
Swift Development of State-of-the-Art Taggers for
Portuguese

António Branco and João Silva

Department of Informatics, University of Lisbon
Faculdade de Ciências, Campo Grande, 1749-016 Lisboa

{ahb,jsilva}@di.fc.ul.pt

The application of general-purpose machine learning techniques to natural
language part-of-speech tagging has matured to a point where it is now quite
rapid to develop new taggers. In the present paper, we report on solutions we
adopted for the specific issues that arise when developing a new automatic
tagger for Portuguese and are generic enough to be further reused to develop
other new taggers for this language, possibly by using other training data.

Introduction

A basic linguistic generalization arises from the fact that some lexemes can replace
each other without disrupting the grammaticality of whatever construction they may
be part of, disregarding the fact that possible subcategorization and agreement
constraints complied with by the replaced lexeme may not be observed by the
replacing one. Lexemes under these circumstances are then said to have the same
syntactic distribution and this generalization is signaled by grouping them in the same
syntactic category, which is tantamount to assigning them the same part-of-speech
(POS) tag, e.g. Noun, Adjective, Preposition, etc.

It happens that many lexemes belong to more than one such distributional
grouping. In Portuguese, for instance, we can find, among many others:

o as Clitic or Definite Article

a as Definite article, Preposition or Clitic

se as Clitic or Conjunction

embora as Conjunction or Adverb

só as Adverb or Adjective

português as Adjective, Proper Noun or Common Noun

bateria as Common Noun or Verb

como as Verb, Adverb, Relative Pronoun, Interrogative Pron., Conjunction or Preposition

This implies that many lexeme-types are associated with more than one POS tag in
the lexicon and that the single correct tag for each of their lexeme-tokens in a text has
to be decided given the specific occurrence and context at stake.

From a computational point of view, the non trivial issue with respect to POS
tagging consists thus in designing successful algorithms able to decide for each token
of a lexeme in a text, and from the set of admissible POS tags for its type in the
lexicon, which tag is the correct one to be assigned to that lexeme in that specific
occurrence. Though apparently simple when presented under these terms, POS
tagging is a very important phase in natural language processing. It handles a
considerable amount of the ambiguity in utterances thus permitting to prune many
worthless alternatives in the search space at a quite early stage of processing, even
before the subsequent, and computationally expensive stages of syntactic and
semantic processing.

The application of machine learning techniques to natural language POS tagging
has matured to a point where it is now very rapid to develop new, state-of-the-art
accuracy taggers (cf. Samuelsson and Voutilainen, 1997; Brill, 1995; Rathnaparkhi,
1996; Brants, 2002 a.o.). Provided that the training data is ready, obtaining a new
tagger may be as rapid as a few seconds with some applications. Given the
general-purpose of these techniques, this holds true for every language that they have
been tried upon even though most of the initial research has been conducted over data
from English. Accordingly, and letting aside the time required to accurately annotate
the training corpus, the bulk of the time span needed to prepare a new tagger is
determined basically by the time needed to prepare tools to handle language-specific
issues. Such issues are found in each of the three major steps involved in the
automatic tagging sensu latu of raw text, namely chunking, tokenizing, and tagging
sensu stricto.

In the present paper, we report on solutions we arrived at for the specific issues that
arise when developing a new automatic tagger for Portuguese and that are generic
enough to be further reused to develop other new taggers for this language, possibly
from other training data.

Chunker

When aiming at the tagging of raw text, the first processing phase consists in sentence
chunking, by means of which the boundaries between sentences and paragraphs are
marked and therefore sentential tokens are identified.

As in other languages with conventions similar to those adopted by the Portuguese
orthography, in the vast majority of cases, a few designated punctuation symbols are
used to mark the end of sentences. This set of terminator symbols includes the period
'.' for declaratives, the question mark ‘?’ for interrogatives, the exclamation mark ‘!’
for exclamatives or imperatives, and the ellipsis ‘…’ for sentences ending in some
form of ellipsis or expectation. On the other hand a designated orthographic clue is
also used to mark the beginning of a subsequent sentence, viz. a capital letter or a
digit as the first character of the sentence.

Given these orthographic conventions, most sentence boundaries can be easily
detected. The chunking algorithm just has to look for a sequence with one of the
above terminators followed by a blank and a sentence starter. As in other languages

with similar conventions, there remain however some non-trivial cases to solve given
the concomitant ambiguity of some terminator symbols and starting clues.1

The period is type-ambiguous between marking the end of a sentence or the end of

an abbreviation. In the following example, the first token of the period symbol
(in Pav.) marks the end of an abbreviation, and the second and third tokens mark the
end of sentences.

A cantora Ágata actuou no Pav. Atlântico, a 15 de Março. 250
mil pessoas aplaudiram de pé.

On the other hand, a capital letter is type-ambiguous between marking the
beginning of a sentence or of a proper noun. In the example above, the first token of a
capital letter marks the beginning of the first sentence, and the second token signals
the beginning of a proper noun. Also, a starting digit of a number can signal just the
beginning of that number (as in 15 above) or the beginning of a sentence (as in 250
above).

Non-trivial cases occur when the token-ambiguity of both terminator and starter
symbols is viable. For starter symbols, token-ambiguity is always available while for
the period symbol such ambiguity can be found basically in two cases: (i) Typesetting
conventions for Portuguese reject the occurrence of two consecutive periods: the form

A cantora Ágata actuou no Pav. Atlântico, a 15 de Mar.

is thus preferred to the form
A cantora Ágata actuou no Pav. Atlântico, a 15 de Mar..

This implies that any period used in an abbreviation may be also marking the end
of a sentence. (ii) The string making part of the abbreviated word can itself be a word,
as it happens for instance with sequences like par. (par followed by period or
abbreviation of parágrafo) or ter. (ter followed by period or abbreviation of
terça-feira).

Given that conventions very similar to these are used in languages other than
Portuguese, and in particular in English, this sort of issues has been addressed in the
literature and different solutions have been proposed for them2. Hence, they will not
be in the focus of the present paper. Here we will rather address conventions for
sentence bounding that are specific to Portuguese, or at least not found in other close
Romance languages or English under the same format. Such conventions involve the
marking of paragraph (turn taking) and sentence boundaries in written dialogue.

The two basic constraints for the format of a written dialog are that each
character’s turn appears in its own paragraph and that each utterance corresponds to a
sentence, possibly with narrator’s asides as parentheticals.

1 Some harder cases involve the determination of sentence/paragraph boundaries indicated by

starters of enumerated lists and quotation delimiters. This is not addressed in the present
paper as Portuguese basically follows the same conventions as used in other languages like
English, French etc.

2 For a recent study and references cited therein, see Mikheev, 2002.

Focusing on the first sentence in a paragraph containing a character's turn, its
beginning can be easily handled as it is marked with a dash (‘—’) immediately
followed by the usual sentence starters:

<s> — Bom dia! </s>

Things get convoluted when it comes to narrator's asides. The beginning of a
narrator's aside cannot initiate an utterance. It is always indicated by a dash and its
ending is indicated by a dash if the aside does not conclude the sentence, or by a
period if it is the last part of its sentence:

<p><s> — Apetece-me ir ao cinema — anunciou ele. </s></p>

<p><s> — Eu cá — disse ela — também quero. </s></p>

The fact that the preceding sentence has been concluded with a narrator’s aside or
not determines the way the beginning of the next utterance is marked. A character's
sentence other than the first one in the current turn starts also with a dash if and only
if it follows a sentence ending with a narrator's aside.

<p><s> — Vamos ao jardim. </s><s> Está um lindo dia. </s></p>

<p><s> — Não — replicou ela. </s><s> — Eu não vou. </s></p>

As for termination symbols of character’s utterances, only those that are different
from a period can appear before the beginning of a narrator's aside.

<s> — Bom dia! — exclamou ela. </s>

<s> — Mau dia — retorquiu ele, azedo. </s>

A perspicuous way of compiling and displaying the conventions related to written
dialog orthographic format is by mean of a finite state automaton (FSA) – for a
dialogue example illustrating these different conventions being applied, see Annex A.
The states represent concepts such as “character’s utterance” or “narrator’s aside” and
the transitions between these states are triggered by the occurrence of specific
sequences of symbols in the input.

For example, the FSA above indicates that, when running over text, if the chunker
is in a character’s utterance, the occurrence of a sequence of two tokens separated by
blank(s), where the first token is not a period and the second is a dash, will be taken
as the start of the narrator’s aside; on the other hand, if the chunker is in a narrator’s

|dash|

|dash|

|dash|

|terminator|

narrator’s
aside

end sentence
</s>

end sentence
</s>

|dash| end/begin
paragraph
</p><p>

|starter| begin
sentence
<s>

|not period|
|dash|

character’s
utterance

|period|

|newline(s)|

|newline(s)|

aside, the occurrence of a dash will be taken as the end of that aside and the
continuation of the character’s utterance that immediately preceded the aside.

Flex was used to implement this FSA. Flex can be viewed as being a superset of
the C programming language specially suited for the creation of lexical analyzers.
Through the use of regular expressions, the Flex syntax allows the programmer to
easily specify which lexical patterns to look for in the input and, to each pattern,
which action to trigger. For this procedure, we scored a recall of 99.94% and
precision of 99.93% when tested on a 12 000 sentence corpus accurately hand tagged
with respect to sentence and paragraph boundaries.

Tokenizer

For most tokens in a raw text, tokenization is a rather trivial task. After detaching
punctuation marks that immediately follow lexemes without an intervening blank
space, tokenization proceeds by taking advantage of the white space as a delimiter
symbol indicating the boundary between two tokens:

um exemplo ! |um|exemplo|

In view of subsequent accurate processing, especially in what concerns numbers,
dates, amounts, etc., a careful tokenization should also mark spacing around
punctuation or symbols. For instance, a solution we opted for was to separated every
part of a number with a period or a comma as a single token:

5.3 ! |5|.|3|

and to explicitly mark the occurrence of adjoining white spaces by inserting a
designated symbol:

1. 2 ! |1|.�|2|

8 . 6 ! |8|�.�|6|

Turning now to issues that are specific in the tokenization of Portuguese text, there
are a few trivial matters that can be also easily handled.

When following a form of verb haver, to which it is adjoined with an intervening
hyphen, the preposition de should be detached as a single token and the hyphen
removed:

há-de ! |há|de|

Word endings marking alternative terminations should be explicitly acknowledged
in view of future correct lemmatization:

Caro(a) amigo(a) ! |Caro|(a)|amigo|(a)|

Clitic pronouns in enclisis should be detached from the verb:
deu-se-lhes ! |deu|se|lhes|

If the enclisis of the pronoun induced a vocalic alternation, this should be explicitly
marked by the tokenizer (cf. ‘#’ in the example below) in view of future correct
lemmatization:

vê-las ! |vê#|las|

If the clitic pronoun appear in mesoclisis, it should also be detached, its original
position signaled (cf. ‘-CL-‘ below) and the vocalic alternation marked as well:

afirmá-lo-ia ! |afirmá#-CL-ia|lo|

Finally, contracted forms should also be handled. In Portuguese orthography, there
are several instances of orthographic contractions. Most of such cases concern the
contraction of a Preposition with the subsequent word. The Prepositions por and
para may contract with Definite Articles:

pelo (por o), p’lo (por o), pr’à (para a)

The Preposition com, in turn, has special contracted forms with Personal Pronouns
in accusative declination:

contigo (com ti)

Other Prepositions may contract with items from a wider range of categories. That
is the case of de and em, which contract with Definite Articles and also with
Indefinite Articles, Personal and Demonstrative Pronouns:

do (de o), dum (de um), dele (de ele), disto (de isto), disso
(de isso), daquilo (de aquilo)

no (em o), num (em um), nele (em ele), nisto (em isto), nisso
(em isso), naquilo (em aquilo)

Besides Prepositions, also Clitics either in proclisis or not, may be contracted with
other clitics:

lho (lhe o)

In view of subsequent principled syntactic analysis, the tokenizer should thus
expand these contractions as in the examples below:

do ! |de|o|

pr’à ! |para|a|

In the tokenization of Portuguese text, however, there are also non-trivial cases that
present considerable difficulties for the design of the tokenization algorithm. Such
cases involve type-ambiguous strings, i.e. strings that can be tokenized in more than
one way:

deste ! |deste| or deste ! |de|este|

For an exhaustive list of type-ambiguous strings of Portuguese, and their frequency in
our corpus, see Annex B.

In a general setup like ours, where one counts on a tagger trained over previously
annotated data, this type of difficulties inevitably introduces some circularity:
Although tagging decisions require that a previous tokenization process has been

completed, the tokenization of these ambiguous strings requires previous knowledge
of the POS tag of the token(s) corresponding to the string. For instance, in the
example above, deste would be tokenized as one token if and only if it had been
tagged as a Verb, but for it to be tagged as a Verb it should have already been
tokenized as one token.

In order to dissolve this circularity and correctly handle type-ambiguous strings,
we used a two-level approach to tokenization where tagging is interpolated into the
tokenization process, which proceeds now in two stages, one before and another after
the tagger has been applied.

Accordingly, (i) a pre-tagging tokenizer definitely identifies every token except
those related to ambiguous strings: These strings are provisionally identified as one
token.

(ii) Subsequently, the tagger assigns a composite or a simple tag to every
ambiguous string depending on it being a contracted or a non-contracted form,
respectively: The tagger has been trained over a corpus where ambiguous strings are
always tokenized as a single token and annotated with single or composite tags. For
instance, the string deste is tagged either a deste_V or as deste_PREPDEM.

(iii) Finally, a post-tagging tokenizer handles only ambiguous strings, breaking
those that are tagged with a composite tag into two tokens and the corresponding
tags.3

In order to implement the two-level tokenization approach just described, we used
Ratnarparkhi’s MXPOST system (Rathnarparkhi, 1996) to train a tagger for
Portuguese. This system offers a state-of-the-art level of performance, having
permitted to develop a tagger with 96.75% of success rate. The above approach was
tested with the help of a 230 Ktoken hand annotated corpus, prepared from a corpus
kindly granted by CLUL-Centro de Linguística da Universidade de Lisboa
(Nascimento et al., 2000).4 In this corpus, the ambiguous strings amount to 2% of the
tokens.

This two-level tokenization approach permitted to successfully resolve 99.4% of
these ambiguous cases, against a baseline of 78.2% of success. This baseline is
obtained with the rough and ready heuristic of tokenizing every ambiguous string into
two tokens, a heuristic straightforwardly suggested by the fact that 78.2% of the
ambiguous strings are contractions in the test corpus.

Tagger

With suitable solutions for the Portuguese-specific issues concerning chunking and
tokenization in place, the last step in the task of tagging raw text is the tagging
procedure sensu stricto. That is, given that sentential and lexical tokens have been
identified, the step yet to accomplished is to assign the POS tag to each lexical token,
possibly taking into account the neighboring boundaries of the containing sentence or
paragraph.

3 For a detailed rendering of this solution, see Branco and Silva, 2003.
4 We are very grateful to Fernanda Nascimento e Amália Mendes for their help.

For the development of the Portuguese tagger sensu stricto, we used the TnT
software, kindly granted to us by Thorsten Brants (Brants, 2000). TnT is a statically
based application to train taggers that, according to a recent overview (Giménez and
Màrquez, 2003), offers the best features in terms of accuracy, for tagging, and in
terms of efficiency, for tagging and training. It is based on second order Hidden
Markov models supplemented with backoff via linear interpolation for smoothing
purposes, and with suffix analysis for handling unknown words.

When using a machine-learning tool like TnT out of the shelf to develop a new
tagger, the remaining critical issues dwell around the gathering of appropriate training
data. For this purpose, we benefited from a 230 Ktoken corpus developed at CLUL
referred to above. This corpus, containing a mix of excerpts from news and novels,
was hand annotated with POS tags at CLUL in the scope of a theoretical linguistics
research project aimed at studying clitic pronouns.

For the sake of the focusing on the language-critical issues involved in developing
a new tagger, let us assume that one can rely on a previously annotated corpus as a
starting point. Let us further assume that the consistency and accuracy of the
annotation of such a general-purpose training corpus is ensured. The remaining
concern is then directed towards manipulating and relabeling the training data in
accordance with the tag set that needs to be opted for. The design of the tag set turns
out thus to be the non-trivial, language-specific aspect that calls to be addressed.

In this respect, given that a statistically based application is being used, one finds
the usual tension between increasing the discriminative power of the tagger — by
using more tags — and minimizing the data sparseness — by using fewer tags. The
search for the best performance of a POS tagger supported by a suitably tuned balance
of these two attractors cannot be reduced, however, to arbitrarily playing around with
the number and the assignment of tags. Syntactic categorization encodes basic
linguistic generalizations about the distribution of lexemes, which by their own
nature, are to be empirically uncovered, not superimposed in view of stipulative
convenience.

By definition, a syntactic category identifies, under the same tag, tokens with
identical syntactic distribution, i.e. tokens that in any occurrence receiving that tag,
can replace each other while preserving the grammaticality of the corresponding
linguistic construction, modulo the adoption of suitable subcategorization constraints
impinging over them. If the goal is the development of a top-accuracy and
linguistically principled tagger that optimally supports subsequent syntactic parsing,
this is a criterion that one cannot lose sight of in the choice of the tag set.

Taking the preceding considerations into account, there are possible “candidate”
categories or subcategories that should not to be included in the tag set used to
annotate the corpus over which the tagger is to be trained.

In the first place, different tags not justified by different distribution are to be
excluded. This is the case, for instance, of tags indicating the degree of an adjective
(example: alto_ADJNORM, altíssimo_ADJSUP).

Tough conveying some distribution-related information, there may be tags that can
be unequivocally inferred from the form of the token at stake. In view of decreasing
the data sparseness, such tags should be avoided. For example, this is the case of tags
indicating the polarity of an adverb (example: sim_ADVPOS; nem_ADVNEG), or tags

indicating inflectional features, which can be subsequently determined from suffixes
by a lemmatizer (example: alto_ADJMascSing, altas_ADJFemPlu).

Also, when considering tag sets proposed in grammar textbooks of a more
traditional, philological-oriented persuasion, it is not unusual to find categories aimed
at indicating the constituency status of the phrase containing the relevant token. Such
different tags encode information about whether the token at stake is a constituent of
an elided or of a non-elided phrase but not an actual difference with respect to the
syntactic distribution of that token. One example of this is the category “indefinite
pronoun” versus some other category of closed classes. This category has been
proposed for tagging articles, demonstratives or other pronominal items in headless
Noun Phrases. For instance, according to such traditional views, the demonstrative
aquele would receive DEM in the non-elliptical NP in li [aquele_DEM livro]NP
but it would receive INDPRON in the corresponding elliptical NP in li
[aquele_INDPRON Ø]NP). Given that no difference with respect to syntactic
distribution of items like aquele is at stake, and in view of taming the data
sparseness effect, the tags indicating the elliptical status of the containing phrase have
no place in our tag set. Returning to the specific examples above, aquele receives the
same tag on both cases and the last example is tagged as: li [aquele_DEM Ø]NP

Under more traditional approaches, single-word NPs like tudo are also proposed
to receive the “indefinite pronoun” tag or a similar one. It goes without saying that a
tag like IN (Indefinite Nominals), for instance, should be included in the tag set to
cover these cases.

It is of note that the rationale discussed above and followed to circumscribe the tag
set, not only helps to exclude possible candidate tags, but also to isolate and include
categories that are usually not taken into account in a more traditional perspective.

Though being verbal forms, gerund, past participle and infinitive forms each have a
distribution of its own due to the fact that they are the main predicators of subordinate
clauses with specific distribution. Moreover, infinitival forms support nominative
constituents (e.g. [ouvir_INF música]NP diminui o stress) and past
participle can be used with adjectival force (e.g. o candidato eleito_PTP não
chegou a tomar posse). The tags GER, PTP and INF are thus included in the tag
set to enhance the discriminative power of the tag.

Other “non-canonical” tags are also included. These may be less interesting from a
general linguistic point of view but they are important to improve also the
contribution of the tagger for subsequent processing stages, e.g. named entity
recognition. They cover dialogue particles (adeus, olá,…) social titles (Pres., Drª.,
prof.,...), part of addresses (Rua, Av., Rot.,...), email addresses, months (Janeiro,
jan.,…), days of the week (Terça-feira, ter., Quarta,…), measurement units (km, kg,
b.p.m.,...) as distinct syntactic classes. Our tag set includes also specific tags for digits,
roman numerals, denominators of fractions (meio, terço, décimo, %,...), orders of
magnitude (centenas, biliões,…), symbols (/, #,…) and letters.

Finally, in order to tag multi-word expressions from closed classes, a special
tagging scheme is used where each component word receives the same tag prefixed
by L, and followed by the corresponding index number. The following are some
examples of the application of this scheme:

apesar_LPREP1 de_LPREP2

a_LCJ1 fim_LCJ2 de_LCJ3

a_LADV1 tempo_LADV2 e_LADV3 horas_LADV4

With the full tag set for the training data (cf. Annex C) defined under the above
guidelines, we prepared the training corpus by converting and adjusting the initial
tagged corpus from CLUL. With these data and the help of the TnT tool, a tagger for
Portuguese was trained. When coupled with a chunker and a tokenizer implemented
along the lines discussed in the Sections above, it scored 97.2% accuracy. This figure
was obtained with one run test over a held out evaluation corpus with the 10% not
used for training. This result is in line with the state-of-the-art performance reported
for German (96.7%) or English (96.7%) with the same tool over, respectively, the
NEGRA Corpus (320 Ktokens) and the Penn Treebank (1.2 Mtokens) corpora, and an
accuracy measurement averaged over 10 test runs (Brants, 2000).

Concluding remarks

The application of machine learning techniques to natural language POS tagging
permits to develop new taggers with state-of-the-art accuracy very rapidly. Although
most of the initial research in this topic has been conducted over data from English,
given the broad coverage of these techniques, this holds true for every language they
have been tried upon. Provided that the training data is ready, obtaining a new tagger
may be as rapid as a few seconds with the most efficient applications, like the TnT
software used in the research results reported above. Disregarding the time required to
hand annotate the training data, the time span needed to prepare a new tagger turns
out to be determined basically by the time needed to prepare the tools aimed at
handling language-specific issues.

These language-specific issues are to be found in each of the three major steps
involved in the automatic tagging sensu latu of raw text: chunking, tokenizing, and
tagging sensu stricto. As for Portuguese, the specific issues are: in terms of chunking,
the orthographic conventions for written dialog; in terms of tokenizing, strings
type-ambiguous between one or two tokens; finally, in terms of tagging sensu stricto,
the compilation of the tag set for training the tagger.

In this paper, we presented solutions for these specific issues. These solutions are
generic enough to be reused and thus to further reduce the time span required to
develop taggers for Portuguese. We also presented evaluation results showing that,
when coupled together to form a tagger for raw text, these solutions do not degrade
overall accuracy and efficiency, keeping up with state-of-the-art performance.

References

Branco, António Horta and João Silva, 2003, "Contractions: breaking the tokenization-tagging
circularity", In Mamede et al. (eds.) Computational Processing of the Portuguese Language,
Berlin: Springer, LNAI 2721, pp.167—170.

Brants, Thorsten, 2000, “TnT - A Statistical Part-of-speech Tagger”. Proceedings of the
Applied Natural Language Processing (ANLP), Association for Computational Linguistics,
pp. 224—231.

Brill, Eric, 1995, “Transformation-based Error-driven Learning and Natural Language
Processing: A case study in part-of-speech tagging”. Computational Linguistics, 21, pp.
543—565

Giménez, Jesús and Lluís Màrquez, 2003, “Fast and Accurate Part-of-Speech Tagging: The
SVM Approach Revisited”. Proceedings of the International Conference on Recent
Advances in Natural Language Processing (RANLP), Sofia: Bulgarian Academy of
Sciences, pp. 158—165.

Mikheev, Andrei, 2002, “Periods, Capitalized Words, etc.” Computational Linguistics 28(3),
pp. 289—318.

Nascimento, Fernanda, Luísa Pereira and João Saramago, 2000, "Portuguese Corpora at
CLUL" Proceedings of the Second International Conference on Language Resources and
Evaluation (LREC), Paris: ELRA, pp. 1603—1607.

Rathnaparkhi, Adwaith, 1996, “A Maximum Entropy Part-of-speech Tagger”. Proceedings of
the Empirical Methods on Natural Language Processing (EMNLP), Association for
Computational Linguistics, pp. 133—142.

Samuelsson, Chris and Atro Voutilainen, 1997, “Comparing a Linguistic and a Stochastic
Tagger”. Proceedings of Annual Meeting of the Association for Computational Linguistics
(ACL), Association for Computational Linguistics, pp. 246—253.

Annex A – Showcase example for dialogue orthography
<p><s> — Ficamos no jardim. </s><s> Está um lindo dia. </s></p>
<p><s> — Quero ir ao cinema! — anunciou o gémeo. </s></p>
<p><s> — Eu cá — disse a gémea — também quero — e olhou para a mãe. </s></p>
<p><s> — … não — hesitou a mãe. </s><s> — Ficamos aqui. </s></p>

Annex B – Type-ambiguous strings

Ambiguous
Strings

Occurrences in our test corpus
(230 Ktokens)

Total As one token As two tokens
consigo 17 8 9
desse 33 6 27
desses 14 0 14
deste 85 6 79
mas 1015 1015 0
na 1314 2 1312
nas 222 2 220
nele 11 0 11
no 1450 14 1436
nos 431 127 304
pela 356 0 356
pelas 69 0 69
pelo 397 0 397

Total 5414 1180 4234
21.80% 78.20%

Annex C
Tag Category Examples

ADJ Adjectives bom, brilhante, eficaz
ADV Adverbs hoje, já, sim, felizmente
CARD Cardinals zero, dez, cem, mil
CJ Conjunctions e, ou, nem
CL Clitics o, lhe, se
CN Common Nouns computador, cidade, ideia
DA Definite Articles o, os
DEM Demonstrative Pronouns este, esses, aquele
DFR Denominators of Fractions meio, terço, décimo, %
DGTR Roman Numerals VI, LX, MMIII, MCMXCIX
DGT Digits 0, 1, 42, 12345, 67890
DIAG Dialogue Particles adeus, olá, alô
EADR Electronic Addresses http://www.di.fc.ul.pt
GER Gerunds afirmando, sendo, vivendo
IA Indefinite Articles um, uns
IN Indefinite Nominals tudo, alguém, ninguém
INF Infinitives amar, correr, ser
INT Interrogative Pronouns quem, como, quando
ITJ Interjections oh, ah, eh
LTR Letters a, b, c
MGT Magnitude Classes unidade, dezena, dúzia, resma
MTH Months Janeiro, Dezembro
NP Noun Phrases idem
ORD Ordinals primeiro, centésimo, penúltimo
PADR Part of Address Rua, av., rot.
PNM Part of Name Lisboa, António, João
PNT Punctuation Marks ., ?, (
POSS Possessive Pronouns meu, teu, seu
PP Prepositional Phrases algures
PREP Prepositions de, para
PRS Personal Pronouns eu, tu, ele
PTP Past Participles sido, afirmado, vivido
QD Quantificational Determiners todos, muitos, nenhum
REL Relative Pronouns que, quem, cujo
STT Social Titles Presidente, drª., prof.
SYB Symbols @, #, &
TERMN Optional Terminations (s), (as)
UNIT Measurement Units km, kg, b.p.m.
V Verbs (other than PTP or GER) ser, afirmar, viver
WD Week Days segunda, terça-feira, sábado

Tags for multi-word expressions
LTAG1...LTAGn Each token i of a n-word expression of category TAG gets LTAGi
LCJ1...LCJ4 4-token conjunctional expression de modo a que
LPREP1 LPREP2 2-token prepositional expression apesar de
LADV1...LADV3 3-token adverbial expression no entanto

...

