is to allow for a rule to branch
out into several possible transformations, thus giving rise to a branching search for the
solution.

4.4 Branching search

To allow branching search of lemmas, the rules are extended to allow for various
alternative transformations. Each alternative opens up a new search branch. The lemma-
tization proceeds in parallel through each branch until no further rules are applicable or
until an exception has been found.

The heuristic for the choice of lemma takes the leaf node found at the lowest
search depth (i.e. the result that required the fewest transformation steps).

For instance, to handle the problem described above, found when dealing with
portinha and vizinha, we create a -inha → -a,-inho rule is created. For
words ending in -inha, this rule creates two search branches. For the first branch, the
-inha → -a is applied, while the search in the second branch proceeds under the
-inha → -inho transformation. The result found at the lowest search depth (viz-
inho for vizinha and porta for portinha) is taken as being the lemma. Both
these search trees can be seen in Figure 6.

Figure 6: Branching search

The branching search has the added advantage of seamlessly handling words that
combine multiple prefixes and suffixes.

When several non-inflectional affixes occur in a single word, one must follow all
possible paths of affix removal/transformation to ensure that an exception is not over-
looked.

As an example, take the lemmatization of anteninha (Eng.: [small] antenna),
illustrated in Figure 7.

Figure 7: Lemmatizing anteninha

Both ante- and -inha are possible affixes. In the first step, three search
branches are opened. The first branch (ninha) corresponds to the removal of the
ante- prefix, while the two other branches (antena and anteninho) are the result
of applying the transformations in the -inha → -a,-inho rule. The lemma is the
leaf node with the lowest search depth (i.e. obtained with the fewest steps), antena.

The search under several branches seems to lead to a great performance penalty,
but one must bear in mind that only a few words have non-inflectional affixes, and most
of those have only one, in which case there is no branching at all. So, in practice, the
branching search does not incur in a damaging performance penalty while allowing for
arbitrarily complex affixed words.

5 Ambiguity

At this point, it is also worth noting that there are some cases were the lemma does
not depend solely on the word form.

5.1 Sense dependency

Lemmatization may be conditioned by the part-of-speech (POS) of the word form.
For example, ética, when occurring as an Adjective, is the feminine singular form of
ethical and should therefore be lemmatized into ético, the masculine singular form.
However, when occurring as a Common Noun, ética has the meaning of ethics and
must be taken as an exception to the –ca → -co rule.

To cope with this, these items are specifically listed and the lemmatizer is assumed
to run over a POS-tagged text.

More problematic is the case where lemmatization is dependent on the sense of the
token at stake. For instance, the word copas may refer to the hearts suit of playing
cards, in which case its lemma is copas, or it may be the plural form of copa (Eng.:
cupboard, treetop), in which case it should be lemmatized into the singular form copa.
Ambiguous words such as this cannot be resolved by any lemmatizer to be applied be-
fore word sense disambiguation (WSD).

5.2 Words ending in -e

Words ending in -e also pose a problem since these words do not have a preferen-
tial Gender feature (Mateus et al., 2003, pp. 923). Consequently, when such words re-
ceive a non-inflectional suffix, their termination matches that of words ending in -a or
-o. For instance, the diminutive form of the feminine singular word parede (Eng.:
wall) is paredinha. When lemmatizing this form, there are two plausible transforma-
tions, viz. –inha → -a and –inha → -e.

These problematic words are handled as exceptions, i.e. paredinha is listed as
an exception to the –inha → -a rule.

5.3 Hyphenated compound words

Hyphenated compound words are formed by morphological or by morphosyntactic
composition (Mateus et al., 2003, pp. 971). The latter type, in particular, cannot be
lemmatized by simply replacing the termination of the compound word (i.e. replacing
the ending of the string). For instance, take the following examples:

aluna-modelo → aluno-modelo
patos-bravos → pato-bravo
surdas-mudas → surdo-mudo

These examples seem to suggest that a straightforward way of lemmatizing such

words is to lemmatize each part of the compound separately (e.g. the lemma of surdas
is surdo and the lemma of mudas is mudo). While this approach works for the exam-
ples above, there are cases where it does not. For instance:

abre-latas → abre-latas
arranha-céus → arranha-céus
guarda-redes → guarda-redes

These particular cases behave differently because they are formed through a dif-

ferent composition process (“estruturas de reanálise,” (Mateus et al., 2003, pp. 982)),
where the first element of the compound is a verb form. The difficulty in handling these
cases stems from the fact that the shallow processing lemmatization process has no
automatic way of determining the type of process that originated a given hyphenated
compound word (i.e. it is not possible to determine if guarda in guarda-redes is a
verb form or a noun). Consequently, at present, the lemmatizer can only handle these
cases through a plain lexical look-up.

5.4 Alterations in diacritics

When a word receives a non-inflectional suffix, diacritic marks possibly present in
the word may be removed or change position. For instance, the superlative of rápido
(Eng.: quick) is rapidíssimo (the á loses its diacritic mark). A rule such as

-íssimo → -o can “undo” the superlative, but it does not restore the diacritic. The
ambiguity stems from the fact that there is no morphological reason to disregard the
word rapido (without the diacritic mark) as a possible lemma.

Currently, these cases are considered as exceptions, e.g. rapidíssimo is listed
as an exception to the -íssimo → -o rule and assigned rápido as the lemma.

6 Evaluation

In order to implement the algorithm, a list of 126 transformation rules was neces-
sary. The list of exceptions to these rules amounts to 9,614 entries. Prefix removal is
done resorting to a list of 130 prefixes.

The lemmatizer was evaluated over the 50,637 Adjectives and Common Nouns
present in a 260,000 token corpus consisting of manually annotated newspaper excerpts
and short novels.3 Given that the POS tags are already assigned, the lemmatizer does
not need any window of context around the target token to be evaluated. Hence, evaluat-
ing it over a list of the target tokens is the same as evaluating over the corpus.

In this evaluation list there are 203 tokens that are semantically ambiguous. As
discussed above, the lemmatizer is not able to handle these cases, since for these tokens
to be lemmatizer a WSD step is necessary. Therefore, this figure helps to suggest an
upper-bound of 99.60% to the recall of a lemmatizer based on shallow processing.

On the remaining 50,434 tokens, there were 1,072 lemmatization errors, yielding a
precision of 97.87%. It is also useful to look at the F-measure, which combines preci-
sion and recall into a single value (Manning & Schütze, 1999, pp. 269). We give equal
weights to precision (p) and recall (r), in which case the formula for calculating the
F-measure can be simplified to f = 2pr/(p+r). These results are summarized in Table 1.

recall precision f-measure

99.60% 97.87% 98.73%

Table 1: Lemmatizer evaluation

Most of these errors are caused by words that are missing from the exceptions list
and, therefore, receive the wrong lemma.

To the best of our knowledge, for the few tools for the processing of Portuguese
that are claimed to involve some step of nominal lemmatization, e.g. (Almeida & Pinto,
1994), (Simões & Almeida, 2000) or (Bick, 2000), no evaluation results for that step in
isolation are provided. No direct comparison with other eventual nominal lemmatizers
of Portuguese seems thus to be possible at present. In this respect, and to gain a sense of
the level of performance of the lemmatizer described here, one can resort to recent, top
accuracy lemmatizers for other languages with similar nominal inflection systems, such
as Spanish. That is the case of the (nominal and verbal) lemmatizer presented in (Chru-
pala, 2006), which reportedly outperforms other lemmatizers for Spanish, with an

3 We are grateful to CLUL (Centro de Linguística da Universidade de Lisboa) for their help with this corpus.

F-measure of 92.48%. Tough this is a tool for a language other than Portuguese, and
handles both verbal and nominal lemmatization, it is the best hint at hand to get the
sense that the nominal lemmatizer for Portuguese described here is performing at state
of the art level of accuracy, and it is most likely the best such tool described in the lit-
erature so far.

As for speed performance, the lemmatizer takes 0.32 seconds to complete its task
when running over the evaluation data of 10,581 items (corresponding to ca. 33,000
word/sec on average). The computer running the lemmatizer has an Intel Pentium IV
processor with a 3.0 GHz clock speed.

7 On-line services

The lemmatizer is part of the LX-Suite (a set of NLP tools, including a tokenizer, a
POS tagger and a verbal lemmatizer), which can be seen in an on-line demo at
http://lxsuite.di.fc.ul.pt. The lemmatizer also supports an on-line service
for the inflection of nominal forms (Common Nouns and Adjectives), which can be
found at http://lxinflector.di.fc.ul.pt.

8 Concluding remarks

This paper presented a shallow processing, rule-based algorithm for the lemmati-
zation of Adjectives and Common Nouns in Portuguese.

The algorithm builds upon the morphological regularities found in the inflection
process by using a set of transformation rules that replace the endings of words. These
rules are supplemented by a list of exceptions. The algorithm also uses a variety of
methods to reduce the number of exceptions one has to store to a minimum: (i) hierar-
chical rules, (ii) single-step recursive rules, (iii) affix stripping and (iv) branching
search.

The lemmatizer is not able to handle words that are semantically ambiguous. Such
cases, however, have proved to be rare, and the lemmatizer still achieves a very high
score for recall. Future work will focus on improving the precision score also by ex-
panding the exceptions list with new entries that may have escaped until now.

References

Almeida, José & Ulisses Pinto (1994). Jspell – Um módulo para análise léxica genérica
de linguagem natural. In Proceedings of the 10th Encontro Anual da Associação
Portuguesa de Linguística (APL).

Bick, Eckhard (2000). The parsing system PALAVRAS: Automatic Grammatical
Analysis of Portuguese in a Constraint Grammar Framework. PhD thesis, University
of Århus, Denmark.

Chrupala, Grzegorz (2006). Simple data-driven context-sensitive lemmatization. In
Proceedings of Sociedad Española para el procesamiento del Lenguaje Natural

(SEPLN).
Manning, Christopher & Hinrich Schütze (1999). Foundations of Statistical Natural

Language Processing. The MIT Press.
Mateus, Maria Helena Mira, Ana Maria Brito, Inês Duarte, Isabel Hub Faria, Sónia Fro-

ta, Gabriela Matos, Fátima Oliveira, Marina Vigário & Alina Villalva (2003). Gra-
mática da Língua Portuguesa. Editorial Caminho.

Porter, Martin (1980). An algorithm for suffix stripping. Program 13 (3), pp. 130—137.
Silva, Gilberto & Claudia Oliveira (2001). Lematizadores com base em léxico. Techni-

cal report 069/DE9/01. Departmento de Engenharia de Sistemas do Instituto Militar
de Engenharia.

Simões, Alberto & José Almeida (2000). jspell.pl – Um módulo de análise morfológica
para uso em processamento de linguagem natural. In Proceedings of the 16th Encon-
tro Anual da Associação Portuguesa de Linguística (APL), pp. 485—495.

	1 Introduction
	2 Description of the problem
	3 Algorithm outline
	3.1 Transformation rules
	3.2 Exceptions

	4 Minimizing the lexicon
	4.1 Rule hierarchy
	4.2 Recursive, single-step rules
	4.3 Handling non-inflectional affixes
	4.3.1 Stripping prefixes
	4.3.2 Degree suffixes

	4.4 Branching search

	5 Ambiguity
	5.1 Sense dependency
	5.2 Words ending in -e
	5.3 Hyphenated compound words
	5.4 Alterations in diacritics

	6 Evaluation
	7 On-line services
	8 Concluding remarks
	References

