UNIVERSIDADE DE LISBOA

Faculdade de Ciéncias
Departamento de Informatica

ATTACK-TOLERANT COMMUNICATION IN A SIEM
TOOL

Ricardo Jorge Pato Fonseca

PROJECTO

MESTRADO EM ENGENHARIA INFORMATICA

Especializacdo em Arquitectura, Sistemas € Redes de Computadores

2012

UNIVERSIDADE DE LISBOA

Faculdade de Ciéncias
Departamento de Informatica

ATTACK-TOLERANT COMMUNICATION IN A SIEM
TOOL

Ricardo Jorge Pato Fonseca

PROJECTO

Projecto orientado pelo Prof. Doutor Nuno Fuentecilla Maia Ferreira Neves

MESTRADO EM ENGENHARIA INFORMATICA

Especializacdo em Arquitectura, Sistemas € Redes de Computadores

2012

Acknowledgments

First of all, I would like to thank my supervisor, Professor Nuno Ferreira Neves, for
introducing me to the project MASSIF and giving me the opportunity to work in the
project and write a thesis on the subject. I am also particularly grateful for the dedicated
support and advice he has given me throughout the year, for without it this thesis could
not have been completed.

I would also like to thank the people associated with the MASSIF project, including
members of the Navigators team, who, besides other tasks related to the MASSIF pro-
ject, also discussed ideas on the REB over the several meetings that occurred throughout
the year. These people include Professor Alysson Bessani, Professor Anténio Casimiro,
Professor Paulo Verissimo, Eric Vial, Hossein Rouhani and Miguel Garcia.

Finally, I would like to thank my family who have given me unconditional support,
especially in the final stages of the thesis.

Lisboa, September 26, 2012
Ricardo Fonseca

1

Resumo

Uma ferramenta SIEM (Security Information and Event Management) representa uma
solu¢do que combina a colecdo de eventos em tempo real através da monitoriza¢do de uma
rede de computadores em multiplas localizacdes, com a correlacdo e andlise dos dados
obtidos pela monitorizagdo, a fim de descobrir se existem ataques/intrusdes em progresso
para que alarmes e a¢des de remediacdo possam ser iniciadas.

“Prevencao € ideal, mas detecdo é obrigatéria”. Este € o lema utilizado pelo pro-
jeto europeu MASSIF (FP7-257475) [1]] que visa utilizar tecnologias SIEM para oferecer
detecdo de ataques e intrusdes em sistemas informaticos sob variados contextos. Hoje em
dia, a tecnologia SIEM nio € novidade, no entanto, o projeto MASSIF aborda diversas
limitagGes existentes nos sistemas SIEM atuais, e tenciona apresentar solugdes inovado-
ras para esses problemas. Uma das limitacdes presentes € a incapacidade do sistema de
fornecer um elevado grau de confiabilidade ou resiliéncia a ataques na disseminacdo de
eventos entre os seus componentes (sensores € motor de correlagdo). O projeto MASSIF
tem como objetivo contribuir para a resolu¢@o desse problema, fornecendo um mecanismo
de comunicacdo que assegure a entrega fidvel e atempada dos eventos de seguranga, ainda
que este se encontre sob ataque, quer nos nds que o concretizam como na rede que os liga.
Esta tese foi desenvolvida neste contexto, oferecendo uma solucdo para a comunicac¢ao
confidvel em SIEMs.

Uma vez que sensores € motores de correlacdo podem encontrar-se geograficamente
dispersos, existe a necessidade de fornecer um sistema de comunicacao capaz de transmi-
tir dados (e.g., eventos e comandos de reconfiguracao) nao s6 em redes de estrutura LAN,
mas também em redes de larga escala como a Internet. Alguns dos problemas associados
a esta comunicacdo sdo atrasos nas transmissdes de dados, configuragdes incorretas de
rotas, violagdes de integridade nos dados transmitidos, e ataques de negacdo de servico
(DoS). Todos estes problemas podem potencialmente afetar a conformidade da andlise
de eventos. Na tese é apresentada a concecdo de um Resilient Event Bus (REB) para
uma comunicacdo confidvel entre sensores € motores de correlagdo. O REB € baseado
numa rede sobreposta que opera sobre a infraestrutura SIEM existente, € que usa varios
mecanismos, como algoritmos de codificagdo, multihoming e transmissao de dados por
multiplas rotas, para assegurar uma entrega atempada de dados em varios cendrios de fa-

lha (i.e., do tipo acidental ou malicioso).

A tese apresenta o desenho dos varios mecanismos empregues pelo REB, incluindo
uma comparacdo com outras solucdes na literatura atual e a justificacdo das escolhas
feitas. O trabalho também inclui uma descri¢ao de uma primeira concretizagdo do REB,
a metodologia utilizada na sua execucdo e a andlise de alguns resultados de testes.

Palavras-chave: Seguranca, SIEM, Comunicagdo tolerante a ataques, MASSIF, REB

Vi

Abstract

A Security Information and Event Management (SIEM) tool is a security solution that
combines real-time event collection by monitoring a target network at a diverse set of
locations, with the correlation and analysis of the obtained data to find out if attacks/in-
trusions are in progress, so that alarms and remediation actions can be initiated. Since the
different components of a SIEM tool (e.g., the sensors and the correlation engine) may
be geographically dispersed, there is the need for a communication subsystem capable of
transmitting data (e.g., events and reconfiguration commands) not only in LAN settings,
but also over large scale networks such as the Internet. Some of the inherent problems
associated to this communication are delays, routing misconfigurations, message integrity
violations and denial of service attacks, which can all affect the correctness of the event
analysis. This thesis presents the design of a Resilient Event Bus (REB) for a resilient
communication across a diverse set of network environments. The REB is based on an
overlay network superimposed on top of the existing SIEM infrastructure, which uses
several mechanisms, such as coding algorithms, multihoming and multipath data trans-
mission, to ensure timely data delivery in various failure scenarios (i.e., of both accidental

and malicious nature).

Keywords: Security, SIEM, Attack tolerant communication, MASSIF, REB

vii

Contents

[List of Figures| xi
(L Introduction| 1
LI Context o v ot et e 2
(L.2__The need for resilient event disseminationl 3
(LL3__Overview of the Resihent EventBusl 3
(1.4 Planning|. 5
[L5__The structure of the document 5
2__Related workl 7
2.1 Overlaynetworks| L o 7
22 FErasurecodesl 9

3 REB Analysis and Design| 11
Bl Overviewl e 11
(3.2 Communication properties| vt e e 16
(3.2.1 Authentication and error-free (and optional confidentiality) 16

[3.2.2 Reliable and timely data delivery|. 17

[3.2.3 Ordered and duplication-free data delivery| 19

(3.3 Sending and recervingdatalo oo oL 20
3.4 REBiterfacel 24
3.5 Communication mechanisms| Lo oL 24
[3.5.1 Overlay network configuration and setup| 25

[3.5.2 Multple paths and multthoming| 28

[3.5.3 Multipath transmission and erasure codes| 29

[3.5.4 Segment and packet identification| 31

[3.5.5 Acknowledgments and Retransmissions| 31

356 Flowcontroll 36

[3.5.7 Route probing and selection| 39

X

4

Implementation and Evaluation|

A1

REB library installation| 00000

|

Build procedure{. o 0oL

4.1.2 Configurationfiles|

A2

Main Components|

4.2.2 Two interaction examples|

4.3 DesignofaREBnode,

IS5 Conclusions

Acronyms

45
45
45
46
46
47
50
52
52
53
59
61
61

69

71

75

List of Figures

(1.~ SIEM general architecture] 2
(.2 ResiientEventBus| oo 4
(3.1 REB topological view|. 0 0. 12
(3.2 Data tranSmission proCess|.« . . i e e e e e e 21
(3.3 Datarecelving process| e 23
B4 REBinterfacel 24
3.5 MultthommnginREB| 0000, 28
[3.6 Receivequeue|. 32
3.7 _Common transmission scenariol 34
3.8 Retransmission scenariolo 35
[3.9 Garbage collecting scenario|. L L. 38
B.10 RTT estimation scenariolot vt v v v e 41
4.1 Interaction of the components in a sending scenario| 51
4.2 Interaction of the components in multiple receiving scenarios| 52
4.3 Structureof aREBpackef 54
4.4 Structure of apacketheadery 54
4.5 Structure of a segment header plusdatal 56
4.6 Structure of anencodedblockl oo 0oL 56
4.7 Structure of a selective acknowledgment| 57
4.8 Structure of handshake messages| 58
4.9 Structureofanoncel. Lo 59
4.10 Classdiagram| 60
.11 Sequence diagram for the sending operation| 62
.12 Sequence diagram for the receiving operation| 63
.13 Logical organization of the testnetwork] 64
.14 Physical organization of the test network{. 65
.15 Measurements taken from one single directpath| 66
4.16 Measurements taken from multiple paths|. 66

X1

Chapter 1

Introduction

Concerning Information Security, multiple strategies exist to defend both services and
critical data from non-authorized access or external attacks. One particular strategy is
prevention, which attempts to ensure the confidentiality and integrity of data, authentica-
tion of involved entities, and availability of services. However, despite prevention being
an interesting strategy, there is the issue of new forms of attacks being found frequently,
which makes imperative the usage of detection mechanisms.

Attack and intrusion detection in computer systems assumes a constant monitoring of
those systems, as well as a simultaneous analysis of the monitoring information records.
Typically, the monitoring consists in generating log files of events that contain specific
information about particular services, which are delivered afterwards to an entity capable
of analysing those events and extracting relevant information from the data (such as data
patterns which indicate that “something is not right”). That information can then be used
afterwards to correct the perceived anomaly or to present evidence in court against the
attacking entity, if one exists.

An inherent problem in the detection strategy is the effort usually required to extract
the information from the monitoring events. This task typically involves filtering relevant
events, translating those events into contextual information, and sometimes making that
information available for auditing purposes. When an organization chooses to apply this
security strategy, the human effort typically increases, thus becoming advantageous to the
industry the development of solutions that automate (to a certain extent) the management
of events and security information.

The concept of Security Information and Event Management (SIEM) was first pub-
licly mentioned in 2005 by Mark Nicolett and Amrit Williams, with the intent of unifying
the two existing concepts: SEM (events), which relates to the real-time analysis of events
obtained from the monitoring of systems; and SIM (information), which relates to the
long-term storage of large amounts of information extracted from the analysis of events,
and later historical analysis of the same information in order to support forensic activ-
ities [25]. A SIEM tool offers multiple advantages over the human approach, allowing

Chapter 1. Introduction 2

Network
(e.g., LAN, MAN, or WAN)

Engine
and Event Storage

) - e

Facility

Sensor

)

ay a, %% Payload Machinery

Facility H 3 -
& Sensjrz E SIEM Machinery

.
Y

nsor J
| Facility

Figure 1.1: SIEM general architecture.

a faster reaction to an attack, improving the efficiency of attack/intrusion detection, and
automating the process of information compliance for auditing purposes 18]). Cur-
rently, they are being employed by organizations around the world as a way to facilitate
operations related to maintenance, monitoring and analysis of networks, by integrating a
large range of security and network capabilities, which allow for instance the correlation
of thousands of events and the reporting of attacks and intrusions in near real-time.

There are two main components in a SIEM tool: sensors and a correlation engine (see
Figure [I.I). Sensors are responsible for periodical event generation based on real-time
monitoring of selected network components (e.g., routers, firewalls, intrusion detection
systems). These components are called the payload machinery, and are available on the
existing network infrastructure (left part of the figure). The correlation engine is respon-
sible for event data analysis and for extracting useful information that could aid in the
detection and remediation of unusual situations, such as system intrusions (right part of
the figure).

1.1 Context

The work of this thesis was developed in the context of the European project MASSIF
where the objective is to achieve significant advances in the area of SIEM system de-
velopment and deployment. Deliverable document D5.1.1 describes a preliminary
architecture of a resilient SIEM tool for the project, including a short description of the
middleware services that could be employed to build the components of the SIEM. Out of

Chapter 1. Introduction 3

those services, there is a communication subsystem between the sensors and the engine
in a SIEM system, which is the theme of this thesis.

1.2 The need for resilient event dissemination

Due to its fundamental role in the security management of an organization, the SIEM
should be made resilient to faults and attacks, and one prominent attack surface is the
communication between sensors and the correlation engine. This communication primar-
ily consists in the transmission of events from the sensors to the engine, but sometimes
it can include also remediation actions that are sent towards the payload machinery, for
instance to reconfigure a certain device after the detection of an intrusion. Depending on
the organizations, sensors and the engine may be located near to each other (e.g., through
a LAN) or be geographically dispersed, requiring the exchange of data across a large
scale network such as the Internet (e.g., if the SIEM collects data from the offices of an
organization located in different cities or even countries). Some of the inherent problems
associated to this communication are accidental faults and attacks, which can for instance
delay, remove, or corrupt individual packets.

1.3 Overview of the Resilient Event Bus

To counteract the problem in the communication between sensors and the correlation en-
gine we propose a solution that provides both resilient and timely communication, called
the Resilient Event Bus (or REB). Figure illustrates the REB applied to the communi-
cation in a SIEM. Using REB, a SIEM machine (sensor or engine) can transmit messages
to other SIEM machines in a way that tolerates (accidental or malicious) faults in the
network and in some cases faults on REB itself.

The REB consists of an overlay network built among the SIEM nodes, which are
called generically as REB nodes. The communication in the overlay network is performed
on top of the UDP/IP protocols, allowing the support of different network settings. REB
uses application-level one-hop source routing to send messages towards the destination,
instead of simply following the routes imposed by the network-level routing. It also takes
advantage of coding techniques and the available redundancy of the network, such as
when a node has multiple network connections (i.e., multihoming), to ensure that mes-
sages arrive securely and timely with a very high probability.

The overlay network created among the REB nodes allows for multiple distinct routes
(or paths) to be taken to transmit data to a specific destination. The REB uses multipath
communication to send data concurrently over several different paths in the overlay net-
work in order to tolerate problems in the underlay network, such as delays or routing
misconfigurations, which may have accidental causes or may be triggered by denial of

Chapter 1. Introduction 4

Network
(e.g., LAN, MAN, or WAN)

~o) Core

& SIEM

hr—. £ Services

—_ (including Engine

and Event Storage)
SIEM
Services

Facility Aux
Services
Facility
.
s Sensor
- Edge L
&) SIEM |
. Services q
.
.
- e REB %4 Payload Machinery
H 2node E
e Sensg SIEM Machinery
Facility - @ Edge

SIEM

.
* 1
| i%"m’ Services
] Facility

Figure 1.2: The Resilient Event Bus applied to the communication in a SIEM.

service attacks. The overlay routes consist either of direct paths between the source and
destination nodes, or paths in which an intermediary node receives data from a source and
redirects it to the destination. The overlay route of each message is defined at the sender
(source routing), based on the local knowledge of the state of the links, and is composed
of at most one intermediate relaying REB node (one-hop). Using multiple paths, the
communication also tolerates accidental faults in some intermediary nodes.

A REB node can be connected to the WAN through one physical link or through
multiple links. The REB takes advantage of this form of redundancy by employing mul-
tihoming communication. Here, a node can either send or receive packets over any of
the physical connections, thus increasing the number of possible paths that can be chosen
when disseminating data to a certain destination. For example, if the sender and the re-
ceiver have two connections, then there are four alternative direct links between the two
nodes instead of a single one. It is expected that at least in part these links fail in an
independent way, which means they can be used to provide correct packet delivery under
somewhat adverse network conditions.

To avoid replicating messages through multiple links, the REB employs erasure cod-
ing techniques to ensure that packet loss can be recovered at the receiver, at a much lower
replication overhead. Basically, the sender needs to do some processing on a message
before transmitting it, producing some extra repair information. Then, a slightly larger
message containing the original message and the repair information is divided in several
packets that are transmitted over various links. Even if only a subset of the message and

repair data arrives, the receiver can still recover the original message.

Chapter 1. Introduction 5

Communication within the REB nodes uses cryptographic Message Authentication
Codes (MACs) [24] in order to provide authentication and message integrity. A MAC
is appended to each packet a source node transmits to a destination, and is generated
using one secret symmetric key associated with the communication session between the
source and destination nodes. This form of authentication also makes it possible for the
communication to tolerate malicious faults in intermediary nodes.

In order to achieve timeliness with high probability, a sender REB node periodically
probes each of its most promising paths to a given destination to derive a quality metric
to be associated with the path. Based on this metric, the sender can determine at each mo-
ment which are the best paths for a destination, and select them to disseminate a message
based on its deadline.

1.4 Planning

The thesis work started on the 1st of September 2011, and finished on September 26, 2012.
Originally, the project was expected to end in July 2012, however some extra time was
necessary to complete the solution. After a first design and implementation of the REB,
the analysis of the performance results showed some limitations in certain scenarios that
have to be considered in MASSIF. In order to solve these limitations, it was necessary to
re-write some of the mechanisms and introduce a few others. In the end, this contributed
to an overall better solution.

1.5 The structure of the document
This document is organized as follows:

e In chapter [2] we mention some related work in the area of Overlay Networks and
Erasure Codes, and compare them with the REB;

e In chapter[3|we discuss the analysis and design of the REB, explaining its properties
and communication mechanisms in detail;

e In chapter 4] we present the implementation and evaluation of our prototype, giving
a detailed explanation of its components, referring the utilized methodology, and
showing some test results;

e Finally, in chapter 5| we present our conclusions and proposals for future work.

Chapter 2

Related work

Related work to the REB can be divided in two categories: overlay networks and erasure
codes. Extensive work has been done over the past years in the area of overlay networks
and their benefits. Erasure codes, on the other hand, despite not being new, only more
recently become increasingly referenced in various works with practical communication

solutions.

2.1 Overlay networks

Andersen et al. talked about how to improve the routing protocols of WANs (like the
Internet) using a Resilient Overlay Network (or RON) [4]. Such a routing protocol, like
the Border Gateway Protocol (BGP), is used in communications among different Au-
tonomous Systems (ASes) which comprise the global structure of the Internet. BGP car-
ries very simplistic routing information for scalability reasons and for policy enforcement
since ASes maintain detailed routing information of the subsystems within themselves,
not sharing them with other ASes. For this reason, BGP usually takes minutes to recover
from faults occurring on the announced routes. This can have a severe impact on the per-
formance of communication between hosts on different ASes, or even affect the overall
availability of the communication if it is the case that a particular router is attacked. To
overcome these problems, a RON network is used by deploying the RON nodes on distinct
ASes and allowing an application-level routing to take place. RON nodes gain knowledge
about particular overlay paths by constantly probing those paths, checking their metrics
of quality of service such as latency or loss rate, and keeping updated routing tables that
contain the “best available route”. The best route between a source and a destination RON
node may be simply the direct underlay path between them, or it may be a route that uses
an intermediary node to forward the data. Either way, cooperation between the nodes is
required to keep the routing information updated (the nodes periodically disseminate this
information among themselves).

Some design choices of REB build upon the ideas of RON, that is, REB uses overlay

7

Chapter 2. Related work 8

routing to tolerate faults in the underlay network and uses a probing mechanism to select
the best route(s). However, in the case of REB, the nodes cannot trust each other to ex-
change routing information, and so REB uses a source-based routing mechanism where
the information of a route is only managed locally by a REB node.

Snoeren et al. discuss the use of a mesh network that is used to disseminate XML
packets [23]. Here, the packets are transmitted over multiple disjoint paths, as a form
of redundancy, in order to increase the chances of delivery in case faults occur in the
underlay network. In this work, the authors sacrifice bandwidth for reliability.

REB uses multipath transmission but does not simply duplicate the transmission of
packets over multiple routes, instead it relies on erasure codes to minimize the message
overhead caused by the redundancy (necessary for achieving robustness in the communi-
cation). Furthermore, REB attempts to combine a best-route strategy from RON with a
multi route strategy from mesh networks, compromising on the number of selected routes
for transmission of data, that is, only using a subset of all the available routes, but always
picking the best routes through continuous probing.

Guo et al. [9]] and Akella et al. [2] individually talk about the advantages of multihom-
ing in communication (whether an overlay network is being used or not), stressing the
point that multihoming provides minimum path correlation, which is advantageous in an
overlay scenario because it supports the idea of independent path failures. This assump-
tion was partially taken by RON, however, RON suggested that overlay nodes should be
deployed over distinct ASes in order to better tolerate faults within one particular AS.

REB uses multihoming, where an overlay node utilizes multiple network addresses,
each one ideally connected to a different ISP, to increase the chances that any two differ-
ent overlay paths are disjoint (and tolerate single path failure).

Obelheiro et al. propose an extension to RON where authentication and message
integrity are added to the communication [19]. Their proposal is called a Lightweight
Intrusion-Tolerant Overlay Network (or LITON) which ensures connectivity even in the
presence of faults and intrusions in the (overlay and underlay) networks. LITON uses
an on-demand route request mechanism that serves a better purpose in MANETSs where
bandwidth usage should be minimized. In order to tolerate attacks in the transmission of
route replies, LITON applies a chain of MACs to a reply, one MAC for each node of the
overlay route. This mechanism, however, adds a significant overhead in the establishment
(or update) of a route.

REB also uses MACs to provide authentication and message integrity in the communi-
cation. However, following the conclusion of Gummadi et al. [8]], REB only uses at most
one-hop source routing (therefore only using at most two MACs in a single packet), since

Chapter 2. Related work 9

more than one-hop does not improve significantly the fault tolerance aspect of overlay
networks when these are used to provide better connectivity to the main communication.
Unlike LITON, REB does not use an on-demand route request mechanism, since all REB

nodes contain the knowledge of the whole network.

2.2 Erasure codes

Error-correcting codes are used to tolerate losses in a communication channel. These
codes apply an error correction mechanism to reconstruct the original data from a cor-
rupted packet (i.e., individual bits within the packet are “flipped” from their original
value). The trade-off is an increase in the overhead where additional repair data must
be added to individual packets in order for the mechanism to succeed. An erasure code
is a specific type of error-correcting code, which assumes a binary erasure channel — a
channel where a packet either arrives “intact”, or does not arrive at all (packet corruptions
are viewed as packets not being received). Erasure codes tolerate data loss by encoding
information from certain packets into others, so that the loss of a subset of packets does
not preclude the possibility of data reconstruction at the receiver.

Since REB uses MACs to provide, for instance, message integrity, individual packet
corruptions can be detected and those packets are simply discarded. This makes the usage
of erasure codes ideal in this scenario because the assumption of a binary erasure channel
can be taken.

Erasure codes have the advantage of being more efficient on larger size data and re-
quiring less total overhead in the communication when compared to other error correcting
codes (instead of a fixed amount of extra bits per packet, a fixed amount of extra packets
is transmitted). One such code is the LT code [12], designed by Michael Luby.

LT codes are a rateless kind of erasure codes, that is, they divide a segment of data
in multiple blocks and produce an infinite number of encoded blocks that contain data
from one or more original blocks. Furthermore, LT codes guarantee that the original data
can be recovered with very high probability if the number of received encoded blocks
is slightly larger than the number of original blocks. They use a specially constructed
distribution to choose which original blocks to encode in a particular encoded block, the
Robust Soliton Distribution.

REB utilizes LT codes combined with a multipath strategy in order to avoid simply
replicating data over multiple paths, instead sending individual encoded blocks through
different routes. This has the benefit that even if one or more paths is behaving in an
incorrect way, the remaining blocks transmitted through the “good” routes will typically
be sufficient to overcome the loss rate in the network.

Codes of the kind of the LT code are called Fountain Codes because they provide a
continuous flow of data much like a fountain produces a continuous flow of liquid [14].

Chapter 2. Related work 10

These fountain codes have successful applications in data dissemination since they pro-
vide an efficient and scalable solution to content delivery to a large number of destinations.

One of the early proposed applications of erasure codes is presented by Byers et al. [6].
The authors propose a mechanism for content delivery on adaptive overlay networks, us-
ing fountain codes to disseminate the data. However, since destination overlay nodes also
retransmit the received encoded blocks in order to perpetuate the bulk transfer, care must
be taken to avoid significant levels of transmission redundancy, otherwise the effective so-
lution of fountain codes loses its properties. The authors address this issue by making the
nodes cooperate among themselves using reconciliation strategies with different granu-
larities, such as working set sketches (coarse-grained) and bloom filters (fine-grained), in
order to limit redundant retransmissions, that is, retransmissions of the same exact blocks
that occur on different nodes.

Fountain codes have also evolved over the years in terms of efficiency and the codes
with highest performance nowadays are the Raptor codes, invented by Shokrollahi [22].
Unlike LT codes, which show different time complexities in the encoding and decoding
processes (the encoding showing linear time and the decoding showing worse than linear),
Raptor codes perform in linear time on both encoding and decoding processes. The latest
generation of Raptor codes is called RaptorQ [13]].

Chapter 3

REB Analysis and Design

This chapter presents in detail the design of the Resilient Event Bus (REB).

The REB is organized as an overlay network built among some of the SIEM nodes.
The communication in the overlay network is performed on top of the UDP/IP protocols,
allowing the support of different network settings. REB uses application-level one-hop
source routing to send messages towards the destination, instead of simply following the
routes imposed by the network-level routing. It also takes advantage of coding techniques
and the available redundancy of the network, such as when a node has multiple network
connections (i.e., multihoming), to ensure that messages arrive securely and timely with
a very high probability.

3.1 Overview

The REB design is influenced by the way SIEM systems are deployed, which are usually
distributed over several facilities. A facility corresponds to a subset of the overall network,
where either a set of sensors collect event data or where a group of machines implement
the engine and other supporting services. In MASSIF, there is a special device placed in
every facility, which is called a MIS. Near the edge of the network, this device aggregates
the events obtained locally by the sensors, and forwards them towards the core facility
where the engine is located (see left side of Figure where these MIS are named edge-
MIS). The MIS in the core facility receives the event data from all other MIS, and then
re-transmits it to its final destination, which is usually the correlation engine (see the right
side of Figure where this MIS is called core-MIS). The REB is executed by these
MIS devices, and therefore, each one of them has a REB node.

A facility can therefore be modeled as a LAN, and the associated MIS can be seen
as a routing device that receives the data produced locally and forwards it towards the
final destination facility. The interconnection among the facilities can be abstracted as
a WAN. One however should keep in mind that LAN and WAN are modeling artifacts,
since in practice they will depend on the actual deployment of the SIEM. In one extreme

11

Chapter 3. REB Analysis and Design 12

Network

REB Node

(4 Resilient

Edge MIs
(e.g., LAN, MAN, or WAN)
Q Core

Facility

REB Node

Facility

Edge MIS

REB Node

MIS — MASSIF Information Switch
Facility

Facility

Figure 3.1: REB topological view.

case, the WAN can be the Internet, if the SIEM collects information from various offices
of an organization that are located in different regions (of the same country or different
countries). In the other extreme case, the WAN could be a set of switches with virtual
LANSs that interconnect a few PC racks on a data center. This organization has the virtue
that entails no meaningful modification to the existing SIEM system and only requires the
introduction of a REB node in each MIS at the border of a facility.

The communication among REB nodes is through the UDP/IP protocols. REB nodes
can define an overlay network atop the IP network, and run application-level routing
strategies to select overlay channels that are (expectedly) providing correct communica-
tion. Overlay networks have been used as mechanisms to implement routing schemes that
take into account specific application requirements [4]. In MASSIF we want to employ
overlay networks to create redundant network-agnostic channels for robust and timely
communication, namely for event transport from the edge sensors to the core event corre-
lation engine.

Depending on the network setting, we envision different kinds of faults that might
preclude the transmission of data unless appropriate measures are enforced among the
REB nodes. For instance, accidental or/and malicious faults can cause the corruption,
loss, re-order and delay of packets. An adversary might try to modify the event data
carried in a packet or add new events to prevent the detection of an intrusion. Congestion
or denial of service (DOS) attacks can also make certain IP routers between specific REB
nodes unresponsive, causing significant packet loss or the postponement of their delivery.
A strong adversary might also be able to take control of one of the IP routers, allowing her
the capability to perform sophisticated forms of man-in-the-middle attacks. REB nodes

may also suffer failures, such as a crash or a compromise by an adversary. In this case,

Chapter 3. REB Analysis and Design 13

the REB per se will not solve the specific problem of the failed node, and consequently
a facility might become disconnected. However, as a whole, the REB should continue to
work properly allowing the remaining nodes to continue to exchange data.

Many of the above threats can be addressed with well known security mechanisms
that have been applied to standard communication protocols, such as SSL/TLS [7]] and
IPsec [20]. For example, each pair of REB nodes shares a symmetric secret key. Leverag-
ing from this key, one can add to every packet a Message Authentication Code (MAC) [24]
that allows the integrity and authenticity of the arriving packets to be checked in an ef-
ficient way. Consequently, any packet that deviates from the expected, either because it
was modified or was transmitted from a malicious source, can be identified and deleted.
This means that insertion attacks are simply avoided, and corruptions are transformed
into erasures that can be recovered with retransmissions (or in our case, also with cod-
ing techniques). Optionally, one can also encrypt the packet contents, which guarantees
confidentiality and prevents eavesdropping of event data.

Based on these mechanisms, the REB is able to reduce substantially the attack surface
that might be exploited by an adversary. However, they only put the REB at the same
level of resilience as standard solutions, which are insufficient to prevent certain (some-
times more advanced) attacks. For example, an adversary might thwart the correlation
of two sources of events, if she is able to delay the packets that contain the events from
one of the sources. This occurs because events are correlated within a predefined time
window, and if they arrive in different windows the associated rule might not be activated.
Alternatively, the adversary might perform a DOS in one of the IP routers that forwards
the packets from one of the sources, causing very high transmission losses and the contin-
uous retransmission of packets (to recover from the packet drops). The overall effect of
the attack is once again the delay of the certain event packets, or eventually the temporary
disconnection of one of the sources. Traditional solutions for secure communication, such
as those based on SSL over TCP, are also vulnerable to other more specific attacks [3l].
For instance, this approach is fragile to an adversary with access to the channel between
the two communicating parties, since she can continuously abort the establishment of any
TCP connection by sending Reset packets, creating in fact unavailability on the commu-
nications.

This sort of problems are addressed by the REB by employing some techniques that
exploit distinct forms of redundancy. In particular, spatial and temporal redundancy is
explored to attain high levels of robustness and timeliness.

Robustness The overlay network created among the REB nodes allows for multiple dis-
tinct routes (or paths) to be taken to transmit data to a specific destination. The
source can, for instance, send the data directly or ask one of the other REB nodes
to forward it to the destination. It is expected, in particular in large scale SIEM
deployments, that these two paths will go through distinct physical links, and there-

Chapter 3. REB Analysis and Design 14

fore, localized failures will only disrupt part of the communication. Based on this
insight, the REB uses multipath communication to send data concurrently over sev-
eral different paths in the overlay network. These routes consist either of direct
paths between the source and destination nodes, or paths in which an intermediary
node receives data from a source and redirects it to the destination. REB resorts to a
one-hop source routing scheme. The overlay route of each message is defined at the
sender (source routing), based on the local knowledge of the state of the links, and
is composed of at most one intermediate relaying REB node (one-hop). The option
of having a single hop, i.e., a single intermediate node, is due to the conclusion of
Gummadi et al. [8]] that there is no considerable benefit in using more hops.

A REB node can be connected to the WAN through one physical link or through
multiple links. The later case is often observed in organizations that operate in crit-
ical sectors, such as in electrical production and distribution, as a way to increase
their resilience to accidental failures by ensuring that the links are physically sep-
arated (they contract the network service to multiple ISPs, and in some cases they
go to the extent of using diverse network technologies, one wired and another wire-
less). If available, the REB also takes advantage of this form of redundancy by
employing multihoming communication. Here, a node can either send or receive
packets over any of the physical connections, thus increasing the number of possi-
ble paths that can be chosen when disseminating data to a certain destination. For
example, if the sender and the receiver have two connections, then there are four
alternative direct links between the two nodes instead of a single one. It is expected
that at least in part these links fail in an independent way, which means they can
be used to provide correct packet delivery under somewhat adverse network condi-
tions.

Given a certain application message m, the REB could send a copy of it over &
distinct paths. This would allow k£ — 1 path failures to be tolerated, at the cost of
the transmission of £ — 1 extra message replicas — the overhead is (k — 1) x m.
Depending on the message size, this cost can be significant especially when the
network is behaving correctly (which is the expected normal case). Additionally,
it also requires the receiver to process and discard £ — 1 duplicates, which can
be a limitation in a SIEM system given the asymmetric data flow (remember that
the core-MIS needs to receive all traffic coming from the edges). To address this
difficulty, the REB employs erasure coding techniques to ensure that packet loss
can be recovered at the receiver, at a much lower replication overhead. Basically,
the sender needs to do some processing on the message m to produce some extra
repair information r, and then m+-r is divided in several packets that are transmitted
over various links. Even if only a subset of the message and repair data arrives, the
receiver can still recover the original message.

Chapter 3. REB Analysis and Design 15

Timeliness Messages should be transmitted respecting some delivery deadline. The ob-
jective is to make the events be processed at the correlation engine while they are
(temporally) valid, which requires the REB to enforce timeliness properties of the
communication. One should thus assume that there is eventual synchrony, that
1s, assume that message transmission latency is bounded. However, we must note
that the underlying infrastructure can be the target of performance instability, or
of attacks (is not trusted by default) which impact on the coverage of those la-
tency assumptions. Although it may be difficult to state the exact bound, specific
bounds have to be assumed at run-time, which means that the network will alter-
nate between synchronous and asynchronous behavior, which is undesirable for our
objective. As we have seen, the overlay network can provide the necessary path re-
dundancy to provide for timing fault-tolerance. Unfortunately, all overlay networks
proposed in the past did not have this objectiveﬂ and therefore, a specific solution
had to be developed for the REB.

The REB uses fundamentally two mechanisms to achieve timeliness with high prob-
ability, despite being built on top of a best effort time-agnostic protocol such as IP.
A sender REB node periodically probes each of its most promising paths to a given
destination to derive a quality metric to be associated with the path. This metric is
currently calculated based on the estimated latency and loss rate, but in the future
we are considering other criteria such as the level of independence of this path in
relation to the other ones (i.e., to what extent they share the same IP routers). Based
on this metric, the sender can determine at each moment which are the best paths
for a destination, and select them to disseminate a message based on its deadline.

On average, the above mechanism is able to address most timeliness problems.
However, since the metric is calculated based on actual data collected from the
network, it may require some period of time for the value of the metric to adjust
after sudden changes in the network. During this period the sender could still think
that a specific path is good, and consequently continue to use the path for trans-
missions, when in fact most packets could be lost. Moreover, a malicious REB
node could attack the measurement process, for instance by making its paths look
particularly good, and then suddenly start dropping all packets. In the REB, these
failures end up being tolerated automatically by the erasure codes together with a
sufficiently high level of multipath communication. The codes are able to recover
from a reasonable number of arbitrary packet losses (in the original and/or repair
data). Therefore, if one assumes that the failure only affects a limited number of
channels, the remaining ones still deliver enough packets for the original message
to be reconstructed.

'In the past, some approaches had the aim of improving the end-to-end communication latency, but not
of attaining application-defined maximum delays (e.g., [3,123]).

Chapter 3. REB Analysis and Design 16

3.2 Communication properties

SIEM systems are often built directly on top of the TCP protocol, or resort to SSL/TLS
to augment TCP with security capabilities. Consequently, SIEM developers expect a
communication substrate that provides a set of properties that matches those of TCP,
since they greatly simplify the implementation of the system. For this reason, in addition
to robustness and timeliness, REB was designed to grant most of TCP properties.

REB exports a relatively simple interface, offering point-to-point communication chan-
nels between nodes. Data is transmitted as a stream of bytes, and is delivered reliably in
First In First Out (FIFO) order. The arrival of duplicate data is identified and removed,
and flow control is enforced at the senders to prevent receivers from being overwhelmed
with too much information. REB also ensures data integrity and authenticity, something
that TCP does not provide by itself, but that can be attained, for instance, with SSL/TLS.
Confidentiality can also be guaranteed on an optional basis, depending on an indication
by the applications.

Since the REB is implemented on top of UDP/IP, which does not have any of these
properties, it is necessary to devise ways to implement them with a group of mechanisms.
In the rest of this section, we explain generically how these properties are attained.

3.2.1 Authentication and error-free (and optional confidentiality)

SIEM applications call the REB interface to send messages to a certain destination. REB
treats these messages as sets of bytes that are stored in a queue for transmission. Depend-
ing on the amount of queued data and on the maximum transmission unit (MTU) of the
underlying network, it might be necessary to break the data first in segments and next in
several packets that are forwarded independently (see Section [3.3). REB nodes dissemi-
nate the packets using multiple concurrent routes, which can be based on a single direct
channel between the source and the destination, or can have a channel from the source to
an intermediary node and then another channel to the final receiver. Assuming that the
sender and the receiver are both correct, then attacks can occur both on the network and
on the intermediary node (in case this node was compromised).

The initialization of the REB creates two shared cryptographic keys between every
pair of nodes. The keys are used to protect the communications from attacks, supporting
the authentication of nodes and the integrity/authenticity of the data. One of the keys
is used to generate a MAC that is appended to every packet. MACs are verified at the
receiver before packet delivery, and packets are discarded if their MACs do not match the
expected values.

In alternative, one could choose to append a MAC to the whole segment and verify
it only after the full reception. This solution would have the virtue of saving some MAC
calculations, both at the sender and receiver, whenever segments are large. However, it

Chapter 3. REB Analysis and Design 17

suffers from a few drawbacks, making it less appealing in practice. First, the verification
would be postponed, allowing corrupted packets to occupy space on the receiver buffers
until much later. Second, the receiver node cannot separate good from bad packets, and
therefore, a single damaged packet would cause the whole segment to be dropped (and
then later retransmitted again).

On direct channels, only one MAC is generated per packet by the source, using the
key shared with the destination node. On two-hop channels, a pair MACs is created, the
first for the intermediary node and the second for the destination node. After receiving a
packet, the intermediary validates and removes the second MAC and only then it forwards
the packet to the destination.

Here, again, one could save a few MAC calculations if a single MAC was added
independently of the type of route (i.e., direct or two-hop). However, since MACs are
obtained relatively fast, we decided that it was better to have the capability to immediately
identify and delete modified packets, both at the intermediary and final nodes. This feature
is also helpful to determine if certain channels are under attack, since we can pinpoint with
good precision where the fault occurred.

SIEM systems exchange mainly events and security information collected by the sen-
sors. This data might be considered confidential in some organizations, while in others it
can be of no concern. Since encrypting/decrypting every packet can introduce a reason-
able performance penalty, and thus create delays that might affect timeliness, we decided
to offer data confidentially on a optional basis. The application using the REB can indi-
cate if it desires packets to be transmitted encrypted. In the this case, the other key shared
between the source and destination is employed for the encryption.

3.2.2 Reliable and timely data delivery

TCP messages are delivered to their destinations if both the source and destination pro-
cesses are correct and if the underlying communication network provides a fair-loss de-
livery. The Internet is one of such networks, in the sense that it makes an effort to transmit
a packet through a route and then delivers it to the destination. It may happen that a packet
is lost in-transit due to congestion or a crash of a network router. TCP solves this issue by
segmenting the input stream and by transmitting one segment at a time, while waiting for
the arrival of an acknowledgment of their reception. A retransmission occurs if it appears
that the segment was lost, e.g., when the retransmit timer expires at the sender. As each
segment is received and acknowledged, the receiver delivers them to the application. TCP
does not offer any guarantee about when a particular message will arrive, though, it tries
to optimize the communication to enforce the property of eventual delivery (without any
upper time bound).

In REB, the messages input by the application are saved in a queue, and then they
are split into several segments for dissemination. Unlike TCP, retransmissions based on

Chapter 3. REB Analysis and Design 18

timers are avoided when possible so that the timeliness of a message is not affected. This
is accomplished by preprocessing each segment with an encoder that applies an erasure
code (also called a Forward Error Correction (FEC) code) to produce a number of packets.
Depending on the code that is applied, if it is systematic or not, the resulting packets may
contain the original data plus some repair information, or they may just have encoded
data (see Section [3.5.3)). The overall sum of the packets lengths is typically larger than
the original segment, but it becomes feasible to reconstruct the segment even if some of
the packets are lost.

The sender node disseminates the packets as they are produced by the encoder. It also
starts a timer that should expire in case retransmissions have to be performed. However,
retransmissions are typically avoided by adjusting the amount of repair capability of the
code to the observed loss rate of the network. It may happen nevertheless that: (1) more
packets end up being discarded, and therefore, the receiver is incapable of recovering the
segment, or (2) the acknowledgement returned by the receiver is lost. When a retransmit
timer expires, the sender encodes a few more packets based on the original segment (or
selects some of the original packets), and forwards them to the destination. The expec-
tation is that some of these packets will arrive at the receiver, allowing it to decode the
segment. Once again, we need to initiate a new retransmit timer, now with a larger value.

The receiver accumulates the arriving packets in a receive queue. When enough pack-
ets of a given segment are available, the receiver attempts to decode them. In case of
success, it returns an acknowledgement back to the sender. Otherwise, it waits for the
arrival of an extra packet for this segment before trying again to decode. This process is
repeated until the recovery of the original segment is accomplished. Depending on the
network conditions, packets/segments may arrive and be decoded out of order. To address
this issue, REB utilizes a selective acknowledgement scheme, to convey to the source
information about which packets/segments have already arrived.

Communication in REB tries to be as timely as the network allows. By timely we
mean that REB makes an effort to deliver data within the application defined deadline.
This is important because events generated by the SIEM sensors maybe only useful for
correlation if they arrive within their deadlines at the engine. The timeliness property
of data delivery is provided by making use of multiple routes and some synchrony as-
sumptions about the underlying network. Through the usage of a probing mechanism,
it is possible to infer a quality metric about the overlay routes, which include estimated
latency values. These latencies help selecting, based on the deadline of a transmitted
message, the channels that are used to transmit the packets.

It can happen during particularly bad network conditions that it is not possible to
deliver an application message within the specified deadline. Here, one could abort the
transmission of this message, since it would probably be no longer of use to the receiver.
This approach is however not the applicable to a SIEM. Consider the scenario where

Chapter 3. REB Analysis and Design 19

a sensor produces an event that should be processed within a certain time period. If it
arrives late, the event might not be properly correlated, but in any case its delivery can be
useful from a perspective of forensic analysis. Therefore, even if a deadline is violated,
the REB will still attempts to deliver the message.

3.2.3 Ordered and duplication-free data delivery

The Internet does not ensure an ordered delivery of packets. This occurs because differ-
ent packets, sent by one source, may experience distinct delays when transmitted through
diverse routes. Additionally, there is the possibility of spurious transmission of duplicate
packets, which often happens due to rerouting algorithms in intermediate nodes. Despite
these difficulties, TCP provides FIFO ordering at the delivery and also removes dupli-
cates. This 1s accomplished by assigning to each segment a sequence number, which is
used on the receiver side to order the segments. Furthermore, the sequence numbers are
used to detect and discard duplicate segments.

In REB, the transmission of a segment corresponds to the dissemination of a fixed
number of packets, which encode part of the original segment data and some redundant
bytes. At the destination, the receiver decodes the original segment from a subset of the
received packets.

Each segment has an associated sequence number (with 24-bits) that is incremented
monotonically. These sequence numbers are employed to keep track of lost segments and
to detect data duplication (accidental or from replay attacks). Packets also have a distinct
sequence number (16-bits), which increases monotonically per segment (starting with 1).
Therefore, a packet is univocally identified by carrying in the header a pair composed of
the sequence number of the segment it belongs to plus its sequence number. Packets that
arrive with the same identifiers are detected and removed as duplicates.

REB enforces FIFO order with the segment sequence number. A receiver node can
deliver data in the right order by buffering complete unordered segments until all their
predecessors have been given to the application. The amount of unordered data that is
maintained in a REB node is managed through a receiver sliding window flow control
mechanism. This mechanism prevents the receiver from accumulating too much un-
ordered data, something that could be used by an malicious REB node to overflow the
memory of the receiver. The sender is informed of how much empty space is still avail-
able inside the window, and packets that arrive beyond this space are discarded. The flow
control mechanism is addressed in detail on Section

We realize that there is a potential for an adverse effect caused by the simultaneous
use of FIFO ordering and the assignment of deadlines to messages. The issue lies in the
fact that a message with a deadline shorter than the one from its predecessor message,
could eventually fail to be delivered on time due to the FIFO discipline. For example, it
could happen that all segments comprising the second message are fully received before

Chapter 3. REB Analysis and Design 20

the segments of the first message. Since the receiver node buffers the unordered complete
segments until all their predecessors arrive, the second message would stay waiting in
the queue and eventually have its deadline expire. One possible solution for this problem
could be to use the deadlines to order the messages (which would become message pri-
ority values), but it is not entirely clear how issues such as message starvation would be
resolved in a setting were REB nodes can be malicious. Our current approach is to keep
the strict enforcement of the FIFO discipline, and as we get more experience with using
REB, we may need to revisit this issue later on.

3.3 Sending and receiving data

The procedure of sending/receiving messages in REB encompasses a number of steps in
order to enforce the various properties discussed in the previous sections, namely robust
and timely guaranties with a simple to use application level interface. Since REB nodes
are organized as an overlay network, the sender typically has several routes available for
data transmission, which in most cases are expected to correspond to disjoint physical
links. It is anticipated that most of these routes will fail independently with a reasonable
probability. By forwarding data over a subset of the routes concurrently, the REB is able
to tolerate some kinds of failures in a transparent way, and at the same time support the
distribution of the network load over the alternative paths. Routes are selected using a
metric that takes into consideration the observed Round Trip Time (or RTT) and loss rate
in the recent past. The REB also uses erasure coding to create multiple blocks of data
from the messages, which have in total a slightly larger size than the original message,
and that are transmitted individually through the chosen routes.

The transmission process, which implements how individual messages are delivered
from a source to a destination, is illustrated in more detail in Figure [3.2] When an ap-
plication needs to send a message, it calls the REB interface and provides a buffer with
the data, indicates the destination node and gives a deadline for the delivery (see also
Table [3.4). Multiple calls can occur concurrently if the application has more than one
thread. When the call returns, the application can re-use the buffer because it either has
been transmitted or its contents have been locally copied to a send queue (named segment
queue).

The REB maintains multiple segment queues, one per each active destination. Mes-
sages are copied to the queues in FIFO order. The procedure for selecting data from a
queue for transmission involves the following steps:

1. If there is data to be transmitted, search the the various segment queues for the one
with the message with the shortest deadline. Otherwise, keep on performing the
other tasks (such as probing the links);

Chapter 3. REB Analysis and Design 21

messages 1 2 3

\l, enqueue messages from the application

—_ s same—se—am—mYy T T T, |
| 1 2 3 .

segment queue

max segment length
l, extract segment

segment

\l, apply erasure code

encoded blocks

\l, packetize

packets —— E...“'“.“ "

l, select an overlay route per packet

\l, transmit each packet to the next hop of the route

overlay routes

UDP/IP
Network

Figure 3.2: The data transmission process at a REB node.

2. Extract from the queue a segment of data:

(a) If the queued data has a size larger than the maximum segment length, then
create a segment with this length;

(b) If the queued data has a size larger than the MTU (minus the headers) but less
than the maximum segment length, then create a segment with the available
data;

(c) If the queued data is small (less than one MTU minus the headers), then (i.)
use all data from this queue if there is no previously transmitted segment for
the same destination that is still waiting for an acknowledgement; (ii.) other-
wise, skip this queue and move to the next one.

The queue is mainly used for two purposes. First, in case the network is occupied with
the transmission of older messages, a local copy is created so that the send operation can
return, allowing the application to continue to run. However, if a message is too large and
does not fit entirely inside the queue, it is split so that part of it fills the queue and the rest is
scheduled to be inserted in when there is space again. Second, if the application normally
sends small messages, the queue is utilized to accumulate more bytes. Ideally, one would

like to increase efficiency by transmitting packets with a size approximately equal to the

Chapter 3. REB Analysis and Design 22

MTU of the underlying network. Additionally, the coding algorithms require a reasonable
amount of data for optimal execution. This amount of data is named the maximum segment
length and its value has to take into consideration the size of the headers, the type of code
and the network MTU between the sender and receiver. To prevent the creation of many
small segments, but at the same time avoid delaying a message indefinitely, the procedure
only allows a small segment to be transmitted concurrently to a certain destination (rule
2.0).

The extracted segment is then encoded by applying an erasure algorithm. The algo-
rithm divides the segment in multiple blocks, and then processes them to produce the
encoded blocks. If the algorithm is systematic (e.g., with Raptor codes [22]), then the
first encoded blocks correspond exactly to the original segment and the remaining blocks
contain repair data. When needed, the repair data is used at the receiver to reconstruct the
missing blocks. On the other hand, in a non-systematic code (e.g., the LT code [12]]) all
encoded blocks have a mix of several blocks of the original data. If the segment is very
small, it might be difficult to apply the most sophisticated algorithms, since often they are
optimized for larger data sizes. In this case, it is more efficient to place the whole segment
in a block, which is then replicated enough times to tolerate a certain number of failures.

Encoded blocks are then packetized by adding a header that contains, among other
fields, the identification of the packet (sequence numbers of the segment and packet) and
the final receiver. In order to maximize the reconstruction capability of the code, each
encoded block should be placed in a distinct packet. This ensures that a packet drop
in the network only affects one block, allowing the remaining ones to recover the lost
data. In some cases, for efficiency reasons, it makes sense to include more than one
encoded block per packet. This is only valid if two (or more) blocks fit inside the MTU
of the network. This optimization should be utilized however with some care because it
weakens the failure independence assumption on which erasure codes are based.

The sender next looks at the available routes to the destination, and selects a few of
them that have a good figure of merit, allowing the segment to arrive within the deadline.
A MAC is added to the header to let the final receiver detect integrity violations. In case
an intermediary node needs to forward the packet, then a second MAC is also appended.
The packet is then sent over the corresponding overlay channel, which translates in a
transmission though the underlying network using UDP over IP.

On the receiver side, the node collects the packets arriving from the various channels
as represented in Figure[3.3] The node is prepared to receive only a subset of the packets,
since some of them may be lost in the network, while others can be corrupted. This second
problem is detected with the included MAC, and the corresponding packet is deleted. The
MAC is also employed for the protection of attacks where an external adversary (not
controlling a REB node) may generate malicious packets, for instance, to confuse the
segment reconstruction procedure or to make a DoS. Since the adversary does not share a

Chapter 3. REB Analysis and Design 23

UDP/IP
Network

\L receive packets (possibility of losses and corruptions)

o> —>[[%]

\L assemble received packets by segment (discard corrupted)

packets —————

\l, depacketize

overlay routes

encoded blocks

\l, erasure decode

segment

\l, deliver messages

messages ——————— 1 2 3

Figure 3.3: Scheme with the data receiving process.

key with the REB node, she is incapable of producing packets with the right MAC.

DoS attacks performed by a malicious REB node are addressed with a flow control
mechanism (see Section [3.5.6] for details). When requested or piggybacked in the ac-
knowledgements, the receiver indicates to the sender the amount of bytes that can be
transmitted and that fall within the associated receive queue. Packets arriving when the
queue is full are simply discarded. Additionally, packets with identifiers outside the ex-
pected range are also dropped, therefore, averting attacks that try to exhaust the memory
by extending the local queues.

Packets can be received for the local node or to be forwarded to some other destination.
In the first case, a few correctness checks are carried out, including duplication removal,
and then the header is removed to obtain the encoded block. Next, the block is stored
in the receive queue associated with the sender. Alternatively, when the node acts as a
two-hop router, the packet is also checked and then enqueued to be transmitted to the
final destination. To thwart starvation attacks caused by a malicious sender node, where it
could try to delay the transmissions of this node, the packet is put at the end of the queue
to wait for its turn.

Each encoded block is assembled accordingly to the particular segment that it belongs
to. Since we are using erasure codes, we try to decode as soon as enough blocks have ar-
rived. However, sometimes, it may happen that it is impossible to reconstruct the segment
with the available blocks. When this happens, the receiver needs to wait for the arrival of
more blocks, and then perform the decoding operation again. As segments are decoded,

Chapter 3. REB Analysis and Design 24

they are stored in the receive queue waiting for the application to read them.

Initialization/Finalization calls

init(local_id) Initializes the REB object for the local node, on which the remaining calls
are invoked. The parameter local id indicates the textual identifier of
the local node.

destroy () Closes all communications and releases resources used by the REB object.

Communication calls

send (buffer, size, Sends a message with size bytes from the data buf fer to the specified
destination, deadline) destination node. The deadline value is a time value that is used to
indicate the urgency of the message delivery.

receive (buffer, size, Receives a message with size bytes and stores it in the provided
source) buffer. The source value may indicate receipt from a specific node or
from any source node (when a wildcard is provided).
setEncryptedMode (mode) Sets the encryption mode for the communication. The mode value may be
either on or off. The mode is changed when all pending data has finished
being sent.

Information calls

getLocalNodelID () Returns the ID of the local node.

getLocalNodeAddresses () Returns a list with all the IP socket addresses from the local node.

getRemoteNodesIDs () Returns a list with the IDs of the remote nodes.

getRemoteNodeAddresses (id) Returns a list with all the IP socket addresses from the remote node with
the specified ID.

getRemoteNodelID (address) Returns the ID of the remote node with the specified IP socket address.

Figure 3.4: Interface offered by the REB to the applications.

3.4 REB interface

REB is implemented as a Java library that can be linked with an application. It offers a
relatively simple interface that contains the fundamental operations for transmitting data
and some auxiliary methods for the application to collect information about the system.
Table [3.4] gives an overview of the main operations of REB.

3.5 Communication mechanisms

This section describes some setup aspects and various mechanisms utilized by the REB. It
offers an explanation about the erasure codes, as well as how multihoming contributes to
the overall robustness of the communication. A mechanism for route probing is presented,
supporting the inference of a quality metric for individual routes. This quality metric is
then used by a route selection algorithm that is also discussed. To finish, we explain how
the REB manages flow control.

Chapter 3. REB Analysis and Design 25

3.5.1 Overlay network configuration and setup

The current version of the REB uses a static configuration for the overlay that defines
the set of nodes that may participate in the communications (some of them may be down
or disconnected). When a REB node starts up it is assigned an unique identifier, which
is referred to as the local ID. The identifier is provided by the application that calls the
startup interface of the REB (see Table [3.4).

Based on this local ID, a node can get the information about the whole overlay network
by reading a few configuration files. The files are put in a predefined place in the local
machine by the administrator of the SIEM. The following information can be obtained:

Network addresses A REB node receives packets in a specific IP address and UDP port.
The ports can be different across the overlay, depending on the machine where
the node is located. If a machine has multihoming, then several IP addresses are
assigned, one for each physical connection. When this happens, the configuration
file has the list of IP addresses that can be used;

Pair-wise shared keys Every pair of nodes shares a secret cryptographic key for secure
communication. Each key is stored in a separate file that is statically distributed to
the relevant nodes and not shared by any third party.

At start-up, a REB node is connected to no one. A connection is only established
when the application requests a message to be transmitted to a specific destination node.
Establishing a connection consists in resetting any previous state and in setting up two
session keys. The former is necessary because nodes are allowed to crash and then later
to be reinstated in the overlay. It could occur that the destination node had been exchang-
ing packets with the source, and then the source had to reboot. In this case, during the
connection establishment, the destination node would become aware of the problem, and
therefore, it would clean information maintained on behalf of the source?]

The handshake protocol that is executed between the two nodes is relatively simple. It
consists of three messages protected with the shared key (with a MAC and encrypted). In
the first message, the initiator indicates that it wants to create a connection by including
a nonce N1 and the local IDs of both parties (< INIT, I Dinitiator, I Daestination, N1 >).
The destination node responds with a second message, which has a new nonce N2 (<
INIT_RESP,ID;nitiat0r, I Daestination, N1, N2 >), and that allows the initiator to au-
thenticate the destination. The last messages is transmitted by the initiator, to support
its authentication at the destination (< RESP, ID;,tiator, I Ddestinations N2, N1, conf_info >).

’The cleaning includes discarding pending packets and out of order segments, and other management
data. Completely reconstructed segments that are stored in order in the receive buffer cannot be deleted
because the sender might have the expectation that they will eventually be delivered to the application. This
is important in the case that the connection needs to be reestablished when the segment sequence number
reaches its maximum value.

Chapter 3. REB Analysis and Design 26

The destination node only resets the connection when the RESP is correctly received,
and it uses information in con f_in fo to determine exactly how this operation should be
performed. Nonces are created by concatenating two values, a locally generated random
number with a high resolution timestamp (up to the microsecond).

It can happen that one of the handshake messages is lost in the network. To address
this problem, the sender of the message is responsible for its retransmission until the
other side responds. So, for instance, if message /N IT" is dropped, the initiator should
periodically resend it until the following handshake message arrives. If the destination
node sees a duplicate /NIT, this could either indicate that /NIT_RFESP was lost or
delayed. In this case, it simply waits for its retransmission timer to expire, which would
cause INIT_RFESP to be resent, or for the arrival of RESP that would conclude the
handshake.

The loss of the last message, RESP, is recovered in a slightly different manner.
From the point of view of the destination node, it cannot distinguish the case when
INIT_RESP or RESP are dropped by the network. Therefore, it keeps retransmitting
INIT_RESP until a RESP arrives. At the initiator, when a duplicate INIT_RESP is
received, it resends the RES P message. In all situations, handshake messages are only
retransmitted a certain pre-defined number of times. When the limit is reached, and the
connection attempt is aborted and an error is stored in a log file.

When the overlay is being setup, it may occur that two nodes attempt to start a con-
nection simultaneously. In this case, both would send concurrently the /N I'T" message,
and both would receive the peer’s //NIT' as the response. To solve this issue, we use
a simple arbitration procedure, where the node with the largest ID aborts its connec-
tion attempt, and follows the handshake launched by the other side by responding with a
INIT_RESP.

An adversary could take advantage of the handshake protocol to attack the REB com-
munications. For example, she could replay an old / NIT message to fake a reboot of
the initiator to force a connection reset. Since in general the destination node cannot
distinguish a replay from a valid connection attempt, it starts the handshake protocol by
responding with the INIT_RFESP. However, it continues to process the packets arriving
from the initiator as usual, ignoring for now the /NIT. Since the adversary does not
know the shared key, she can not produce a valid RESP. Therefore, after a number of
INIT_RESP retries, the destination node forgets about the connection.

In another example attack, the initiator could send an / NIT" message, and then the
adversary could replay an old INIT of the node. As a consequence, the destination
would receive two valid but different / NIT" messages from the same node. In this case,
we again use a simple arbitration procedure, where the handshake corresponding to the
INIT carrying the nonce with the largest timestamp is the one that is executed, and the

Chapter 3. REB Analysis and Design 27

other is disregarded’]

As a final attack example, when a node initiates a connection to a destination, where
the I Dinitiator > I Dgestination, the adversary could replay an old I/ NIT,;; message from
the destination to the initiator. When this happens, the initiator applies the arbitration
procedure for a simultaneous connection, and stops its handshake. Then, one of two things
can happen. First, the destination node receives the original /N IT,,;4inq and responds
accordingly with the INIT_RFESP. As the initiator gets the INIT_RESP, it checks
that the message carries the N1 from its INIT,,;4inqe and a N2 with a timestamp larger
than the one in N1 from INIT,,. This provides evidence that an attack occurred, and
therefore, the initiator returns to the original handshake and completes it with a RESP.
Second, the adversary could also remove the INIT_RFESP and all its retransmissions,
meaning that it has complete control of the routes between the two nodes. In this case, the
initiator will retransmit the /NI T _RES P corresponding to I NIT,,; a number of times
and then abort the connection, which an appropriate action given the attack power of the
adversary.

A node simply ignores a message for which the corresponding previous handshake
message was not received (if a INIT_RESP or a RES P arrives without having sent the
INIT or INIT_RES P, respectively). Additionally, since a node only resends a message
a predefined number of times, this prevents denial of service attacks where an adversary
keeps replaying the most recent handshake messages (either INIT or INIT_RESP) to
force the destination to perform retransmissions.

At the end of the handshake, the two session keys are produced to secure the com-
munication between the nodes. One key provides authentication and data integrity by
being used to generate the MACs included in every transmitted packet, and the other key
provides confidentiality by encrypting data. The formula for producing the keys is the
following:

KMAC - h(lSh(ShCLTedKey7 N17 N27 IDsmallery IDlargehll M/,)

KEnCT‘yption = hash(SharedKey, Nl, N2’]Dsmaller,]Dlargem” E”)

In the formulas, SharedK ey is the preconfigured shared key between the nodes, /N1
and N2 are the nonces from the handshake, and /D are the identifiers of the nodes.
The identifiers are placed in a deterministic order, first the smaller ID, so that both sides
produce the same keys. Strings “M” and “E” are used to differentiate the two keys.

The new keys substitute the old ones when the handshake finishes. Packets from
the previous connection may still be in transit when this occurs. These packets will be

3Here, we are working under the assumption that the adversary can not change the clock of the initiator
to a later time, and then collect an I N IT message with a larger timestamp. If this assumption is violated,
then a new shared key needs to be setup between the two nodes by the SIEM administrator. Notice, however,
that even in this case the adversary cannot complete the handshake protocol and deceive the two parties.

Chapter 3. REB Analysis and Design 28

discarded upon arrival because the MACs are no longer valid. This mechanism has the
benefit that prevents packets from an older session from confusing the receiving algo-
rithms.

3.5.2 Multiple paths and multihoming

A REB node can typically reach a destination through many different overlay routes. If
the REB is able to determine which routes are behaving erroneously, and picks alternative
paths for data transmissions, it is possible to tolerate failures in the network. Of course,
these measures are only effective if the failures do not completely cut all communications.

Since REB uses one-hop source routing, the available paths are the following: first,
there is the direct link from the sender to the receiver; second, since any other node can
act as an intermediate router, each one of them defines an extra path. Overall, in a REB
deployment with n nodes, there are at least n — 1 paths connecting every pair of nodes.

Facilities may be interconnected via multihoming, i.e., by two or more distinct physi-
cal links (e.g., a REB node could have a pair of network interfaces and would be connected
through two different ISPs). Since these links usually only share a minimum amount of
resources, their failure can be considered independent in many scenarios (e.g., a DoS is
performed in one of the ISPs). REB takes advantage of multihoming to increase the num-
ber of available overlay paths, allowing a node to overcome the failure of one of its links
by exploring alternative routes.

Network
(e.g., LAN, MAN, or WAN)

REBNode | S = < Core
o ID1 i o Mi. e
Facility l V4 y Facility
Edge MIS MR
- a i,
REB Node %
ID2 Edge
Facility . MiIs Direct path
% ‘ Network interface
REB Node
ID3 MIS — MASSIF Information Switch One-hop path
- aa =)

Facility

Figure 3.5: Multihoming in REB.

Chapter 3. REB Analysis and Design 29

The number of network interfaces directly influences the quantity of overlay paths
a local node may have at its disposal. Figure shows an example overlay network
configuration that makes use of multihoming in order to provide a diversity of links. REB
nodes with identifiers ID1 and ID3 have a single network interface, while nodes ID2 and
ID4 have two interfaces. Therefore, node ID2 can reach node ID1 through two direct
links, and can send packets to node ID4 over four direct paths.

The exact number of overlay routes that exist can be calculated in the following way.
Let y be the number of interfaces on a certain local node and w the number of interfaces
on another remote node; in total, there are y x w available direct paths between the nodes.
Two-hop paths include an extra intermediary node and make use of the same interfaces as
in the direct paths, as well as the interfaces of the intermediate node (the packet can arrive
in one interface and then leave from any of the available network interfaces). Let z; be
the number of interfaces on a certain intermediary node. Then, the number of paths that
can go through this intermediate are y X w X z2. In total, the number of available paths
between the two nodes are:

n—2
TotalpathSZZyxw X Z§+yxw
i=1

Returning to the example from the figure, the total number of paths between nodes ID1
and ID4 is equal to 12. There are two direct paths; eight two-hop paths through node 1D2;
and two two-hop paths through node ID3. For overlays with many nodes, the growth in
number of paths could become challenge if all of them were used in the communications.
However, only a subset of the paths is actually employed by a node to transmit data, and
these are picked based on their quality metric.

3.5.3 Multipath transmission and erasure codes

A REB node sends packets concurrently over a few of the available channels to the des-
tination. However, data transmission through multiple channels per se is not sufficient
to achieve robustness in the communications. In fact, even a single channel behaving
erroneously (e.g., losing packets) is enough to prevent the original data from being recon-
structed. Therefore, using multiple concurrent channels can actually degrade the reliabil-
ity of the whole communication.

Two possible approaches to recover from losses are (1) the retransmission of the pack-
ets at a later time, or (2) the concurrent transmission of several copies of the packets over
different channels. The first solution has the advantage of minimizing the amount of data
that is send, at the cost of delaying the delivery of the packets (since retransmissions occur
after a timeout). The second approach has the opposite characteristics.

In REB, we use erasure codes to both decrease the amount of transmitted data and to
minimize the delays in case of losses. Before disseminating a segment, it is split into &

Chapter 3. REB Analysis and Design 30

equal sized blocks. These blocks are then encoded to generate /N encoded blocks. The
encoding process ensures, with very high probability, that the reception of any K blocks
is enough for the recovery of the full data, where K is slightly larger than k& (and less than
N). Therefore, if there is a limited quantity of losses in the network (less than N — K
blocks are dropped), then it is possible to reconstruct the original segment in a timely
manner, without requiring retransmissions. However, it may happen that the network is
behaving worse than expected, and only a less than K blocks arrive. In this case, further
communication will be required, either by retransmitting some of the encoded blocks, or
by producing and sending a few extra encoded blocksﬂ

REB currently uses Fountain Codes [14, [12], or rateless erasure codes, that can in-
finitely encode the data. In our current implementation, we resort to LT Codes [12],
but in the future we intend to replace these by the newer and more efficient RaptorQ
Codes [13]]. In LT codes, an encoded block is created by XORing a few of the original
blocks. Two random functions are called, one to determine the number of blocks that
should be XORed, and the other to select the actual blocks. Decoding is performed grad-
ually, as the encoded blocks arrive at the receiver. In each step, it is checked if the new
encoded block allows the recovery of an original block, and if this is the case, this knowl-
edge is further propagated to decode other blocks. Eventually, when enough encoded
blocks reach the receiver, it is possible to reconstruct the segment.

At the source, if sufficient data is available in the send queue, then the segment size
is selected in such a way that every encoded block completely fills a packet. This means
that an encoded block should have EBjc,q,: bytes, which is equal to MTU minus the
size of the headers (added by the REB, UDP and IP). Since the original blocks have the
same dimension as the encoded ones, then the segment size should be k X E Bjcpgp. This
ensures an efficient utilization of the network, and also that a packet drop only affects a
single encoded block, something that is typically assumed by the codes.

Erasure codes are, however, able to recover from bursts of encoded block losses.
Therefore, if the segment is small, one can put a few encoded blocks in the same packet
to reach a dimension similar to the MTU (Note that the random functions used by the LT
codes are devised for particular values of k, and therefore it is not possible to simply de-
crease k without affecting the properties of the code). This way one can keep the network
efficiency, at the cost of potentially losing more encoded blocks. For tiny segments that
fit in a single MTU, there is no advantage of employing coding algorithms. In this case,
we simply replicate the segment over a few packets and send them concurrently.

At the destination, the arrival of the encoded blocks triggers the decoding process,
and when the whole data is decoded, a confirmation is sent back to the source node. If
decoding is unsuccessful, then the source is responsible for retransmitting some of the

“The exact solution depends on the erasure code being used. The second approach that generates new
encoded blocks has the virtue that the sender does not have to know which blocks arrived correctly.

Chapter 3. REB Analysis and Design 31

missing encoded blocks. This makes the delivery reliable since it is assured to happen in
the presence of correct processes and a best-effort network (like the Internet).

3.5.4 Segment and packet identification

Segments have to be delivered in FIFO order to the application, so it is necessary to
univocally identify them to allow a proper organization at the receiver, in case they arrive
or are decoded out of order. When transmitting a segment, it is also required to identify
each packet to determine which encoded blocks have been received. As a result, each
packet carries a unique ID on its header that identifies the segment the enclosed blocks
belong to, as well as their position inside the segment.

A packet ID comprises a concatenation of two sequence numbers, resulting in a total
length of 40 bits. Out of those 40 bits, the first 24 represent the segment sequence number
and the remaining 16 correspond to the packet sequence number inside the segment. Both
sequence numbers start at 1 and are incremented monotonically, having an upper bound
of 224 — 1 and 2'6 — 1, respectively.

The first upper bound, for the segment sequence number, is expected to overflow even-
tually if the REB is used over long periods of time. When that happens it is necessary
to reset the connection between the source and destination nodes, so that these sequence
numbers may be safely reused without the danger of introducing corruption of data caused
by replay attacks. Basically, after the connection is reestablished, new shared keys are de-
rived, and therefore packets carrying the previous sequence numbers will not be accepted
as the MAC is invalid. The second upper bound, for the packet sequence number, is not
expected to overflow because REB limits the number of encoded blocks generated from a
segment.

The space size for the segment sequence number was defined using the information
provided by the MASSIF use case scenarios [15]. For example, the Olympic Games
scenario, at its pick load, produces around 12 million events per day before aggregation.
If these events were to be transmitted in separate segments, something highly unlikely
because there is typically aggregation of events at the collectors, then the connection
would only have to be reestablished with a frequency less than once a day.

3.5.5 Acknowledgments and Retransmissions

During a transmission, the destination node receives the packets and stores the data in
memory until enough encoded blocks are available for decoding. After the successful
segment reconstruction, the node sends an acknowledgment back to the source and makes
the segment readable to the application.

The usage of erasure coding and multiple overlay routes offers a good level of robust-
ness against lost packets. Despite this, the achieved reliability has a probabilistic nature,

Chapter 3. REB Analysis and Design 32

meaning there is always a (small) chance that the segment cannot be rebuilt at the destina-
tion. One reason for such failure is an insufficient number of encoded blocks reaching the
destination node, caused by too many packets being dropped in transit. Another reason
is that even when K encoded blocks arrive, the decoding algorithm might be incapable
of recalculating the original data (with a small probability). To overcome these problems,
the source needs to retransmit packets if it does not receive an acknowledgment within a
predetermined time.

The network may reorder the packets being disseminated. Additionally, the use of
multiple routes in the overlay may also contribute to the arrival of out of order packets,
as the paths can have diverse transmission times. Therefore, as unordered packet arrival
will potentially occur often, it is advisable that the destination node keeps these packets
in buffers instead of dropping them. In REB, a separate buffer is managed for each source

at the receiver, and is named receive queue.

cumulative acknowledgment: all

packets before this point have either a few packets a few packets
been decoded or received have arrived for have arrived for segment 5 was
segment 3 segment 4 correctly decoded

completely received segments, ready
to be delivered to the application

receive queue capacity

Figure 3.6: Example of a receive queue.

The receive queue has a fixed length, and allows for the storage of several segments.
It can contain segments completely decoded and packets belonging to various segments
that have been partially received (see an example in Figure[3.6). As the application reads
the stored data (in FIFO order), the corresponding space is freed so that further packets
can be accommodated. Packets are placed in the queue in the right place accordingly to
their identifier (segment sequence number + packet sequence number), and consequently
there might holes in the queue so that out of order packets can be added at a later time.
Packets that would need to be stored beyond the queue limit are simply dropped (as the
queue is not extended to save them; however, as the flow control mechanism is used
exactly to prevent these packets from being transmitted, this can only occur if the sender
is malicious).

REB informs the source about which packets/segments have been correctly received
with a selective acknowledgment (SACK) (a mechanism somewhat inspired in TCP [17]).
A SACK contains for each partially received segment a list of pairs of packet IDs, which
define continuous intervals of stored packets (e.g., if only packets five to nine have arrived
of a certain segment S, then the range is [S.5, S.9]). To avoid always having to explicitly
define the intervals for previously completed segments, the first pair of IDs represents
a cumulative acknowledgment that confirms the reception of all previous segments and

Chapter 3. REB Analysis and Design 33

packets (including the indicated packets itself). This optimization is possible because
segment sequence numbers are incremented monotonically and cannot be reused during
a session. In the queue of the example figure, the cumulative acknowledgement appears
at the end of the first packets of segment 3.

REB implements a few simple rules with regard to the management of the receive
queue and the return of acknowledgements:

1. The receive queue places the packets/segments in their expected position with re-
spect to their identifiers.

2. The receive queue does not store packet/segments beyond its maximum size. There-
fore, out of bound packets are dropped.

3. The receive queue never garbage collects packets of the segment that is currently
being received, and that have been acknowledged to the source.

4. The receive queue can garbage collect packets and segments that are beyond the
segment currently being received, even if they had been acknowledged to the source.

5. Selective acknowledgments may only confirm the reception of part of packets/seg-
ments in the queue as there is limited space in a SACK packet. The packets/seg-
ments that should be acknowledged are the ones that appear first in the receive

queue.

In the example of Figure[3.6] the segment that is currently being received is 3. There-
fore, its packets will never be garbage collected. The saved packets for segment 5 or even
segment 5 may be removed if the node needs to reclaim their space.

The source node starts a timer with a predetermined duration after the transmission
of the last packet of the segment (in the flow control section, we will look into the case
where there are more segments to be send). Ideally, the duration is defined in such a
way that allows for the receiver to decode the segment, and return the acknowledgement.
Figure shows an example of a transmission in this normal scenario.

If the timer expires before an acknowledgment is received, then the network or the
receiver had a problem. For example, some of the data packets were dropped and the
segment could not be reconstructed, or there were delays in the network or/and receiver
that made the acknowledgment arrive later. Since the source does not know the cause of
the problem, it sends a special packet with no data (referred to as a ping packet) to the
destination node to ask about which packets have been received so far. When the desti-
nation node receives a ping, it immediately sends a SACK back to the source. The ping
packets are transmitted periodically, until either an acknowledgment arrives or the sender
gives up (and returns an error). With the reception of the SACK, the source node starts to

Chapter 3. REB Analysis and Design 34

S

Encoded Encoded Encoded Encoded Encoded
block 1 block 2 block 3 block K block N

source destination

E Packet 1,7 _ rout
€A
Packet 1,2

blocks, start decoding

.
.
.
E Packet
. LK~ foute g)
. . received enough
. . T-"""
.
D Packet
LN - foute ¢ i I finished decoding,
segment is complete
_____ | ACK

retransmission
timer

Figure 3.7: The common scenario for transmissions.

retransmit all missing packets. Figure [3.8 show an example scenario of a retransmission
caused by lost packets.

Following the example of TCP, the value of the retransmission timer of REB is cal-
culated based on the estimated RTTs and variations [21]. However, in REB one needs to
account for multiple overlay routes, which have independent quality of service metrics.
Since a node keeps information about each overlay route RTT as well as an average of
the RTT variation, it is possible to use this information to select a reasonable value for the
timer.

In REB, it was decided to take a conservative approach for the calculation of the
timeout. We use the worse values for the expected RTT and RTT variation of all the
paths were packets were transmitted. Additionally, since the decoding process at the
receiver may take a non-negligible interval, the calculation of the retransmission timer
also takes into account an estimation of this period. The decoding time depends on the
type of erasure code being used, and specifically on its decoding algorithm complexity.
To simplify the estimation, we assume that it takes approximately the same interval to
decode as to encode, and therefore we measure its value at the sender. As we get more
experience in using the REB, one may need to devise a more accurate way to make this
estimation.

Let RTTest and RTTvar be the values for the estimated RTT and RTT variation,
respectively, of the route with highest expected RTT (RTTest + RTTvar), and let § be
the estimated processing time for decoding. The retransmission timer value is calculated
as:

Chapter 3. REB Analysis and Design 35

source destination

Packet 1 4 _
w‘
Packet 1,2 . x
Z Moute g

Packet 1,3

. W’

L]

L[]

p.

acket 1,N - rout
€A x I insufficient

blocks received

retransmission

timer
GRS p"g(‘j\‘

ping repeat
timer ACK

i Packet ;
' A= ro
4. ute g
DaCket 1,N .
“—_oute ¢
_ _____ received enough

blocks, start decoding

v v

Figure 3.8: A retransmission caused by a high packet loss.

Tret = RTTest +max(1,4 x RTTvar) + ¢

Three important issues must be considered when addressing retransmissions. The first
is that they can potentially cause a delivery of a segment to expire its deadline. In general
it is not possible to solve this problem because the network is lossy and might be under
attack. However, to minimize the probability of this event, the REB combines the usage
of multiple routes and erasure codes to make the need for retransmissions very unlikely.

The second issue is related to the reliability of SACK delivery. SACK can be lost due
to an accidental corruption in the network or because of an attack that causes its deletion.
In order to maximize the probability of SACK arrival, it is sent through all the routes that
were used by the source node when transmitting the data packets. A destination node
must therefore keep a record of these routes.

The third issue concerns acknowledgment loss, duplication and/or reordering, either
of accidental or malicious nature. For example, an attacker may try to replay previous
acknowledgments to a source node, trying to force unnecessary retransmissions. Even in a
non-malicious scenario, the re-ordering of two acknowledgements could make the source
think that some of the previously received packets were garbage collected, therefore, they
would eventually need to be retransmitted. To solve this sort of problems, the source

applies the following procedure when an SACK arrives:

Chapter 3. REB Analysis and Design 36

e Compare the acknowledgment information in the new SACK with the last accepted
SACK with regard to (a) the value of the cumulative acknowledgement, and (b) the
ranges of correctly received packets in the segment that is currently being received.

— If any of the two indicates that less packets have arrived, then discard the the
new SACK;

— Otherwise, update the current knowledge of what has been received accord-
ingly to the new SACK.

3.5.6 Flow control

When a source node sends data to a destination, it may have several segments ready for
transmission. In this case, it would be interesting if the node could disseminate packets
from multiple segments before receiving an acknowledgment for the initial one. This has
the benefit of allowing source nodes to do useful work while the destinations are busy
decoding packets, or while the SACK is being forwarded through the network. However,
the increased transmission capability needs to be bounded, otherwise too many packets
may reach the receivers, which can cause memory exhaustion on their machines (or too
many packet drops). To address the problem, REB implements a flow control mechanism
to limit the transmission rates between nodes.

The rate of a transmission is dictated by the capacity of the receive queue at the des-
tination, but more importantly by the rate of data consumption by the application. The
receive queue holds (in order) the latest completely received segments until they are con-
sumed by the application. As a result, the queue must have at least a capacity large enough
to hold one encoded segment with maximum length. To tolerate out-of-order reception,
blocks from subsequent segments are also buffered inside the queue. If those segments
are received before the previous ones, they are decoded but stay in the queue until the
earlier segments are read (in order) by the application.

The portion of the receive queue that starts immediately after the last in order complete
segment (or the whole queue if it is empty) can be used to store further packets. When
managing this space, we give priority to the next transmitted segment because it will be
read by the application right after the existing segments. Therefore, the packets of this
segment, which we call as the segment currently being received (see Section [3.5.5)), are
never reclaimed by the garbage collector in case of lack of memory in the node. The
packets from the following segments can, however, be deleted.

The receive window is defined as the free space in the receive queue. We include in
this space all packets/segments that are more recent (i.e., with higher segment sequence
number in the session) than the segment that is currently being received. Therefore, the
storage of these packets/segments is considered provisional.

Chapter 3. REB Analysis and Design 37

A source node keeps an informed view of the receive window, based on information
that is returned by the destination. The current view sometimes does not reflect the actual
window state because packets may be lost, but in normal network conditions it tends for
the right value. This view is required by the source node because the data transmission
rate is constrained by its value (i.e., the the source can only send packets that fit within
the available space). To keep the value accurate, the destination node includes the size of
the receive window in each acknowledgment.

When a source node has outstanding encoded segments for a given destination, it
starts transmitting them block by block in a FIFO order, (ideally) each one inside a dis-
tinct packet. The transmission procedure is implemented in such a way that the initial
outstanding segment is given a higher priority than the rest. The procedure steps are as
follows:

1. Let winSize the currently perceived value for the receive window size;

2. For the first outstanding segment, obtain the constants: /V is the total number of
encoded blocks; K is the typical number of blocks required by the destination node
to decode the segment with high probability; and [is the length in bytes of each
block;

3. Set variable D to the total number of delivered blocks from the first segment so far
(0 at the beginning of the transmission);

4. Obtain the number of undelivered blocks from the first segment that fit inside the
window, as Z = winSize/l (integer division);

5. If the receive window size is insufficient to hold all the undelivered blocks from the
first segment, that is, if Z7 < N — D, then:

(a) Send Z undelivered blocks from the first segment and keep a record of those
transmissions;

(b) Begin a periodic transmission of ping packets (packets with a data of size 0,
as described in Section [3.5.5)), to force the destination node to respond with
an acknowledgment;

(c) Try to send segments to other destinations.
6. Otherwise, if there is space in the receive window:

(a) Send the remaining undelivered blocks from the first segment, that is, send
N — D blocks;

(b) Start the retransmission timer (as described in Section [3.5.5));

Chapter 3. REB Analysis and Design 38

(c) Update the receive window size, as winSize = winSize — [x (K — D) (note
that it is K instead of N);

(d) If there are outstanding segments beyond the first one, apply a similar proce-
dure and send as many blocks as the receive window allows; otherwise, try to
send segments to other destinations.

Notice that when sending extra blocks from the first segment (beyond the initial K), we
take an optimistic approach to update the receive window (rule 6.c). This is done because
in most cases K blocks are enough to decode a segment. As a result, the destination
node needs to manage the receive queue accordingly, being prepared for the fact that K
blocks might not be enough and that extra blocks might need to be stored (/N — K blocks).
This means that in some cases, a destination node may discard received blocks from the
next segments (and possibly even decoded segments), if not enough space is available in
the queue. This is reflected on the way acknowledgments are understood by the source,
where a newer SACK may “rollback” the delivery status of subsequent blocks/segments.
Figure [3.9] shows an example of this scenario. Note that thanks to the efficiency of the
erasure codes, it is expected that such scenarios occur rarely in practice.

the arrival of extra
packets for segment 4
“push” segment 5,
forcing it to be discarded

K packets have arrived for
segment 4 but are not
enough for decoding

receive queue capacity receive
window size

Figure 3.9: Example scenario where a segment has to be discarded from the receive
queue to get space for storing packets of the segment that is currently being received.

On the subject of window size updates, it is possible for a duplicate acknowledgment
(spurious or forced by an attacker) to give an incorrect view of the window, forcing unnec-
essary retransmissions. This can happen when a destination node sends acknowledgments
which roll back the information about the delivery status of subsequent segments (see
above). This situation arises because even though it is possible for a source node to detect
an ordering on the acknowledgments by analyzing the delivery status of the first segment
(which never rolls back), different acknowledgments that only differ on the subsequent
segments cannot be consistently ordered. This roll back behavior however is expected
to occur only on rare occasions, so this particular scenario does not significantly affect
the communication. Besides, note that it only has a small impact on the communication
progress because the first segment continues to be delivered correctly.

Chapter 3. REB Analysis and Design 39

On the subject of ping packet transmissions, there seems to be a possibility for a DoS
attack on destination nodes causing them to transmit a large number of acknowledgments
in a row. To circumvent this problem, destination nodes only respond to ping packets if
their period is greater than a fixed amount of time.

It is also worth mentioning that when receiving an acknowledgment, the advertised
window size could be too small (smaller than the size of a packet). To avoid this prob-
lem, the receiver only advertises windows with a capacity that allows the transmission of
packets with a considerable size. Currently, this minimum capacity is MTU.

3.5.7 Route probing and selection

The timeliness of the communication is based on the assumption that the appropriate
selection of overlay routes will, with high probability, result in the delivery of segments
before specified deadlines. Therefore, it is required to periodically estimate the quality
of service of the routes, in order to have a continuous informed and updated knowledge
about the best available paths.

Concerning metrics of quality of service, the fundamental one of an overlay route is
the expected Round Trip Time (RTT). For a source node, it is both important to know
how much time will take for a given segment to reach its destination, and also how long
it will take before the respective acknowledgment arrives back. One should not forget
that a source is only capable of continuing the transmission of buffered segments after
the acknowledgment is received, with the respective update to the window size. Another
relevant metric is the loss rate of a route, which influences the effective time necessary
for a packet to arrive to a destination (if a packet is lost, then the transmission time can
become the interval for the timer to expire plus the retransmission through the network).
Therefore, we do not use the loss rate directly in the choice of the best routes, but as a
way to penalize negatively the RTT value of a route. This way, routes with high loss rates
are viewed as being slower and so fall behind others with better latencies and/or lower
loss rates.

In order to estimate the RTT values of its routes, a source node utilizes a probing
mechanism that is activated periodically, causing the destination node to return back in-
formation about the delivery delays and packet losses. Given the current size of SIEM
deployments, the REB overlay may have a few hundred nodes. To keep the overhead of
probing small, we adjust the probing frequency to the usefulness of the routes — routes that
are used regularly are probed more often. Furthermore, if a node normally communicates
with a certain destination, then the routes towards that node are checked more frequently.

REB uses two different approaches to manage probing traffic efficiently: a) a source
node transmits probe requests through unused routes to trigger immediate replies with
probing data by the destination nodes (a pull approach by the senders); b) a destina-
tion node also initiates the transmission of probing data through some routes whenever a

Chapter 3. REB Analysis and Design 40

segment is fully received or whenever enough probing information is available to be trans-
mitted (a push approach by the receivers). Consequently, a route that is used recurrently
will have more probing traffic being conveyed by the receiver. Routes that are never uti-
lized are only checked when the source decides to send a probe through them. This allows
for a fast recovery of the routes being currently employed for the main communication
(should they suddenly become attacked), while keeping the knowledge about idle routes
updated over time.

The probing mechanism is intrinsically connected to the transmission of acknowledg-
ments, that is, probing information is delivered to a source node inside acknowledgment
packets that are returned from a destination node. As we have seen before, acknowledg-
ments are transmitted when a segment is completely received, as well as when a source
node explicitly requests them through the use of packets with zero-length data (referred
to as ping packets). We can see an immediate parallel with the push and pull approaches
defined earlier. Probing requests are nothing more than ping packets and probing infor-
mation is immediately transmitted per receipt of these packets. There is one difference
concerning acknowledgments in this case, though, which is that acknowledgments may
be transmitted earlier, that is, before a segment is completed. This may happen if enough
probing information is available to fill its space in a packet, forcing a transmission of
that information along with an acknowledgment. Note, however, that the receipt of an
earlier acknowledgment by a source node does not affect its main communication since
acknowledgments are only processed if they acknowledge new data (see Section [3.5.5).

However, sending probing data only in specific moments such as when segments are
completely received, as opposed to transmitting this data when packets arrive, could
at first seem to affect the precision of the RTT estimation at the source. Adding such
transmission of acknowledgments every time any packet is received through some route,
though, would increase the network traffic, which could interfere with the main commu-
nication by delaying it and causing processes to stall. It was thus necessary to find a
mechanism that kept the extra traffic to a minimum, but at the same time offered a fine
granularity on the probing of individual packets (information about their loss rates and
individual latencies).

To achieve the desired granularity of having probing information about individual
packets during a normal transmission, a destination node stores the arrival times of every
received packet and includes those times inside the acknowledgment. At the same time,
a source node stores the departure times of each packet it transmits, as well as the iden-
tification of the route that was used. When an acknowledgment arrives, the source node
calculates the RTT value of each packet using the saved departure time and the announced
arrival time. It then uses that sample RTT value to estimate the expected RTT value of the
route that was used to transmit the packet. Since REB nodes might not have their clocks
synchronized with very high precision, a source node cannot simply calculate the latency

Chapter 3. REB Analysis and Design 41

source destination

PacketDeparture — Packet 4 2
‘~_oute g
\ = PacketArrival
[
o
[

paCket .
W’
=+ PacketArrivallLast
} 5
B
M

Figure 3.10: Example scenario where the RTT is estimated for packet with ID (1,2).

ACKArrival =

of a packet by subtracting its departure time from its arrival time. Instead, a source node
obtains the time of the acknowledgment arrival, and for each reported packet inside:

1. Measures the elapsed time between the moment the packet was transmitted from the
source PacketDeparture and the moment the acknowledgment arrived back ACKA7r-

rival,;

2. Obtains the elapsed time between the moment the packet arrived at the destina-
tion node PacketArrival and the moment the acknowledgment was transmitted from

there;

3. Subtracts the first elapsed time from the second and hence obtains the sample RTT

value.

Note that in the second step, the source does not receive the instant when the acknowl-
edgement was sent, but gets the moment when the last packet arrived PacketArrivalLast
that allowed the segment to be decoded. Since it may take some time for the decoding
operation to conclude, the instant of the acknowledgement transmission is estimated by
adding 0 to PacketArrivalLast (recall that ¢ is approximately equal to the decoding time).
Presenting it in a formula, the sample RTT value is taken as (see Figure for a graph-
ical representation):

RTTsamp =(ACK Arrival — Packet Departure)
— (PacketArrival Last + 6 — Packet Arrival)

Chapter 3. REB Analysis and Design 42

It is important to refer that each acknowledgment must be transmitted through all the
routes from where the reported packets were received. In turn, for every acknowledgment
copy it receives, the source node must only measure the sample RTT values from the
packets that were transmitted through the same route as the acknowledgment. This is
required because otherwise it would be possible for the latency of a route to affect the
estimation of the RTT of another.

The way REB calculates and keeps an expected RTT value per route is built upon the
well tested algorithms employed by TCP [21]. As mentioned before, the expected RTT
value corresponds to the sum of an RTT estimation and an RTT variation. Both metrics are
averaged over time following an exponentially-weighted moving average, which keeps an
history of past values but gives more weight to recent values over old ones. For each
route, both metrics are computed as follows:

e If no sample RTT values have been taken, then:

— RTTvar =0

— RTTest = a predefined large value
e When the first sample RTT value has been taken, then:

- RTTvar = RTTsamp/2
— RTTest = RT'Tsamp

e When an additional sample RTT value has been taken, then:

- RTTvar = (1 —) x RTTvar + x |RTTest — RTT samp|
— RTTest = (1 —a) x RTTest +a x RT'Tsamp

— Note that here, R7"T'var is updated using the value of an R77T'est from the
previous update.

Following the advice in [21]], « is set to ' /g and 3 to '/,. However, these values
presuppose a modus operandi for transmitting data that comes from TCP, and may not be
ideal in REB because of the different transmission semantics. This subject will require
a further understanding in order to ascertain whether different values for o and 3 make
more sense in the context of REB.

Loss rate is another metric which is used to affect the perceived quality of the overlay
routes. In order to detect lost packets, source nodes inspect the IDs from the packets
reported in the probing information. If there are “holes” within the listed IDs, a source
node assumes the respective packets were lost in transit.

The loss of an acknowledgment can also affect the perceived loss rate of a route.
In order to identify the loss of such acknowledgments, each one carries in the probing

Chapter 3. REB Analysis and Design 43

information the ID of the last packet reported in previous acknowledgments. A source
node assumes then that every unacknowledged packet which has an ID inferior to the
one indicated above is lost. However, since acknowledgments are transmitted through all
multiple routes, the chance of all being lost is reduced. Every time a packet is deemed
lost, the RT"T'est value of the route the packet was sent through is affected negatively in
a fixed amount .

The algorithm for selecting the routes that should be used for transmitting the packets
uses the paths with best quality of service (i.e., RTT'est). At this point, this algorithm
has been kept relatively simple. For a given destination, the source picks R routes for
transmission. Of these routes, some of them should be direct links to the destination
and the remaining should have an intermediary node. This ensures a reasonable level of
diversity among the chosen routes, which can be beneficial in case of attacks. The quota
for direct links (up to R/2) is first filled in with the best direct routes. For the remaining
slots are picked the two-hop paths that have also the best quality of service.

Chapter 4

Implementation and Evaluation

This chapter describes several aspects related to the implementation and installation of
the REB. It also includes an evaluation of the REB in a demonstration prototype network.

4.1 REB library installation

The REB is available as a Java library that provides an API for other Java applications.
There are no external dependencies (no third party libraries) required when using the
REB, only the set of REB classes which come pre-built inside a Jar archive and some
configuration files. The source code is also provided and an Ant file exists for automated
class building. In addition, there is a tool for generating random secret keys for pairs of
REB nodes.

4.1.1 Build procedure

To compile or use the REB library, it is required version 1.7 of the Oracle JDK. To use the
automated building mechanism, it is also required version 1.8.4 of the Apache Ant tool.

The installation procedure of REB is relatively simple because all classes come pre-
packaged in a Jar file. To build the REB classes using Ant, open a terminal to the directory
where the REB was extracted (a file named “build.xml” is available in the directory) and
run the command ant. To clean the build run the command ant clean.

To use the key generation tool, you need to first build the class files as explained
before, and then set the following environment variables:

e REB_HOME="path to where REB was extracted"
e PATH=${REB_HOME}: ${PATH}

Then run the command genkeys <REB node 1> <REB node 2> <...>,
which generates one secret key for every pair of the indicated nodes and stores the keys
on a different file per node.

45

Chapter 4. Implementation and Evaluation 46

4.1.2 Configuration files

The current version of the REB uses a static configuration for the overlay that defines the
set of nodes that may participate in the communications (some of them may be down or
disconnected). When a REB node starts up it is assigned an unique identifier, which is
referred to as the local ID.

Based on this local ID, a node can get the information about the whole overlay network
by reading a few configuration files. The files are put in a predefined place in the local
machine by the administrator of the SIEM. The following information can be obtained:

Network addresses A REB node receives packets in specific addresses (IP address +
UDP port). The ports can be different across the overlay, depending on the ma-
chine where the node is located. If a machine has multihoming, then several IP
addresses are assigned, one for each physical connection. When this happens, the
configuration file has the list of IP addresses that can be used;

Pair-wise shared keys Every pair of nodes shares a secret cryptographic key for secure
communication. Each key is stored in a separate file that is statically distributed to
the relevant nodes and not shared by any third party.

The first file is nodes.cfg, and it includes an identification for every node consisting of
a string and a set of IP socket addresses. Copies of the nodes file have to be placed in every
machine that hosts a REB node. Listing 4.1] shows the syntax for a nodes configuration
file. The second kind of file is keys_<id>.cfg, containing the secret symmetric keys that a
specific local node shares with the remaining remote nodes. There must be an individual
key file per node, each containing as many keys as the number of the remaining nodes -
the tool genkeys can be used to assist in the creation of these files. Listing shows
the syntax for a key configuration file.

4.2 Architecture of a REB node

REB is provided as a library that offers a communication service to Java applications. The
interface for the application allows for communication with multiple remote nodes over
the same object. This contrasts with a unicast socket-oriented communication interface,
where each socket is used in a distinct point-to-point communication, independently of
other sockets. However, such an interface would not be useful in REB because the local
node transmits messages, not only to their destination, but to intermediary nodes as well,
which forward them to their destination. Furthermore, in the future, communication in
REB may support multicast where the local node can send a message to multiple destina-
tions, and in that sense the current interface already provides the necessary multiplexing
logic for such a communication, easing the extension process.

Chapter 4. Implementation and Evaluation 47

—-— REB nodes configuration file —-

Each line configures a REB node by defining an identifier and a set of
network addresses. The syntax is:

[identifier] [address_1l] [address_2] ... [address_n]

An identifier is composed of the prefix "eng" or "sen" followed by a
positive integer. Note that the identifier prefix serves only to
remind the user of the REB, the type of the machine (SIEM engine or
SIEM sensor) that hosts the node.

A network address is composed of an IP address/hostname + port,
separated by a colon (:). It is possible to define multiple addresses
per node since REB supports multihoming.

Examples:

engl 1.2.3.4:20001 1.2.3.5:20002 1.2.3.6:20003
senl 4.3.2.1:30001 4.3.2.2:30002

sen2 8.7.6.5:40001

Listing 4.1: Syntax for the file nodes.cfg

A REB node runs on the same process of the application, executing most of its func-
tionality on different threads and keeping application messages on internal queues un-
til they are delivered. For this reason, an application should only require at most two
threads to interact with the local node (one for sending data and another for receiving).
On communication operations, the interaction of an application thread with the local node
is handled differently according to the kind of operation. In a sending operation, an ap-
plication thread indicates the required ordering of message delivery to the node, while the
node manages the traffic rate by restricting the amount of bytes that are transmitted at a
time (which may block the application thread as feedback). In a receiving operation, an
application thread dictates the rate of incoming message consumption, thus affecting the
flow control applied by the local node, which is perceived by the remote sending node
and consequently by the sending application thread. Altogether this provides an effective
feedback mechanism which adapts to the application needs.

4.2.1 Main Components

The main components of a REB node are divided according to their natures:
Execution: Threads running on the process for the local node;

Spatial: Storage queues which enforce buffering of messages/packets and a communica-
tion medium for the threads;

Temporal: Communication sessions and timers.

Chapter 4. Implementation and Evaluation 48

—— Shared keys configuration file —-

The name of the file must indicate the name of the local node. The
syntax for the file name is "keys_<id>.cfg", where <id> is the
identifier of the local node. For example, a file named
"keys_senl.cfg" lists the secret keys of the local node senl.

Each line configures a secret key shared by the local node and a
specific remote node. The syntax is:
[identifier] [key]

A remote node is specified by defining its identifier (must not be the
identifier of the local node).

A secret key is a string with a 256-bit number in hexadecimal format
(64 characters).

Examples:
sen2 0123456789%abcdef0123456789%abcdef012345678%abcdef
engl fedcba9876543210fedcba98fedcba98fedcba9876543210

Listing 4.2: Syntax for the file keys_<id>.cfg

Together, these components form a state machine capable of handling events from the
application and the network, and providing the expected communication among the local
node and other remote nodes.

Threads

A REB node uses three threads internally (plus one in special cases) to run its state ma-
chine (note that this precludes any Java Virtual Machine (JVM) threads that handle oper-
ations such as automatic garbage collection). Those threads are a Dispatcher Thread, a
Receiver Thread and a Sender Thread.

The Dispatcher Thread is responsible for handling events from application threads,
events from the Receiver Thread, and events from timer expirations (timeouts). It is also
responsible for producing events to any other thread, including an application one.

The Receiver Thread is responsible for handling events from the network and for
producing events to any other thread, including an application one.

Finally, the Sender Thread is responsible for handling events from the Main Dis-
patcher Thread and the Receiver Thread. It only produces events to the network.

There is one more thread which is used when the application requests a special type of
sending operation, namely an asynchronous one. This thread is called the Asynchronous
Dispatcher Thread and handles all the asynchronous send requests. From the point of
view of the Dispatcher Thread, the Asynchronous Dispatcher Thread is just another ap-
plication thread because it provides messages using the same execution logic.

An application thread is also considered part of the state machine since it is both an

Chapter 4. Implementation and Evaluation 49

event source and an event destination.

Queues

The main functions of the REB node’s queues are to provide an ordered delivery of mes-
sages and a flow control mechanism applied to the communication. Messages are copied
to the queues in FIFO order and the queues have statically defined capacity bounds for
limiting flow. Three types of queues are distinguished: a segment queue, a local receive
queue and a remote receive queue. There is one of each of these queues for each remote
node that is configured at the local node (i.e., each local “remote node object” contains its
own set of queues).

Segment queues are accessed by application threads and the Dispatcher Thread. Ap-
plication threads copy messages to these queues and the Dispatcher Thread retrieves the
buffered messages into segments to be transmitted.

Local receive queues are accessed by application threads and the Receiver Thread (ad-
ditionally, the Dispatcher Thread may also access these queues for session maintenance).
The Receiver Thread copies received segments to these queues and application threads
retrieve bytes from these queues in order to deliver received messages.

Remote receive queues are accessed only by the Dispatcher Thread. They represent
a view of the opposite (local) receive queues for the corresponding remote nodes, main-
taining a delivery (or acknowledging) status of individual transmitted segments.

There is one more queue which is not associated to any remote node in particular.
It is the queue utilized by the Sender Thread to receive events from the Dispatcher and
Receiver Threads. Here, the events are simple packet send requests with an associated
remote address and local address (a REB node is capable of multihoming). Packets that
are provided by the Dispatcher Thread have the local node as the source, while packets
that are provided by the Receiver Thread have a specific remote node as the source. This
latter case occurs when the local node acts as an intermediary node in the communication
between two other nodes by forwarding received packets to their destinations. The usage
of this queue in this situation is essential in preventing DoS attacks that attempt to cause
starvation of local outgoing packets.

Sessions

Sessions are required for successful communication between two nodes since they au-
thenticate both parties in the exchange of messages. A session provides a full duplex
communication (messages may be transmitted in both ways simultaneously) but does not
allow a “half-open” or “half close” situation like in TCP. For this reason, when a session
is established between two nodes, it must be maintained at both sides even though only
one of the nodes is transmitting data. Similarly, when a session is closed, both sending
and receiving is disallowed until a new session is established.

Chapter 4. Implementation and Evaluation 50

A session has an associated symmetric key which is exchanged securely between two
nodes during session establishment. This key is used to provide the necessary authen-
tication and additional message integrity validation using MACs which are appended to
transmitted packets.

Sessions are initiated automatically by a REB node whenever the application tries
to send a message to a remote node. Therefore, an application has no control over the
sessions and they are handled internally by the Dispatcher Thread. Currently there is no
explicit session close mechanism implemented, so the only way for sessions to be closed
is for one of the session owners to crash (or simply destroying the local REB object).
Eventually, at the the other side of the session, the surviving REB node will detect a
session timeout and will close it properly. However, a session may also be closed by
a reset at a local node if the remote node crashes and recovers immediately in time to
request a new session before the previous one times out at the local node.

Timers

There are three types of timers within a REB node. All three have specific instances
associated to different remote nodes. Two of them are associated with the transmission of
data and the other is associated to a communication session.

In a data transmission scenario there is a retransmission timer which is activated after
the successful transmission of the first outstanding segment. There is also a probe retrans-
mission timer which is activated after each transmission of a probe packet (see Sections

B.5.5/[3.5.6|and [3.5.7).

Finally, there is an additional session timer which is used to detect when a session

times out. Every time the local node receives an acknowledgment from a particular re-
mote node, it updates its session timer with that node. To keep sessions alive in the ab-
sence of data being transmitted, the local node sends keep-alive packets (probe packets)
periodically which trigger the transmission of acknowledgments by the remote node.

4.2.2 Two interaction examples

In this section we show two examples of interaction between the main components of a
local REB node.

The first interaction example is for a message sending scenario. Figure [.1] shows
the example. Here an application thread is copying a message to the segment queue as-
sociated to the indicated remote node (given the destination node ID). The local object
for the remote node also contains the respective remote receive queue which is accessed
exclusively by the Dispatcher Thread. The figure shows the dispatcher thread extracting
a segment from the segment queue and placing it on the remote receive queue for trans-
mission. Inside the remote receive queue, a segment is transmitted block by block, after

Chapter 4. Implementation and Evaluation 51

the segment is encoded using LT Codes. Each block is transmitted through a different
overlay route, which is indicated to the Sender Thread by specifying different IP socket

addresses (remote and local).

Application Thread

send destination

message

Object for
remote
node

,_| segment queue
segment
blocks remote receive queue

0
L1 Dispatcher Thread

use route A

use route B
use route C

\ packets use local (
| queue '! |E address 1
UDP/IP

Sender Thread J use-local Network

address 2 L

Figure 4.1: Interaction of the components in a sending scenario.

4

The second interaction example shows three different receiving scenarios simultane-
ously. Figure 4.2 shows the example. Packets that arrive from the network are aggregated
by the Receiver Thread using a demultiplexer (in Java this is a java.nio.Selector
object, which is the equivalent of the network call poll from C). Three received packets
corresponding to three different receiving scenarios are illustrated in the figure. The first
packet (the top right one inside the Receiver Thread) contains a destination which is not
the local node. This is the forwarding scenario in which the local node has the role of
an intermediary in the communication of two other nodes. Here, the packet is simply
given to the Sender Thread, which will eventually transmit it to the correct destination.
The second packet (the one received acknowledgment (ACK)), is addressed to the local
node, so it is given to the Dispatcher Thread so it can process it in the right remote receive
queue (associated to the object for the remote node identified in the packet source). The
last received packet (the one on the left containing data) is addressed to the local node,
so it is placed by the Receiver Thread in the appropriate local receive queue. This exam-
ple also shows an application thread accessing the same receive queue to deliver received

messages.

Chapter 4. Implementation and Evaluation 52

UDP/IP
/ Network gueue
/
coming through coming through Sender Thread
local address 1 packets| |ocal address 2 redirect packet

- destination \
demultiplexer ,ml:lzl
source | destination \

receive ACK (remote receive queue |

destination

remote 1D] local ID__ | data DiSpatCher
destination send ACK Thread
Receiver Thread [remoen T 5] k

local receive queue |

source

—

receive

Object for
remote
node

Application Thread

Figure 4.2: Interaction of the components in multiple receiving scenarios.

4.3 Design of a REB node

In this section we explain the design of the REB library, showcasing how some of com-
ponents of a REB node are implemented.

4.3.1 Node identification

Each REB node has a unique identifier, which is represented by a string of characters
formed by the prefix “sen” or “eng”, followed by a positive integer number. Examples of
nodes’ identifiers are “sen4” or “eng2”. The prefix is an indicative of the type of SIEM
machine that hosts a certain node (a sensor or an engine), but does not otherwise make the
node execute any differently. Each node is also associated to a set of IP socket addresses
(IP address and port), which are used to identify the nodes on the underlay network. The
size of a node’s address set depends on its host, namely the number of available network
interfaces, so a REB node will always have at most as many addresses as the number of
existing network interfaces of its host machine. Every REB node knows the address set
of every other node it knows about, including the order of the addresses in the set which
is the same everywhere (the order is defined in the nodes configuration file addressed in

Section 4.1.2)).

A node’s identifier consists of a string of characters, as mentioned before. This textual

Chapter 4. Implementation and Evaluation 53

representation is only used by the user of the REB, though. Internally, REB nodes com-
press a node’s identification in a 16-bit integer and a particular address from its address
set in an 8-bit integer, in order to minimize the overhead on data transmissions.

Of the 16 bits that represent a node’s identification, the least significant 15 represent
a positive numerical value, while the 16th bit defines the type of the node (bit O defines
an engine and bit 1 defines a sensor). This effectively limits the number of distinct REB
sensors and distinct REB engines to 32767 each.

The 8-bit integer that represents a particular address is defined as the ordinal number
of an address in the set, starting at 1 (an address set’s order is universal for all nodes).
Each node’s address set is therefore hard limited to 255 distinct addresses.

Whenever it’s necessary to define a null identifier (which does not identify any of the
REB nodes), the 16-bit integer is zeroed. The same applies for the 8-bit integer represen-
tation of a “null” address.

4.3.2 Packet structure

REB uses UDP as the underlying transport protocol, so data is transmitted inside UDP
datagrams. A UDP datagram indicates its size in the UDP header and is transmitted en-
tirely in one IP datagram, unless IP fragmentation occurs (however we restrict the maxi-
mum UDP datagram size to minimize this situation). Because REB uses UDP, we say that
the communication in REB is message oriented, meaning that a transmitted REB packet
by one node is either received in its entirety by another node or not at all. For this rea-
son, a REB node can immediately start processing a received packet from a UDP socket,
without needing to reassemble the transmitted packet from multiple received fragments.
A REB packet contains a route header which must always exist since it is required by
a node to know the exact overlay routes used in the transmission of data. A packet also
has one or two MAC:s in order to authenticate the involved parties and to provide message
integrity verification. Figure [4.3]illustrates the general structure of a REB packet. The
route header is 11 bytes wide and each MAC has 32 bytes. Depending on the type of
data that is transmitted, the remaining contents have a specific structure inside a packet.
Types of data include encoded blocks, tiny segments, acknowledgments and handshake

messages.

Route header

The route header of a REB packet contains the information about a specific overlay route,
which includes a source node, a destination node, and optionally an intermediary node.
It also contains bit flag values which are used to identify the type of data that follows the
header.

Figure 4.4{shows the structure of a packet header. The node ID fields are 16-bit values
which represent numerical forms of the node identification strings (such as “sen4” or

Chapter 4. Implementation and Evaluation 54

11 32

Header

Data

MAC for source — destination

MAC for source — intermediary

Figure 4.3: Structure of a REB packet (sizes in bytes).

“eng2”). The IDs are ranged from 1 to 65,535, and a value of O represents a null ID
which is used in the intermediary ID field if a direct route is used. The address fields are
8-bit values which represent ordinal numbers associated to a node’s IP socket address.
The ordinal value of an address of a particular node corresponds to the position of that
address in the line defining the node in the nodes configuration file (see Section {.1.2).
The address ordinals are ranged from 1 to 255, and, like the IDs, a value of 0 represents
a null address which is used in the intermediary address fields if a direct route is used.
The ranges for the IDs and address ordinals limit the number of nodes and the number of
addresses per node that can be configured in a REB network (see Section for more
details about this).

0 7 8 9 10 11 12 13 15 23
source ID source address
destination ID destination address
intermediary ID intermediary 1st address
T L S 1 R R
intermediary 2nd address | (| 5 | o | V| § | § | resened
Y Y K T P H

Figure 4.4: Structure of a packet header.

The flags field is 8-bit wide and contains several bit flags that identify the type of data
that follows the header. The flags used in regular data transmission are:

e TINY - if only this flag is set, a node will process the data as a tiny segment, that
is, a segment with a length sufficient to fit entirely inside a REB packet;

e LUBY - if only this flag is set, a node will process the data as a block from a segment

Chapter 4. Implementation and Evaluation 55

encoded with LT (Luby Transform) Codes;

e SACK - if only this flag is set, a node will process the data as a Selective Acknowl-
edgment;

The flags INIT and RESP are used to identify handshake messages. Handshake mes-
sages are of three kinds, INIT, INIT_RESP and RESP. Flags INIT and RESP, when each
being the only set flag, represent an INIT and a RESP message, respectively. When both
are set (and no more flags), they represent an INIT_RESP message. The flag RF SH, short-
hand for “refresh”, is used to distinguish two kinds of a RESP message.

Segments and blocks

Depending on the size of an extracted segment from a segment queue, the segment will
have a different type. If its size is less than or equal to the Maximum Transmission Unit
(MTU) size minus the headers (of IP, UDP, and REB) and MACs, then the segment is
transmitted entirely inside one UDP datagram. This type of segment is referred to as a
tiny segment. If on the other hand the segment size is greater than this limit, it is first
encoded using LT Codes, generating a fixed number of blocks (N), and then transmitted
block by block, each inside one UDP datagram. This type of segment is referred to as an
encoded segment and each REB packet is said to carry an encoded block. A probe packet
that is used to force a destination node to transmit an acknowledgment is simply a tiny
segment with zero length data.

Whether a REB packet is carrying a tiny segment or an encoded block, is distinguished
by the flags TINY and LUBY. However when a destination node receives a packet, it needs
to know the size of the segment being transmitted as well. It also needs to know which
specific segment or block is being transmitted so that it may be able to put it in the right
place in its local receive queue.

Figure 4.5 shows the structure of a segment header plus data inside a packet. The first
field is a 32-bit number which indicates the size in bytes of the original segment, that is,
the segment being transmitted in the packet if it is a tiny segment or the segment before
encoding if the packet contains an encoded block. In both cases it is possible to know the
size of the data inside the packet using the original segment size - if it is a tiny segment,
the data size is trivially the original segment size, if it is an encoded block, the data size
is calculated by the destination node in the same manner as the source node when it’s
generating encoded blocks. The original segment size is particularly helpful when an
encoded block is being transmitted because it allows the destination node to remove any
padding added by the LT Codes after decoding the original segment. The second field is a
24-bit sequence number identifying the transmitted segment and the third field is a 16-bit
sequence number identifying the encoded block within the encoded segment (if the data
is a tiny segment this sequence number is zeroed and not used).

Chapter 4. Implementation and Evaluation 56

0 31 55 71

block sequence

original segment size segment sequence number
number

segment/block data

Figure 4.5: Structure of a segment header plus data inside a packet.

The LT Codes algorithm splits original segments in a fixed number of source symbols,
and produces encoded symbols with the same size as the source ones. An encoded block
carries an encoded symbol and a pseudo-random seed value used by the destination node
to obtain identification of the source symbols that were encoded. Figure 4.6 shows the
structure of an encoded block. The seed value is represented as a 64-bit value inside the
packet.

0 63

pseudo-random seed value

encoded block data

Figure 4.6: Structure of an encoded block inside a packet.

Selective acknowledgment

A selective acknowledgment is transmitted whenever a destination node receives a com-
plete segment (either by finishing decoding one or by receiving a tiny segment), or when-
ever it receives a probe packet (a tiny segment with zero-length data). The acknowledg-
ment includes information about the status of the received segments in the local receive
queue, and about specific blocks within encoded segments. It also includes the window
size of the queue, so that the source node may limit the transmission flow.

Figure shows the structure of a selective acknowledgment inside a packet. The
first field is a 32-bit number indicating the window size. The second field is a 24-bit
number indicating a cumulative sequence number which acknowledges the receipt of all
the segments with sequence numbers below or equal to that number. The third field is an
8-bit number indicating the number of segments that have status information in the rest
of the acknowledgment. Each segment information contains a 24-bit sequence number
and an 8-bit number indicating the number of block pairs included in the segment infor-
mation. If the segment being acknowledged is fully received (either is a tiny segment or
a decoded segment), this number is always zero. For each encoded segment, the status

Chapter 4. Implementation and Evaluation 57

information of its blocks is indicated as a list of block pairs. Each of this pairs contains
two 16-bit sequence numbers identifying the first and last blocks of a contiguous range of
acknowledged blocks. Since the size of an acknowledgment is restricted by the maximum
permitted data size inside a packet, not all received segments/blocks may be able to be
acknowledged even if they are fully received. For this reason, a selective acknowledg-
ment includes status information of the segments in increasing order of sequence number,
starting by the undelivered segment with lowest sequence number. Block pairs are also
indicated in increasing order of sequence number.

0 15 23 31

window size

cumulative sequence number number of segments

number of block

segment sequence number .
pairs

first block sequence number last block sequence number

number of block

segment sequence number .
pairs

first block sequence number last block sequence number

Figure 4.7: Structure of a selective acknowledgment inside a packet.

Additionally, an acknowledgment that is transmitted after a different one may contain
less information about some segments than the previous. This may happen because local
receive queues are allowed to discard received segments and blocks if they need to reclaim
space for other segments with lower sequence numbers (see Section[3.5.6). This particular
scenario only occurs because nodes typically send more encoded blocks than the number
of blocks they register as being transmitted in their remote receive queues - this is an
optimistic strategy that takes advantage of the property of the LT Codes in which only a
subset of the transmitted blocks is necessary to decode the segment.

A received acknowledgment may be a duplicate of a previously received one, or may
be one that arrived out of order. For this reason, the source node needs to identify these
duplicates and old acknowledgments and discard them. This, however, is not achieved
perfectly since it is possible for a destination node to discard segments/blocks in its local

Chapter 4. Implementation and Evaluation 58

receive queue and transmit an acknowledgment with less information than the previous
one. Nevertheless, the status information about the segment with lowest sequence number
being transmitted never rolls back and thus the source node takes advantage of that to
detect received acknowledgments that are surely older than the expected one.

Handshake messages

Handshake messages are used when a session between two nodes is being established.
The node that initiates the sessions is referred to as the initiator node, whereas the node
that responds to the session initiation is referred to as the respondent node.

Figure 4.8| shows the structure of an INIT, an INIT_RESP and a RESP handshake
message inside a packet. In each of the messages, a nonce is a “one-time” value used to
prevent replay attacks. Message RESP has two additional fields which are only considered
when flag RFSH is set. These two fields represent control sequence numbers used to
synchronize the initiator and respondent queues when an established session expires and
needs to be refreshed (typically because of a segment sequence number overflow).

0 23 47 95
initiator nonce } INIT
initiator nonce
INIT_RESP
respondent nonce
3\

respondent nonce

initiator nonce RESP

segment sequence | segment sequence
number 1 number 2)

Figure 4.8: Structure of handshake messages inside a packet.

Handshake nonces are constructed in REB by appending a random integer to a times-
tamp with microsecond resolution. Figure shows the structure of a nonce inside a
packet.

Chapter 4. Implementation and Evaluation 59

0 63 95

timestamp random integer

Figure 4.9: Structure of a nonce inside a packet.

4.3.3 Class Diagram

The implementation of the REB library contains multiple classes organized by different
packages. Figure [4.10| shows a class diagram with the most important classes from the
main package core.reb, and some other significant classes from different packages.
Class REB provides the immediate interface to the application, whereas the remaining
classes in the diagram are only used internally and are not directly accessed by the appli-
cation.

Notable classes are the several classes of the form {x }Task, whose instances repre-
sent actions performed by the internal threads. Classes ReceiverTask and Sender
Task only have one instance each throughout the execution of a REB node and run cycli-
cally since their respective threads (Receiver and Sender threads) must actively wait for
events coming from the network (receiver) or other threads (sender). In contrast, classes
of the form MainDispatcher{*}Task have multiple instances which are each one
constructed and run once every time the dispatcher thread must perform some action trig-
gered by an event coming from the application, the receiver thread or a timeout. Class
REBState only has one instance that holds the current state of the REB node, and which
contains most of the logic for the execution of the dispatcher thread.

Other notable classes are the classes of the form {* }Queue and the class Session
Manager which have multiple instances, each one specific to a particular configured
remote node. Class SessionManager handles the current session between the local
node and the respective remote node. Notice the usage of the class Authenticator
there, where two distinct instances are used by the manager, a session authenticator and
a master authenticator. The former is used to calculate and append a MAC to a sendable
data packet (data segment/block or an ACK) - the MAC directed to the destination node.
This authenticator depends on the current established session and uses the session key to
generate and verify the MAC. The latter authenticator is used to calculate and append a
second MAC to a sendable data packet - which is directed to the intermediary node - or to
append a MAC to a sendable packet with a handshake message. This authenticator does
not depend on any session and uses the original shared secret key configured at start-up
(this means that a node is always able to send packets to an intermediary, despite not
having an established session with it).

Chapter 4. Implementation and Evaluation

60

core

reb

REB

1

inilf kocallD : String) . REB

+zandiowimessageSe @ ByfeBuffer, remoleiD : Siing) : boolsan
+receive (messageDst - ByleButfer, remolelD - Sting) © vaid
i agalsl : Slring

+destroy() : void

+izDestroyed) © booksan

+getiocaliodelDf) - Sting

+geflocalNodeAddresses) | List<inetSockelAddress=

+getiocalNods Type() - Sting

+gelRamolaNodesiDs() @ Set<String=
+gelRamoleNodeAddrassas| remalelD © Sting) © List<inelSodkalAddrass=
+gelRamoleiNods/DiremoleAddress : inefSockelAddress) @ Sting
-REB()

+sandfmeassageSre | ByfeBuffer, remoltelD © Skring, deadline : fong, unif : TimeUnit) : void

<=|ntarface=>
Node

<<|ntarface=>
NodeAddress

+islocal() - boolean
+getiof) : NadelD
+getAddresses() : List<Node Addrass=

+gelinalSocke i ddress) © inalSockealA dorass
+getOrdinal() - int

HnatSockAddrasslist : List<InatSocketAddress>

REBImpl

-add p: Map<ing Aldrass, Nodadd

@fhsf&ﬂsﬁp’n‘ms_&ssp : List<ineiSocke Address=> 1. 7 HEEEES
+gelAddressfordnal : inf) © NodeAddrass _addrasslist D
+gelAddressfinalSockAddr inefSockefAddress) : Nodedddress
-id +geiNumecalForm() © inf
a 1 +gelTaxiualFom() © Stang
] | [
' L S
AbsiractNode RemoteReceiveQueue
Hid : NodalD [~ RamoleR acaiveQuaua()
-addresslist : ListeNodaAddrass= [~isEmpty()

~patTimarStak() | TimarStak
[~setTimarState] state : TimarStata) @ void

-stale | REBStata

~REBImpllacalTaxtuallD : String)

+sandNow(massageSre | ByteBuffer, remotalD : String) : bookean

+sand{massagaSre | BytaBuffar, ramotalD : String, deadline : kang, unit : TimaUnit) : vaid

+gatiD() : NodalD
+gatAddrassas() | LiskeNoda Addrass>
+gatinatSockatidd ressas() : List<InalSockatAddrass>

+AbstractNoda(textuallD : String, addresseas | Set<InatSockatAddrass=)

[~oa tAvailablaSpaca() : int

[~ad dDriginalSegment{ongSagmant : BytaBuffar) :int

[~ 1irySandAllSagmants(routas : Routas) : void
~irySandSingkSagmant(sagqhum int, routas : Routes) : vaid

+raceive(massageDst : ByleBufiar, remotelD : String) : void +gatiddress(ordinal : int) | NodeAddrass el bzl - Bzt jrmart) : void
*reoaivef:rom[massagr:t)si : BylaBuftar) sm'nggJ +gatAdd Adkr : InatSockatAddress) : NodeAddress e
+dastioy) | vaid
+isDastrayed() : boakaan . 1
+gatlocalNadalD() : Sting -remoleRecaivelluaue
+gatlocalNode Addrassay) . List<inatSockatAddress>
+galRamolaNodasiDs() : Set<Sting> RemoteNode Queue
+gatRamataNodaAddrassas| ramatalD : String) | List=inatSodatiddrass> segmantQueus : SegmantQuaus ~SagmentQuauel)
izl st e SlE s i e Z e ocalReceiveCueus : LocalRecaivaQueus ~chackiHasAtLsastiminSize : int) : bodkaan
4 -ramotaRacaivetusus | RamoteRacaivaQuaua ~iryExtractSac e tint) : BytaBufiar
danagar agar ~puthassaga(msgBuf | BytaBuffar, stata : REBStata) : void
stale ~Rama D : Siring, ade SateInatSoc key: Key) | [~SessionTimedCuti) : wid
REBState sisLocal{) : bookean ~sessionWasRasel() : void
17 lroues : Routes -patlocalRecaivaQuava() : LocalRacaiveQueua ~ratiWasDastroyed() : vaid
slake -REBS!ate(sanderTask : SendarTask) ~getSagmentCuaua() | SegmertUuaue

~submilDispatcharTask(task . IntaruptibleTask) : Fulure=?=

1 7 |~onRaad{ramatalD | NodalD, task : MainDispalicherReadTask) : vaid

~onWrita{ramola 1D : NodalD, task | MainDispatchariVrile Task) : vaid
~onTimaoutiremotalD : NodelD, task : MainDispaicher Time outTask) : void

~galBassionManagear() : SessonManagar
~gatRemoteReceiveQuave|) | Remok RemiveQuaua
~dastray() | void

-sagmantliuaus

/I\ 1

-localRemivelueusa

1

-ramatalD int

-stals | REBState

-num TimasT imed Out : int
[~MainDispaicharTimaoulTask{ramote D : int, stale : REBStata)
[~gatNumTimasTimed Qutl() . int

MainDis patcherWriteTask 1 1 1
-ramotelD :int
-stals | REBStala stk
[~MainDispatcharWrita Task{remola|D : int, state : REBStak)
+gatTaskMNama() : Sting
+run{) : vioid

-stala
MainDispatcherReadTask

-ramatalD :int
-stale : REBStata
[~MainDispacharReadTaskrematalD : int, slate | REBStata)
+run{) : vioid

MainDi TimeoutTask -slale

+galTaskMama() : Sking
+runf) : void

Routes

LocalReceiveQueue

-sanderTask : SendarTask

~LocalRecaiveluaual()

Routes(sander Task . SendarTask)
_ranites |~SandLTBlock{block | Bufferable, ramotalD | NodalDy) : vaid
~sandPingPacket(ramotal D : NodalD) : void
-sandAcknowladgmani{ack : Bufferable, remotalD : ModalD) : vaid
-sandinitMessaga(msg : InitMassaga, ramotelD : NodalD) : void

~sandTimySsegmaniinySagmant : Buffarabla, ramatalD : NodalD) : void

~racaiaData(bufler | ByteBuffar) : Adknowlad gmant
~consumaData(outputBuf : BytaBuffer, wait : boalaan) @ int
—sassionTimad Out() : void

—sassionvasReaset() | void

~rabiWasDastrayad() | void

SenderTask

-requasiCuave : BlockingQueua=SandRaquest=

~sandinilRespMessaga(msg : nilRespMeassagea, ramotelD : NodalD) : void .
~sandR; ja(meg : Resp age, remata D : NodalD) : void -sassianManager
1
—
rriast i A
-sassionAuthanticalor | Authenficatar
[~ SassionManagarsharaday : Kay)
[~ ga tMastar Autharticatar() : Authanticatar
[~ e tSassion Authanticator() | Authanticator
~updataSassionTiman() : void
~clasaSassion() | void
~hasRequasted Handshakenit() : boolksan
~raquestHandshakelnitiroutes : Routes) : vaid
- handleRecaivedHandsh Wi Inithisg : ssage, routes | Routas) : void
-hand ke RecaivedHandsh woie Init £ It age, routas | Routas) | void
~sandarTask ~handkRecaivedHandshakaMessaga(remolaRespMsg | RespMessage, isNewSession | bookean) : woid
1 ~astablishSassion ByRecaived Resp(sessionfduth : Authanticator) @ void
[~estabii jan ByR fved D ionAuth @ Authanticator, localResphsg | RespMessage, routes : Roules) @ void
[~handlaInitRetransmission Timaoul{routas : Routes, numTimeasTimad Out : int) : vioid
~hand ke InitResp Retransmission Timaoul routes | Rouls, numTimasTimed Out : int) : vaid

-Sandar Task(channals : Map=NodaAddrass, DatagramChannal=, quauaCapacily | int)
~nawSandRaguast{data : BytaBuffar, localdddrass | Noda Address, ramalaAddress @ Nodadddrass) | vaid]

+run{) : vioid

~RecaivarTask(channals | Map<NodeAddrass, DalagramChannal>, stala | REBSial, senderTask . SendarTask)

~raadDatalracanaB uffar | BytaBuffar, channal : DatagramChannal, localAddrass | Nodadddrass) @ vaid
-processRecaivadP acke i packatBuf : ByteBuffer, revAddr : ModeAddress, sandar | RemolaMods, sandarAddr : NodaAddress) : void

+runf) : void o : e
-sandarTask —l -masterdulhenticator -sesgionAuthantcator
ReceiverTask 1 authentication 0.1
~salador : Selactor <<Interface>>
-sander Task : SandarTask Authenticator

+ereateM AC oulput Buffer @ ByteBuffer, firsiByfes @ AsByles, resiOfBylas @ AsByies ...) © void
+ereateMACsinfermedianeAuth @ Authenbcator, oufpuiBufl : ByteBuffer, biles : AsByles) & void
+valigateMA Clbuffer : ByteBuffer) - hoolean

Figure 4.10: Class diagram.

Chapter 4. Implementation and Evaluation 61

4.3.4 Sequence diagrams

In this section we present two sequence diagrams that illustrate the sequence of events for
a sending operation and a receiving operation.

Figure shows a sending operation initiated by the application. Here, the ap-
plication thread selects the appropriate remote node object from a RemoteNodesMap
instance in order to access the respective segment queue. Then, according to how many
bytes are currently in the segment queue, the application thread loops until the whole
message is copied into the queue (blocking when it has to wait for space). After complet-
ing the copy of the message to the queue, the application thread notifies the dispatcher
thread of the new data. This prompts the dispatcher thread to inspect the current state
of the communication with the remote node and take the appropriate action according
to how many bytes are available it its remote receive queue. Furthermore, if there is no
established session by the time the dispatcher thread inspects the queues, then a new one
is established before any messages are retrieved from the segment queue.

Figure 4.12] shows a receiving operation initiated by the arrival of a packet from the
network. All the actions depicted in this diagram are executed by the receiver thread.
First, the thread confirms the validity of the MAC inside the packet, according to the
current established session with the remote source node. If the MAC matches, then the
packet header is processed. Here, depending on whether or not the packet is directed to
the local node, the thread takes the appropriate action. If the packet is directed to a dif-
ferent remote node, then the receiver thread simply forwards the packet to the Sender
Task object where the sender thread will eventually transmit the packet to its destination.
Otherwise, the packet contents are processed. Here, if the header indicates an ACK or a
handshake message, the receiver thread simply hands over the packet to the dispatcher
thread, where the appropriate action will be taken. If the packet contains a data segmen-
t/block, then the receiver thread handles the received packet in the local receive queue.

4.4 Evaluation

Tests were executed on the REB prototype to obtain some relevant metrics about the
communication between a source and a destination node. Two overlay network topologies
were considered: one in which we configured only one direct path between the source and
the destination; another where two additional intermediary nodes were configured, each
with two local addresses, which provided eight additional paths in the communication.

A small scale LAN, built for the demonstration of some of the MASSIF components
(including REB), was lent to perform tests on the REB prototype. A distinct machine
was set-up for each REB node and all machines were connected using four routers. The
routers were set-up to redirect traffic following the shortest path between two machines.
Two machines running intermediary REB nodes had two network interfaces each, allow-

Chapter 4. Implementation and Evaluation

62

: REB

1: sendMessage(msg, nochEJfJ
_

1.1: node = getRemoteNode (nedelD)

: REB State : RemoteNodesMap node :
Remaote Node

remRevQueue
Remote Re ceiveQueue

1.2: segQueue = getSegmentQueue()

1.3: putMessage(msg)

1

.5 submitDispatcherTask{task)

oy

loop

[msg.hasRem

ningBytes()]

>¢

Here the dispatcher thread is
notified of the new task and

&

begins this execution.

|
I'|
[
[segQueus is

not full]

:‘ 1.3.1: copy msg

bytes to segQueul

1.4 newTaskinode|D' task

MainDi Wri

—_——————

1.5.1: onWrite{node 1D, task)

1.5.1.1: node = getRemote Node(nedel D)
>

[opt]

no established session]

1.5.1.2: establish session

1.5.1.3: seqgQueue = getSegmentQueue|

I 0 U S P

&

alt

remRovQueus.isEmpty()]

T
|
1.5.1.4: emRevQueu e = getRemoteRecdiveQueue()
|
|
|
]
|
|
|

—_——— =

1.5.1.5: segment = tryExtractch“rcnt[MAX_SEGMEN

_SIZE)

1.5.1.6: addSegment(segment)

. S

n

.7.1: send packets

—

T
|
|
|
1.5.1.7: trySendAllSegments() |
1
|
|
l

|
else
[| 1.5.1.8: hasAtLeastMTU = check|fHasAtLeast{MTU)
|
1.5.1.9: available = gcmvzilable?rpacc[]
!
[ont) |
[hasAtLeastMTU && available > 0] :
|

1.5.1.10: segment = tr*Extractch ment(amao:

nt)

|
|

1.5.1.11: seqNum = adidSegment{segment)
I

|
15112 trySendSingll:chn‘ent[seqNun‘]

LS

T

121 send packets

—_———tee e]

S I N S N 5 . 2

Figure 4.11: Sequence diagram for the sending operation.

=

Chapter 4. Implementation and Evaluation

. ReceiverTask : RemoteModesMap srcNode : locRecvQueus : . REB State SenderTask
Remote Node LocalReceiveQueue
I I I I I I
1: packet received Jl_ I I I I I
[| 1.1 srcMode = getRemoteNode|sourcel D) I I I I I
’g i i i i
| | I | |
1.2 verify MACpacket)
L ’tl | | |
| | | |
} } } } }
opt] | | | | |
[MAC is valid] I I I I I
alt			
[destinationID == locallD]			
1.3: process ReceivedPacket I I I I I			
		I I	
T T			
[owt]			
[packat contains data] I I I I I			
1.3.1: lkcRovQueus = getl ocal RecpiveQueue()			
t blj			
1.3.2: receiveData{packet) I i I I I			
T T >			
[
=)			
[packet contains ACK or handshake message] I I I I I			
i i			
1.3.3: madTask = rlewTask[des‘tinaticlrnlD, packet) readTask I I			
''''''''''''''''''''''''''''''' MainDispatcherReadTask I I			
1.3.4: submitDispatcherTaskireadTadk) I I I			
t =1			
I ! 1 PE]			
	Here the dispatcher thread is notified L ! }		
T I of the read fask and proceeds fo I I			
~	process the received packet.		
T			
lelse]	R I		
o			i
2: forward packet to destination		i	
! ! I !]			
	! i	-1	
	i		
! — ! !			
	! i		
T T H T T			
		I	
! ! i ! !

Figure 4.12: Sequence diagram for the receiving operation.

ing for a multihoming configuration on those nodes, which in practice means that each

intermediary node could be reached through two different underlay paths by each of the

other nodes. Figure 4.13|shows the logical organization of the LAN.

The physical organization of the LAN contained one switch that connected all the

machines and routers. Virtual LANs (or VLANSs) were used in order to emulate the logical

organization described before. Figure 4.14 shows the physical organization of the LAN.

One of the metrics that was obtained from the tests was the average latency of the

transmission of a message. For its measurement, the source node transmitted a message

to the destination which responded with an acknowledgment message. The source node

counted the elapsed time between the moment of sending a message and the moment of

Chapter 4. Implementation and Evaluation 64

Intermediary node

%

&)

\ Destination node
Router
Intermediary node ‘ Source node

Figure 4.13: Logical organization of the underlay network used for testing purposes.

Router

Router

receiving the acknowledgment, which resulted in the estimation of the Round Trip Time
(or RTT) of the transmission. The source node repeated this process a number of times,
waiting for the receipt of an acknowledgment before transmitting the next message. In
the end, it calculated the average of all stored RTT values and divided the average by two
in order to obtain the estimated average latency.

Another obtained metric was the average throughput of a continuous stream of mes-
sages. For its measurement, the source node transmitted a continuous stream of messages
for 30 seconds and in the end sent one final message which triggered a response from
the destination node (with an acknowledgment message). The source node counted the
total elapsed time between the moment of sending the first message and the moment of
receiving the acknowledgment, and counted as well the total number of bytes transmitted.
Finally, it calculated the average throughput, dividing the total number of bytes transmit-
ted by the total elapsed time.

For each measurement, we varied the size of the messages from 1 byte to 107 bytes
(or 10 MB), visiting all powers of ten in-between. The graphs in Figure show the
results for the scenario with only one direct path between the source and destination. The

Chapter 4. Implementation and Evaluation 65

Router

Router

Router

Router

Switch

Intermediary
node

Intermediary
node Destination node

Figure 4.14: Physical organization of the underlay network used for testing purposes.

graphs in Figure show the results for the scenario that includes two intermediary
nodes. The two vertical lines on each graph indicate landmark message sizes: the one
on the left indicates the size of the largest segment which can be completely put inside a
REB packet without needing to recur to erasure codes; the one on the right indicates the
maximum size of a segment that can be encoded and where each of the encoded blocks
have the maximum possible size that can fit inside a REB packet. Note that on the latency
graphs, both axis are in a logarithmic scale (both with base 10), while on the throughput
graphs, only the horizontal axis is in a logarithmic scale (in base 10).

We can observe on both figures that the average latency is kept relatively small for tiny
segments but suddenly jumps when segments become encoded. This increase happens
because encoding and decoding a segment adds to the latency of the transmission, but
also because the erasure codes (LT codes) always divide a segment in a fixed number
of blocks, independently of the segment size. To compensate for this poor efficiency of
the LT codes when they encode segments with small sizes, we put a few blocks inside
each packet, which decreases the total number of transmitted packets per segment. As
the size of a segment grows, the number of blocks we can put inside a packet decreases
(because of lack of space), therefore the total number of transmitted packets per segment
approaches the actual number of encoded blocks. In the graphs we can observe the results
of this optimization and the respective decrease of its efficiency: the increase in latency

Chapter 4. Implementation and Evaluation 66

g 10t 15 600f e
5] / <y
1000 12
5] = 1 5
g 10° 1S 00| 1
o L] gl)
< 10} E:
L 12
100 o o o 9 4 <
EHHHH T T T AT T 11 AT \HE 200 Coonnd v v vt b vl v vl il bt 10
10° 10' 10% 10* 10* 105 105 107 10° 10 10* 10% 10* 105 105 107
Message size (bytes) Message size (bytes)
Figure 4.15: Measurements taken from a topology with one direct path.
108 | 13 o
@ F 13 IR S
E 10°¢ i)
g 104% é ‘;a‘ 600 - 7
= 10%) e 12
% g 1 £
2 E = -
g 10 13 400 ¢ a
1L -
<o
100 E El <
ST RT NNRTHTE RURT AT ETITT] RENTTAT: 200 e o i it v vl o
10° 10' 10* 10* 10* 10° 10° 107 10° 10' 10% 10* 10* 10° 106 107
Message size (bytes) Message size (bytes)

Figure 4.16: Measurements taken from a topology with one direct path and two other
two-hop paths.

between messages with sizes 10° and 10° bytes, and between 10° and 107 bytes, is more
pronounced than the increase between 10% and 10° bytes.

In both figures, the average throughput graphs show an increase in throughput until
a message size of 10? bytes, followed by a significant drop at 10% bytes. A possible ex-
planation for this is the effect of the flow control which is activated since the source node
is trying to send messages faster than the destination can process. In Figure there
is a second decrease in throughput until a message size of 10° bytes. This happens most
likely because segments are now being encoded in multiple blocks, producing more pack-
ets which consume more bandwidth at the routers, decreasing the overall throughput. No-
tice, however, how the average throughput increases after the second landmark is reached.
Most likely, this happens because encoded segments are now almost always max sized,
therefore producing encoded blocks with sizes near the MTU and in this way utilizing
the available bandwidth more efficiently. Furthermore, it can be observed that multipath
transmission (see Figure also increases the average throughput when compared to a
single direct path transmission. With more distinct channels there is more overall avail-

Chapter 4. Implementation and Evaluation

67

able bandwidth so it makes sense that the throughput should increase in this manner.

Chapter 5

Conclusions

Employing a system for intrusion detection is only useful if that system does not fail and
cannot be easily attacked and disabled. SIEM tools, despite being excellent at event anal-
ysis for detecting intrusions and other system anomalies, are not usually well protected
against attacks that might try to compromise the security of their communication. In
this thesis we proposed the design of a solution to secure the communication of a SIEM
tool, called the REB, which is based on an overlay network, offering a robust and timely
communication among its nodes.

The REB applies Message Authentication Codes to the exchanged messages in order
to provide node authentication and message integrity. It also utilizes one-hop source-
based multipath transmissions, combined with multithoming techniques, in order to toler-
ate faults in the underlay network and intermediary node crashes, and applies a probing
mechanism to choose the best paths for a timely delivery of messages — the probing mech-
anism is source-based in order to tolerate intrusions in intermediary nodes and avoiding
malicious interference in the path selection. Erasure codes are used to minimize redun-
dancy in the transmissions while maintaining the fault tolerance properties of a multipath
communication.

Nevertheless, there is still room for improvement and progress in REB will continue.

We now present some of the proposed future changes in the design of the REB:

Scalable configuration of the overlay network Instead of a static configuration in which
every REB node requires the knowledge about the whole overlay network, an al-
ternative solution must be devised for the system to scale well with the number of
nodes involved. A possible idea is to use a centralized system that acts as a net-
work administrator and communicates the entry of new nodes to only some of the

existing nodes in the network.

Raptor codes Instead of using LT Codes as an implementation of the fountain codes,
we plan to use the more sophisticated and faster Raptor Codes, namely the latest

version of RaptorQ [13]].

69

Chapter 5. Conclusions 70

Key exchange mechanism As of now, the REB nodes establish session keys using secret
symmetric keys shared between pairs of nodes. These static keys must be config-
ured by hand, which places a burden in the set-up of the nodes. We plan to add a
key exchange mechanism that permits a dynamic generation of new keys when nec-
essary. A solution could be to use a pair of public/private keys per node and use the
Authenticated Diffie-Hellman mechanism [24]] to exchange a new generated shared
key per node pair session.

Congestion control Despite the fact that REB employs a flow control mechanism to limit
the transmission rate between two nodes, there is no mechanism to avoid congestion
at the network level. We plan to add such a mechanism, providing a “TCP friendly”
communication that uses, in a fair way, the available bandwidth in links that share
the traffic with other TCP connections.

Multicast transmission In some cases, it is beneficial for a SIEM tool to utilize multiple
replicas of a correlation engine, in order to tolerate faults or intrusions on individual
engine machines. In such a scenario, SIEM sensors may need to transmit multiple
copies of events to different engines. To minimize message overhead, REB could
provide a multicast communication in which one of two things could happen: either
intermediary nodes would help replicating received packets to their destinations,
thus removing the need for duplicate transmissions at the source; or source nodes
(associated to sensors) would only need to transmit a subset of the encoded blocks
that form an event to each destination node (associated to engine replicas), followed
by a coordination among the destination nodes to reconstruct the original event.

Acronyms

SIEM: Security Information and Event Management
MASSIF: MAnagement of Security information and events in Service Infrastructures
REB: Resilient Event Bus

IP: Internet Protocol

UDP: User Datagram Protocol

TCP: Transmission Control Protocol

SSL: Secure Sockets Layer

TLS: Transport Layer Security

MAC: Message Authentication Code

ACK: Acknowledgment

SACK: Selective Acknowledgment

RTT: Round Trip Time

MTU: Maximum Transmission Unit

FIFO: First In First Out

JVM: Java Virtual Machine

71

Bibliography

[1]

(2]

[8]

[9]

[10]

MASSIF Homepage | MASSIF FP7 Project. http://www.massif-project.

eu/.

A. Akella, J. Pang, B. Maggs, S. Seshan, and A. Shaikh. A Comparison of Overlay
Routing and Multihoming Route Control. In Proceedings of the 2004 Conference
on Applications, Technologies, Architectures, and Protocols for Computer Commu-
nications, pages 93—-106, 2004.

Y. Amir, C. Danilov, S. Goose, D. Hedqvist, and A. Terzis. An Overlay Architecture
for High Quality VoIP Streams. IEEE Transactions on Multimedia, pages 1250—
1262, 2006.

D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Resilient overlay net-
works. In Proceedings of the ACM Symposium on Operating Systems Principles,
pages 131-145, 2001.

D. Brumley and D. Boneh. Remote timing attacks are practical. In Proceedings of
the Conference on USENIX Security Symposium, pages 1-14, 2003.

W. Byers, J. Considine, M. Mitzenmacher, and S. Rost. Informed content delivery
across adaptive overlay networks. IEEE/ACM Transactions on Networking, pages
767-780, 2004.

T. Dierks and C. Allen. The TLS Protocol Version 1.0 (RFC 2246). IETF Request
For Comments, 1999.

K. Gummadi, H. Madhyastha, S. Gribble, K. Levy, and D. Wetherall. Improving the
Reliability of Internet Paths with One-hop Source Routing. In Proceedings of the
Symposium on Operating Systems Design & Implementation, pages 13—13, 2004.

F. Guo, J. Chen, W. Li, and T. Chiueh. Experiences in Building a Multihoming Load
Balancing System. In Proceedings of IEEE INFOCOM, pages 1241-1251, 2004.

A. Lane. Securosis Blog | Understanding and Selecting SIEM/LM: Use
Cases, Part 1, Securosis Blog. https://securosis.com/blog/

73

http://www.massif-project.eu/
http://www.massif-project.eu/
https://securosis.com/blog/understanding-and-selecting-siem-lm-use-cases-part-1
https://securosis.com/blog/understanding-and-selecting-siem-lm-use-cases-part-1

Bibliography 74

understanding—and-selecting—-siem-1lm-use—cases—-part—1,

April 2010.

[11] A. Lane. Securosis Blog | Understanding and Selecting SIEM/LM: Use
Cases, Part 2, Securosis Blog. https://securosis.com/blog/

understanding—and-selecting—-siem-1lm-use—cases—-part—2,
May 2010.

[12] M. Luby. LT Codes. In Proceedings of the IEEE Symposium on the Foundations of
Computer Science, pages 271-280, 2002.

[13] M. Luby, A. Shokrollahi, M. Watson, T. Stockhammer, and L. Minder. RaptorQ
Forward Error Correction Scheme for Object Delivery. IETF RFC 6330, 2011.

[14] D. MacKay. Information Theory, Inference & Learning Algorithms. Cambridge
University Press, 2002.

[15] MASSIF Consortium. Deliverable D2.1.1 - Scenario requirements. Project MASSIF
EC FP7-257475, April 2011.

[16] MASSIF Consortium. Deliverable D5.1.1 - Preliminary Resilient Framework Ar-
chitecture. Project MASSIF EC FP7-257475, September 2011.

[17] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective Acknowledgment
Options. IETF RFC 2018, 1996.

[18] D. Miller, S. Harris, A. Harper, S. VanDyke, and C. Blask. Security Information
and Event Management (SIEM) Implementation. McGraw-Hill Osborne, November
2010.

[19] R. Obelheiro and J. Fraga. A Lightweight Intrusion-Tolerant Overlay Network.
In Proceedings of the IEEE International Symposium on Object and Component-
Oriented Real-Time Distributed Computing, pages 496503, 2006.

[20] R. Oppliger. Security at the Internet Layer. IEEE Computer, pages 43—47, 1998.

[21] V. Paxson, M. Allman, J. Chu, and M. Sargent. Computing TCP’s Retransmission
Timer. IETF RFC 6298, 2011.

[22] A. Shokrollahi. Raptor codes. IEEE Transactions on Information Theory, pages
2551-2567, 2006.

[23] A. Snoeren, K. Conley, and D. Gifford. Mesh-based content routing using XML. In
Proceedings of the ACM Symposium on Operating Systems Principles, pages 160—
173, 2001.

https://securosis.com/blog/understanding-and-selecting-siem-lm-use-cases-part-1
https://securosis.com/blog/understanding-and-selecting-siem-lm-use-cases-part-1
https://securosis.com/blog/understanding-and-selecting-siem-lm-use-cases-part-2
https://securosis.com/blog/understanding-and-selecting-siem-lm-use-cases-part-2

Bibliography 75

[24] W. Stallings. Cryptography and Network Security: Principles and Practice. The
William Stallings Books on Computer and Data Communications. Pearson/Prentice

Hall, 2006.
[25] A. Williams. The Future of SIEM - The market will be-
gin to diverge, Amrit Williams Blog. http://techbuddha.

wordpress.com/2007/01/01/the-future-of-siem-%E2%80%
93-the-market-will-begin-to-diverge/, January 2007.

http://techbuddha.wordpress.com/2007/01/01/the-future-of-siem-%E2%80%93-the-market-will-begin-to-diverge/
http://techbuddha.wordpress.com/2007/01/01/the-future-of-siem-%E2%80%93-the-market-will-begin-to-diverge/
http://techbuddha.wordpress.com/2007/01/01/the-future-of-siem-%E2%80%93-the-market-will-begin-to-diverge/

	List of Figures
	Introduction
	Context
	The need for resilient event dissemination
	Overview of the Resilient Event Bus
	Planning
	The structure of the document

	Related work
	Overlay networks
	Erasure codes

	REB Analysis and Design
	Overview
	Communication properties
	Authentication and error-free (and optional confidentiality)
	Reliable and timely data delivery
	Ordered and duplication-free data delivery

	Sending and receiving data
	REB interface
	Communication mechanisms
	Overlay network configuration and setup
	Multiple paths and multihoming
	Multipath transmission and erasure codes
	Segment and packet identification
	Acknowledgments and Retransmissions
	Flow control
	Route probing and selection

	Implementation and Evaluation
	REB library installation
	Build procedure
	Configuration files

	Architecture of a REB node
	Main Components
	Two interaction examples

	Design of a REB node
	Node identification
	Packet structure
	Class Diagram
	Sequence diagrams

	Evaluation

	Conclusions
	Acronyms
	Bibliography

