
UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

Invalidating web applications attacks by employing the
right secure code

Ricardo Jorge Graça Morgado

Mestrado em Informática

Dissertação orientada por:
Prof. Doutora Ibéria Vitória de Sousa Medeiros

Prof. Doutor Nuno Fuentecilla Maia Ferreira Neves

2019

Acknowledgments

In first place, I would like to thank my parents for motivating me to pursue this academic
degree.

In second place, I would like to thank my advisors, professors Ibéria Medeiros and
Nuno Neves, for their helpful advice during this dissertation and for constantly providing
ideas on how I could make my work better. I would like to thank professor Ibéria for
always keeping me informed about upcoming deadlines.

I would also like to thank my friends from the LASIGE Research Unit for all the fun
conversations we had during the last few months.

This work was partially supported by the FCT through the project SEAL (PTDC/CCI-
INF/29058/2017), and LASIGE Research Unit (UID/CEC/00408/2019).

i

To my family and friends.

Resumo

Desde o seu aparecimento, as aplicações web têm vindo a tornar-se cada vez mais po-
pulares e tornaram-se numa parte essencial das nossas vidas. Usamo-las todos os dias para
fazer diversas tarefas tais como fazer compras, consultar o saldo da nossa conta bancária e
entrar em contacto com os nossos familiares e amigos. Atualmente, as aplicações web são
a forma mais utilizada para aceder aos serviços e recursos das organizações. No entanto,
são conhecidas por conter vulnerabilidades no seu código-fonte. Estas vulnerabilidades,
quando exploradas, podem causar danos severos às organizações como, por exemplo, o
roubo de milhões de credenciais dos utilizadores e o acesso a informação confidencial, o
que as torna num alvo apetecı́vel para utilizadores mal intencionados. Por esta razão, é
essencial que o acesso a serviços crı́ticos tais como serviços de saúde e financeiros, seja
feito através de aplicações web seguras.

A utilização de código seguro nas aplicações é de uma importância extrema para obter
aplicações seguras e garantir a segurança dos seus utilizadores. As vulnerabilidades são
deixadas inadvertidamente no código-fonte por programadores porque estes não têm o
conhecimento necessário para escrever código seguro ou porque os testes de software não
dedicam tempo suficiente à segurança. Por outro lado, os programadores que utilizam
nas suas aplicações funções seguras da linguagem de programação acreditam que as suas
aplicações estão protegidas. No entanto, algumas destas funções não invalidam todos os
ataques e deixam as aplicações vulneráveis.

Este trabalho é focado na linguagem PHP porque esta é atualmente a linguagem de
programação mais utilizada para o desenvolvimento de aplicações web. A linguagem PHP
permite aos programadores realizarem ações que não seriam possı́veis noutras linguagens,
o que torna mais fácil aos programadores cometer erros. A linguagem PHP contém um
grande número de funções seguras que podem ser utilizadas para remover vulnerabilida-
des dos diversos tipos. No entanto, uma grande maioria destas funções não é segura em
todos os contextos ou é especı́fica para um tipo de vulnerabilidade, o que cria a possibili-
dade de serem utilizadas incorretamente. Este problema torna mais fácil o aparecimento
de vulnerabilidades se for tido em consideração o facto de uma grande parte dos cursos de
programação existentes atualmente não dar ênfase suficiente à segurança. Por último, um
outro fator que contribui para o aparecimento de vulnerabilidades é a complexidade das
aplicações web atuais. Tal complexidade deve-se ao facto de as tecnologias disponı́veis na

v

web terem sofrido uma evolução significativa nos últimos anos, o que leva ao aumento da
quantidade de linguagens de programação e funcionalidades que os programadores têm
de conhecer.

Atualmente, existe um grande número de ferramentas de análise estática destinadas a
analisar código-fonte PHP e encontrar potenciais vulnerabilidades. Algumas destas ferra-
mentas são baseadas em taint analysis e outras baseadas em análise dinâmica, execução
simbólica, entre outras técnicas. Um problema conhecido destas ferramentas é o facto de,
por vezes, reportarem vulnerabilidades que não são reais (falsos positivos), o que pode
levar o programador a perder tempo à procura de problemas que não existem. Este tipo de
ferramentas dá aos programadores relatórios em formatos variados e a esmagadora maio-
ria delas deixa para o programador a tarefa de verificar se as vulnerabilidades reportadas
são reais e removê-las caso o sejam. No entanto, muitas delas não dão informação sobre
como remover as vulnerabilidades. Dado que muitos programadores estão mal informa-
dos acerca da escrita de código seguro, este processo nem sempre elimina as vulnerabili-
dades por completo.

Apenas um pequeno número de ferramentas de análise estática realiza a correção au-
tomática do código-fonte das aplicações e as que o fazem muitas vezes têm limitações.
Destas limitações, destaca-se o facto de inserirem código sintaticamente inválido que im-
pede o funcionamento correto das aplicações, o que permite a introdução de melhorias
nesta área.

De entre os vários tipos de vulnerabilidades que podem ocorrer em aplicações web, os
dois mais conhecidos são a injeção de SQL e o Cross-Site Scripting, que serão estudados
em detalhe nesta dissertação.

Esta dissertação tem dois objetivos principais: em primeiro lugar, estudar estes dois
tipos de vulnerabilidades em aplicações web PHP, os diferentes ataques que as exploram
e as diferentes formas de escrever código seguro para invalidar esses ataques através da
utilização correta de funções seguras; em segundo lugar, desenvolver uma ferramenta
capaz de inserir pequenas correções no código-fonte de uma aplicação web PHP de modo
a remover vulnerabilidades sem alterar o comportamento original da mesma.

As principais contribuições desta dissertação são as seguintes: um estudo dos dife-
rentes tipos de ataques de injeção de SQL e Cross-Site Scripting contra aplicações web
escritas em PHP; um estudo dos diferentes métodos de proteger aplicações web escri-
tas em PHP e as situações em que os mesmos devem ser usados; o desenvolvimento de
uma ferramenta capaz de remover vulnerabilidades de aplicações web escritas em PHP
sem prejudicar o seu comportamento original; uma avaliação experimental da ferramenta
desenvolvida com código PHP artificial gerado automaticamente e código PHP real.

A solução proposta consiste no desenvolvimento de uma ferramenta de análise estática
baseada em taint analysis que seja capaz de analisar programas PHP simplificados e, caso
estejam vulneráveis, inserir linhas de código com correções simples que removam tais

vi

vulnerabilidades. Tudo isto sem alterar o comportamento original dos programas. A
ferramenta desenvolvida limita-se exclusivamente à inserção de novas linhas de código,
sem modificar as já existentes, para minimizar a probabilidade de tornar um programa
sintaticamente inválido. Isto permite remover vulnerabilidades de aplicações web e, ao
mesmo tempo, ensinar aos programadores como escrever código seguro. Os programas
PHP simplificados que a ferramenta analisa consistem em ficheiros PHP contendo um
único caminho do fluxo de controlo do programa original a que correspondem. Este
programa simplificado não pode conter estruturas de decisão nem ciclos. A decisão de
analisar programas simplificados foi tomada para permitir manter o foco desta dissertação
na inserção de correções seguras, algo que atualmente apenas é feito por um pequeno
número de ferramentas.

Para avaliar a ferramenta desenvolvida, utilizámos cerca de 1700 casos de teste con-
tendo código PHP artificial gerado automaticamente com vulnerabilidades de Cross-Site
Scripting e seis aplicações web reais, escritas em PHP, contendo o mesmo tipo de vul-
nerabilidade. Foram também utilizados 100 casos de teste contendo código PHP artifi-
cial com vulnerabilidades de injeção de SQL. A ferramenta conseguiu analisar todos os
ficheiros PHP. Relativamente à capacidade de a ferramenta inserir correções no código-
fonte das aplicações, obtivemos resultados encorajadores: todos os ficheiros que foram
corrigidos continham código PHP sintaticamente válido e apenas um ficheiro viu o seu
comportamento original alterado. O ficheiro cujo comportamento foi alterado apresenta
uma estrutura mais complexa do que a esperada para um programa simplificado, o que
influenciou a execução da nossa ferramenta neste caso.

Relativamente à capacidade de a ferramenta detetar vulnerabilidades, verificámos que
a mesma reportou algumas vulnerabilidades que não são reais. Tal situação aconteceu em
parte devido ao uso de expressões regulares nas aplicações web, algo que causa muitas
dificuldades a ferramentas de análise estática. Verificámos também que muitos dos falsos
negativos (vulnerabilidades reais que não foram reportadas) se deveram ao contexto em
que determinadas funções seguras são utilizadas, algo que, mais uma vez, causa muitas
dificuldades a ferramentas deste tipo. As situações referidas aconteceram principalmente
no código artificial, que não deve ser visto como representativo de aplicações web reais.
Assim, podemos afirmar que a nossa ferramenta lida eficazmente com código PHP real,
o que abre a porta à possibilidade de a mesma ser utilizada para corrigir vulnerabilidades
em aplicações disponı́veis ao público.

Após esta avaliação experimental, concluı́mos que a solução desenvolvida cumpriu
os objetivos principais para os quais foi concebida, ao ser capaz de remover vulnerabili-
dades sem prejudicar o comportamento original dos programas. A solução desenvolvida
constitui uma melhoria nas capacidades das ferramentas de análise estática existentes atu-
almente, em especial das que realizam correção automática de código.

O estudo realizado acerca destes dois tipos de vulnerabilidades permitiu também obter

vii

uma fonte de informação correta e confiável acerca das formas de escrever código seguro
para prevenir os dois tipos de vulnerabilidades estudados em aplicações web escritas em
PHP.

Palavras-chave: vulnerabilidades em aplicações web, análise estática, segurança de
software, correção de código

viii

Abstract

Currently, web applications are the most common way to access companies’ services
and resources. However, since their appearance, they are known to contain vulnerabilities
in their source code. These vulnerabilities, when exploited, can cause serious damage to
organizations, such as the theft of millions of user credentials and access to confidential
data. For this reason, accessing critical services, such as health care and financial services,
with safe web applications is crucial to its well-functioning.

Often, vulnerabilities are left in the source code unintentionally by programmers be-
cause they do not have the necessary knowledge about how to write secure code. On
the other hand, programmers that use secure functions from the programming language
in their applications, employing thus secure code, believe that their applications are pro-
tected. However, some of those functions do not invalidate all attacks, leaving applica-
tions vulnerable.

This dissertation has two main objectives: to study the diverse types of web appli-
cation vulnerabilities, namely different attacks that exploit them, and different forms to
build secure code for invalidating such attacks, and to develop a tool capable of protecting
PHP web applications by inserting small corrections in their source code.

The proposed solution was evaluated with both artificial and real code and the results
showed that it can insert safe corrections while maintaining the original behavior of the
web applications in the vast majority of the cases, which is very encouraging.

Keywords: web application vulnerabilities, static analysis, software security, code
correction

ix

Contents

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives . 3
1.3 Contributions . 3
1.4 Document Structure . 4

2 Context and Related Work 5
2.1 Vulnerabilities . 5

2.1.1 A1: Injection . 5
2.1.2 A7: Cross-Site Scripting (XSS) 6

2.2 Sanitization Methods . 8
2.2.1 Generic Sanitization Methods 8
2.2.2 Cross-Site Scripting Sanitization 9
2.2.3 SQL Injection Sanitization . 10
2.2.4 PHP Filters . 11

2.3 Safety of Sanitization Methods . 11
2.3.1 Pitfalls of Cross-Site Scripting Sanitization 11
2.3.2 Pitfalls of SQL Injection Sanitization 12

2.4 Static Analysis . 13
2.4.1 Automatic Code Correction . 16

3 Proposed Solution 17
3.1 Design Challenges . 17

3.1.1 Where to insert the correction? 17
3.1.2 What correction to insert? . 19
3.1.3 How to deal with existing sanitization? 20

3.2 Solution Overview . 21
3.3 Algorithm . 23

xi

3.3.1 Main Idea . 23
3.3.2 Pseudocode . 24

4 Implementation 31
4.1 Knowledge Base . 31

4.1.1 Entry Points . 31
4.1.2 Sensitive Sinks . 31
4.1.3 Sanitization Methods . 32

4.2 The PHPly Parser . 33
4.3 Data Structures . 34

4.3.1 Variable Definition . 34
4.3.2 Program State . 36
4.3.3 Program State by Sensitive Sink 36
4.3.4 Lines of Code with HTML . 37
4.3.5 Corrected Variables . 38

4.4 Corrections Applied . 38
4.4.1 Format String Correction . 39

4.5 Implementation Decisions . 41

5 Evaluation 45
5.1 Software Assurance Reference Dataset (SARD) 45

5.1.1 XSS Dataset Summary . 46
5.1.2 SQLi Dataset Summary . 47
5.1.3 Sources of Input . 48
5.1.4 XSS Sanitization Methods . 50
5.1.5 SQLi Sanitization Methods . 50
5.1.6 Sensitive Sinks . 52
5.1.7 Explanation for Mislabelling in the XSS Dataset 52

5.2 XSS Evaluation With SARD Test Cases 57
5.2.1 Reasons for False Negatives . 58
5.2.2 Reasons for False Positives . 62
5.2.3 Applied XSS Corrections . 64

5.3 SQLi Evaluation With SARD Test Cases 64
5.3.1 Reason for False Negatives . 65
5.3.2 Reasons for False Positives . 65
5.3.3 Applied SQLi Corrections . 71

5.4 Real Web Applications . 71
5.4.1 Application Description . 72
5.4.2 Results . 72

xii

6 Conclusions and Future Work 75
6.1 Conclusions . 75
6.2 Limitations . 76
6.3 Future Work . 77

Acronyms 80

Bibliography 83

xiii

List of Figures

3.1 Overview of our solution’s main components. 21

xv

List of Tables

2.1 Comparison between the result of the two forms of encoding, and how
they are rendered in the browser. 10

4.1 Sensitive sinks considered by our tool. 31
4.2 Sanitization methods supported by our tool. 32

5.1 Number of safe and unsafe XSS test cases according to the two labels. . . 47
5.2 Safety of the XSS sanitization functions in our dataset. 48
5.3 Number of safe and unsafe SQLi test cases according to the two labels. . 48
5.4 Summary of the XSS test cases we collected from SARD, their sources

of input and sanitization methods. 51
5.5 Summary of the tool’s results for the XSS test cases. 57
5.6 Summary of the calculated metrics for XSS. 58
5.7 Number of false negatives for each of the presented reasons. 61
5.8 Number of false positives for each of the presented reasons. 63
5.9 Summary of the applied XSS corrections. 64
5.10 Summary of the tool’s results for the SQLi test cases. 65
5.11 Summary of the calculated metrics for SQLi. 65
5.12 Summary of the applied SQLi corrections. 71
5.13 Description of the applications used in our evaluation. 72
5.14 Summary of the files corrected for each of the applications. 73
5.15 Safety of the corrections applied to the real applications. 73

xvii

Chapter 1

Introduction

In recent years, web applications have become increasingly popular and an essential part
of our lives. We use them to perform everyday tasks such as checking our bank account
balance, performing shopping within the comfort of our homes and contacting our friends
and family. To support this functionality, web applications require us to provide them
with our personal details, such as our home address and credit card number. These details
are stored on the application’s database and may be exposed if someone can successfully
perform an attack.

Web applications often contain bugs that may reside undetected in their source code
for many years. Some of these bugs evolve into security vulnerabilities when exploited
by an attacker. By leveraging such vulnerabilities, attackers can steal or modify users’
personal information, target them with advertisements or even shut down the application.
Depending on the size and popularity of the application, a vulnerability might impact
anything from a few dozen to millions of users and cause irreparable damage to a com-
pany’s reputation. These factors make web applications an appealing target for attackers
because, if they succeed, they can potentially compromise the personal details of up to
millions of users.

Vulnerabilities are often caused by unaware and misinformed developers who make
mistakes when writing their code. Programming courses often teach how to write code
with little or no concern for security, thus building up bad habits within developers. There
are also the problems of time and budget within organizations. Organizations often want
their software developed within tight deadlines and with low cost, meaning that security
is often not taken into consideration until it is too late. Software tests often value the
user experience and system requirements over security because organizations want lots of
people to use their applications. Lastly, the sources of information available to developers
can sometimes have confusing information, which can also influence the security of the
code [1] [6].

Thanks to advances in web technologies made over the last few years, web applica-
tions are now very complex and can even simulate the behavior of desktop applications.

1

Chapter 1. Introduction 2

This is achieved by resorting to various programming languages and frameworks. A
web application typically includes a mixture of PHP, Javascript, HTML, CSS and SQL,
amongst other languages. This mixture of languages and frameworks also puts an extra
burden on developers, because they have to remember how to use each of them. Ulti-
mately, this also contributes to the appearence of vulnerabilities because developers can
get confused in the midst of so many languages.

All programming languages, namely PHP, contain a wide range of functions (and
other methods) that can be used to remove vulnerabilities and invalidate attacks, however,
most developers do not know how or when to use them. There are also many tools avail-
able to analyze applications and find potential flaws, however, such tools are often hard
to use, do not provide the information developers need and report vulnerabilities that are
not real (i.e., false positives).

Because most tools require that the developers correct manually the reported bugs, the
existence of tools that can automatically detect and correct such problems would facilitate
the developers’ task of finding and removing vulnerabilities from their code. However,
there are not many tools available with this capability and the ones that exist often have
limitations in the sense that they produce syntactically invalid new programs that can not
be executed.

1.1 Motivation

Given how important web applications are nowadays, it is of vital importance to ensure
that their source code has no vulnerabilities. According to the OWASP Top 10 - 2017
[24], injection vulnerabilities (such as SQL Injection) rank number one and Cross-Site
Scripting (XSS) ranks number seven in the list of web application security risks. Since
they are prevalent and potentially have high impact, these are the types of vulnerabilities
we will focus on this work, with XSS receiving most of our attention.

Our work is focused on PHP because it is currently the most used server-side pro-
gramming language. As of June 2019, it powers around 79% of the websites whose
server-side programming language is known1. PHP also powers Wordpress2, Drupal3 and
Joomla4, three popular Content Management Systems (CMS) that can be extended via
custom modules and plugins made by the developers. These modules and plugins are
known for being a rich source of vulnerable code. The fact that PHP is a ”weakly-typed”
language makes it easier to make mistakes in some situations, especially when dealing
with badly-documented code. This happens because most Integrated Development En-
vironments (IDEs) can not be sure of the type of data that a variable is going to have at

1https://w3techs.com/technologies/details/pl-php/all/all
2https://wordpress.com/
3https://www.drupal.org/
4https://www.joomla.org/

Chapter 1. Introduction 3

runtime in a given point in the program, thus providing less help to the developers in the
form of errors and warnings.

Currently, there are several tools available to analyze PHP source code and detect
potential vulnerabilities. Some of these tools are based on taint analysis and others on
techniques such as dynamic analysis [18] and symbolic execution [4] [12] [26]. These
tools provide reports in varying formats and almost all of them leave the burden of cor-
recting the vulnerabilities to the developers. Given that most developers are unaware of
the correct way to fix a given bug, this process often does not completely eliminate the
vulnerability. Only a small number of these tools performs automatic correction of the
application’s source code, and the ones that do so often insert invalid fixes that break the
expected behavior of the applications, thus leaving room for improvements.

This dissertation focuses on studying two prevalent types of web application vulner-
abilities, namely XSS and SQL Injection (SQLi), as well as the attacks that exploit them
and the ways of writing secure code for invalidating those attacks. In addition, it focuses
on the development of a tool than can protect a PHP web application by inserting small
fixes in the code that do not break the applications’ functionality, thus improving the work
performed by existing tools.

1.2 Objectives

The main objectives of our work are the following:

1. To study the various types of XSS and SQLi attacks against PHP web applications
and to design an approach that could prevent such attacks by re-writing the code. A
study like this would provide the community with a source of correct information
regarding the security of PHP web applications;

2. To develop a tool capable of inserting small fixes in the web application’s code that
remove a vulnerability without breaking the application’s original behavior. This
would allow developers to correct their code and learn how they could have made
it secure in the first place.

1.3 Contributions

The main contributions of this dissertation are the following:

1. A study of the different types of XSS and SQLi attacks against PHP web applica-
tions;

2. A study of the different sanitization methods available in PHP and the situations
when they should be used;

Chapter 1. Introduction 4

3. Development of a tool capable of correcting PHP web applications while maintain-
ing their original functionality;

4. An evaluation of the developed tool with both artificial and real web application
code.

1.4 Document Structure

This document is structured as follows: Chapter 2 provides a description of the sani-
tization methods provided by PHP and when they should be used. It also includes an
overview of other research efforts in the area of static analysis, with a special emphasis
on taint analysis. Chapter 3 provides an overview of our solution to correct source code,
the challenges it faces and how we solved them. Chapter 4 describes our solution’s im-
plementation in detail. Chapter 5 describes the evaluation we conducted of our solution.
Lastly, Chapter 6 presents our conclusions and directions for future work.

Chapter 2

Context and Related Work

This chapter provides some context and gives an overview of related work. It describes the
vulnerabilities for our work and explains how they can be attacked, following with a de-
scription of the PHP sanitization functions that can prevent such attacks and the situations
in which they should be applied. Lastly, we will briefly present some tools that employ
static analysis techniques, with a special emphasis on those that perform automatic code
correction.

2.1 Vulnerabilities

The IETF RFC 4949 [21] defines a vulnerability as: ”A flaw or weakness in a system’s
design, implementation, or operation and management that could be exploited to violate
the system’s security policy.” As the definition clearly states, not all software flaws can
be considered vulnerabilities. Only those that can be exploited to violate the system’s
security policy can be considered as such. We decided to focus our work on two types
of vulnerabilities: XSS and SQLi. We made this decision because these are the two most
well-known types of vulnerabilities in web applications and they are considered as very
prevalent by the OWASP Top 10 - 2017 [24], making them a good starting point for the
development of the solution we propose.

2.1.1 A1: Injection

Injection flaws, such as SQL and OS, occur when untrusted data is sent to an interpreter
as part of a query or command [24], repectively, thus tricking the interpreter into execut-
ing unintended commands. The most well-known type of injection flaw is SQL Injection
(SQLi), in which an attacker sends an especially crafted input to a database as part of a
query. This allows the attacker to bypass authentication mechanisms, gain access to con-
fidential information, insert or modify data or even shut down the database server. SQLi
flaws are often introduced by developers who fail to properly sanitize their input data
before inserting it into a query. This type of vulnerability can be prevented by applying

5

Chapter 2. Context and Related Work 6

proper sanitization to the input and by using parameterized queries to interact with the
database, amongst other techniques.

1 <?php
2 $query = "SELECT * FROM Employee WHERE id = " . $_GET["id"];
3 $result = mysqli_query($conn, $query);

Listing 2.1: Example of a classic SQLi vulnerability in PHP.

Listing 2.1 shows an example of a piece of code vulnerable to SQLi. In this example,
the input obtained via the $_GET array is included directly in the query, without any form
of validation or sanitization. In Listing 2.2 there is an example of an input that triggers the
vulnerability. This input (1 OR 1=1) causes the conditional part of the query to always
evaluate to true (referred to as a tautology [11]), when executed by mysqli query, thus
leading to the return of more records than the developer originally intended. This could
lead to the exposure of confidential information, if $result is for instance returned to
the user.

1 <?php
2 $query = "SELECT * FROM Employee WHERE id = 1 OR 1=1";
3 $result = mysqli_query($conn, $query);

Listing 2.2: Example of a SQLi vulnerability exploitation (the attacker’s input is under-
lined).

2.1.2 A7: Cross-Site Scripting (XSS)

Cross-Site Scripting (XSS) flaws occur when an application includes untrusted data as
part of a web page without proper validation or escaping [24]. This type of flaws allows
an attacker to trick the victim’s web browser into executing malicious code. There are
three types of XSS attacks:

Reflected XSS: This type of attack occurs when the user’s input is immediately returned
by the web application without being made safe to render in the browser. This
type of attack requires the victim to be tricked into, for example, clicking on a
link before it can succeed. Listing 2.3 shows an example of Reflected XSS. As
described before, the input obtained via the $ GET array is directly ”reflected” on
the resulting web page after being used in an echo statement.

1 <?php
2 $user = $_GET["user"];
3 echo "Welcome, " . $user;

Listing 2.3: Example of a Reflected XSS vulnerability in PHP.

Stored XSS: This type of attack occurs when untrusted input is stored on the server and
later sent to a victim without being made safe to render in a browser. This type of

Chapter 2. Context and Related Work 7

attack requires no action from the victim and it can have a higher impact due to the
larger number of potential victims involved. In Listing 2.4, there is an example of
this type of XSS. A query (defined in the $query variable) is executed in line 3,
via the call to mysqli query. The result of this execution is stored in $result
and consists of an object of type mysqli result, that contains all rows returned
by the query. In line 4, a while loop is used to iterate over all rows contained in
$result via the mysqli fetch array function. Each time this function is
called, it returns one row from $result in the form of an array. In each iteration
of the while loop, the variable $row contains one row from $result. In line 5,
the value of position 1 of $row is included in a call to echo, thus being sent to the
victim as part of the output. If this valued contained Javascript, that code would be
sent to the victim’s browser and executed.

It is important to note that, for the attack to succeed, the attacker would need to
insert previously an especially crafted message in the application’s database via
some of it’s input.

1 <?php
2 $query = "SELECT * FROM Suggestion";
3 $result = mysqli_query($conn, $query);
4 while ($row = mysqli_fetch_array($result))
5 echo "Message: " . $row[1];

Listing 2.4: Example of a Stored XSS vulnerability in PHP.

DOM-based XSS: This type of attack occurs when the entire untrusted data flow takes
place in the victim’s browser. To succeed, it requires developers to use unsafe
Javascript functions, such as eval() and document.write(). Listing 2.5
shows an example of this type of XSS. In this example, the content of the current
URL (document.location) is written onto the HTML by a call to document.
write() made in a client-side script, which means that users tricked into opening
the web page via a URL such as

http://example.com/index.php#<script>alert(1)</script>

will be attacked.

The attack occurs because the result of calling decodeURIComponent is writ-
ten onto the HTML by document.write(), a function that does not encode
HTML’s special characters. The decodeURIComponent function URL-decodes
the string it receives as argument. In this case, document.location contains a
URL-encoded version of the current web page’s URL (note that the URL contains
some Javascript in it). This means that the call to decodeURIComponent made
in line 3 returns a value that contains some valid Javascript in it. Because this value

Chapter 2. Context and Related Work 8

is written onto the HTML by document.write(), it results in the inclusion of
a <script> tag in the HTML document. The browser then executes this script,
allowing the attack to succeed.

It is important to note that the server had no influence on this XSS attack because
the attacker’s payload was included after the # character and was not sent to the
server.

1 <script>
2 document.write("Current URL " +
3 decodeURIComponent(document.location));
4 </script>

Listing 2.5: Example of a DOM-based XSS vulnerability.

The reflected and stored variants of XSS can be prevented by properly escaping potentially
malicious input before including it in a web page. There are also other techniques that
can be used, capable of preventing XSS in all web applications, regardless of their pro-
gramming language. Such techniques include defining a Content Security Policy (CSP)1

or defining the X-XSS-Protection HTTP header2. The CSP can prevent all variants
of XSS while the X-XSS-Protection header can only prevent the reflected variant of
XSS.

To prevent the DOM-based variant of XSS in Javascript, developers need to make use
of safe functions and attributes, such as innerText and textContent.

2.2 Sanitization Methods

2.2.1 Generic Sanitization Methods

This subsection presents some sanitization methods available in PHP. They are referred
to as generic because they can be used to prevent both XSS and SQLi attacks.

For numeric inputs, the PHP language contains two functions that can prevent many
of the attacks against the two types of vulnerabilities being considered in our work (except
DOM-based XSS). These functions are intval and floatval. Both functions receive
a string as their argument and return the result of converting that string to an integer and
a float, respectively. If they are unable to convert the string to a number, they return
zero, thus making any malicious input harmless while leaving benign inputs untouched.
In addition to the two aforementioned functions, there is the possibility of using casts
to numeric types. The casts will perform in the same way as the previously described
functions, thus making inputs harmless.

1https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
2https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection

Chapter 2. Context and Related Work 9

For string inputs that have a well-known format, such as a date or a zip code, there is
the possibility of using the preg match function to compare it with a regular expression.
In order for this technique to be safe, the developer has to use a correct regular expression.

Lastly, if the input can only assume one of a limited number of values, developers
can use white lists to ensure it is safe. There are many ways to do this in PHP, but one
possibility is to create an array of valid values and use the in array function to verify
if the input is part of the array.

2.2.2 Cross-Site Scripting Sanitization

The reflected and stored variants of XSS can be prevented by using functions that encode
special characters, making them harmless to render in the browser. There are two groups
of functions that can be used:

HTML-encoding functions: These functions convert all of HTML’s special characters
to their respective representation in HTML entities, thus preventing attacks that
abuse unintended utilization of these values. For example, the < character is con-
verted to < , thus being displayed on the screen by the browser. There are
two functions in this group: htmlspecialchars and htmlentities. They
receive the same arguments (a string to be sanitized and a set of flags), but differ
in the number of characters they convert. The difference between them lies in the
number of characters they convert. htmlspecialchars converts the following
characters: &, ", ’, <, >. htmlentities converts these characters and more
than two hundred additional ones, such as Á and Ç.

Despite their difference, both of them encode all of HTML’s special characters,
making their input safe to render in the browser in most situations. The used flags
can influence the safety of these functions because the flags specify the way the
function encodes quotes and the way it deals with the HTML itself (whether it
considers the HTML as HTML 4.01 or HTML 5, for example).

URL-encoding functions: These functions perform URL-encoding of their input, mean-
ing that any non-alphanumeric character is encoded and made harmless to render
in the browser. As an example, the < character is converted to %3C , thus being
made harmless, as the browser will display %3C on the screen instead of the actual
character. There are three functions in this group: urlencode, rawurlencode
and http build query. http build query receives an array and returns a
URL-encoded query string with all key-value pairs contained in the array. The other
two functions receive a single string as an argument and differ only in the way they
encode spaces. urlencode encodes spaces as + while rawurlencode encodes
spaces as %20. Functions belonging to this group will make their input harmless
in all situations, but they may cause the input to be displayed on the screen in it’s

Chapter 2. Context and Related Work 10

Encoding Function Returned Value Rendered by the browser as
htmlentities <script> <script>
urlencode %3Cscript%3E %3Cscript%3E

Table 2.1: Comparison between the result of the two forms of encoding, and how they are
rendered in the browser.

URL-encoded form. For this reason, these functions should only be used in some
special situations.

To illustrate the differences between the two forms of encoding, we provide an example
in Table 2.1. In this table, both forms of encoding receive as input the string <script>.
Regarding the DOM-based variant of XSS, it can only be prevented in Javascript, which
is not the main focus of our work.

2.2.3 SQL Injection Sanitization

SQL Injection attacks can be prevented by using functions of the * escape string

family. These functions escape SQL’s metacharacters in order to make their input safe to
include inside of a SQL query string. For MySQL, the mysql real escape string

and mysqli real escape string functions can be used to prevent SQLi in some
situations. Both functions escape the same characters in the same way. The difference
between them lies in the PHP extension they use. The former uses the MySQL3 extension
while the latter uses the MySQL Improved extension.

Other than these functions and the generic solutions, the safest way to prevent SQLi
is to use prepared statements. Prepared statements4 consist of two phases: preparation
and execution. In the preparation phase, the statement is sent to the database server,
which performs a syntax check and initializes resources for later use. In the execution
phase, the client binds parameter values and sends them to the server. The server then
executes the statement with the bound values using the previously initialized resources.
This ensures that user-supplied values are never treated as SQL commands. In PHP, the
mysqli_prepare function allows the creation of prepared statements. After creating
the statement, the developer has to bind values to all of it’s parameters and execute it. To
do this, the functions mysqli_stmt_bind_param and mysqli_stmt_execute
are available.

The use of prepared statements is demonstrated in Listing 2.6. In this example, a string
containing SQL code is assigned to the variable $query in line 2. Note that this string
contains a question mark in the location where the input is going to be bound later. Next,
in line 3, a call to mysqli prepare is made to execute the preparation phase. This call

3The MySQL extension was deprecated in PHP 5.5 and removed in PHP 7.
4Prepared statements are not available in the MySQL extension.

Chapter 2. Context and Related Work 11

returns an object of type mysqli stmt. In line 4, the value of $ GET["id"] is bound
to the statement (in the location where the question mark is). The string "i" given as the
second argument to mysqli stmt bind param specifies that the argument should be
treated as an integer. The prepared statement (with a value bound to it’s only parameter)
is executed in line 5 and the result of this execution is retrieved in line 6.

1 <?php
2 $query = "SELECT * FROM Employee WHERE id = ?";
3 $stmt = mysqli_prepare($conn, $query);
4 mysqli_stmt_bind_param($stmt, "i", $_GET["id"]);
5 mysqli_stmt_execute($stmt);
6 $result = mysqli_stmt_get_result($stmt);

Listing 2.6: Use of prepared statements in PHP.

2.2.4 PHP Filters

PHP filters can be employed as a sanitization method by calling the filter var func-
tion, and by providing as it’s second argument a constant that identifies the filter to be
used. This sanitization method can operate as both a generic one and a XSS one, depend-
ing on the provided filter. The sanitization filters5 available are all named FILTER SANI

TIZE *. These filters range from number sanitization that act similarly to intval to
HTML-encoding that performs the same job as htmlspecialchars. Examples of
such filters are FILTER SANITIZE NUMBER INT and FILTER SANITIZE SPECIA

L CHARS, respectively. There are also filters that perform URL-encoding. Note that the
only filters that can prevent SQLi are the ones that operate as the generic sanitization
methods.

2.3 Safety of Sanitization Methods

2.3.1 Pitfalls of Cross-Site Scripting Sanitization

The HTML-encoding functions can prevent the stored and reflected variants of XSS when
their result is included inside the content of any HTML tag, other than the <script> and
<style>6 tags. They will allow attacks to go through when their result is included in an
unquoted part of any HTML tag’s definition. They will also fail if they are called without
the ENT QUOTES flag (or with the ENT NOQUOTES flag) and their result is included
inside of a string quoted with single quotes. The most widely recommended way to call
these functions safely is to use solely the ENT QUOTES flag. Listings 2.7 and 2.8 show
examples of safe and unsafe usage of htmlentities, respectively. Listing 2.9 presents
an example of an attack against the code in Listing 2.8.

5https://www.php.net/manual/en/filter.filters.sanitize.php
6The execution of Javascript inside this tag is only possible in older browsers.

Chapter 2. Context and Related Work 12

1 <?php
2 $input = htmlentities($_GET["a"], ENT_QUOTES);
3 echo "<p>" . $input . "</p>";

Listing 2.7: Safe usage of htmlentities.

1 <?php
2 $input = htmlentities($_GET["a"]);
3 echo "<body bgcolor=’#" . $input . "’>Hello World!</body>";

Listing 2.8: Unsafe usage of htmlentities (called without flags).

1 <?php
2 $input = htmlentities($_GET["a"]);
3 echo "<body bgcolor=’000’ onload=’alert(1)’>Hello World!</body>";

Listing 2.9: Example of an attack against the code in Listing 2.8 (the attacker’s input is
underlined).

The URL-encoding functions can prevent the stored and reflected variants of XSS
in all situations because they encode all non-alphanumeric characters. This means that
it is not possible to write meaningful Javascript if the input goes through one of these
functions. However, the use of HTML-encoding is preferred over URL-encoding in most
situations, as the URL-encoding functions cause the input to appear in it’s URL-encoded
form, which may cause the application to be less appealing to the user, as shown in Table
2.1. URL-encoding should only be used in the situations when HTML-encoding is unsafe.

2.3.2 Pitfalls of SQL Injection Sanitization

Functions of the * escape string family can only prevent SQLi if their result is in-
cluded inside of a SQL string. This happens because they only sanitize characters that
can influence a string’s limits, such as quotes and line breaks. For example, if their result
is included in a query, in a comparison with an integer, they will let the attack proceed.
Listings 2.10 and 2.11 show examples of safe and unsafe usage of these functions, respec-
tively.

1 <?php
2 $query = "SELECT * FROM Employee WHERE name = ’" .
3 mysqli_real_escape_string($conn, $_GET["name"]) . "’";
4 $result = mysqli_query($conn, $query);

Listing 2.10: Safe usage of the string escaping function.

1 <?php
2 $query = "SELECT * FROM Employee WHERE id = " .
3 mysqli_real_escape_string($conn, $_GET["id"]);
4 $result = mysqli_query($conn, $query);

Listing 2.11: Unsafe usage of the string escaping function (id is an integer).

Chapter 2. Context and Related Work 13

In Listing 2.11, the usage of mysqli real escape string is unsafe because the lo-
cation where the input is included in the query is not delimited by quotes. This means that
because this function does not modify inputs such as 1 OR 1=1 (that contain no quotes),
it allows them to be included as part of the query’s structure, thus being executed by the
database server. This means that these functions can only correct a small subset of the
possible SQLi vulnerabilities, meaning that developers should resort to other sanitization
methods when these functions are unsafe.

It is important to note that prepared statements do not work in all situations. Prepared
statements do not allow the binding of parameters to table or column identifiers or SQL
keywords meaning that, in this situation, developers should resort to white lists to validate
their input against a set of values known to be valid (the study performed in [3] suggests
that this situation is uncommon). Prepared statements also do not work if developers
make incorrect use of them, which is likely to happen given that they are more complex
than simple sanitization functions.

2.4 Static Analysis

Static analysis has the objective of analyzing the source code of an application to find
bugs. Since some bugs may later evolve into vulnerabilities, this technique is of vital
importance for developers. Static Analysis Tools (SATs) analyze the whole code without
executing it. This allows developers to use them in any stage of the application develop-
ment process, even if their application is not complete. To achieve their objective, SATs
compare the code to a set of patterns that indicate a vulnerability. If the tool’s knowledge
base does not contain a pattern for a given type of vulnerability, the tool will not report it,
leading to a false negative.

When compared to manual code auditing, SATs offer considerable advantages be-
cause they can analyze much larger code repositories in a relatively short time. On the
other hand, they are not as accurate as a human being at finding vulnerabilities and may
report false positives (reporting a flaw that is not actually a vulnerability). False positives
are particularly bad because they cause the developer to waste time looking for unexistent
problems. Most SATs still require human intervention to verify that the bugs reported are
in fact vulnerabilities, and fix them when necessary.

Several authors have conducted studies on the way developers interact with SATs.
Oyetoyan et al. [17] conducted a study in which they aimed to learn what developers
expect from SATs. They learned that developers prefer tools that are easy to install and
use, provide easy-to-understand messages and provide no false positives. Smith et al.
[22] conducted a study in which they equipped developers with a static analysis tool and
observed their interactions with security vulnerabilities in an open-source system they
had contributed to. They concluded that developers often do not use SATs because such

Chapter 2. Context and Related Work 14

tools do not provide information aligned with their needs. The authors also observed that
developers would benefit from program flow navigation tools while investigating vulner-
abilities.

One of the forms of static analysis is taint analysis. Taint analysis consists of an
approach in which program variables receive one of two labels: tainted (their value is
potentially unsafe) and untainted (their value is safe). In this technique, the SAT tracks
the status of a program’s variables from their definition to a sensitive sink (function that
expects to receive untainted data). The locations where user-controlled input is assigned
to variables for the first time are referred to as entry points. Initially, all variables that
receive user-controlled input are marked as tainted. When the value of a tainted variable
is assigned to an untainted variable, the former’s taint status is ”propagated” to the latter,
in a process known as taint propagation. If a tainted variable is passed through a safe
sanitization function, it is marked as untainted. The main difficulty of taint analysis lies
in this mechanism of marking variables as untainted because it is often difficult to decide
whether a sanitization function is safe in a given context. Such decision often requires
knowledge about the application’s execution environment and internal structure. When
faced with a decision like this, SATs have to make one of two choices: 1) mark the
variable as tainted and possibly report a false positive or 2) mark the variable as untainted
and possibly miss a vulnerability.

Halfond et al. [10] developed a novel form of taint analysis that they referred to as
positive tainting. Their technique is based on the marking and tracking of trusted data,
instead of untrusted data. In their work, they argued that traditional taint analysis can
sometimes trust data that should not be trusted, leading the analysis to miss vulnerabil-
ities and that positive tainting fails in a way that maintains the security of the system,
because any input that is not explicitly trusted is considered to be unsafe. They believe
that enumerating all sources of untrusted input for traditional taint analysis is error prone
and enumerating all sources of trusted input is straightforward. Their approach eliminates
the problem of false negatives that result from the incomplete identification of untrusted
data sources. Their work, however, is focused solely on SQL Injection.

Dashe and Holz [5] developed an interesting approach that detects second-order vul-
nerabilities in web applications. Second-order vulnerabilities (such as stored XSS) occur
when a payload is stored on the server and later used in a security-critical operation. This
type of vulnerability is often introduced by developers who believe that data coming from
the application’s data storage is safe. The authors developed an approach that identifies
taintable data stores and checks if a symbol originating from such a data store reaches a
sensitive sink without being sanitized.

Livshits and Lam [14] developed a static analysis approach that is based on context-
sensitive pointer alias analysis and introduced extensions to the handling of strings and
containers to improve the precision. Their approach, however, requires a developer-

Chapter 2. Context and Related Work 15

provided specification written in a language similar to Java in order to find vulnerabilities.
Using this specification, they can find sink objects derivable from source objects. If the
developer-provided specification is incomplete, their technique may fail to report some
vulnerabilities.

AMNESIA [9] is a tool that protects web applications in two phases: a static phase
and a dynamic phase. In the static phase, the tool uses string analysis to extract a model of
all the queries that could be generated from the application’s source code. The creation of
this model is based on the intuition that the application’s source code implicitly contains
a ”policy” of legitimate queries. In the dynamic phase, the application is instrumented to
check the actual query against the previously created model. If a query does not match
the model, it is prevented from executing on the database.

In recent years, there have also been some research efforts focused on applying Ma-
chine Learning (ML) approaches to the detection of vulnerabilities in source code [8] [25]
[19] [20]. Yamaguchi et al. [25] developed an approach that allows developers to find un-
known vulnerabilities based on the code pattern of a known one. Their approach is based
on the application of ML techniques to automatically determine patterns of API usage.
They can then find functions with similar API usage patterns to the vulnerable one. Using
this approach, they were able to discover an unknown vulnerability in a popular library.

Flynn et al. [7] developed and tested classification models that predict if static analysis
alerts are true or false positives, using a combination of multiple SATs. Their results
showed that accurate classifiers were developed. In their work, they argued that it is
necessary to prioritize alerts in order to repair all code flaws within the project’s budget.

PhpMinerI [19] and PhpMinerII [20] are two tools that use data mining to predict
vulnerabilities. The data miners are learned from code patterns that represent input saniti-
zation. This requires a set of annotated excerpts of code. PhpMinerII also applies dynamic
analysis, in which the code of user-defined functions is executed with a predefined set of
inputs in order to increase the analysis’ accuracy.

Medeiros et al. [15] developed WAP, a static analysis tool for PHP web applications.
The most novel aspects of WAP are: 1) the use of data mining to predict false positives and
2) automatic code correction. WAP’s taint analyzer uses taint analysis to find several types
of vulnerabilities in the application’s source code. The vulnerabilities are then processed
by the data mining component to classify each one as a false positive or not. Lastly,
the vulnerabilities that were not classified as false positives are corrected automatically.
The taint analysis performed by WAP is global, interprocedural and context-sensitive.
This allows WAP to perform a better analysis across multiple function calls in possibly
different modules.

Nunes et al. [16] studied the problem of combining multiple SATs to detect web ap-
plication vulnerabilities. They concluded that combining the results of multiple SATs has
benefits due to the complementarity of the produced results. On the other hand, they also

Chapter 2. Context and Related Work 16

concluded that, as the number of tools increases, both the vulnerabilities found and the
false positives reported increase. Algaith et al. [2] also studied the problem of combining
multiple SATs. They presented their results in terms of sensitivity (which measures the
performance of the SAT to find vulnerabilities) and specificity (which measures the per-
formance of the SAT to not raise false alarms), two well-established measures for binary
classifiers. They tested several combinations of SATs and concluded that configurations
that provide more specificity usually have lower sensitivity, meaning that an improvement
in one of the measures implies sacrificing the other one.

2.4.1 Automatic Code Correction

Despite the large number of SATs available to find vulnerabilities in the source code of
web applications, not many perform automatic code correction. In this subsection, we
will look into two that do so.

WebSSARI [13] is a tool that statically analyzes existing code without requiring any
additional effort from the developers. WebSSARI does, however, allow developers to add
annotations to their source code to reduce the runtime overhead. Through static analysis,
WebSSARI locates the portions of code requiring fixes and inserts guards to secure it.
The insertion is made right after the statement that caused the variable to become tainted.
The authors, however, do not explain how the guards are inserted or what they consist of.

WAP [15] applies corrections that follow common secure coding practices. The main
downside of WAP is the fact that it sometimes causes the resulting program to become
syntactically invalid, meaning that it can not be executed. Another downside of WAP
is the fact that it inserts it’s own corrections, meaning that developers have to include a
special PHP file in their code to allow the corrections to work.

Chapter 3

Proposed Solution

In this chapter, we describe the main challenges that our proposed solution faces, and
some decisions that we took to deal with them. We also present an overview of our pro-
posed solution and it’s main components. Lastly, we present the algorithm for automatic
code correction in the form of pseudocode.

3.1 Design Challenges

In order for an automated tool to correct a web application, it must face some challenges
that will be described in detail in this section. We will also describe the decisions we
made to tackle these challenges.

3.1.1 Where to insert the correction?

It is hard for an automated tool to decide where to apply a correction in the code of a
web application. Some variants of XSS and SQLi can be corrected by using a sanitization
function to make the input safe to include in the HTML or a SQL query, respectively.
However, even in this case, it is often difficult to determine where to place the sanitization
function call without breaking the application logic.

1 <?php
2 $a = $_GET["v"];
3 echo "<div>" . $a . "</div>";

Listing 3.1: Example of a reflected XSS vulnerability in PHP.

Taking as an example the program program of Listing 3.1, the htmlentities func-
tion could be used to prevent the exploitation of the XSS vulnerability, by replacing line
2 with $a = htmlentities($_GET["v"], ENT_QUOTES);.

This would in fact remove the bug, but the htmlentities function might modify
the length of the input string if it has to replace some characters with their HTML en-
tity equivalents. If this program contained some additional logic based on the length of

17

Chapter 3. Proposed Solution 18

that string, this modification could cause the application to behave erroneously. List-
ing 3.2 contains an example of a program in this situation. Assume that the call to
htmlentities made in line 2 was added by an automated tool. Considering the in-
put string <script>alert(1)</script>, the program’s control flow should enter
the ”then branch” of the if statement because the input is exactly 25 characters in length.
However, the call to htmlentities converts the input into it’s representation in HTML
entities (<script>alert(1)</script>), a string that is 37 char-
acters in length. This causes the if statement’s condition to evaluate to false, leading to a
change in the program’s behavior.

1 <?php
2 $a = htmlentities($_GET["v"], ENT_QUOTES);
3 if (strlen($a) <= 25) {
4 echo $a . " is a short string";
5 } else {
6 echo $a . " is a long string";
7 }

Listing 3.2: Example of a PHP program with logic based on the length of the input.

For this reason, an automated tool can not fix every application by applying the sani-
tization function to the entry point. However, adding the correction closer to the sensitive
sink is more difficult than it seems because there are no guarantees that the source code’s
formatting will be easy to process by the tool. This can be a problem especially if the
source code contains instructions that span over multiple lines or multiple instructions
per line. In Listing 3.3, there is an example of a program containing an echo statement
that spans over multiple lines. This makes the program hard to fix for an automated tool
because adding a call to a sanitization function directly on the echo requires that func-
tion call to span over multiple lines as well. On the other hand, adding a new line to the
program containing a function call requires the tool to obtain the whole of the array’s key,
which also spans over multiple lines.

1 $prefix = "pre";
2 $suffix = "suf";
3 echo $_GET[$prefix
4 .
5 $suffix];

Listing 3.3: Example of a PHP program with an instruction spanning over multiple lines.

1 <div>Welcome</div>
2 <?php $a = $_GET["v"]; ?>
3 <?php $q = "SELECT * FROM T WHERE id = " . $a; ?>
4 <div>Query results:</p>
5 <?php $result = mysqli_query($con, $q); ?>
6 <?php print_r($result); ?>

Listing 3.4: Example of a SQLi vulnerability in PHP.

Chapter 3. Proposed Solution 19

Another example can be observed by considering the program in Listing 3.4, where
the vulnerability could be fixed by replacing the PHP instruction on line 4 with

$q = "SELECT * FROM T WHERE id = " . intval($a);

It is important that the remainder of line 4 is not modified because, if so, it will cause
the program to become syntactically invalid by modifying a PHP tag. Although this seems
easy to the human eye, it is non-trivial for an automated tool to reason about what parts
of a line of code it can modify safely.

This problem becomes even more complicated if the required correction requires more
than the addition of a simple sanitization function. Such cases include for instance the
use of prepared statements to correct SQLi vulnerabilities. In order to add a prepared
statement to an existing program, the automated tool has to ensure that the statement (and
it’s multiple function calls) is added after the program’s connection to the database is
open, otherwise the application will completely stop working.

In order to solve this challenge, we decided to ensure that all corrections inserted by
our approach consist solely of adding lines of code, instead of modifying existing ones.
This will help us minimize the chances of making a program syntactically invalid. We also
decided that our solution would always insert corrections that do not require the inclusion
of new files in the application. To avoid breaking the application’s logic by modifying
the input string too early in the program, we decided to insert the correction for a given
variable on the line of code immediately before the sensitive sink, if possible. This may
not be possible in every program because some variables can not be sanitized in their
entirety (for example, a variable that contains some developer-provided HTML can not
be converted to HTML entities because that would produce an output different from what
the developer intended). When a tainted variable V can not be sanitized on the line of
code before the sensitive sink, we will sanitize the variable(s) that caused V to become
tainted, in the line(s) of code immediately before that happened. We also propose that
our approach would need to simulate the execution of the variable operations contained
in the program. This would allow us to know the approximate value of a variable when it
reaches a sensitive sink, thus knowing whether we can correct the variable in it’s entirety.

3.1.2 What correction to insert?

The type of correction to insert in a web application is very closely related to the type
of vulnerability contained in it. For XSS, most variants (except DOM-based) can be
corrected by using the htmlentities or htmlspecialchars functions. For SQLi,
the available corrections are more complex. If, for example, the input data is expected to
be an integer, the intval function will protect the application. If the expected type of
the input data can not be correctly determined, the safest option is to replace the existing
query with a prepared statement.

However, there are some cases when the expected input is a string in a well-defined

Chapter 3. Proposed Solution 20

format, such as a date. In these cases, functions such as intval can not be used but
there is the possibility of employing regular expressions to validate the input.

These problems make it very difficult to determine the type of correction to apply,
especially in the case of SQLi. For example, always inserting prepared statements will
add an extra performance burden to the application, which is unnecessary in most cases,
and it will also be harder to do due to the added amount of lines of code to insert. As
mentioned before, if the user’s input is included in a table or column identifier, the use of
prepared statements will cause the application to stop working.

Determining the type of correction to apply requires the automated tool to be capa-
ble of reasoning about where the input data is inserted and what is it’s expected type.
This requires the automated tool to be capable of understanding how the query or HTML
is constructed which can be difficult in some applications with lots of assignments dis-
tributed over the control flow.

To solve this challenge, we select the correction to apply based firstly on the type of
vulnerability contained in the code. If it is SQLi, we will insert a string escaping function.
If it is XSS, we will insert URL-encoding functions in the situations when they are the
better option and HTML-encoding functions in all other cases.

3.1.3 How to deal with existing sanitization?

Dealing with existing sanitization or validation functions poses another problem because
they might not be enough to prevent all attacks. In such cases an automated tool has
to decide between making some modifications to the existing sanitization or adding it’s
own sanitization to the program. In PHP, something as simple as using a wrong flag in the
htmlentities function is enough to leave an application vulnerable to XSS attacks. If
an existing application uses mysqli_real_escape_string to escape an input that
is later included in a SQL query, in a comparison with an integer column, the application
will still be vulnerable to SQLi (this is showcased in Listing 2.11). Situations such as
the ones described may cause the application to appear secure from the tool’s point of
view. The former can be corrected by replacing the wrong flag with a correct one, while
the latter can only be fixed if the tool correctly determines the column’s data type. If the
decision is made to add new sanitization to the program, the solution must ensure that
the inserted sanitization does not interfere with the existing one, which leads back to the
problem of where the correction has to be inserted.

To tackle this challenge, we decided that our proposed solution would need to have the
capability of dealing with diverse sanitizations methods. If the sanitization method in use
by the application is safe, the variable is marked as untainted, meaning that no correction
is applied at all. If the sanitization method is unsafe, a correction will be applied following
the ideas described in Subsection 3.1.1. In some cases, the application might contain a
safe sanitization method that is regarded as unsafe by our solution. In these cases, the

Chapter 3. Proposed Solution 21

Figure 3.1: Overview of our solution’s main components.

ideas described in Subsection 3.1.1 should help us to prevent our correction from breaking
the application’s logic.

3.2 Solution Overview

In this section, we will provide a description of our proposed solution, it’s main compo-
nents and it’s input and output. Our proposed solution is based on taint analysis. Figure
3.1 provides an overview of our solution and it’s components. The proposed solution
receives the following input:

Slice of vulnerable PHP code: This is a PHP file containing a simplified version of a
PHP program. The simplified program contains one control flow path that takes
some input from an entry point (EP) to a sensitive sink (SS). This version of a
program must not contain decision statements or loops. The slice can contain more
code than the one relevant for the vulnerability as long as it contains a single control
flow path. In addition, the path from the EP to the SS must not be inside the body
of any function or method. The slice of code can contain multiple vulnerabilities as
long as they are all of the same type. This PHP file is not required to be vulnerable.

Any other files included by the slice of code will be ignored by the solution.

We decided that our solution’s input would consist of this type of file because it
allows us to focus our efforts on the development of an efficient method to insert
corrections in PHP code, without having to focus too much on the development
of an efficient static analysis approach. We believe that the main limitations of
existing solutions (that perform code correction automatically) lie in the insertion
of corrections and not in the static analysis itself.

Type of vulnerability: This is simply a string containing the type of vulnerability to be
analyzed in each execution of the solution. Currently, only XSS and SQLi are
supported. Our proposed solution requires this as input because this allows our taint

Chapter 3. Proposed Solution 22

analysis to be more efficient. With this, the solution can know from the start what
is the type of vulnerability contained in the program and what type of sanitization
functions should be considered safe.

The solution’s output consists of a PHP file containing the corrected version of the slice
of code provided as input. If no corrections are applied, no output file is returned due to
the fact the the original code was not changed.

As mentioned before, the solution uses taint analysis to find vulnerabilities. It contains
the following main components:

Path Processor: This is the component that performs the taint analysis itself and simu-
lates the execution of variable operations. It is responsible for tracking the input’s
taint status from the entry points to the sensitive sinks and maintaining the status
of the program’s variables. In order to perform these tasks, it needs information
provided by the Knowledge Base and the Sensitive Sink Identifier.

This component is needed due to the fact that our solution is based on taint analysis
and needs to simulate the execution of variable operations. We decided to leave
these tasks in a separate component as opposed to leaving them in for instance the
Correction Processor because we wanted the taint analysis and code correction to
be independent from each other.

Correction Processor: This is the component that determines the variable(s) that require
correction, what corrections they require and the line(s) of code where those cor-
rections should be applied. This is done using the information produced by the
remaining three components. This component is also responsible for producing the
actual line(s) of code to be inserted in the output file.

This component was created to ensure that the code correction is independent from
the taint analysis.

Knowledge Base: This is the component that contains the names of all entry points, sen-
sitive sinks and sanitization methods considered by our approach for each type of
vulnerability. It is used by the Path Processor to obtain the names of entry points
and sanitization methods. It is also used by the Sensitive Sink Identifier to obtain
the names of the sensitive sinks.

We created a separate component to keep this information because we want it to
be easily extendable in the future, to for instance add new sanitization functions
without affecting the remaining components.

Sensitive Sink Identifier: This component is responsible for finding the sensitive sinks
contained in the input program for all types of vulnerabilities supported by our

Chapter 3. Proposed Solution 23

approach. It is used by the Path Processor and the Correction Processor to check
whether a given instruction of the input program is a sensitive sink.

We decided to create a separate component to perform this task because we wanted
the identification of sensitive sinks to be independent from the taint analysis and
code correction.

3.3 Algorithm

In this section, we will describe the main ideia behind the algorithm we propose to correct
PHP files and present it in the form of pseudocode.

3.3.1 Main Idea

The main idea behind our approach is the simulation of the operations involving PHP
variables statically. This is done while the taint analysis is being performed and consists
of simulating the execution of string concatenations and arithmetic operations involving
numbers. When a value that can not be known during static analysis (such as a value
obtained from an entry point) is involved in one of these operations, a special marker is
inserted in it’s place, thus indicating that part of the result contains some user input. The
reason behind this idea is to know where the user input is inside of a string. This can be
useful to determine if a string contains developer-provided HTML, in the case of XSS, or
to determine where the input is being included in a query, in the case of SQLi. However,
it is important to note that this simulation can not obtain the exact value of a variable for
certain cases, such as function calls and arrays. Despite this, we belive that this approach
can obtain an approximate value for a variable, especially when we consider that our input
is a slice of code (i.e., a simplified PHP program).

Listing 3.5 contains an example of a program that contains some operations involving
PHP strings and integers. In line 3, a concatenation operation is performed between two
strings and it’s result is assigned to the variable $html. In line 5, there is a sum of two
integers whose result is assigned to $j.

1 <?php
2 $input = $_GET["a"];
3 $html = "Input-" . $input;
4 $i = 10;
5 $j = $i + 1;
6
7 echo $html;

Listing 3.5: Example PHP program to demonstrate the simulation of variable operations.

Considering this program, the simulation of variable operations assigns a special marker
to $input in line 2, to indicate that it contains some input. Next, in line 3, it concatenates

Chapter 3. Proposed Solution 24

the string Input- with the value of variable $input to form the simulated value of
$html. In line 4, the integer 10 is assigned to $i. Lastly, in line 5, the value of $i is
summed with the integer 1 to obtain the simulated value of $j. Note that this simulation
takes place statically, without ever executing the PHP code. The result of this simulation
is a dictionary in which the keys are the names of the variables and the values are their
respective simulated values. An example of such dictionary (for the program in Listing
3.5) is shown in Listing 3.6. In this dictionary, the string ::input corresponds to the
special marker inserted in the location where input is located.

1 {
2 ’$input’: ’::input’,
3 ’$html’: ’Input-::input’,
4 ’$i’: 10,
5 ’$j’: 11
6 }

Listing 3.6: Result of simulating the variable operations for the program in Listing 3.5.

3.3.2 Pseudocode

In this subsection we will present the main functions used by our approach in the form of
pseudocode and describe how they work.

Input: Path to a PHP file; Type of vulnerability
Output: Corrected PHP file

1 Function Main(path, vulnerability):
2 ast← GenerateAST (path);
3 state← ProcessPath (ast, vulnerability);
4 corrections← ProcessCorrections (ast, state, vulnerability);
5 for cor in corrections do
6 InsertLine (path, cor.code, cor.line);
7 end
8 End Function

Algorithm 1: Main algorithm of our solution.

Algorithm 1 includes the high level steps of our solution. It starts by generating an
Abstract Syntax Tree (AST) that represents the PHP program contained in the input file.
Next, it calls the Path Processor to perform the taint analysis and simulate the variable
operations. This is done to find the vulnerabilities contained in the code and to compute
the state of the program’s variables. Next, it calls the Correction Processor to analyze
the sensitive sinks, determine the required corrections and where they should be applied.
Lastly, it inserts all corrections returned by the Correction Processor in the PHP code to
generate the output file.

Chapter 3. Proposed Solution 25

Input: Path to a PHP file
Output: AST representation of the input program

1 Function GenerateAST(path):
2 file← open (path);
3 code← file.read ();
4 ast← Parser.parse (code);
5 close (file);
6 return ast;
7 End Function

Algorithm 2: Generation of the AST.

Algorithm 2 is responsible for generating the AST to be used by our solution. It opens
the PHP file containing the slice of code and reads its content. Next, it uses a parser to
parse the code and produce the corresponding AST. Lastly, it closes the file and returns
the generated AST. The generated AST contains a representation of the structure of the
program in the form of a tree. In the case of our solution, the AST is a list with no sublists
because the input is a slice of code containing a single control flow path. The decision to
use ASTs was made because they provide a detailed representation of the original program
and there are several tools available to generate them.

Algorithm 3 is the one applied by our Path Processor. It is responsible for performing
the taint analysis and simulating the execution of variable operations. This algorithm is
composed by several functions. The ProcessPath function is responsible for iterat-
ing over the AST and calling the remaining functions depending on the type of node it
encounters. It must be noted that the fact that our solution’s input consists of a slice of
code containing a single control flow path makes it easy for the Path Processor to iterate
over the AST, because it does not contain any branches. For readability, only the way
assignments are treated is shown in this algorithm.

The ProcessAssignment function of Algorithm 3 is responsible for dealing with
assignments and it first obtains the variable that is assigned to and the assignment’s ex-
pression. Next, the expression’s value is assigned to the variable. If the expression is
a binary operator (an operator that has two operands), it’s execution is simulated and
the result is assigned to the variable. As mentioned in Subsection 3.3.1, this consists
of statically simulating the execution of the binary operation (only string concatenations
and arithmetic operations are supported) and assigning the result of the simulation to the
variable in the state. It is also in this stage that the variable is marked as untainted if
the expression is a safe sanitization method for the type of vulnerability being analyzed.
Lastly, if the expression is tainted (note that safe sanitization methods are untainted), it’s
taint status is propagated to the variable. The variable is also marked as untainted if the
assignment’s expression is a string because this means that the original code contains a
string literal being assigned to this variable. A string literal is untainted because there is

Chapter 3. Proposed Solution 26

Input: AST; Type of vulnerability
Output: State of the PHP program

1 Function ProcessPath(ast, vulnerability):
2 state← {};
3 for node in ast do
4 if node is assignment then
5 ProcessAssignment (node, state, vulnerability);
6 else if [...] then
7 # Remaining types omitted for readability
8 end
9 return state;

10 End Function

11 Function ProcessAssignment(node, state, vulnerability):
12 variable← node.variable;
13 expression← node.expression;
14 if expression is a variable or expression is an array access then
15 state [variable]← expression.value;
16 else if expression is a binary operator then
17 state [variable]← expression.left.value + expression.right.value;
18 else if expression is a function or expression is a cast then
19 if expression is safe for vulnerability then
20 state [variable].tainted← false;
21 state [variable].taint causes← [];
22 end
23 else if expression is a string then
24 state [variable]← expression;
25 state [variable].tainted← false;

26 if expression is tainted then
27 state [variable].tainted← true;
28 state [variable].taint causes.append (expression);
29 end
30 End Function

Algorithm 3: Algorithm applied by our Path Processor.

Chapter 3. Proposed Solution 27

no way for a user to influence it.

The ProcessPath function also deals with ”combined operators”, such as += and
.= (omitted in lines 6 and 7 of Algorithm 3). These operators are a combination of an
assignment and a binary operator and they are treated in almost the same way as as-
signments. The first difference is the fact that the result of simulating their execution is
appended to the variable’s already simulated value (instead of replacing it). The second
difference lies in the taint propagation: even if the operator’s expression is untainted, the
variable’s taint status is not set to untainted. This is done because appending an untainted
value to a tainted variable does not make it untainted.

Input: AST; Program state produced by the Path Processor; Type of vulnerability
Output: List of corrections to be applied

1 Function ProcessCorrections(ast, state, vulnerability):
2 corrections← [];
3 for node in ast.sensitive sinks do
4 for arg in node.arguments do
5 if arg is a tainted variable then
6 if vulnerability is XSS then
7 corrections← CorrectXSSVariable (arg, state,

corrections);
8 else
9 corrections← CorrectSQLVariable (arg, state,

corrections);
10 end
11 end
12 end
13 end
14 return corrections;
15 End Function

Algorithm 4: Algorithm applied by our Correction Processor.

Algorithm 4 represents our solution’s Correction Processor. It is responsible for an-
alyzing the sensitive sinks contained in the AST, determining the variables that require
correction, what correction they require and the line of code where it should be applied.
This algorithm starts by initializing a list that it uses to maintain all corrections that need
to be applied. Next, it iterates over all sensitive sinks in the AST and, for each of them,
it iterates over it’s arguments to find the ones that are tainted, regardless of the type of
vulnerability being analyzed. At this stage, if the vulnerability is XSS, the solution’s
execution flow is directed to Algorithm 5. If the vulnerability is SQLi, the solution’s
execution flow is directed to Algorithm 6. To conclude, the algorithm returns the list of
corrections to be applied.

Chapter 3. Proposed Solution 28

Input: Variable to be corrected; Program state; List of corrections
Output: List with XSS corrections to be applied

1 Function CorrectXSSVariable(arg, state, corrections):
2 if state [arg] contains HTML then
3 for tc in state [arg].taint causes do
4 if tc not corrected then
5 if state [tc] contains a script or style tag then
6 corrections.append (URL-encoding correction for tc in line

tc.line);
7 else
8 corrections.append (HTML-encoding correction for tc in line

tc.line);
9 end

10 Mark tc as corrected ;
11 end
12 end
13 else
14 if arg not corrected then
15 if state [arg] contains a script or style tag then
16 corrections.append (URL-encoding correction for arg in line

node.line- 1);
17 else
18 corrections.append (HTML-encoding correction for arg in line

node.line- 1);
19 end
20 Mark arg as corrected ;
21 end
22 end
23 return corrections;
24 End Function

Algorithm 5: Correction of XSS variables.

Chapter 3. Proposed Solution 29

Algorithm 5 is responsible for determining the XSS correction to be applied to a vari-
able and where it should be applied. In this algorithm, the sink’s tainted arguments are
treated as follows: if the argument contains HTML in it’s simulated value, the algorithm
obtains it’s taint causes (the variable(s) that caused it to become tainted) and adds a XSS
correction for the taint cause to the list if it had not been corrected before. If the argu-
ment contains no HTML in it’s simulated value, a XSS correction for it is added to the
corrections list. The XSS corrections to apply consist of a URL-encoding correction if
the variable contains a <script> or <style> tag in it’s value and a HTML-encoding
correction in the other cases.

Input: Variable to be corrected; Program state; List of corrections
Output: List with SQLi correction to be applied to the variable

1 Function CorrectSQLVariable(arg, state, corrections):
2 for tc in state [arg].taint causes do
3 if tc not corrected then
4 corrections.append (SQLi correction for tc in line tc.line);
5 Mark tc as corrected ;
6 end
7 end
8 return corrections;
9 End Function

Algorithm 6: Correction of SQLi variables.

Algorithm 6 is responsible for determining the SQLi correction to be applied to a
variable and where it should be applied. In this algorithm, the sink’s tainted arguments
are treated as follows: the algorithm obtains it’s taint causes and, for each of them, adds
a SQLi correction to the list if it had not been corrected before. The correction is always
applied to the variable’s taint causes because SQL queries can not be sanitized in their
entirity by a string escaping function. The SQLi correction applied is always the same (a
string escaping function).

Input: Path to a PHP file; Line of code to insert; Line number to make the insertion
Output: PHP file with the new line inserted

1 Function InsertLine(path, line, number):
2 file← open (path);
3 lines← file.readlines ();
4 lines.insertAt (number, line);
5 file.write (lines);
6 close (file);
7 End Function

Algorithm 7: Insertion of lines of code in a PHP slice.

Chapter 3. Proposed Solution 30

Algorithm 7 represents the insertion of lines in a PHP file. First, it opens a file and
reads all of it’s lines into a list. Next, it inserts the new line of code at a given index in
that list. Lastly, it writes all lines to the file and closes it. Only one line of code can be
inserted by this algorithm at a time.

Chapter 4

Implementation

This chapter describes the implementation of our solution in the form of a static analysis
tool. Firstly, we present the knowledge base for both types of vulnerabilities. Then, we
explain the main building blocks and data structures, and we describe the corrections it is
capable of applying. To conclude, we justify some decisions that were taken during the
implementation.

4.1 Knowledge Base

4.1.1 Entry Points

The tool considers as entry points four of PHP’s superglobal arrays: $ REQUEST, $ GET,
$ POST and $ COOKIE. Any value obtained from one of these arrays is considered to be
tainted unless shown otherwise during the taint analysis.

4.1.2 Sensitive Sinks

The sensitive sinks considered for each type of vulnerability are summarized in Table
4.1. Regarding XSS, our tool considers a total of 5 sensitive sinks. Only one of them
(the printf function) receives a format string as an argument. Apart from the format
string, all arguments to these sensitive sinks are treated equally for the purpose of applying
corrections. In the case of SQLi, our tool considers a total of six sensitive sinks. Two
of them correspond to PostgreSQL and the remaining ones to MySQL. In the case of
MySQL, two sensitive sinks use the MySQL extension and the other two use the MySQL

Vulnerability Sensitive Sinks

SQLi mysql query, mysql unbuffered query, mysqli query,
mysqli real query, pg query, pg send query

XSS echo, print, die, exit, printf

Table 4.1: Sensitive sinks considered by our tool.

31

Chapter 4. Implementation 32

Type of Sanitization Method Method/Function

Generic Function

intval, floatval, strlen,
strpos, md5, sha1,

base64 encode, password hash,
count, round, bin2hex

Cast
Casts to int, integer, float, double,

real, bool, boolean

XSS Function
htmlentities, htmlspecialchars,

urlencode, rawurlencode, http build query

SQLi Function

mysql real escape string,
mysqli real escape string,

mysql escape string,
mysqli escape string,
pg escape string,
pg escape literal,
pg escape bytea

Filter Generic
FILTER SANITIZE NUMBER FLOAT,
FILTER SANITIZE NUMBER INT

XSS
FILTER SANITIZE ENCODED,

FILTER SANITIZE SPECIAL CHARS,
FILTER SANITIZE FULL SPECIAL CHARS

Table 4.2: Sanitization methods supported by our tool.

Improved extension.

4.1.3 Sanitization Methods

The sanitization methods supported by the tool are shown in Table 4.2. Apart from the
casts and filters, all sanitization methods are function calls. In the case of the generic
sanitization functions, the tool considers safe the intval and floatval functions as
explained in Subsection 2.2.1. In addition to these functions, it also considers safe nine
other functions that were added to this list during the implementation. These functions are
not usually seen as sanitization functions but they perform that role in practice because
they can not return data that will lead to an attack.

Firstly, we added the strlen and strpos functions because they return the length
of a string and the index of a substring within a string, respectively. This means that they
always return integers. Secondly, we added the md5 and sha1 functions because they
return cryptographic hashes that are composed solely of hexadecimal digits. This means
that they can not return malicious Javascript or SQL (with very high probability). The
base64 encode function is also in this list because it returns a base64-encoded version
of the string it receives as argument, meaning that it also can not return malicious data.
Next, we added the password hash and bin2hex functions because they return a

Chapter 4. Implementation 33

hashed version of a password and an hexadecimal representation of a string, respectively.
Both of these returned values can not contain malicious data. Lastly, we added the count
and round functions because they always return numbers. The former counts the number
of elements in an array and the latter rounds a float to a given precision.

Regarding the casts, our tool considers as safe casts to numeric types (int, integer,
float, double and real) and casts to booleans (bool and boolean). The casts to
numeric types were mentioned in Subsection 2.2.1 and the casts to booleans will convert
any value to true or false.

The sanitization functions that the tool regards as safe for XSS are the ones mentioned
in Subsection 2.2.2. For SQLi, the tool views as safe functions of the * escape string

family for MySQL and PostgreSQL. This family of functions was described in Subsection
2.2.3. In addition to these functions it also considers as safe the pg escape literal

and pg escape bytea functions. The former escapes a string for insertion into a text
field and the latter escapes a string for insertion into a field of type bytea in PostgreSQL.

Lastly, the tool sees two generic filters as safe for both types of vulnerabilities. They
are FILTER SANITIZE NUMBER FLOAT, that performs in the same way as floatval,
and FILTER SANITIZE NUMBER INT that executes similarly to intval. It also as-
sumes as safe three filters specific to XSS vulnerabilities. The first one carries out URL-
encoding of a string in the same way as calling urlencode and is named FILTER SAN

ITIZE ENCODED. The other two (named FILTER SANITIZE SPECIAL CHARS and
FILTER SANITIZE FULL SPECIAL CHARS) do HTML-encoding in the same man-
ner as calling htmlspecialchars with the ENT QUOTES flag. For these filters to be
considered secure, they must be used in a call to filter var.

4.2 The PHPly Parser

PHPly1 is a parser written in Python for the PHP language. It takes PHP code as a string
and returns an AST in the form of a Python list. This list contains nodes built by PHPly
itself, which contain the line number where the node is in the original code and include
sublists when necessary for the representation of code blocks (for example, the body of
a loop). PHPly supports both PHP 5 and PHP 7, the two most used versions of PHP
nowadays. Listings 4.1 and 4.2 provide an example of a PHP program and the respective
AST. PHPly was chosen as the parser to be used in our tool due to it’s simplicity, ease of
installation and the fact that it supports PHP 7.

In Listing 4.2, line 2 of the AST contains a node of type Assignment and corre-
sponds to the assignment of the value 1 to variable $a made on line 2 of the original
program (in Listing 4.1). Lines 3 and 4 of the AST correspond to the assignment made
to $b on line 3 of the program. The + operation is represented in the AST by a node of

1https://github.com/viraptor/phply

Chapter 4. Implementation 34

1 <?php
2 $a = 1;
3 $b = $a + 1;
4 echo $b;

Listing 4.1: Example PHP program to demonstrate PHPly.

1 [
2 Assignment(Variable(’$a’), 1, False),
3 Assignment(Variable(’$b’),
4 BinaryOp(’+’, Variable(’$a’), 1), False),
5 Echo([Variable(’$b’)])
6]

Listing 4.2: Example AST generated by PHPly for the program in Listing 4.1.

type BinaryOp. Lastly, line 5 of the AST corresponds to the call to echo made in line
4 of the original program, with variable $b as an argument. The line numbers where each
node is located in the original program are not shown in the AST’s textual representation
but are stored internally.

4.3 Data Structures

This section presents the main data structures used by our tool and justifies the need for
them. It must be noted that, due to the fact that a slice of code contains a single control
flow path, it’s representation in the form of an AST generated by PHPly is composed by
a single list, with no sublists. This is important because it influenced the design of some
of the data structures we created.

4.3.1 Variable Definition

VariableDefinition is a Python class created by us to maintain information about
program variables during the analysis. One instance of this class is created while pro-
cessing the program to represent each definition of a PHP variable. Every variable is
characterized by the following attributes: the variable’s name, simulated value (according
to the idea described in Subsection 3.3.1) and taint status (whether it is tainted or un-
tainted). The class maintains these attributes and, in addition, it also keeps the name(s)
of the variable(s) that caused the represented one to become tainted (referred to as taint
causes), along with the line number(s) where that happened. Lastly, it includes a defini-
tion counter that keeps track of the number of times the variable was redefined in the PHP
program. This was added during the implementation to allow the tool to better deal with
variables that receive input from multiple entry points along the execution of the program.

Chapter 4. Implementation 35

The need for a counter is illustrated in Listing 4.3. In this program, the tool cre-
ates a VariableDefinition object to represent the definition of $a on line 3. Be-
cause this is the first time $a is defined, the counter is set to zero. In line 5, another
VariableDefinition object is created to represent $b. Since $b contains the value
of $a, it is marked as tainted and a taint cause is added to $b. This taint cause consists
of the variable $a and respective counter (at this point it is zero). Next, on line 7, $a is
redefined and a new VariableDefinition object is created to represent it. This new
object contains the counter set to one because this is the second time that $a was defined
in the program. On line 9, a new variable $c is created and, because it is tainted, a taint
cause is added to it. This new taint cause is the same as the one added to $b, except that
the counter is now set to one. On lines 11 and 12, the tool has to decide what corrections
to apply and where to apply them. The tool will correct $b first and it will decide to
correct $a (with $a’s counter at zero) on line 4 because that is $b’s taint cause. Next,
the tool will correct $c and it will decide to correct $a (with $a’s counter at one) on line
8 because that is $c’s taint cause. Note that $b and $c can not be corrected themselves
because they contain developer-provided HTML.

1 <?php
2
3 $a = $_GET["a"];
4
5 $b = "<p>" . $a . "</p>";
6
7 $a = $_GET["b"];
8
9 $c = "<p>" . $a . "</p>";

10
11 echo $b;
12 echo $c;

Listing 4.3: Example of a program to illustrate the need for a definition counter.

It is at this point that the need for a counter becomes clear: the counter allows the
tool to know that $b and $c’s taint causes are two ”different versions” of $a. This
means that the tool will correct $a twice (in lines 4 and 8) and make the program safe,
without correcting the same definition of $amore than once. Without the counter, the tool
would see both taint causes as being the ”same version” of $a and, because it contains
mechanisms to prevent it from correcting the same variable more than once, it would
correct $a only in line 4, leaving the program vulnerable due to the input $a receives on
line 7.

It is important to note that the counter does not tell the tool where the correction has
to be inserted. It just allows the tool to know that a given variable may require more than
one correction. The locations where the corrections have to be inserted are determined
based on the information contained in the AST.

Chapter 4. Implementation 36

4.3.2 Program State

The ProgramState is produced by the Path Processor and it contains the state of all
program variables known by the tool at a given point in the analysis. It is composed of
a dictionary in which the keys are strings with the name of the variables and the val-
ues are lists of VariableDefinition objects, defined by the attributes mentioned in
Subsection 4.3.1.

This data structure is the most important one in our tool. It is mainly used by the
Path Processor and the Correction Processor to check whether a variable is tainted or
untainted. It is also used by both of these components to obtain a variable’s simulated
value. Considering a variable named V, the Path Processor uses the ProgramState to
obtain V’s simulated value for the purpose of using it in the simulation of an operation
involving V. Considering the same variable, the Correction Processor uses it’s simulated
value to determine what correction to apply and where.

The reason why the values in this dictionary are lists is because the lists keep all of
the variable’s definitions. As shown in Subsection 4.3.1, keeping track of all definitions
of a variable allows the tool to better correct files in which the same variable receives
input from multiple entry points at different stages in the program. The fact that this data
structure contains lists allows the tool to know the value to use in the definition counter of
a new VariableDefinition object (it uses the length of the list). It also allows the
tool to obtain the simulated value and taint status of any of a variable’s definitions.

4.3.3 Program State by Sensitive Sink

The ProgramStateBySensitiveSink is a data structure (produced by the Path
Processor) used to maintain the state of the program when the control flow reaches each
one of the sensitive sinks it might contain. This data structure consists of a dictionary in
which the keys are integers and the values are ProgramState dictionaries following
the structure described in Subsection 4.3.2. The indexes of the sensitive sinks in the AST
(note that the AST is a list) are used as keys to identify them in this dictionary. The values
are ProgramState dictionaries that represent the state of the program’s variables when
it’s control flow reaches the corresponding sensitive sink.

This data structure is necessary because our Path and Correction Processors perform
their tasks at different stages of the tool’s execution. This means that, when the Cor-
rection Processor is started, the taint analysis and simulation of variable operations are
already completed. If the Correction Processor had to perform it’s task based solely on
the ProgramState, it would only have access to the ProgramState representing
the end of the program. This problem sometimes caused the Correction Processor to fail
to correct programs in which the sensitive sink(s) appeared closer to the beginning.

An illustrative example of this situation is provided in Listing 4.4. In this example,

Chapter 4. Implementation 37

there is a sensitive sink located on line 6 and another one on line 9. When the program’s
control flow reaches line 6, the variable $a is tainted, making the program vulnerable.
However, in line 8, $a is assigned the value 0, thus becoming untainted. This means that
the second sensitive sink in line 9 has no influence on the security of the program.

1 <?php
2
3 $tainted = $_GET["a"];
4
5 $a = "Input: " . $tainted; // $a is tainted
6 echo $a;
7
8 $a = 0; // $a is untainted at the end of the program
9 echo $a;

Listing 4.4: Illustrative example for the data structure described in Subsection 4.3.3.

Considering the same example, when the Path Processor finishes the taint analysis,
variable $a is marked as untainted because that is it’s state at the end of the program.
Without the data structure described in this subsection, the Correction Processor would
only have access to the program’s final state. This would cause it to see variable $a as
untainted and fail to correct it for the echo in line 6. Thanks to this data structure, the
Correction Processor can know what is the state of the program when it reaches the echo
in line 6 and also when it reaches the echo in line 9. This means that the Correction
Processor knows that $a is tainted in line 6 and untainted in line 9, thus applying the
necessary correction to the first sensitive sink.

4.3.4 Lines of Code with HTML

The information about what lines of code contain HTML is kept in a dictionary where
the keys are the line numbers and the values are true if the line contains HTML or false
otherwise. The dictionary is built gradually as the simulation of the variable operations is
taking place. When the Path Processor encounters HTML in the path, it marks all lines
that the HTML spans over as true in the dictionary. This means that, along the tool’s
execution, the fact that a given line number N is in this dictionary is enough to know that
N contains HTML. This allows the dictionary to take up less space in memory because it
will only contain entries for lines of code with HTML.

The need for this data structure is motivated by the fact that sometimes the tool has to
insert corrections in lines of code that contain HTML. This means that the line(s) of code
to be inserted must be surrounded by PHP tags or the PHP interpreter will treat them as
HTML and display them on the output, instead of executing them. With the help of this
data structure, the tool can check whether a given line of code contains HTML and, if it
does, it surrounds the correction with PHP tags, to ensure it is executed. This is illustrated
by the code in Listing 4.5. Following the design described in Subsection 3.1.1, the tool

Chapter 4. Implementation 38

would insert the correction immediately before line 4 (line 3). In order for the correction
to have an effect in this case, it must be surrounded by PHP tags. This data structure
allows the tool to know that lines 2 and 3 contain HTML and any correction inserted
in them must be surrounded by PHP tags. Listing 4.6 shows an example of a corrected
program in which the correction required PHP tags.

1 <?php $tainted = $_GET["a"]; ?>
2 <html>
3 <body>
4 <?php echo $tainted; ?>
5 </body>
6 </html>

Listing 4.5: Illustrative example with PHP and HTML in the same program.

1 <?php $tainted = $_GET["a"]; ?>
2 <html>
3 <body>
4 <?php $tainted = htmlentities($tainted, ENT_QUOTES); ?>
5 <?php echo $tainted; ?>
6 </body>
7 </html>

Listing 4.6: Corrected version of the program in Listing 4.5 (line 4 contains the correc-
tion).

4.3.5 Corrected Variables

This data structure is used by the Correction Processor to keep the names (and respective
definition counters) of the variables that have been corrected by the tool, preventing the
tool from correcting the same variable more than once. It consists of a dictionary in
which the keys are strings in the format name:counter, where name is the name of
the variable and counter is the value of it’s definition counter. The counter is included
in the key to distinguish between multiple definitions of the same variable. The values in
this dictionary are true if a correction has been applied to the variable or false otherwise.
As with the dictionary described in Subsection 4.3.4, this dictionary is built gradually as
the corrections are applied. This means that it only contains entries for variables that have
been corrected and that the tool just has to check whether a key exists in it to know if a
variable has been corrected.

4.4 Corrections Applied

To any given variable that requires correction, the tool applies one of four possible correc-
tions. The tool is capable of applying three corrections for XSS and one for SQLi. Regard-

Chapter 4. Implementation 39

ing SQLi, the tool always applies a call to a MySQL (or MySQLi) string escaping func-
tion. The used function is mysqli real escape string when the sensitive sink has
a database connection as it’s first parameter and mysql real escape string in any
other case. Currently, the only sensitive sinks considered that have a connection as their
first parameter are: mysqli query, mysqli real query and pg send query.
When a connection is available, the correction consists of the following code: $t =

mysqli real escape string($c, $t);, where $c is the name of the connec-
tion and $t is the name of a tainted variable (it may also be an access to an array).
When a connection is not available, the following correction is inserted instead: $t =

mysql real escape string($t);, where $t is once again the name of a tainted
variable.

For XSS, the tool has three corrections at it’s disposal: a HTML-encoding correc-
tion, an URL-encoding correction and a special correction for format strings. The format
string correction is more complex and will be described in detail in Subsection 4.4.1.
The HTML-encoding correction consists of a call to the htmlentities function with
a tainted variable as it’s first argument and the ENT QUOTES flag as it’s second argu-
ment. This correction is applied in all situations when the other corrections can not
be applied and it consists of adding the following code: $t = htmlentities($t,

ENT QUOTES);, where $t is the name of a tainted variable (as with SQLi, this can be
an access to an array). htmlentities was chosen as the HTML-encoding function to
be used in this type of correction because it is widely recommended by the community.
In the case of the URL-encoding correction, the tool instead adds the following code:
$t = rawurlencode($t);, where $t has the same meaning as before. The URL-
encoding correction is applied when the variable is being included inside of a <script>
or <style> tag. rawurlencode was chosen over urlencode as the URL-encoding
function to be used in this type of correction because it also encodes the + character,
which is a valid operator in Javascript.

4.4.1 Format String Correction

The format string correction is applied to tainted variables that are part of a format string
in a call to the printf sensitive sink or a call to sprintf that is an argument to another
XSS sensitive sink. Both of these functions expect to receive a format string (similar to
the format strings used in the C language) as their first argument. The format string can
not be corrected using the two previously described XSS corrections because they would
result in the encoding of some of the format specifiers, thus breaking the application’s
output. For this reason, we developed a way of correcting format strings without breaking
their original output. This is the only correction applied by our tool that involves the
addition of more than one line of code. Listing 4.7 presents an example of the correction
applied to format strings. The correction itself starts on line 6 of the listing and ends on

Chapter 4. Implementation 40

line 20, inclusive.

1 <?php
2
3 $format = $_GET["f"];
4 $input = $_GET["i"];
5
6 $matches = array();
7 preg_match_all("/(?<=%’)./", $format, $matches);
8
9 $format = preg_replace("/(?<=%’)./", "#", $format);

10 $format = htmlentities($format);
11 $format = preg_replace("/(?<!%)’/", "'", $format);
12
13 $matchIdx = 0;
14 for ($ptr = 2; $ptr < strlen($format); $ptr++) {
15 if ($format[$ptr] == "#" && $format[$ptr - 1] == "’" &&
16 $format[$ptr - 2] == "%") {
17 $format[$ptr] = $matches[0][$matchIdx];
18 $matchIdx++;
19 }
20 }
21
22 printf($format, $input);

Listing 4.7: Example of the correction applied to a format string.

In PHP, out of all characters that can form a format specifier, only the single quote is
converted by a call to htmlentities (if the ENT QUOTES flag is in use). The single
quote is used in a format string to specify a character to be used as padding for the argu-
ment. The padding character is the one immediately to the right of the single quote. For
example, the format specifier %’09s will pad a string with zeroes on the left until it is 9
characters in length. If the original string is 9 or more characters in length, no padding
will be added. Because the padding is part of the application’s output, it is important that
the structure of these format specifiers is not modified by a correction.

Taking this into consideration, our correction does the following: In lines 6 and 7,
it locates all padding characters and saves them to the $matches array. In line 9, all
padding characters are replaced by the # character, to prevent them from being modified
next. In line 10, a call to htmlentities is made without any flag, to prevent it from
modifying single quotes (all other applicable characters are still converted). In line 11,
any single quote that is not part of a format specifier (not preceeded by %) is replaced
by it’s equivalent HTML-encoded representation. Lastly, in lines 13 to 20, the padding
characters that were saved to the $matches array are put back in their place to be part
of the output. This process HTML-encodes any applicable character while maintaining
the original paddings.

Before concluding the description of this correction, there are some things than must

Chapter 4. Implementation 41

be noted: Firstly, this correction uses a HTML-encoding function and thus inherits all
limitations of this type of functions. Secondly, the use of URL-encoding functions is not
possible in this situation because they would encode many more characters (including
the ones that form the format specifiers) than HTML-encoding ones. Lastly, in order to
prevent the names of the variables created by this correction from interfering with others
that already exist in the program, our tool appends a random number to the end of the
name of each variable created by this correction. As an example, the $matches array
will be named $matches NNNN in a real correction, where NNNN is a random number
(greater than zero) generated by the tool. Despite the use of this technique, it is still
possible for the added variables to have the same name as ones that already exist in the
program. We believe this is not a problem because the correction for format strings is
rarely applied and, when it is applied, the use of random numbers makes the chances of
interfering with existing variables extremely low.

4.5 Implementation Decisions

In this section, we will describe several decisions that were taken during the implementa-
tion of our tool to deal with some problems that arose during it’s development.

If statements

We added limited support for if statements during the implementation, despite the fact
that our definitition of a slice of code does not include them. When the tool encounters
an if statement in the path, it processes only one of it’s branches as if it was part of the re-
maining path. To achieve this, the tool analyzes all branches of the if statement and keeps
the first one to contain a sensitive sink in it or the last of them if none contain sensitive
sinks. We do not believe this to cause problems in our tool because it’s input consists
of slices of code that do not contain if statements. However, we added this capability to
allow the tool to deal with slightly more complex code than a simple slice.

Detection of HTML Tags

We also decided to use regular expressions to detect if a string contains HTML tags in it’s
simulated value. This has some limitations when dealing with malformed HTML tags but
it rarely detects HTML as not being HTML, which minimizes the impact of this limitation
on our tool’s operation. In the cases when non-HTML is detected as HTML, the tool will
still apply a valid correction. It will just be applied in a different line of code. Regular
expressions were chosen for this purpose because they are supported natively by Python
and produced satisfying results.

Also, due to the fact that PHPly only includes in the AST the line number where a
block of HTML starts, we decided to count the number of line breaks contained in the

Chapter 4. Implementation 42

HTML itself in order to know the line number where it ends and allow the tool to build
the dictionary described in Subsection 4.3.4.

To decide between the URL-encoding or HTML-encoding to correct tainted variables
(that are not part of a format string) in the case of XSS, the tool needs to know whether
the sensitive sink is inside of a <script> or <style> tag. To achieve this, when the
tool encounters a HTML block in the path, it counts the number of opening and closing
<script> and <style> tags. The number of closing tags is then subtracted from
the number of opening tags. If the result is greater than zero when a sensitive sink is
encountered, this means that the sink is inside of one of these tags, thus requiring a URL-
encoding correction. This count is done with regular expressions. The tool is also capable
of detecting cases when the sensitive sink contains one of these two tags as part of it’s
argument (e. g. echo "<script>" . $ GET["a"] . "</script>";) and
apply a URL-encoding correction. In the other cases, a HTML-encoding correction is
applied.

Undefined Variables and Functions

During the taint analysis, if the tool encounters a variable that is not defined, it means that
variable is not defined in the original program. Because the tool has no way of knowing
whether the variable is tainted or untainted, it considers it as untainted for the purpose of
the taint propagation. This was done to prevent the taint analysis from producing large
numbers of tainted variables that could lead to many false positives. For the purpose of
simulating the variable operations, an unknown variable is considered to have an empty
string as it’s value. Regarding function calls, any function that is not a sanitization func-
tion for the vulnerability being analyzed is considered to return a tainted value if the
function contains at least one tainted variable as an argument. This was done to prevent
the tool from producing false negatives for vulnerabilities that arise from the use of san-
itization functions that are unsafe in most contexts. For the purpose of simulating the
variable operations, the value of the first parameter is used if the function is safe or the
value of the first tainted parameter is used if the function is not safe.

Correction of Arrays

In order for the tool to apply a correction to a variable, it needs to know the name of
that variable in order to include it in the line(s) of code to be added. This is trivial to
do when the correction is applied to an actual variable because PHPly includes the name
of the variable in the AST. It is harder to do when the correction has to be applied to an
array because only the name of the array itself (e. g. $ GET) is included in the AST. The
PHP code that provides the key to access the array is included in the form of a ”smaller”
AST inside the program’s AST. Due to the fact that reversing an AST is very difficult,
we decided that the tool would need to read the array’s key from the original PHP file.

Chapter 4. Implementation 43

To do this, the tool first reads from the file the line of code where the access to the array
occurs (the line number is part of the AST). Given that line of code in the form of a string,
the tool locates the array’s name in it and reads the PHP code located between the square
brackets that limit the array’s key. Situations where the key to access an array includes
an access to another array are supported by the tool. All keys used to access arrays are
read from the original PHP file, regardless of how complex they are. As an example,
considering $ GET["user"] as the array access to be corrected, the tool will extract
$ GET from PHPly’s AST and concatenate it with the string ["user"] read from the
original file. It is important to note that this technique suffers from a limitation: if the
array access spans over multiple lines of code in the original file, this process will fail.
We believe this to have a small impact on our tool due to the fact that it’s input consists
of simplified programs.

Chapter 4. Implementation 44

Chapter 5

Evaluation

This chapter describes the evaluation performed of our tool. To evaluate the proposed so-
lution, we first used the developed tool to analyze and correct some automatically gener-
ated test cases taken from the Software Assurance Reference Dataset (SARD). Secondly,
we took six vulnerable web applications written in PHP from Exploit-DB1 to test our
tool’s ability to process real code. We focused most of our evaluation on XSS due to time
restrictions.

5.1 Software Assurance Reference Dataset (SARD)

SARD2 is a dataset created and maintained by the National Institute of Standards and
Technology (NIST). It contains several thousand test cases that were generated automat-
ically, which together contain different types of vulnerabilities in different programming
languages. Each test case contains only one vulnerability corresponding to a given CWE3

(Common Weakness Enumeration) category in one programming language. Since our
work is focused on PHP, we are only interested in test cases for that programming lan-
guage. Stivalet and Fong describe the generation process in [23]. Each PHP test case
consists of a single file that contains three sections:

Input: This is the section of the program that obtains input from the user. SARD contains
test cases with distinct methods of getting input of varying complexity, ranging from
obtaining the value of a superglobal array directly to obtaining it via a class method
call. All test cases include this section.

Sanitization: This is the section of the program that sanitizes the data. This section is
optional as some of the test cases have no sanitization. The sanitization methods
vary from the use of a ternary condition to the use of casts to numeric types. It is

1https://www.exploit-db.com/
2https://samate.nist.gov/SRD/
3https://cwe.mitre.org/

45

Chapter 5. Evaluation 46

1 <!DOCTYPE html>
2 <html>
3 <head/>
4 <body>
5 <div>
6 <?php
7 $tainted = $_POST[’UserData’];
8
9 $tainted = htmlspecialchars($tainted, ENT_QUOTES);

10
11
12 echo $tainted ;
13 ?>
14 </div>
15 <h1>Hello World!</h1>
16 </body>
17 </html>

Listing 5.1: Test case 192719 from SARD.

important to note that some test cases contain unsafe sanitization methods, such as
the use of unsafe functions.

Sensitive Sink: This is the section where the potentially unsafe input reaches a sensitive
sink. Like the first section, all test cases contain this section.

Listing 5.1 provides an example of test case 192719 from SARD, where line 7 corre-
sponds to the Input section, line 9 corresponds to the Sanitization section and line 12
contains the Sensitive Sink. The file names of the SARD test cases for PHP have the
following structure:

CWE <CWE ID> <input source> <sanitization method>

<location where input is inserted>.php

The large number of test cases combined with the variety of sanitization methods
makes the SARD an ideal source of test cases for evaluating a tool such as the one we
developed. It allowed us to test the tool’s capability to reason about how secure a saniti-
zation method is.

5.1.1 XSS Dataset Summary

We gathered a total of 1764 XSS test cases from SARD. All of these test cases contain a
single control flow path, meaning that they fit our definition of a slice of code perfectly.

While analyzing some of the test cases manually, we discovered that some of SARD’s
test cases are mislabelled. There are safe test cases that are considered as unsafe and vice-
versa. For this reason, we ran a more thorough analysis to determine the actual label that

Chapter 5. Evaluation 47

SARD Label Our Label
Safe 1056 1344

Unsafe 708 420

Table 5.1: Number of safe and unsafe XSS test cases according to the two labels.

the test cases should have. Table 5.1 provides the total number of safe and unsafe test cases
according to the two labellings in consideration, the one provided by SARD and our own.
Our dataset contains 1396 test cases tagged equally and 368 test cases tagged differently.
Out of the test cases labelled equally, 1016 are safe and 380 are unsafe. Among the test
cases that were tagged differently, there are 328 cases considered ”unsafe” by SARD and
”safe” by us, plus 40 cases labelled ”safe” by SARD and ”unsafe” by us. The reasons for
this large discrepancy will be explained in detail in Subsection 5.1.7.

Our labels were generated by using small automation scripts to iterate over the test
cases and write their new label to a CSV file. Due to the fact that the SARD test cases
contain well-structured file names, the name of a test case file contains all the information
needed to determine whether it is safe or unsafe. We trivially considered all test cases with
no sanitization unsafe. We also considered all test cases that use casts or the ternary oper-
ator as safe, due to the fact that no malicious data can reach the sensitive sink. Regarding
the test cases that use function calls, we considered safe all test cases that use functions
marked as ”Always Safe” in Table 5.2. For the remaining test cases, we analyzed them
manually in more detail paying special attention to the sanitization function used and the
location where the input is included in the program’s output. When we were unsure about
what label to assign to a given test case, we tried to inject Javascript into it’s output by
providing it with malicious input. When the injected Javascript was executed, we labelled
the test case as ”unsafe”. Otherwise, we associated ”safe” to the test case.

5.1.2 SQLi Dataset Summary

We gathered a total of 100 SQLi test cases from SARD. All of these test cases contain
a while loop to iterate over the query’s result. However, we considered them to fit our
definition of a slice of code because this loop occurs after the sensitive sink, which means
that it has no influence on the tool’s capability to find vulnerabilities.

While analyzing the test cases manually, we discovered that there are two safe test
cases that are labelled as unsafe by SARD. The remaining test cases are labelled correctly.
Table 5.3 shows the total number of safe and unsafe test cases according to the two labels.
Due to the smaller size of the dataset for SQLi, our labels were generated manually by
analyzing all test cases. The two mislabelled test cases use a PHP filter equivalent to
call the function htmlspecialchars with the ENT QUOTES flag set. Although this
is usually considered to be unsafe for SQLi, it is safe in these two test cases. One of the

Chapter 5. Evaluation 48

Function
Always Safe

for XSS
in SARD

Observations

intval Yes Always returns an integer
floatval Yes Always returns a float

preg replace No It’s safety depends on the regular expression used
addslashes No Only sanitizes quotes and slashes
htmlentities No Is unsafe if it’s result is included in a <script> tag,

<style> tag or a Javascript event handlerhtmlspecialchars No
filter var No It’s safety depends on the filter used

mysql real
escape string No

Is inadequate to prevent XSS
and performs similarly to addslashes.

http build query Yes
URL-encodes any non-alphanumeric characters,

preventing the writing of Javascript
rawurlencode Yes

urlencode Yes

Table 5.2: Safety of the XSS sanitization functions in our dataset.

SARD Label Our Label
Safe 85 87

Unsafe 15 13

Table 5.3: Number of safe and unsafe SQLi test cases according to the two labels.

mislabelled test cases is shown in Listing 5.2.

5.1.3 Sources of Input

Overall, the test cases for both types of vulnerabilities contain input from four different
sources:

$_GET directly: The test cases with this input source assign a value from the $_GET
array directly to a variable called $tainted. This variable is then used by the
program.

$_POST directly: The test cases with this input source assign a value from the $_POST
array directly to a variable called $tainted. This variable is then used by the
program.

$_GET via array: In these test cases, a value from the $_GET array is assigned to
index 1 of another array. The value of index 1 of this new array is then assigned to
a variable named $tainted, that is later used by the program.

$_POST via unserialize: In these test cases, a serialize string is received from the
$_POST array. This string is then passed to unserialize and the result of this

Chapter 5. Evaluation 49

1 <?php
2
3 $tainted = $_POST[’UserData’];
4
5 $sanitized = filter_var($tainted, FILTER_SANITIZE_SPECIAL_CHARS)

;
6 $tainted = $sanitized ;
7
8
9 $query = "SELECT * FROM ’". $tainted . "’";

10
11 //flaw
12 $conn = mysql_connect(’localhost’, ’mysql_user’, ’mysql_password

’); // Connection to the database (address, user, password)
13 mysql_select_db(’dbname’) ;
14 echo "query : ". $query ."

" ;
15
16 $res = mysql_query($query); //execution
17
18 while($data =mysql_fetch_array($res)){
19 print_r($data) ;
20 echo "
" ;
21 }
22 mysql_close($conn);
23
24 ?>

Listing 5.2: Test case 166331, marked as ”unsafe” by SARD and ”safe” by us.

Chapter 5. Evaluation 50

function call is assigned to a variable called $tainted. As in the previous input
sources, this variable is then used by the program.

5.1.4 XSS Sanitization Methods

Our XSS test cases contain four major groups of sanitization methods, as described next.

No sanitization: contain no form of sanitization, making all test cases in this category
unsafe.

Function call: use a single function call to perform the sanitization. There are examples
with distinct functions, but they all have one thing in common: they receive a vari-
able as one of their arguments and return a sanitized version of that variable. It is
important to note that not all function calls are secure. This is the only category
that contains both safe and unsafe test cases, depending on the function used and
the location where the value is included on the resulting web page. The safety of
the functions in our XSS dataset is shown in greater detail in Table 5.2. Note that
even the functions not marked ”Always Safe” can be safe in certain conditions.

Cast to a numeric type: the value of the tainted variable is cast to a numeric type. The
cast can be done explicitly via the cast operation (e.g., (int) $v) or implicitly
via an arithmetic operation. In the second case, the numeric value 0 is summed
to the tainted variable (e.g., $t = $t + 0;), making PHP treat the variable as
a number regardless of it’s original type. Some of the test cases perform the sum
using the += operator while others use the longer syntax. All test cases in this
category are safe because the value that reaches the output is always a number, thus
preventing the attacks.

Ternary condition: use the ternary operator to test the input and assign to it one of two
allowed values, based on the result of the test. This effectively implements a white
list. All test cases in this category are safe because only one of two safe values can
reach the output.

All test cases contain a variable with the name $tainted that contains the program’s
input. These four types of sanitization methods provide a good variety of behaviors to test
our tool’s taint propagation mechanism. Table 5.4 summarizes the number of test cases
for the sources of input and sanitization methods contained in our XSS dataset.

5.1.5 SQLi Sanitization Methods

Our SQLi test cases contain four major groups of sanitization methods, as described next.

No sanitization: contain no form of sanitization, thus making all test cases in this cate-
gory unsafe.

Chapter 5. Evaluation 51

Input Source
Total$ GET

directly
$ POST
directly

$ GET
via

array

$ POST
via

unserialize

Sanitization
Method

No Sanitization 21 21 21 21 84

Function
Call

intval 21 21 21 21 84
floatval 21 21 21 21 84

preg replace 42 42 42 42 168
addslashes 21 21 21 21 84
htmlentities 21 21 21 21 84

htmlspecialchars 21 21 21 21 84
http build query 21 21 21 21 84

mysql real
escape string 21 21 21 21 84

filter var 63 63 63 63 252
rawurlencode 21 21 21 21 84

urlencode 21 21 21 21 84

Cast to
a Numeric

Type

Cast into int 21 21 21 21 84
Cast into float 21 21 21 21 84
Cast via += 0 21 21 21 21 84
Cast via + 0 21 21 21 21 84

Cast via += 0.0 21 21 21 21 84
Ternary Condition 21 21 21 21 84
Total 441 441 441 441 1764

Table 5.4: Summary of the XSS test cases we collected from SARD, their sources of input
and sanitization methods.

Chapter 5. Evaluation 52

Function call: use a single function call to perform the sanitization. There are exam-
ples with distinct functions, but they all have one thing in common: they receive
a variable as one of their arguments and return a sanitized version of that variable.
It is important to note that not all function calls are secure. This is the only cate-
gory that contains both safe and unsafe test cases, depending on the function used
and the location where the value is included in the resulting query. The functions
used in the SQLi dataset are the same ones used for XSS, with the exception of
the URL-encoding ones. Only the mysql real escape string function has
some unsafe test cases associated with it.

Cast to a numeric type: the value of the tainted variable is cast to a numeric type, as in
the case of XSS. The casts can also be done via the use of a numeric format specifier
(such as %u) in a call to sprintf to convert the input into a numeric type. All test
cases in this category are safe because the value that reaches the query is always a
number, thus preventing attacks.

Ternary condition: as with XSS, the ternary operator is used to test the input and assign
to it one of two allowed values, based on the result of the test. All test cases in this
category are safe because only one of two safe values can reach the query.

5.1.6 Sensitive Sinks

Regarding the XSS sensitive sinks, all test cases use PHP’s echo statement. Some test
cases simply provide the $tainted variable as an argument to echo while others con-
tain a concatenation of $tainted with other strings. The location where the input is
included in the HTML also varies, ranging from the content of a <div> tag to the con-
tent of a Javascript event handler.

As for the SQLi sensitive sinks, all test cases use the mysql query function. All
test cases provide a variable named $query as an argument to the sensitive sink. The
location where the input is included in the query varies, ranging from the WHERE clause
to the name of a table.

These factors contribute to enhance the diversity of the test cases for our tool because
the safety of some sanitization functions can change depending on the location where the
input is included in a query or the HTML.

5.1.7 Explanation for Mislabelling in the XSS Dataset

As explained in Subsection 5.1.1, there is a large discrepancy between SARD’s labels
and ours in the XSS dataset. We performed a more detailed analysis of the test cases that
were labelled differently to determine the root causes for this discrepancy and found the
following reasons, and provide an example of each:

Chapter 5. Evaluation 53

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <script>
5 <?php
6 $tainted = $_POST[’UserData’];
7
8 $tainted = urlencode($tainted);
9

10 //flaw
11 echo $tainted ;
12 ?>
13 </script>
14 </head>
15 <body onload="xss()">
16 <h1>Hello World!</h1>
17 </body>
18 </html>

Listing 5.3: Test case 192860, marked as ”unsafe” by SARD and ”safe” by us.

URL-encoding: SARD contains some test cases marked as ”unsafe” that use sanitization
functions to perform URL-encoding (line 8 in Listing 5.3). These functions encode
any non-alphanumeric characters, thus preventing the writing of Javascript, leading
us to tag them as ”safe”.

Quote escaping: Some test cases use sanitization methods that escape quotes by pre-
ceding them with backslashes (line 8 in Listing 5.4) and later include their input
inside of an HTML quoted attribute. Although SARD lists them as ”safe”, we
marked them as ”unsafe” because we were able to execute Javascript by providing
a malicious input. The input 1" onmouseover=alert(1) a=" can trigger
the vulnerability by closing the id attribute of the <div> tag contained on line 11
and introducing the onmouseover attribute with malicious Javascript. Note that
most browsers will accept a HTML attribute that contains backslashes as part of it’s
value.

Ternary condition: Some SARD test cases that use the ternary operator (line 9 in Listing
5.5) are marked as ”unsafe”. We marked them as ”safe” because no malicious input
can reach the sensitive sink. The ternary operator used in these test cases assigns
the string ’safe1’ to the variable $tainted if it’s value is equal to ’safe1’
or the string ’safe2’ in any other case. This means that regardless of the value
originally contained in $tainted, the ternary operator will always assign to it one
of two safe values. As an example, consider that the variable $tainted contains
the value <script>. In this case, the ternary operator’s condition will evaluate to

Chapter 5. Evaluation 54

1 <!DOCTYPE html>
2 <html>
3 <head/>
4 <body>
5 <?php
6 $tainted = $_GET[’UserData’];
7
8 $tainted = addslashes($tainted);
9

10
11 echo "<div id=\"". $tainted ."\">content</div>" ;
12 ?>
13 <h1>Hello World!</h1>
14 </body>
15 </html>

Listing 5.4: Test case 191378, marked as ”safe” by SARD and ”unsafe” by us.

false and result in the assignment of the value ’safe2’ to $tainted.

Undefined constant: Some of SARD’s test cases contain an undefined constant named
checked_data in their sensitive sinks (line 11 in Listing 5.6). We believe this
to be a mistake, but decided to include these test cases in our evaluation because
they are part of the original dataset. The test cases in this condition are marked
as ”unsafe” by SARD but we marked them as ”safe” because their input is never
included in the output.

Inclusion of input inside quoted CSS property values: In some test cases, the input is
included inside of quoted CSS property values (line 11 in Listing 5.7). SARD lists
these test cases as ”unsafe”, but we marked them as ”safe” due to the fact that we
could not find any malicious input that lead to an attack in the most popular web
browsers, including in some older versions of one of them.

Inclusion of input inside of a HTML comment: Some test cases include their input in-
side of a HTML comment, after sanitizing it with a function that encodes special
HTML characters. In Listing 5.8, note that a HTML comment is opened in line
4 (via the <!-- characters) and closed in line 13 (via the --> characters). This
means that any output produced by the execution of PHP between these two lines is
ignored by the web browser. In these test cases, the < and > characters are encoded,
preventing any malicious input from closing the HTML comment and executing
malicious code. SARD lists these test cases as ”unsafe” but we marked them as
”safe”.

Chapter 5. Evaluation 55

1 <!DOCTYPE html>
2 <html>
3 <head/>
4 <body>
5 <div>
6 <?php
7 $tainted = $_GET[’UserData’];
8
9 $tainted = $tainted == ’safe1’ ? ’safe1’ : ’safe2’;

10
11 //flaw
12 echo $tainted ;
13 ?>
14 </div>
15 <h1>Hello World!</h1>
16 </body>
17 </html>

Listing 5.5: Test case 191564, marked as ”unsafe” by SARD and ”safe” by us.

1 <!DOCTYPE html>
2 <html>
3 <head/>
4 <body>
5 <?php
6 $tainted = $_GET[’UserData’];
7
8 //no_sanitizing
9

10 //flaw
11 echo "Hey" ;
12 ?>
13 <h1>Hello World!</h1>
14 </body>
15 </html>

Listing 5.6: Test case 191410, marked as ”unsafe” by SARD and ”safe” by us.

Chapter 5. Evaluation 56

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <style>
5 <?php
6 $tainted = $_POST[’UserData’];
7
8 $tainted = htmlentities($tainted, ENT_QUOTES);
9

10 //flaw
11 echo "body { color :\"". $tainted ."\" ; }" ;
12 ?>
13 </style>
14 </head>
15 <body>
16 <h1>Hello World!</h1>
17 </body>
18 </html>

Listing 5.7: Test case 192710, marked as ”unsafe” by SARD and ”safe” by us.

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <!--
5 <?php
6 $tainted = $_GET[’UserData’];
7
8 $tainted = htmlspecialchars($tainted, ENT_QUOTES);
9

10 //flaw
11 echo $tainted ;
12 ?>
13 -->
14 </head>
15 <body>
16 <h1>Hello World!</h1>
17 </body>
18 </html>

Listing 5.8: Test case 191454, marked as ”unsafe” by SARD and ”safe” by us.

Chapter 5. Evaluation 57

Actual Status TotalVulnerable Not Vulnerable

Tool Status Vulnerable 308 172 480
Not Vulnerable 112 1172 1284

Total 420 1344 1764

Table 5.5: Summary of the tool’s results for the XSS test cases.

5.2 XSS Evaluation With SARD Test Cases

The tool was able to process all test cases. A summary of the results is presented in Table
5.5. It is important to note that each unsafe test case contains a single vulnerability that
requires one correction. This means that the number of vulnerabilities detected by our tool
is equal to the number of corrections it applied. Also note that the tool always applied one
of two corrections: i) a call to the htmlentities function with the ENT QUOTES flag,
or ii) a call to the rawurlencode function. Firstly, we will analyze the tool’s capability
to detect the vulnerabilities contained in the test cases. Then, we will analyze how secure
the applied corrections are.

To provide a better overview of our tool’s capabilities, we calculated the following 6
common metrics from their respective formulas:

True Positive Rate (TPR): Measures the percentage of vulnerable test cases the tool
identified as such. Larger is better.

TPR =
TP

TP + FN
(5.1)

True Negative Rate (TNR): Measures the percentage of non-vulnerable test cases that
the tool identified as such. Larger is better.

TNR =
TN

FP + TN
(5.2)

False Positive Rate (FPR): Measures the percentage of non-vulnerable test cases incor-
rectly identified as vulnerable by the tool. Lower is better.

FPR =
FP

FP + TN
(5.3)

False Negative Rate (FNR): Measures the percentage of vulnerable test cases missed
by the tool. Lower is better.

FNR =
FN

FN + TP
(5.4)

Accuracy (ACC): Measures the percentage of correct decisions made by the tool. Larger
is better.

ACC =
TP + TN

TP + TN + FP + FN
(5.5)

Chapter 5. Evaluation 58

Metric Value (%)
True Positive Rate (TPR) 73.3

True Negative Rate (TNR) 87.2
False Positive Rate (FPR) 12.8

False Negative Rate (FNR) 26.7
Accuracy (ACC) 83.9

Precision (P) 64.2

Table 5.6: Summary of the calculated metrics for XSS.

Precision (P): Measures the percentage of vulnerable test cases correctly identified by
the tool. Larger is better.

P =
TP

TP + FP
(5.6)

In the formulas above, we used abbreviations for the following expressions: True Posi-
tives (TP), True Negatives (TN), False Positives (FP), False Negatives (FN). The results
of each of the above metrics are summarized in Table 5.6.

After calculating these metrics, we analyzed the false positives and negatives in more
detail to uncover the reasons that caused them. We encountered five reasons that lead to
false negatives and two reasons that lead to false positives, that we describe next.

5.2.1 Reasons for False Negatives

Regarding false negatives, they all occurred for test cases that use sanitization methods
that encode HTML’s special characters and are regarded as safe by our tool. Their causes
are described next in greater detail and assigned abbreviations for later reference:

FNRe1 - Inclusion of input inside unquoted attributes: These false negatives occurred
for test cases that include the input inside of an unquoted HTML attribute. This
makes the test cases vulnerable because it is possible to write nonexistent Javascript
event handlers without using HTML’s special characters. The vulnerability con-
tained in the following test case (shown in Listing 5.9) can be triggered by providing
1 onmouseover=alert(1) as input.

FNRe2 - Inclusion of input inside CSS: These false negatives occurred for test cases
that include their input inside of a <style> tag. This makes them vulnerable
because certain versions of some browsers allow the execution of some Javascript
statements inside of CSS. The example given in Listing 5.10 can be attacked in
some browsers by providing it with the input expression(alert(1)).

FNRe3 - Inclusion of input inside of a script tag: False negatives also occurred for test
cases that include their input inside of a <script> tag. This makes them vulner-
able because it is possible to write meaningful Javascript without using HTML’s

Chapter 5. Evaluation 59

1 <!DOCTYPE html>
2 <html>
3 <head/>
4 <body>
5 <?php
6 $tainted = $_GET[’UserData’];
7
8 $tainted = htmlspecialchars($tainted, ENT_QUOTES);
9

10 //flaw
11 echo "<div id=". $tainted .">content</div>" ;
12 ?>
13 <h1>Hello World!</h1>
14 </body>
15 </html>

Listing 5.9: Test case 191460, vulnerable despite the use of safe sanitization.

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <style>
5 <?php
6 $tainted = $_POST[’UserData’];
7
8 $tainted = htmlentities($tainted, ENT_QUOTES);
9

10 //flaw
11 echo "body { color :". $tainted ." ; }" ;
12 ?>
13 </style>
14 </script>
15 </head>
16 <body>
17 <h1>Hello World!</h1>
18 </body>
19 </html>

Listing 5.10: Test case 192709, vulnerable despite the use of safe sanitization.

Chapter 5. Evaluation 60

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <script>
5 <?php
6 $tainted = $_POST[’UserData’];
7
8 $tainted = htmlentities($tainted, ENT_QUOTES);
9

10 //flaw
11 echo $tainted ;
12 ?>
13 </script>
14 </head>
15 <body onload="xss()">
16 <h1>Hello World!</h1>
17 </body>
18 </html>

Listing 5.11: Test case 192692, vulnerable despite the use of safe sanitization.

special characters. In the example provided in Listing 5.11, an attacker can simply
provide the input alert(1) to trigger the vulnerability.

FNRe4 - Inclusion of input in a HTML tag name: These false negatives occurred for
test cases that include their input in the place of a HTML tag name. Similarly to the
first reason, an attacker can craft a malicious input that adds nonexistent Javascript
event handlers without using HTML’s special characters. An example of input that
can trigger the vulnerability in Listing 5.12 is a onmouseover=alert(1).

FNRe5 - Inclusion of input in a HTML attribute name: This reason is very similar to
the previous one, except that the test case’s input is included in the place of a HTML
attribute name. To attack the example (in Listing 5.13), an attacker can provide the
input onmouseover=alert(1) id.

The number of test cases that occurred for each of the False Negative Reasons (FNRe)
is summarized in Table 5.7. We believe the false negatives that occurred for FNRe2 and
FNRe3 could be avoided if the tool’s taint analysis had the capability to keep track of the
type of sanitization function applied to a variable. This would allow it to know that, for
example, a variable is not safe to include inside of a <script> tag if it was sanitized by
a HTML-encoding function. As for the remaining FNRes, avoiding them would require a
detailed analysis of the context in which a tainted variable is included in the output.

Chapter 5. Evaluation 61

1 <!DOCTYPE html>
2 <html>
3 <head/>
4 <body>
5 <?php
6 $tainted = $_GET[’UserData’];
7
8 $tainted = htmlspecialchars($tainted, ENT_QUOTES);
9

10 //flaw
11 echo "<". $tainted ." href= \"/bob\" />" ;
12 ?>
13 <h1>Hello World!</h1>
14 </body>
15 </html>

Listing 5.12: Test case 191456, vulnerable despite the use of safe sanitization.

1 <!DOCTYPE html>
2 <html>
3 <body>
4 <?php
5 $tainted = $_GET[’UserData’];
6
7 $tainted = htmlspecialchars($tainted, ENT_QUOTES);
8
9 //flaw

10 echo "<div ". $tainted ."= bob />" ;
11 ?>
12 <h1>Hello World!</h1>
13 </div>
14 </body>
15 </html>

Listing 5.13: Test case 191455, vulnerable despite the use of safe sanitization.

Reason Test Cases
FNRe1 - Inclusion of input inside unquoted attributes 16

FNRe2 - Inclusion of input inside CSS 32
FNRe3 - Inclusion of input inside of a script tag 32
FNRe4 - Inclusion of input in a HTML tag name 16

FNRe5 - Inclusion of input in a HTML attribute name 16
Total 112

Table 5.7: Number of false negatives for each of the presented reasons.

Chapter 5. Evaluation 62

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <script>
5 <?php
6 $tainted = $_POST[’UserData’];
7
8 $tainted = addslashes($tainted);
9

10
11 echo "x=’". $tainted ."’" ;
12 ?>
13 </script>
14 </head>
15 <body>
16 <h1>Hello World!</h1>
17 </body>
18 </html>

Listing 5.14: Test case 192641, safe because the input is included in a Javascript string
after sanitizing quotes.

5.2.2 Reasons for False Positives

Regarding false positives, they occurred for test cases that use unsafe sanitization methods
in a context that makes them safe and for test cases that use a sanitization method involv-
ing a regular expression. Their causes are described next in greater detail and assigned
abbreviations for later reference:

FPRe1 - Unsafe sanitization used in a context that makes it safe: These false positives
occurred for test cases that sanitize quotes. The inclusion of input inside of a
Javascript string or a quoted CSS property value is safe in these cases because
any quotes present in the input are sanitized by preceding them with backslashes.
This means that an attacker can not execute meaningful code. Listing 5.14 shows
an example of a test case in this situation.

FPRe2 - Use of a sanitization method that involves a regular expression: All the false
positives that occurred for this reason were caused by calls to preg replacewith
a safe regular expression. Our tool does not currently handle regular expressions,
meaning that any calls to preg replace are considered to return tainted data,
regardless of the regular expression used. Listing 5.15 shows an example of a test
case in this situation.

The number of test cases that occurred for each of the False Positive Reasons (FPRe)
presented is summarized in Table 5.8.

Chapter 5. Evaluation 63

1 <!DOCTYPE html>
2 <html>
3 <head/>
4 <body>
5 <div>
6 <?php
7 $tainted = $_GET[’UserData’];
8
9 $tainted = preg_replace(’/\W/si’,’’,$tainted);

10
11
12 echo $tainted ;
13 ?>
14 </div>
15 <h1>Hello World!</h1>
16 </body>
17 </html>

Listing 5.15: Test case 191543, safe because the sanitization removes any character that
is not a letter or a number.

Reason Test Cases
FPRe1 - Unsafe sanitization used in a context that makes it safe 72

FPRe2 - Use of a sanitization method that involves a regular expression 100
Total 172

Table 5.8: Number of false positives for each of the presented reasons.

Chapter 5. Evaluation 64

Group Corrections
Unneeded 172

Safe 228
Unsafe 80
Total 480

Table 5.9: Summary of the applied XSS corrections.

5.2.3 Applied XSS Corrections

With regard to the XSS corrections applied by the tool, we manually analyzed all of them
to determine how many of them actually prevent attacks. It is important to note that
none of the corrections caused a program to become syntactically invalid. To complete
this task, we looked at the location where the input is included in the program’s output
to determine whether the correction can prevent all attacks. For example, if the input is
included in the place of a HTML tag name, our tool’s HTML-encoding correction can not
prevent all attacks. Given our knowledge about the test cases containted in our dataset and
the corrections applied by the tool, we were able to complete this task by looking at the
file names in our dataset, due to the fact that the SARD’s file names follow a well-defined
structure. We grouped the corrections into the following three groups:

Unneeded: These corrections were applied to non-vulnerable files meaning that they
were not necessary. Note that these corrections were applied to the test cases that
resulted in false positives for the reasons we presented in Subsection 5.2.2.

Safe: These corrections prevent all attacks, making the programs safe.

Unsafe: These corrections do not prevent all attacks, leaving the programs vulnerable.

Table 5.9 shows the number of corrections in each of the groups.

5.3 SQLi Evaluation With SARD Test Cases

As with XSS, the tool was able to process all test cases and a summary of the results is
presented in Table 5.10. As with XSS, each unsafe test case contains a single vulnerability
that requires one correction. This means that the number of vulnerabilities detected by
our tool is equal to the number of corrections it applied. The tool always applied the
same correction: a call to the mysql real escape string function. Firstly, we will
analyze the tool’s capability to detect the vulnerabilities. Then, we will analyze how
secure the applied corrections are.

To provide a better overview of our tool’s capabilities, we calculated the same 6 met-
rics that we calculated for XSS. The results of these metrics are presented in Table 5.11.

Chapter 5. Evaluation 65

Actual Status TotalVulnerable Not Vulnerable

Tool Status Vulnerable 10 13 23
Not Vulnerable 3 74 77

Total 13 87 100

Table 5.10: Summary of the tool’s results for the SQLi test cases.

Metric Value (%)
True Positive Rate (TPR) 76.9

True Negative Rate (TNR) 85.1
False Positive Rate (FPR) 14.9

False Negative Rate (FNR) 23.1
Accuracy (ACC) 84.0

Precision (P) 43.5

Table 5.11: Summary of the calculated metrics for SQLi.

After calculating these metrics, we analyzed the false positives and negatives in more
detail, to uncover the reasons that caused them. There were four reasons that lead to false
positives and a single reason that lead to false negatives.

5.3.1 Reason for False Negatives

Three false negatives occurred in this part of the evaluation and they were all caused by the
use of the mysql real escape string function to sanitize data that is later included
in a comparison with an integer. This corresponds to the problem that was explained in
Subsection 2.3.2. Listing 5.16 provides an example of one of the false negatives.

Avoiding these false negatives would require a more detailed analysis of the query’s
structure to determine the column’s data type.

5.3.2 Reasons for False Positives

Regarding false positives, they occurred for varying reasons that will be described next,
and assigned abbreviations for later reference.

FPRe1 - Use of a sanitization method that escapes quotes: Two false positives occurred
due to the use of addslashes (or an equivalent filter) to sanitize the input before it is
included in the query. This type of sanitization is regarded as unsafe by our tool but
it is safe in these test cases because any quotes present in the input are sanitized by
preceding them with backslashes. Listing 5.17 presents an example of one of these
test cases.

FPRe2 - Use of a XSS sanitization method: Seven false positives occurred due to the
use of a XSS sanitization method to sanitize the input. This is safe in these test

Chapter 5. Evaluation 66

1 <?php
2 $tainted = $_POST[’UserData’];
3
4 $tainted = mysql_real_escape_string($tainted);
5
6 $query = "SELECT Trim(a.FirstName) & ’ ’ & Trim(a.LastName) AS

employee_name, a.city, a.street & (’ ’ +a.housenum) AS
address FROM Employees AS a WHERE a.supervisor=". $tainted .
"";

7
8 //flaw
9 $conn = mysql_connect(’localhost’, ’mysql_user’, ’mysql_password

’); // Connection to the database (address, user, password)
10 mysql_select_db(’dbname’) ;
11 echo "query : ". $query ."

" ;
12
13 $res = mysql_query($query); //execution
14
15 while($data =mysql_fetch_array($res)){
16 print_r($data) ;
17 echo "
" ;
18 }
19 mysql_close($conn);
20
21 ?>

Listing 5.16: Test case 167180, vulnerable despite the use of a sanitization function.

Chapter 5. Evaluation 67

1 <?php
2 $array = array();
3 $array[] = ’safe’ ;
4 $array[] = $_GET[’userData’] ;
5 $array[] = ’safe’ ;
6 $tainted = $array[1] ;
7
8 $tainted = addslashes($tainted);
9

10 $query = sprintf("SELECT * FROM ’%s’", $tainted);
11
12 $conn = mysql_connect(’localhost’, ’mysql_user’, ’mysql_password

’); // Connection to the database (address, user, password)
13 mysql_select_db(’dbname’) ;
14 echo "query : ". $query ."

" ;
15
16 $res = mysql_query($query); //execution
17
18 while($data =mysql_fetch_array($res)){
19 print_r($data) ;
20 echo "
" ;
21 }
22 mysql_close($conn);
23
24 ?>

Listing 5.17: Test case 183625, safe because the input is included inside a SQL string
after sanitizing quotes.

Chapter 5. Evaluation 68

1 <?php
2
3 $tainted = $_GET[’UserData’];
4
5 $tainted = htmlspecialchars($tainted, ENT_QUOTES);
6
7 $query = "SELECT * FROM ’". $tainted . "’";
8
9 $conn = mysql_connect(’localhost’, ’mysql_user’, ’mysql_password

’); // Connection to the database (address, user, password)
10 mysql_select_db(’dbname’) ;
11 echo "query : ". $query ."

" ;
12
13 $res = mysql_query($query); //execution
14
15 while($data =mysql_fetch_array($res)){
16 print_r($data) ;
17 echo "
" ;
18 }
19 mysql_close($conn);
20
21 ?>

Listing 5.18: Test case 163730, safe because the input is included inside a SQL string
after sanitizing it with a HTML-encoding function.

cases. However, it is not considered safe by our tool because XSS sanitization
functions should never be used to prevent SQLi. Listing 5.18 presents an example
of one of these test cases.

FPRe3 - Use of a sanitization method involving a regular expression: Two false pos-
itives occurred due to a call to preg replace with a safe regular expression.
As mentioned in Subsection 5.2.2, our tool considers calls to preg replace to
return tainted data. Listing 5.19 shows an example of a test case in this situation.

FPRe4 - Use of a numeric format specifier: Two false positives occurred due to the use
of a numeric format specifier in a call to sprintf. This effectively consists of
casting the input to a numeric type, which was described in Subsection 2.2.1. Our
tool currently does not support calls to sprintf, meaning that the format speci-
fiers are not taken into consideration during the taint analysis. Listing 5.20 contains
an example of a test case in this situation. Note the use of %u to format the input as
an unsigned decimal number.

We believe that the false positives that occurred for reasons FPRe1 and FPRe2 can not
be avoided because these two methods of sanitization should not be considered safe for
SQLi. As for the false positives that occurred for the remaining reasons, avoiding them

Chapter 5. Evaluation 69

1 <?php
2
3 $tainted = $_GET[’UserData’];
4
5 $tainted = preg_replace(’/\W/si’,’’,$tainted);
6
7 $query = sprintf("SELECT * FROM ’%s’", $tainted);
8
9 $conn = mysql_connect(’localhost’, ’mysql_user’, ’mysql_password

’); // Connection to the database (address, user, password)
10 mysql_select_db(’dbname’) ;
11 echo "query : ". $query ."

" ;
12
13 $res = mysql_query($query); //execution
14
15 while($data =mysql_fetch_array($res)){
16 print_r($data) ;
17 echo "
" ;
18 }
19 mysql_close($conn);
20
21 ?>

Listing 5.19: Test case 163918, safe because the input is sanitized with a safe regular
expression.

Chapter 5. Evaluation 70

1 <?php
2
3 $tainted = $_POST[’UserData’];
4
5 //no_sanitizing
6
7 $query = sprintf("SELECT * FROM COURSE c WHERE c.id IN (SELECT

idcourse FROM REGISTRATION WHERE idstudent=’%u’)", $tainted);
8
9 $conn = mysql_connect(’localhost’, ’mysql_user’, ’mysql_password

’); // Connection to the database (address, user, password)
10 mysql_select_db(’dbname’) ;
11 echo "query : ". $query ."

" ;
12
13 $res = mysql_query($query); //execution
14
15 while($data =mysql_fetch_array($res)){
16 print_r($data) ;
17 echo "
" ;
18 }
19 mysql_close($conn);
20
21 ?>

Listing 5.20: Test case 166930, safe because a numeric format specifier is used to include
the input in the query.

Chapter 5. Evaluation 71

Group Corrections
Unneeded 13

Safe 9
Unsafe 1
Total 23

Table 5.12: Summary of the applied SQLi corrections.

would require a better analysis of regular expressions or the simulation of the execution
of calls to sprintf.

5.3.3 Applied SQLi Corrections

With regard to the corrections applied by the tool to the SQLi test cases, we analyzed
all of them to determine whether they prevent all attacks. It must be noted that, as with
XSS, none of the applied corrections caused a program to become syntactically invalid.
To complete this task, we manually analyzed all corrected programs (23 in total) and
determined the safety of the correction applied to each of them. As with XSS, we grouped
the corrections into the following three groups:

Unneeded: These corrections were applied to non-vulnerable files meaning that they
were not necessary. Note that these corrections were applied to the test cases that
resulted in false positives for the reasons we presented in Subsection 5.3.2.

Safe: These corrections prevent all attacks, making the programs safe.

Unsafe: These corrections do not prevent all attacks, leaving the programs vulnerable.

Table 5.12 shows the number of corrections in each of the groups.

5.4 Real Web Applications

SARD test cases allowed the evaluation of the tool’s capability to deal with diverse san-
itization methods. However, SARD’s test cases contain artificial code which might not
represent real web applications accurately. In order to test our tool with real code, we
obtained six web applications that were vulnerable to XSS from the site Exploit-DB.

Before describing our work for this part of the evaluation, it is worth mentioning that
most of the files contained in these applications do not fit our definition of a slice of code
because they contain, for example, if statements. For this reason, our tool can not be
expected to perform a complete and detailed analysis. Also, our tool analyzes each file in
isolation, that is, it does not take other included files into consideration. These two factors
may have influenced the number of vulnerabilities found for these applications.

Chapter 5. Evaluation 72

Application Vulnerable
Version

Latest
Version

PHP
Files

PHP
LoC Type of Application

Site@School 2.4.10 567 64 k
Content Management System

for Primary Schools

Integria IMS 5.0.83 5.0.85 974 198 k
IT Service Support
Management Tool

Electricks
eCommerce 1.0 45 7 k E-Commerce Website

userSpice 4.3 4.4 474 114 k User Management Application
AShop

Shopping Cart 6.0.2 628 113 k Shopping Cart Software

I, Librarian 4.6 4.10 114 26 k PDF File Manager

Table 5.13: Description of the applications used in our evaluation.

5.4.1 Application Description

Table 5.13 presents a summary of the applications that were collected. The table includes
a description of the application’s type, vulnerable version, latest version as of June 2019,
number of PHP files contained in it and number of PHP lines of code (LoC). The LoC
counts were computed using the cloc4 tool. The number of PHP files presented in the
table is the same as the number of files that our tool analyzes for each application.

Considering XSS, these six applications contain a mixture of sensitive sinks consid-
ered by our tool, such as echo, print, die and exit. This showed that our tool is
capable of detecting sensitive sinks other than echo, which is the only sensitive sink in
the test cases from SARD.

5.4.2 Results

Among the six applications, the tool considered a total of 38 PHP files to be vulnerable
with a total of 79 variables requiring correction. The resulting corrected programs are all
syntactically valid. All but one of the resulting programs preserved their functionality.
Table 5.14 presents a summary of the files corrected and number of corrections applied
for each of the applications being considered.

The tool applied 72 corrections using HTML-encoding functions and 7 corrections us-
ing URL-encoding functions. On 77 occasions, the correction was applied to the tainted
variable itself and, on 2 occasions, the correction was carried out on a variable’s taint
causes because the variable contained HTML tags in it’s simulated value. The function-
ality of the applications was only affected with one of the corrections applied to the I,
Librarian application. The program whose functionality was affected by our correction is
shown in Listing 5.21. In this program, the whole of line 4 was added by our tool. Since

4https://github.com/AlDanial/cloc

Chapter 5. Evaluation 73

Application Vulnerable Files Corrections Applied
Site@School 13 16
Integria IMS 5 5

Electricks eCommerce 5 27
userSpice 1 1

AShop Shopping Cart 8 24
I, Librarian 6 6

Total 38 79

Table 5.14: Summary of the files corrected for each of the applications.

Application Safe Corrections Unsafe Corrections
Site@School 16 0
Integria IMS 5 0

Electricks eCommerce 23 4
userSpice 1 0

AShop Shopping Cart 24 0
I, Librarian 6 0

Total 75 4

Table 5.15: Safety of the corrections applied to the real applications.

the if statement is written without curly braces, the addition of our correction caused the
die to be ”moved outside” of the if statement, meaning that it will always be executed,
unlike what the developer originally intended. In PHP, when an if statement is written
without curly braces, only the first instruction after the condition is considered to be part
of the statement. Note that this file contains if statements, meaning that it does not fit our
definition of a slice of code.

1 <?php
2 $title = trim($_POST[’title’]);
3 if (empty($error))
4 $title = htmlentities($title, ENT_QUOTES);
5 die(’title:’ . lib_htmlspecialchars($title));

Listing 5.21: Code excerpt taken from I, Librarian (simplified for readability).

As shown in Table 5.15, 75 of the 79 corrections are safe, preventing all attacks. Four
corrections applied to Electricks eCommerce are unsafe because, in those situations, the
input is included inside of an unquoted HTML attribute, meaning that an HTML-encoding
function can not prevent all attacks. Listing 5.22 provides an example of one of the unsafe
corrections applied by our tool (some lines of code were broken into two for readability).
The correction is the call to htmlentities on lines 2 and 3. Notice that the input is
included in the value attribute on line 5 without being surrounded by any quotes, thus
allowing the addition of new HTML attributes such as onmouseover. An example of
an input that could trigger the vulnerability is 1 onmouseover=alert(1) for the

Chapter 5. Evaluation 74

1 <div class="form group">
2 <?php $_GET[’prod_id’] = htmlentities($_GET[’prod_id’],
3 ENT_QUOTES); ?>
4 <input type="hidden" class="form-control" id="prod_id"
5 name="prod_id" value=<?php echo $_GET[’prod_id’];?>>

Listing 5.22: Correction applied to Electricks eCommerce (simplified for readability).

value of $ GET[’prod id’].

Chapter 6

Conclusions and Future Work

This chapter highlights the main conclusions of our work and it’s limitations. It also
presents some directions for future work based on the research performed.

6.1 Conclusions

In this work, we studied the different types of XSS and SQLi attacks against PHP web
applications. We also analyzed a multitude of sanitization methods available in PHP for
both of these vulnerabilities and the situations when they should be applied.

After studying related research efforts in the area of static analysis, we concluded
that the main problem of currently available SATs is the fact that most of them do not
perform automatic correction of the vulnerabilities found. The SATs that do so often
produce new programs that are syntactically invalid and can not be executed. With this
in mind, we proposed a solution based on taint analysis to find and correct vulnerabilities
in simplified PHP programs (i.e., slices of code) by adding new lines of code containing
secure corrections.

We implemented our proposed solution in the form of a static analysis tool written in
Python. The developed tool was evaluated using both automatically generated test cases
collected from SARD and real web applications obtained from Exploit-DB.

Regarding the tool’s capability to find XSS vulnerabilities, SARD showed that the
tool produces some false positives and negatives. The main cause for false positives was
the use of regular expressions to sanitize input, something that is difficult to analyze due
to the complexity of regular expressions. The main cause for false negatives was the
location where the input is included in the output. We do not believe this to pose a big
problem in practice because SARD contains artificial code that may not represent real
web applications accurately.

As for the SQLi vulnerabilities, SARD showed that the tool also produces some false
positives and negatives. However, approximately half of the false positives occurred due
to the use of a XSS sanitization function to prevent SQLi. This is something that can not

75

Chapter 6. Conclusions and Future Work 76

be considered safe and prevents us from reducing the number of false positives. There
were also some false positives due to the use of regular expressions to sanitize input,
something that is difficult to analyze, as mentioned before. Regarding the false negatives,
all of them occurred due to the location where the input is included in the query.

We did not analyze the false positives and negatives for the real web applications
because the files contained in them do not fit our definition of a slice of code, a fact that
may also have influenced the number of vulnerabilities found.

Regarding the tool’s capability to insert corrections, the results were very satisfying.
In SARD, all corrected programs were syntactically valid and preserved their original
behavior for both types of vulnerabilities. In the real web applications, all corrected
programs remained syntactically valid and only one of them saw it’s original behavior
change (the program whose behavior was affected by our tool does not fit our definition
of a slice of code). Regarding the safety of the inserted corrections, the vast majority of
the ones applied to the real applications was safe against all attacks. In the case of SARD
there were some unsafe corrections due to the location where the input is included in the
program’s output or SQL query. We do not believe this to pose a big problem because
SARD contains artificial code. Still in the case of SARD, the safe corrections vastly
outnumber the unsafe ones for both XSS and SQLi.

To conclude, we believe that our solution fulfills the objectives outlined in Section
1.2, thus providing an advancement in the code correction capabilities of SATs.

6.2 Limitations

The main limitation of the developed solution is the fact that it’s capability to correct
SQLi vulnerabilities is very basic. It always adds the same type of correction, which was
shown to be unsafe in some cases. This happened due to time restrictions in our work.

Another limitation of our approach is the simulation of variable operations. Although
it can produce an approximate value, it does not deal well with function calls and other
complex language constructs (such as class method calls). It also does not deal with calls
to sprintf, which is a commonly used function for the construction of strings.

Another limitation of our solution is the fact that it currently does not support method
calls as sensitive sinks or sanitization methods. This is not a problem in the case of
XSS but it can affect the tool’s capability to detect and correct more complex SQLi vul-
nerabilities. This happens because the MySQL Improved extension allows the use of
object-oriented code to sanitize input (mysqli::real escape string) and query
the database (mysqli::query).

Chapter 6. Conclusions and Future Work 77

6.3 Future Work

We leave the resolution of the limitations mentioned previously for future work. Another
interesting direction is the extension of our proposed solution to be able to analyze com-
plete PHP files instead of simplified ones. There is also the possibility of extending it to
deal with more types of vulnerabilities and corrections.

Another interesting direction for future work is an improvement of the taint analysis
to give it the capability to deal with validation functions used in predicates.

Lastly, we believe that there is room for improvements in the amount of information
the tool maintains during the taint analysis. For example, the tool could keep track of
the type of sanitization function used on a variable. This would help reduce the false
negatives that arise for reasons such as the ones encountered in SARD.

Acronyms

ACC Accuracy.

AST Abstract Syntax Tree.

CMS Content Management System.

CSP Content Security Policy.

CSS Cascading Style Sheets.

CSV Comma-separated Values.

CWE Common Weakness Enumeration.

DOM Document Object Model.

EP Entry Point.

FN False Negatives.

FNR False Negative Rate.

FNRe False Negative Reason.

FP False Positives.

FPR False Positive Rate.

FPRe False Positive Reason.

HTML Hypertext Markup Language.

HTTP Hypertext Transfer Protocol.

IDE Integrated Development Environment.

IETF Internet Engineering Task Force.

79

Acronyms 80

IT Information Technology.

LoC Lines of Code.

NIST National Institute of Standards and Technology.

OS Operating System.

OWASP Open Web Application Security Project.

P Precision.

PDF Portable Document Format.

PHP PHP: Hypertext Preprocessor.

SARD Software Assurance Reference Dataset.

SAT Static Analysis Tool.

SQL Structured Query Language.

SQLi SQL Injection.

SS Sensitive Sink.

TN True Negatives.

TNR True Negative Rate.

TP True Positives.

TPR True Positive Rate.

URL Uniform Resource Locator.

XSS Cross-Site Scripting.

Bibliography

[1] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky. You Get
Where You’re Looking for: The Impact of Information Sources on Code Security.
In Proceedings of the IEEE Symposium on Security and Privacy, May 2016.

[2] A. Algaith, P. Nunes, J. Fonseca, I. Gashi, and M. Viera. Finding SQL Injection and
Cross Site Scripting Vulnerabilities with Diverse Static Analysis Tools. In Proceed-
ings of the European Dependable Computing Conference, July 2018.

[3] D. Anderson and M. Hills. Query Construction Patterns in PHP. In Proceedings of
the International Conference on Software Analysis, Evolution and Reengineering,
Feb 2017.

[4] C. Cadar and K. Sen. Symbolic execution for software testing: Three decades later.
Communications of the ACM, February 2013.

[5] J. Dahse and T. Holz. Static Detection of Second-Order Vulnerabilities in Web
Applications. In Proceedings of the USENIX Security Symposium, August 2014.

[6] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and S. Fahl.
Stack Overflow Considered Harmful? The Impact of Copy Paste on Android Ap-
plication Security. In Proceedings of the IEEE Symposium on Security and Privacy,
May 2017.

[7] L. Flynn, W. Snavely, D. Svoboda, N. VanHoudnos, R. Qin, J. Burns, D. Zubrow,
R. Stoddard, and G. Marce-Santurio. Prioritizing Alerts from Multiple Static Anal-
ysis Tools, Using Classification Models. In Proceedings of the International Work-
shop on Software Qualities and Their Dependencies, May 2018.

[8] G. Grieco, G. L. Grinblat, L. Uzal, S. Rawat, J. Feist, and L. Mounier. Toward
Large-Scale Vulnerability Discovery Using Machine Learning. In Proceedings of
the ACM Conference on Data and Application Security and Privacy, March 2016.

[9] W. G. J. Halfond and A. Orso. AMNESIA: Analysis and Monitoring for NEu-
tralizing SQL-injection Attacks. In Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, November 2005.

81

Bibliography 82

[10] W. G. J. Halfond, A. Orso, and P. Manolios. WASP: Protecting Web Applications
Using Positive Tainting and Syntax-Aware Evaluation. IEEE Transactions on Soft-
ware Engineering, Jan 2008.

[11] W. G. J. Halfond, J. Viegas, and A. Orso. A Classification of SQL Injection Attacks
and Countermeasures. In Proceedings of the IEEE International Symposium on
Secure Software Engineering, March 2006.

[12] J. Huang, Y. Li, J. Zhang, and R. Dai. UChecker: Automatically Detecting PHP-
Based Unrestricted File Upload Vulnerabilities. In Proceedings of the IEEE/IFIP
International Conference on Dependable Systems and Networks, June 2019.

[13] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo. Securing Web
Application Code by Static Analysis and Runtime Protection. In Proceedings of the
International Conference on World Wide Web, May 2004.

[14] V. B. Livshits and M. S. Lam. Finding Security Vulnerabilities in Java Applications
with Static Analysis. In Proceedings of the USENIX Security Symposium, August
2005.

[15] I. Medeiros, N. F. Neves, and M. Correia. Automatic Detection and Correction of
Web Application Vulnerabilities using Data Mining to Predict False Positives. In
Proceedings of the International World Wide Web Conference, April 2014.

[16] P. Nunes, I. Medeiros, J. Fonseca, N. F. Neves, M. Correia, and M. Vieira. On
Combining Diverse Static Analysis Tools for Web Security: An Empirical Study. In
Proceedings of the European Dependable Computing Conference, September 2017.

[17] T. D. Oyetoyan, B. Milosheska, M. Grini, and D. S. Cruzes. Myths and Facts About
Static Application Security Testing Tools: An Action Research at Telenor Digital.
In Agile Processes in Software Engineering and Extreme Programming, 2018.

[18] E. J. Schwartz, T. Avgerinos, and D. Brumley. All You Ever Wanted to Know about
Dynamic Taint Analysis and Forward Symbolic Execution (but Might Have Been
Afraid to Ask). In Proceedings of the IEEE Symposium on Security and Privacy,
May 2010.

[19] L. K. Shar and H. B. K. Tan. Mining Input Sanitization Patterns for Predicting SQL
Injection and Cross Site Scripting Vulnerabilities. In Proceedings of the Interna-
tional Conference on Software Engineering, June 2012.

[20] L. K. Shar, H. B. K. Tan, and L. C. Briand. Mining SQL Injection and Cross Site
Scripting Vulnerabilities using Hybrid Program Analysis. In Proceedings of the
International Conference on Software Engineering, May 2013.

Bibliography 83

[21] R. Shirey. Internet Security Glossary. RFC 4949, IETF, August 2007.

[22] J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and H. R. Lipford. Questions De-
velopers Ask While Diagnosing Potential Security Vulnerabilities with Static Anal-
ysis. In Proceedings of the Joint Meeting on Foundations of Software Engineering,
September 2015.

[23] B. Stivalet and E. Fong. Large Scale Generation of Complex and Faulty PHP Test
Cases. In Proceedings of the IEEE International Conference on Software Testing,
Verification and Validation, April 2016.

[24] A. van der Stock, B. Glas, N. Smithline, and T. Gigler. Owasp Top 10 2017 The Ten
Most Critical Web Application Security Risks. Technical report, OWASP, 2017.

[25] F. Yamaguchi, F. Lindner, and K. Rieck. Vulnerability Extrapolation: Assisted Dis-
covery of Vulnerabilities Using Machine Learning. In Proceedings of the USENIX
Conference on Offensive Technologies, August 2011.

[26] Y. Zheng, X. Zhang, and V. Ganesh. Z3-str: A Z3-based String Solver for Web Ap-
plication Analysis. In Proceedings of the Joint Meeting on Foundations of Software
Engineering, August 2013.

	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Contributions
	Document Structure

	Context and Related Work
	Vulnerabilities
	A1: Injection
	A7: Cross-Site Scripting (XSS)

	Sanitization Methods
	Generic Sanitization Methods
	Cross-Site Scripting Sanitization
	SQL Injection Sanitization
	PHP Filters

	Safety of Sanitization Methods
	Pitfalls of Cross-Site Scripting Sanitization
	Pitfalls of SQL Injection Sanitization

	Static Analysis
	Automatic Code Correction

	Proposed Solution
	Design Challenges
	Where to insert the correction?
	What correction to insert?
	How to deal with existing sanitization?

	Solution Overview
	Algorithm
	Main Idea
	Pseudocode

	Implementation
	Knowledge Base
	Entry Points
	Sensitive Sinks
	Sanitization Methods

	The PHPly Parser
	Data Structures
	Variable Definition
	Program State
	Program State by Sensitive Sink
	Lines of Code with HTML
	Corrected Variables

	Corrections Applied
	Format String Correction

	Implementation Decisions

	Evaluation
	Software Assurance Reference Dataset (SARD)
	XSS Dataset Summary
	SQLi Dataset Summary
	Sources of Input
	XSS Sanitization Methods
	SQLi Sanitization Methods
	Sensitive Sinks
	Explanation for Mislabelling in the XSS Dataset

	XSS Evaluation With SARD Test Cases
	Reasons for False Negatives
	Reasons for False Positives
	Applied XSS Corrections

	SQLi Evaluation With SARD Test Cases
	Reason for False Negatives
	Reasons for False Positives
	Applied SQLi Corrections

	Real Web Applications
	Application Description
	Results

	Conclusions and Future Work
	Conclusions
	Limitations
	Future Work

	Acronyms
	Bibliography

