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Resumo

As redes elétricas, algumas já centenárias, foram concebidas para uma realidade bas-
tante diferente da actual. O facto de terem sido desenhadas para transportar e distribuir
a energia de forma unidirecional, torna a infraestrutura rı́gida, causando problemas em
termos de escalabilidade e dificulta a sua evolução.

Conhecidas questões ambientais têm levado a que a geração de energia baseada em
combustı́veis fosseis seja substituı́da pela geração através de fontes de energia renováveis.
Esta situação motivou a criação de incentivos ao investimento nas fontes de energia re-
nováveis, o que levou a que cada vez mais consumidores apostem na microgeração. Es-
tas alterações causaram uma mudança na forma como é feita a produção e distribuição
de energia elétrica, com uma aposta crescente na interligação entre as várias fontes ao
longo da infraestrutura, tornando a gestão destas redes uma tarefa extremamente com-
plexa. Com o crescimento significativo de consumidores que também podem ser produ-
tores, torna-se essencial uma coordenação cuidada na injeção de energia na rede. Este
facto, aliado à crescente utilização de energia elétrica, faz com que a manutenção da es-
tabilidade da rede seja um enorme desafio.

As redes inteligentes, ou smart grids, propõem resolver muitos dos problemas que
surgiram com esta alteração do paradigma de consumo/produção de energia elétrica. Os
componentes da rede passam a comunicar uns com os outros, tornando a rede elétrica
bidirecional, facilitando assim a sua manutenção e gestão. A possibilidade de constante
troca de informação entre todos os componentes que constituem a smart grid permite uma
reação imediata relativamente às ações dos produtores e consumidores de energia elétrica.
No entanto, com esta alteração de paradigma surgiram também muitos desafios.

Nomeadamente, a necessidade de comunicação entre os equipamentos existentes nas
smart grids leva a que as redes de comunicação tenham de cobrir grandes áreas. Essa com-
plexidade aumenta quando a gestão necessita de ser feita ao nı́vel de cada equipamento e
não de forma global. Isto é devido ao facto de nas redes de comunicação tradicionais, o
plano de controlo e o de dados estarem no mesmo equipamento, o que leva a que o seu
controlo seja difı́cil e propı́cio a erros. Este controlo descentralizado dificulta também a
reorganização da rede quando ocorrem faltas pelo facto de não existir um dispositivo que



tenha o conhecimento completo da rede. A adaptação rápida a faltas de forma a tornar
a comunicação resiliente tem grande importância em redes sensı́veis a latência como é
o caso da smart grid, pelo que mecanismos eficientes de tolerância a faltas devem ser
implementados.

As redes definidas por software, ou Software Defined Networks (SDN), surgem como
uma potencial solução para estes problemas. Através da separação entre o plano de con-
trolo e o plano de dados, permite a centralização lógica do controlo da rede no controlador.
Para tal, é necessário adicionar uma camada de comunicação entre o controlador e os dis-
positivos de rede, através de um protocolo como o Openflow. Esta separação reduz a
complexidade da gestão da rede e a centralização lógica torna possı́vel programar a rede
de forma global, de modo a aplicar as polı́ticas pretendidas. Estes fatores tornam a SDN
uma solução interessante para utilizar em smart grids.

Esta tese investiga formas de tornar a rede de comunicações empregue numa smart
grid resiliente a faltas. Pelas vantagens mencionadas anteriormente, é usada uma solução
baseada em SDN, sendo propostos dois módulos essenciais. O primeiro tem como ob-
jectivo a monitorização segura da rede, permitindo obter em tempo real métricas como
largura de banda, latência e taxa de erro. O segundo módulo trata do roteamento e en-
genharia de tráfego, utilizando a informação fornecida pelo módulo de monitorização de
forma a que os componentes da smart grid comuniquem entre si, garantindo que os re-
quisitos das aplicações são cumpridos. Dada a criticidade da rede elétrica e a importância
das comunicações na smart grid, os mecanismos desenvolvidos toleram faltas, quer de
tipo malicioso, quer de tipo acidental.

Palavras-chave: Smart Grid, resiliente, SDN, monitorização, roteamento, engenharia de
tráfego





Abstract

The evolution on how electricity is produced and consumed has made the manage-
ment of power grids an extremely complex task. Today’s centenary power grids were not
designed to fit a new reality where consumers can also be producers, or the impressive
increase in consumption caused by more sophisticated and powerful appliances. Smart
Grids have been prepared as a solution to cope with this problem, by supporting more so-
phisticated communications among all the components, allowing the grid to react quickly
to changes in both consumption or production of energy. On the other hand, resorting
to information and communication technologies (ICT) brings some challenges, namely,
managing network devices at this scale and assuring that the strict communication re-
quirements are fulfilled is a dauting task.

Software Defined Networks (SDN) can address some of these problems by separat-
ing the control and data planes, and logically centralizing network control in a controller.
The centralised control has the ability to observe the current state of the network from a
vantage point, and programatically react based on that view, making the management task
substantially easier.

In this thesis we provide a solution for a resilient communications network for Smart
Grids based on SDN. As Smart Grids are very sensitive to network issues, such as latency
and packet loss, it is important to detect and react to any fault in a timely manner. To
achieve this we propose and develop two core modules, a network monitor and a routing
and traffic engineering module. The first is a solution for monitoring with the goal to
obtain a global view of the current state of the network. The solution is secure, allowing
malicious attempts to subvert this module to be detected in a timely manner. This infor-
mation is then used by the second module to make routing decisions. The routing and
traffic engineering module ensures that the communications among the smart grid com-
ponents are possible and fulfils the strict requirements of the Smart Grid.

Keywords: Smart Grid, resilient network, SDN, network monitoring, routing, traffic
engineering
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Chapter 1

Introduction

1.1 Smart grid

Smart Grids are composed of the various components of the electrical infrastructure in-
terconnected by a communications network. In contrast to traditional power grids, Smart
Grids are able to cope with the dynamism present in today’s power grids, which results
in a reduction of transmission and distribution losses, increased efficiency in the use of
renewable energy sources, allowing large scale energy storage and enabling market-based
electricity pricing. Smart Grids enable the use of new, intelligent appliances that are ca-
pable of deciding when to consume power based on pre-set costumer preferences. This
effectively reduces peak loads and the need for new power plants, while maximising the
use of renewable energy. By resorting to smart meters and smart substations, distribu-
tion system operators are now able to quickly identify problems and dispatch repair crews
to the correct location. The constant communication required in a Smart Grid enables
self-healing, self-balancing and self-optimizing distribution, allowing the prediction of
cable failures based on real-time data about weather and outage history, by using auto-
mated monitoring and analysis tools. Generically, it is possible to separate a Smart Grid
network in three parts, as in Figure 1.1.

Figure 1.1: Example smart grid communication networks

1



Chapter 1. Introduction 2

The Home Area Network (HAN) can use several communications technologies, both
wired and wireless, and enables the smart management and consumption monitoring of
home appliances. The HAN is connected to the Neighborhood Area Network (NAN)
through a gateway. The NAN is composed of all the HANs (represented by its gateway),
the sub-stations, the distribution systems, distributed power generation and the NAN gate-
way. Finally, the Wide Area Network (WAN) connects all NAN gateways, power genera-
tion infrastructures, and transmission elements.

1.2 Motivation

Power grids are evolving. The static design of existing electrical infrastructures does not
fit the current needs, such as energy production being distributed across a vast area and
micro-generation becoming a reality. There is a global demand on the use of renewable
energy for environmental protection, which adds new difficulties to power management,
as energy generation is not as predictable as in traditional power plants. The need for a
dynamic and self-healing infrastructure is growing and smart-grids are the proposed so-
lution for this evolution. Smart Grids are composed of multiple components and assets,
as shown in Figure 1.2, such as power generation, substations, circuit breakers, sensors,
smart meters, etc. These components bring a new set of capabilities to electrical in-
frastructures that enable more efficient power delivery and resource usage. To achieve
this higher efficiency, these components require the ability to exchange data in order to
collect information about their state and then, if necessary, adjust their behaviour. This
requirement of continuous data exchange makes the communications network a critical
component of Smart Grids [30, 28]. Since the communications network take such an im-
portant role in the correct and efficient operation of Smart Grids, making it resilient to
faults is crucial.

The communications network inside a substation (in the NAN), where well defined
applications typically run, can be made more resilient using traditional techniques (e.g.,
adding link redundancy). A more challenging problem is enhancing the resilience of
the network that interconnects all substations and the control center (the WAN). This
network spreads over a large geographical area, and some parts of it may be owned by
a telecommunications provider. Due to its scale, such network can be more prone to
accidental problems and attacks, requiring advanced solutions to address the uncertainty
of the network state. Our work is focused on this particular part of the network: the WAN.

1.3 Conventional communications networks

In conventional communication networks, such as those typically used in traditional grids,
the control and packet data planes are bundled together in the same device. In other words,
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Figure 1.2: Smart Grid Information Flow [1]

the switches and routers deal with two problems: 1) forward packets, and 2) decide how
to forward packets. This property makes networks complex to manage and control. Re-
searchers and practitioners have been arguing that this complexity indeed derives from
the integration of control functionality in devices that should only be responsible for for-
warding packets [37]. Adding to the challenge, Smart Grids run applications with strict
requirements, including maximum limits on latency and packet loss. Fulfilling these re-
quirements, entails sophisticated algorithms to be executed in the control plane of each
device, increasing the configuration complexity and therefore the probability of errors
occurring. These issues mainly derive from the fact that the control plane is decentral-
ized. This means that if multiple components of the network need to agree on a given
action, they must run a distributed algorithm, sharing their current view of the network in
order to get the required result. These algorithms increase the necessary complexity and
computing power, leading to greater costs since more expensive hardware is required.

1.4 Software Defined Networks as an Alternative

Software Defined Networks (SDN) have been proposed as a solution to this problem. By
decoupling the data plane from the control plane, and logically centralizing the control
plane in a controller, many of the issues that affect conventional networks are mitigated.
At the data plane, the devices are only responsible for forwarding packets, generating
events when changes occur, and keep the record of simple statistics (such as packet &
byte counting). This is specially important in large networks such as the ones in Smart
Grids. The control plane now sits in a logically centralized controller, which typically
runs in a cluster of high end servers being responsible for all the complex tasks, such
as maintaining the network topology, routing decisions, recovering from failures, access
control, etc. With the aid of the dataplane devices, the controller builds a global view
of the network, making the computation of all those functions more efficient and effec-
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tive. Another advantage of SDN is the fact that this shift in the control logic promotes
openness, removing existing constrains set by current network equipment, allowing the
programmatic configuration of the network, facilitating the management and optimization
of network resources dynamically. These characteristics make SDN an interesting solu-
tion to achieve the required network dynamism, adaptability and security requirements
that are specific of Smart Grids.

1.5 Objectives

The goal of our work is to enable resilient communications between Smart Grid sub-
stations at the WAN level, while enforcing network policies across the infrastructure, in
order to fulfill the Smart Grid requirements. We want to do so while abstracting the com-
munication infrastructure and technologies used, since different Distribution System Op-
erators (DSO) can use various alternative network implementations. For instance, some
DSOs prefer to completely own their WAN infrastructure to have better control, namely
for potential failures, while others prefer to rent dedicated lines from telecommunica-
tion operators. Our solution thus aids to perform independently from the communication
infrastructure topology, infrastructure, and technology employed.

1.6 Contributions

To achieve these objectives we propose, design and implement two solutions, based on
SDN, to manage the Smart Grid. The first contribution is a solution to securely monitor
a Smart Grid network. Its core is an algorithm that gathers information from the network
to detect ongoing attacks to the monitoring system itself. To address switch performance
limitations, namely the rate of control traffic SDN switches can send to the controller, the
algorithm includes logic to balance between impact performance on the switch and the
effectiveness of attack detection.

The second contribution is a solution for resilient communications. We propose an
algorithm that uses information gathered by the monitoring module to guarantee resilient
communications between each pair of WAN nodes. In addition, it enforces the strict
Quality-of-Service (QoS) required by Smart Grid applications. To minimize network
disruption, the solution includes a backup route algorithm that, in the event of an acidental
failure (e.g. a switch or link failure) re-routes packets immediately sent to a backup route
reducing, or even eliminating, disruption time.

We have implemented and evaluated our solutions. Through the evaluation we were
able to conclude that our solution quickly adapts to the network conditions, but takes some
time to detect attacks on links with low throughput. The rerouting after the detection of
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an attack is executed in less then 2ms, which is a negligible time for the requirements of
a smart grid network.

1.7 Document Structure

The remaining of this document is organized as follows:

• Chapter 2 describes related work, covering topics such as software defined net-
works, network routing, traffic engineering, and monitoring solutions.

• Chapter 3 explains our solution, details the design of the different modules and its
implementation.

• Chapter 4 presents the evaluation of our solution.

• Chapter 5 concludes our work, reviewing what has been achieved.
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Chapter 2

Related Work

Traffic engineering, network management and monitoring are subjects that have been well
studied by the networking community. Many of the limitations are also well known. The
introduction of new approaches to computer networking, such as SDN, open new ways to
solve some of the issues of existing infrastructures. In this chapter we provide, in Section
2.1, a brief introduction to SDN, regarding its architecture and the specific control proto-
cols used, and also a description of some of its uses. We describe some attacks that these
solutions are vulnerable to and that can be leveraged by an attacker to either mislead the
system or control the traffic flow. We also present in Section 2.2 some of the most com-
mon network routing algorithms and their specific use cases. This information allowed
us to understand the algorithms that best fit Smart Grids. Afterwords, in Section 2.3, we
introduce several traffic engineering algorithms describing their characteristics and also
some of their limitations, such as achieving a high link utilization. We then describe, in
Section 2.4, various techniques for network monitoring, their advantages and disadvan-
tages, and detail some of the existing security issues. Identifying such issues allowed us
to get a better perception of the type of attacks that exist to monitoring systems and apply
that knowledge while designing our solution. Finally, in Section 2.5, we describe some
tools to emulate and test networks, which we use in our evaluation to simulate the WAN
of a Smart Grid.

2.1 Software Defined Network

SDN is an approach to computer networking where the control plane is logically cen-
tralised in a controller, and is physically separated from the data plane. This addresses
some of the limitations of current network infrastructures, since coordination among the
multiple data forwarding devices is no longer required. The core benefit of centralization
of control is direct programming of the network from a vantage point.
In order to separate the network’s control logic from the data forwarding plane, a well-
defined interface between the switches and the SDN controller is necessary. Openflow [3]

7
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Figure 2.1: General SDN architecture

is nowadays the most commonly used specification for this interface.
A SDN can be decomposed in the Network Operating System (NOS) and a set of net-
work applications that define the policies to be implemented by the SDN switches(see
Figure 2.1). The NOS offers services to the network applications and abstracts all the low
level communication required to control the traffic forwarding on the SDN switches. This
separation releases the network application programmers of the low level details of the
interface specification, and abstracts future changes to the specification.

2.1.1 Architecture

The SDN architecture, as defined by the Open Network Foundation (ONF) [4], is a three-
layer stack, composed of the infrastructure layer, the control layer and the application
layer. The aim of this layered structure is to provide well defined interfaces that enable
the development of software to control the connectivity provided by a set of network
resources, and the packet traffic that flows through them. The remaining of this section
details each component of the common SDN structure as seen in Figure 2.1.

The infrastructure layer, as in traditional networks, is responsible for forwarding pack-
ets. These packets are transmitted according to the rules sent by the controller through a
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communication channel that the device established with the controller. This communica-
tion channel can be either out-of-band or in-band, depending on whether it is established
through a dedicated interface or not. The network devices in this layer communicate with
the controller using the Southbound API (typically, Openflow [3]). The control layer is
the controller. This entity is responsible for maintaining a global view of the network and
updating it according to the events received from the infrastructure layer. This Network
View is then made available to the applications using the Northbound API (typically a
REST interface).
The controller is also responsible for making any changes requested by the Applications
Layer effective in the devices on the infrastructure layer. The Eastbound and Westbound
API only exist when distributed control is employed (which is the common way in pro-
duction). Finally, the Applications Layer is where the network logic resides. Here, appli-
cations use the network view provided by the controller to enforce the global objectives
required by the network administrators. Examples of such applications include firewalls,
routing, traffic engineering, among others.

2.1.2 Openflow

Openflow is the most commonly used communications open standard between the control
and the infrastructure layers. It defines a set of instructions that enable direct access to
the network devices, allowing full control on how data packets are forwarded. These
instructions are sent through a secure channel and are processed and stored on a table in
the Openflow enabled switch (see Figure 2.2).

Openflow uses the concept of flow to identify traffic based on pre-defined rules, which
are composed of match fields and actions, as defined in the Openflow specification [3].
When an Openflow enabled switch needs to know the appropriate action to take with a
packet, it starts by parsing the packets and then searches its flow tables for a matching
flow entry. When a match is found, the action defined in that flow entry is executed on
the packet. Multiple actions can be applied to the packet such as adding, removing or
changing specific header fields, drop the packet, forward the packet to a specific switch
port, send the packet to the controller for further analysis, etc. The expected behaviour of
a switch and the dataplane protocols supporting it, are also defined by this specification.

2.1.3 SDN Controller

A SDN Controller logically centralizes the network intelligence. The SDN controller
runs in commodity server technology and can be placed anywhere on the network. It is
responsible for managing the flow entries on the switches and take the appropriate actions
to guarantee the correct flow of traffic. To accomplish this, it runs multiple applications
that listen to switch events, such as link up/down. These events are sent by the switches
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Figure 2.2: Openflow Switch [2]

to the controller using Openflow messages.
As mentioned, the SDN controller is subdivided in two parts, the NOS and a set of net-
work applications. The NOS uses its southbound interface to perform all the low level
communication with the SDN switches, and employs it northbound API to provide ser-
vices to the network applications. The Northbound API provides ways for network ap-
plications to obtain information from the switches and also to define policies that will be
used by the switches to process packets. The abstraction provided by the controller allows
a faster development of network control applications. This makes SDN an ideal solution
to create custom network behaviours that follow the applications requirements.
Bellow we present a few examples of SDN controllers.

NOX

NOX [5] was the first Openflow controller (2008). It was developed in both C++ and
Python and has an event-driven programming model. It included in its core a group of
applications that enable the creation of a single network view based on its observations of
the network.
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Opendaylight

Opendaylight [6] is an open source project supported by several major network companies
like IBM, Cisco, Juniper and VMWare. It presents a new SDN controller layered struc-
ture implemented in Java which aims to provide a ’universal’ SDN platform. Its Service
Abstraction Layer allows the management of devices, using multiple APIs and protocols
such as Openflow, OVSDB, NETCONF, SNMP, among others.

ONOS

ONOS [7] is also an open source project hosted by The Linux Foundation that was specif-
ically designed to meet the needs of large operators while offering the flexibility to create
and deploy new dynamic network services with simplified programmatic interfaces.

Floodlight

Floodlight is an open source Apache licensed controller developed in Java that has been
designed to have high-performance. The overall functionality comes from its modules,
which use its core to communicate with switches. The implementation is multi-threaded
and event based. In this work, we choose Floodlight for the following reasons:

• It offers a modular loading system making it simple to extend and enhance;

• Can handle mixed Openflow and non-Openflow networks making it ideal for an
incremental update of the network to Openflow switches;

• It uses the asynchronous event based multithreaded library Netty, which improves
performance on large networks, making it ideal for time critical applications;

• It has a very active community of developers.

2.2 Network Routing

In general, routing aims to answer the question: ”What is the best way to get from point
A to point B”. Network routing answers that question for every packet that enters the
network, but dynamically since links go up and down, routers fail, and so the best route
from A to B is constantly changing. When such actions take place, the existing routes
have to be updated.
In traditional networks the control plane is distributed among all devices. This lack of a
centralized view means that a routing protocol must be executed in the control plane of
every device, so that each can update their own view of the network and know how to
forward packets. Routing protocols can be organized in one of two classes. Some rout-
ing protocols, such as Open Shortest Path First (OSPF) [14], and Intermediate System to
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Intermediate System (IS-IS) [12] are link-state routing protocols [42]. Routing protocols
in this class, map the connectivity of all the network in the form of a graph in each node.
This requires any change in the network to be flooded to every node, whereas in a cen-
tralized setting (as in SDN) only the controller is required to run the Dijkstra algorithm,
on the new network topology. One advantage of this class of protocols is that they sup-
port setting static weights to each link, such as cost, that are taken in consideration when
choosing the best route.
The second class of routing protocols is distance-vector [42]. Protocols of this class only
inform their neighbours about changes in the network. These protocols do not create a
graph of the network, but instead they keep vectors with the distance in hops that a route
takes to reach each node. These protocols use a distributed approach and have scalability
issues. Example of such protocols are the Routing Information Protocol (RIP) and the
Border Gateway Protocol (BGP).

2.3 Traffic Engineering

Communication networks are dynamic environments that require constant adjustments
to improve user performance and making more efficient use of resources. Traditional
routing protocols enable connectivity but they make it difficult to manage rapid changes
in the network. This is the goal of Traffic Engineering (TE) [15, 19, 18]. The typical
goal is to distribute load across the network to avoid hotspots. There are multiple ways to
achieve this kind of optimization. One commonly used is Equal-Cost Multi-Path routing
(ECMP) [16], where traffic is split among the multiple routes that have the same cost from
point A to point B (multiple shortest paths). This technique can be used for instance in
OSPF networks, producing better results than using OSPF alone (restricted to a shortest
path).

2.3.1 Traditional Networks TE

Today’s networks typically use Multiprotocol Label Switching (MPLS) for TE. MPLS is
an advanced routing scheme that provides extensions with respect to forwarding and path
controlling. Each MPLS packet has a special label that the router uses for a lookup in
its forwarding table. This enables routing not only based on the destination IP, but also
on this label [20], allowing traffic to be sent through different paths even for the same
destination addresses. By using MPLS with Constraint-Based Routing (CBR) [38] and
reserving resources with the Resource Reservation Protocol (RSVP) [19], it is possible to
increase substantially the efficiency of current networks.
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2.3.2 Software Defined Networks TE

Despite the improvement that MPLS-TE brought to traditional networks, it is still far
from ideal. Even with the most recent technologies and techniques, network providers
are unable to fully leverage their investments, with the busier links still having an average
utilization around 40-60% [39]. One of the main reasons that contribute to this low utiliza-
tion is the poor efficiency of the distributed resource allocation that is used in MPLS-TE,
as no entity has a global view, and ingress routers greedily select paths for their traffic.
This leads to configurations where efficiency is suboptimal.
SDN offers a solution to this problem. The controller has a complete knowledge of the
network and therefore it is capable of taking decisions that are globally optimal. This
centralized control also eases the required frequent updates to the network data plane,
necessary to maintain high utilization, since the execution of the complex distributed pro-
tocols used in traditional networks is no longer necessary. SDN enabled providers to use
their links for long periods of time at near 100% utilization [40] and improve the network
global efficiency.

2.4 Network Monitoring

Network monitoring is the process of continuously measuring a computer network for
multiple metrics, such as availability, delay, jitter, bandwidth, error rate, and loss rate.
These metrics are fundamental to TE as it is based on these values that routing decisions
are made. Network monitoring therefore is fundamental in allowing network traffic to be
managed efficiently. Besides traffic engineering [39], network monitoring has multiple
other applications such as anomaly detection [43], costumer accounting [32], Service
Level Agreements (SLA) checking, identification of applications [29], forensic analysis
[50], among others.
Network monitoring has such an important role in communication networks that multiple
efforts from the research community have been made in order to provide solutions that are
fine-grained, scalable and accurate. In the rest of this section we describe some protocols
and technics used in monitoring systems.

2.4.1 Simple Network Management Protocol

The Simple Network Management Protocol (SNMP) [13] is an Internet-standard protocol
created in 1988, still widely used to collect information about managed devices. Devices
that support SNMP keep track of multiple parameters such as the amount of forwarded
traffic, including the number and rate of packets (and bytes) forwarded, the packet er-
ror rate, etc. The devices then expose their management data in the form of variables to
which the Network Management Station (NMS) can access through GET requests. The
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NMS periodically queries the network devices to obtain the desired monitoring infor-
mation about the network. Accurate monitoring information demands frequent queries
to multiple parameters, which may degrade the network device efficiency due to CPU
overhead. The information available in each network device is defined in a Management
Information Base (MIB), which is vendor/model dependent. However, vendors tend to
implement SNMP counters only for aggregate traffic, making SNMP not suitable for the
fine-grained statistics required by traffic engineering. Earlier versions of this protocol
allowed an attacker easy access to all the information provided by a device, but in later
versions, starting in the version three, authentication, authorization, access control, and
privacy, was added, limiting the attackers actions. Nevertheless, an attacker that is able
to inject or drop traffic on a given link is able to remain unnoticed if one uses only this
protocol to monitor the network.

2.4.2 Active Probing

Another approach to network monitoring is active probing. In this approach, a special
packet is sent through the network, enabling information about the network status to be
extracted, either by the receiver or by the sender. Tools such as ping, traceroute, tracert,
and others implement some form of active probing. As such they can be useful to collect
different sorts of information for many of the applications referred before, specially to
monitor delay, loss rate, jitter, and available bandwidth. However, security concerns arise
because an active attacker may be able to easily identify the probe packets and treat them
differently from the normal traffic, to evade the monitoring system. For example, after
having identified the packets that are used for latency measurement in systems such as
OpenNetMon [25] and SLAM [51], an active attacker can delay the delivery of the probes
to fool the link latency estimates calculated by the monitoring system. A smart attacker
would then be able to control traffic routing, for example to direct packets to locations
under his control.

2.4.3 Packet Sampling

The first packet monitoring solutions were based on specially designed equipment in-
stalled on the network [26]. These machines would do passive monitoring by copying
the entire contents of packets for further analysis. This approach relieved network de-
vices from the monitoring overhead and enabled fine-grained monitoring, but it also put
a lot of pressure in the monitoring machines and was very expensive to deploy. For scal-
ability reasons, only the initial part of the packet [31], such as the protocol headers and
the initial contents of the application data, were captured and stored. With the advent
of high-speed switched networks this approach became infeasible, and packet sampling
techniques started being employed [21] [22].
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Packet sampling consists in randomly capturing only a subset of the packets (typically at
a rate of 1:1000 or 1:10000), under the assumption that the subset is representative of the
whole network traffic. This subset is then used to measure different properties of the traf-
fic. Choosing a representative subset is specially challenging in communication networks
given that even if a certain traffic exhibits a temporal cycle (daily, weekly), traffic engi-
neering stations can blur that cycle by spliting or simply changing it from the ”normal”
path. The sampling frequency is a specially important factor because it translates into
the accuracy of the estimation procedure. With a low sampling frequency some network
behavior might be missed, which can be harmful when performing anomaly detection. In
the opposite side, high sampling frequency produces vast amounts of data that need to be
processed, creating overhead in the devices, which can lead to packet loss. In any case,
this technique is widely used, with protocols such as Netflow and sFlow.

Trajectory Sampling

One of the problems of the traditional sampling approaches is the lack of information on
the exact paths packets follow. To solve this problem, in trajectory sampling the same set
of packets is sampled, in both ingress and egress points. This allows the same packets to
be tracked as they flow through the network. Existing implementations require special-
ized hardware to be integrated in network devices. This technique enables also per-flow
monitoring, which supports an even more fine-grained monitoring, and it has been used
and studied in multiple works [46, 36].

2.4.4 SDN Monitoring

Flow-based measurements such as NetFlow and sFlow provide generic support for differ-
ent measurement tasks, but consume too much resources (e.g., CPU, memory, bandwidth)
[33]. The centralized architecture of SDN and the per flow statistics supported by Open-
flow are two major advantages when developing a monitoring system. The programability
enabled by SDN enables a customised dynamic measurement data collection, making it
possible to have the right amount of accuracy while minimizing resource consumption.

Approaches like OpenSketch [53] suggest the redesign of switches APIs to accommo-
date for customized measurement functionality. With the proposed changes, their solution
supports the collection of measurement data on a per flow basis and additional flow and
data filtering. To accomplish this, switches execute a hashing function over the defined
packet fields and count the number of packets that match a set of defined rules. This infor-
mation is then stored within the switch in TCAM (Ternary Content-Addressable Memory)
memories. Despite having advantages, such functionality would require an upgrade or re-
placement of all network nodes. Others, such as OpenNetMon [25], focus solely on a few



Chapter 2. Related Work 16

metrics like delay, throughput and packet loss, not considering security or anomaly detec-
tion. It makes use of Openflow functionality to periodically query the switches and obtain
flow statistics to calculate the flow throughput and error rate, this makes it prone to traf-
fic inflation/deflation attacks, since an attacker that controls a link on the monitored path
can inject or drop packets making the throughput measurements incorrect. For latency
measurement, OpenNetMon sends a probe on a specific vlan and measures the time the
probe takes to arrive at the end switch of the monitored path. This allows a attacker that
controls a link on that path to influence the latency measurement, since the attacker can
easily identify the probe packet and delay it, tricking the monitoring system to measure a
latency value different from the real one.
OpenSample [48] goes a bit further in regard to the granularity of monitoring information
it analyses. By using sFlow, OpenSample is able to get more detailed information of the
current network traffic, but does not focus on security, and is vulnerable to the attacks
previously described. Similarly to OpenNetMon, SLAM also uses a recognizable probe
to measure latency. Instead of measuring the latency of a path, SLAM measures the la-
tency on a switch to switch basis, and accounts for the switch internal processing time.
It focuses solely on measuring latency, not accounting for other important measurements
such as error rate or throughput. It suffers from the same security issues as OpenNetMon.
FlowSense [52] uses a passive technique to estimate network performance. In FlowSense,
packet-in and flow-remove messages are used to estimate per flow link utilization. The
communication overhead in this case is low, and it does not suffer from the security is-
sues of active probing, but the estimation is not as accurate as with the active approaches.
Despite the multiple works in this area, to the best of our knowledge none has considered
the resilience aspect in network monitoring, which is our main goal.

2.5 Tools

We have used some tools to realistically emulate multiple topologies of a smart grid net-
work and to evaluate our solution. These tools are described in this section.

2.5.1 Mininet

Mininet [8] is a software tool able to realistically emulate networks. It runs a collection
of end-hosts, switches, routers and links on a single Linux kernel. Some advantages of
using mininet are as follows:

• By using lightweight container-based virtualization they are able to make a single
system to emulate a large-scale network with hundreds of nodes, with each device
behaving like the real hardware;



Chapter 2. Related Work 17

• It allows the creation of custom topologies, from a single switch to Internet-like
topologies and also the execution of regular software inside each container;

• Packet forwarding is customisable because mininet switches can use the Openflow
protocol.

Despite being fast and flexible, it also has some limitations:

• Since it uses lightweight virtualization, the Linux kernel is shared by all virtual
hosts. This means that it is not possible to run software from other operating sys-
tems;

• All virtualized systems execute on the same host, so it is necessary to limit traf-
fic rates, otherwise performance issues may arise with the system becoming the
bottleneck, not the emulated network under analysis.

2.5.2 Scapy

Scapy [9] is a powerful packet manipulation framework that is able to change packets in
real time. It supports a wide number of protocols and is able to capture, decode, match
requests and replies and send them on the wire. It also offers the possibility of creating
packets from scratch and injecting them on the network.

2.5.3 Iperf

Iperf [10] is a tool for active measurements of throughput of IP networks. It implements a
client and a server, and supports various protocols such as UDP and TCP. It can measure
packet loss, delay jitter, and bandwidth/throughput.

In the next chapter we describe our solution which was designed to fill the gaps pre-
viously identified while maintaining the requirements of Smart Grid networks. We will
describe how our solution coupes traffic inflation/deflation attacks and also how we are
able to perform trajectory sampling without the need of adding additional hardware for
existing SDN switches.
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Chapter 3

Design and Implementation

Our goal is the design and implementation of a SDN based solution to resiliently route
smart-grid traffic at the WAN level. The solution consists of two applications. The first
is a monitoring solution responsible for querying network switches to gather information
about the current state of the network. The second application uses that information to
create resilient routes along the WAN network. The solution aims to prevent several types
of attacks, so we start this chapter by defining them.

3.1 Attack taxonomy

Given that traffic engineering decisions are based on information provided by the moni-
toring system, an adversary might target the monitor to compromise routing decisions. In
order to design a resilient solution, we have identified multiple attack vectors that might
be exploited.

3.1.1 Generic adversary capabilities

Any device from the smart-grid network can be used as an attack vector. Even components
that are not under our control pose a threat. In this section, we describe the capabilities of
an adversary that aims to mislead our system.

Traffic eavesdropping: is the capability of an adversary to observe and record packets
that pass through a link. One example of such attack is when an adversary has physical
access to the wire that is used to connect two devices and is able to passively wiretap it.

Traffic injection: is the capability of an adversary to insert unaccounted packets into
a link. One example of such attack is when an adversary has control of a device that is
inside the network, which is employed to generate and inject packets.

Traffic interception: is the capability of an adversary to control the packet flow that
traverses some resource, allowing him to manipulate any packet. One example of this kind
of attack is when the adversary controls a device in the path between two SDN switches

19
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(e.g., the forwarding devices used in a dedicated link provided by a communications op-
erator) and uses that device to manipulate any packet that traverses it.

Traffic rerouting: is the capability of an adversary that controls two or more links to
drop a given number of packets that are traversing a link and injects those same packets
on any other link controlled by the adversary. One example of such attack is when the
adversary controls two or more devices forming the path between two SDN switches
under our control, and uses those two points to redirect packets. This particular attack is
depicted in Figure 3.1, where the attacker drops packets flowing through the top path and
injects them in another link under his control, on the bottom path.

Figure 3.1: Example of a packet reroute performed by the adversary

3.1.2 Attacks on latency estimation

Latency is one of the fundamental parameters used in traffic engineering. Hence, protect-
ing its estimation is of crucial importance. If not properly protected, it can become the
target of various kinds of attacks, performed by adversaries with access to the link being
monitored.

The common SDN monitoring applications measure the latency of a link by recording
the time a given packet leaves a link entry-point and when that same packet arrives at the
link exit-point. The latency of the link is then calculated by subtracting the entry-point
time from the exit-point time. The packet used for the estimation can be a special packet
generated by the controller (a “probe” packet), or it can be a normal packet that is flowing
through the link. We refer to this mechanism as probing, in both scenarios.

Below, we describe two adversary capabilities that are specific to the probing environ-
ment:

Probe spoofing: the capability of an adversary to make a monitoring SDN application
accept forged probes for estimating link delay values

Probe anticipation: the capability of an adversary to predict the timing of probe recep-
tion by a monitoring SDN application.
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Probe spoofing capability

An adversary can only successfully spoof probes if the monitoring SDN application can-
not distinguish between a fake probe and a genuine. This capability presumes the adver-
sary already knows about the probe generation and filtering mechanisms, e.g., by having
access to the source code or by deducing the mechanism behaviour from repeated obser-
vation of transmitted probes.

If the probes are invariable and the adversary knows about their content, spoofing
probe packets is trivial. If the probes are variable but the SDN application does not check
the validity of their contents (or does so incorrectly), then the adversary can spoof probes
by forging packets with arbitrary contents. Specifically, the adversary may be able to in-
sert contents in such a way that it effectively manipulates the SDN application into making
erroneous delay calculations (e.g., if the contents include a timestamp that is used for cal-
culating latencies, and the adversary inserts a fake timestamp). Importantly, wrong latency
estimations can result in undesirable changes to packet routing (e.g., sending packets to
locations controlled by the attacker).

If the probes are variable and the SDN application strictly checks the validity of their
contents, i.e., if the contents of each probe received are validated by matching an exact
byte sequence, then the adversary can still spoof probes if he can predict the contents
of future legitimate probes (e.g., if each probe includes a sequence number that is incre-
mented in every transmission, an adversary with eavesdropping capabilities can easily
predict the next sequence number).

A different situation occurs when actual user generated traffic is used as probe. In this
case, the SDN application mirrors to the controller part of the normal traffic to be used as
probes, as they traverse the switches that interconnect the link being probed. In this case it
becomes harder to spoof probes because their content is generated by the user application.
However, if the adversary can first discover which data packets are being probed and
reverse engineer the user application, he may be able to guess the contents of future
packets, and therefore spoof probes, in case the application has predictable behaviour
for at least a subset of the network traffic. As an alternative, the adversary could attempt
to introduce packets in the network to be transmitted through the link.

Probe anticipation capability

An adversary with this capability can successfully predict the timing of probe reception by
a monitoring SDN application (with a small error margin). If the attacker is able to guess
the probe transmission frequency and the propagation delay between the adversary’s point
of injection and the controller, he will be able to anticipate probes.

The probe transmission frequency may be static and known by the adversary if he
or she obtains it via source code disclosure or deduced from repeated eavesdropping of
transmitted probes. The transmission frequency may also be dynamic and dependent on
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certain properties of the data traffic passing through the link (e.g., it may vary according
to the current throughput). In this situation, the adversary may be able to deduce the
frequency from continuously monitoring eavesdropped data traffic and by applying the
same algorithm used by the SDN application. A similar strategy could be employed in
the scenario where the probes are normal data packets that are mirrored to the controller.

Attacks Forms

An adversary can attack the latency estimation using the previously described capabilities
in the following ways:

Probe poisoning: An adversary with the capability of probe spoofing and probe antici-
pation sends probes at specific (shorter than normal) times, making the monitoring
system estimate lower link delay values. If the monitoring system uses the probe to
transport a timestamp, it is also possible to force the monitoring system to estimate
longer link delay values.

Probe flood: An adversary with the capability of probe spoofing continuously sends
spoofed packets, leading the monitoring system to calculate incorrect delay esti-
mations, as these packets arrive with high probability at unexpected times.

Probe replay: An adversary with traffic eavesdropping and traffic injection capabilities
eavesdrops legitimate probes and injects them at a later time. Since the probes
suffer higher delays the monitoring system will estimate larger link delay values.

Probe disturbance: An adversary with traffic interception capability intercepts all pack-
ets and selectively delays either the data traffic or the probes, making the calculated
link latency values inconsistent with the real propagation time of data packets.

3.1.3 Attacks on throughput estimation

Another fundamental parameter in traffic engineering solutions is throughput. To obtain
this estimate, a monitoring SDN application can leverage the capability of SDN devices to
report traffic statistics to the controller in order to estimate traffic throughput at any given
moment in a link. For example, Openflow-enabled switches can report periodically the
total number of bytes transmitted/received in some port. As that same report can include
the elapsed time since the previous request, two consecutive reports from the same switch
enables the SDN application to calculate the average (transmission/reception) throughput
of the switch port. This mechanism is also prone to attacks.

Throughput inflation: An adversary with traffic injection capability can add traffic on a
link under his control, increasing the real throughput on that link. As a result, the
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monitoring application would be presented with a lower entry throughput (to the
link), when compared to the exit throughput.

Throughput deflation: An adversary with traffic interception capabilities can drop pack-
ets that flow on a link under his control. In this case, the monitoring application
would be presented with a higher entry throughput, when compared to the exit
throughput.

In either case, depending on how the monitoring application acts, inflation and defla-
tion attacks could negatively influence the decisions made by other modules, including
those of a traffic engineering application.

3.2 Threat model

We consider that the link between two SDN switches under our control can be composed
of an arbitrary number of other components, such as routers and switches, which may
or may not be SDN-capable. An adversary may want to attack the monitoring system
of the network to influence routing decisions, by using any of the previously described
capabilities. We limit the adversary actions to the WAN data plane. Attacks in the NAN
and the HAN, and in the switch-controller connections are out of scope. With respect to
the latter, we assume that the communication channel used between the SDN switches
and the controller is secure (e.g., using TLS, as per the Openflow specification), and that
the SDN switches themselves are not compromised by the attacker, meaning that they
operate accordingly to their specification.

3.3 Monitoring

The monitoring module consists of various submodules, as represented in Figure 3.2, that
gather information about the current state of the network. Multiple techniques are used
in order to effectively obtain the most up-to-date information about the network, while
ensuring correctness of that same information, and while minimising the performance
impact. The monitoring module periodically queries all switches to extract information
on its counters and port status so that it can build the global network state. As it is possible
to control the monitoring period, this method has low overhead. However, this technique
has vulnerabilities that make it prone to several attacks to monitoring [35]. For protection,
we have devised an algorithm that verifies if there are ongoing attacks to mislead the
monitoring which resorts to random trajectory sampling at its core.

Trajectory sampling is a method of packet sampling where packets that flow through
a given link (or subset of links) are sampled within a measurement domain. The main
difference from normal packet sampling is that in trajectory sampling one also “follows”
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Figure 3.2: Monitoring architecture

the packets along the paths. For this to be possible, it is not enough to just randomly
sample each link, as one would not be able to derive the precise path that a sampled packet
has followed through the measurement domain, from the ingress point to the egress point.
For this purpose, a deterministic hash function is executed for each packet that traverses
the network device. This allows tracking a packet as it flows throughout the network, and
usually requires specialized hardware to be integrated in network devices. This technique
enables fine-grained, per-flow monitoring, and as such has been used in multiple works
[46, 36]. With this technique we are able to verify if the values that we receive from
different switch counters are correct, denying the attacker a way to mislead the system.

In the following sections we give details on the design of the monitoring submodules,
with a focus on how they ensure the correctness of the monitoring information.

3.3.1 Control plane latency

In order to detect attacks and have a higher degree of confidence in the information ob-
tained from the switches, our solution always probes the two switches that are the end-
points of the link that is currently under evaluation. As mentioned before, SDN has the
control plane separate from the data plane, which means that when the controller commu-
nicates with the switches there will be a delay between the issuing of the message and its
delivery. In other words, when the controller sends the message to add a new entry to a
flow table, this message will take some time to arrive at the target switch and to be actually
applied. Even though this amount of time is normally very small in local networks, this
may not be true in Smart Grids given the diversity of communication technologies that
may be employed. So it becomes important to accurately estimate the delays that control
messages experience.

The ControllerLink submodule measures the latency from the controller to every data-
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plane device. This information is then made available to the other monitoring submodules
so that they can correctly perform their time calculations. This will make monitoring more
accurate and will cause less performance impact on both dataplane and control plane.

3.3.2 Throughput

The Openflow specification [3] defines a set of messages that the controller can use to
obtain data from the network devices. We use this functionality to periodically collect the
total number of bytes transmitted/received by some port. As explained, by subtracting the
values from two consecutive reads and dividing by the number of seconds of the moni-
toring period, one can calculate an estimate of the throughput for that given device port.
In order to detect possible deviations due to congestion on the device-to-controller-link
or (possible) attacks to the estimation, the measurement is made on both ports of the link
and then compared. If the measurements are too far apart then a second measurement is
made to increase the probability of detecting throughput inflation or deflation attacks, or
simply to confirm that the difference was due to a normal increase in the jitter induced by
the network.

This technique causes the least overhead on the dataplane devices because we are only
querying the switch registers, but is vulnerable to attacks. Our solution copes with this
problem using the sampling technique described next.

3.3.3 Sampling

As mentioned before, several attacks might corrupt monitoring measurements if they af-
fect a specific set of switches. To address this problem we resort to a novel variant of tra-
jectory sampling. The main advantage of our solution is that it does not require complex
hardware in the switch for its materialization. Our solution requires only conventional
Openflow switches.

The goal is to compare the same set of packets that pass through the source switch of
a given link, with the ones that arrive at the destination switch, during a specific period of
time. As such, it allows us to verify if packets were modified, injected or dropped. This
supports the detection of an ongoing attack on that link under the following conditions:

1. If the number of sampled packets on the destination switch is greater than the pack-
ets on the source switch, then packets were injected;

2. If the number of sampled packets on the destination switch is less than the packets
on the source switch, then packets were dropped;

3. If there is not an exact match on the content of every packet sampled at the source
switch when compared to the same packets sampled on the destination switch, then
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packets were modified;

Detection can only be effective if the attacker cannot predict which packets are being
sampled. Therefore, our solution samples random links during random periods of time at
random intervals. Given the sampling randomness, an attacker cannot determine when a
sampling is being performed on any given link, and therefore he/she cannot mislead our
monitoring system, allowing any attack to be eventually detected. To perform trajectory
sampling in an SDN, the packets being sampled need to be duplicated during the sam-
pling period at the source and destination switch of a link, and sent to the controller for
further processing. This can degrade the performance of the dataplane, so it is important
that the algorithm responsible for performing trajectory sampling is dynamic and adapts
to the current network and switch performance conditions. The sampling submodule will
set the sampling time accordingly to the current throughput of the link, so that the amount
of packets sampled does not negatively impact performance. As such, if a link is experi-
encing high throughput, then the sampling frequency is reduced.

3.3.4 Loss Rate

The loss rate is the number of packets that enter a link but do not arrive at the desti-
nation, divided by the total number of packets that entered the link in that period. This
information can be directly obtained from the previously described sampling algorithm by
comparing the packets that arrived at the destination switch versus the ones that traversed
the source switch. Since the packets that traverse the source switch are compared with
the same packets that arrive at the destination switch, any packet that was changed by
the attacker is considered as loss. Thus, the loss rate takes into account both the packets
that were dropped due to accidental network failures, and the packets that are dropped or
tampered by an attacker.

3.3.5 Monitoring API

All the information that is gathered by the monitoring submodules are made available to
all other SDN applications through the monitoring Application Programming Interface
(API). SDN applications interested in obtaining information about any link can either
obtain it as notifications or on demand. The routing and traffic engineering module we
describe next is an example of an application that uses this API to react to network changes
and push novel forwarding rules to the SDN switches. By opting for this modular design,
we allow other SDN applications to use this module as its secure monitoring base.
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3.4 Traffic Engineering

The traffic engineering module and its submodules are shown in Figure 3.3. This module
uses the information provided by the monitoring module to continuously evaluate if the
smart-grid requirements are being met. In the following sections we describe the role of
each submodule and how they enable resilient routing.

Figure 3.3: Trafic engineering module architecture.

3.4.1 Smart Grid Requirements

Different smart grid applications have different requirements when it comes to bandwidth,
loss rate and latency. The smart grid requirements submodule is responsible for storing
such information and also for verifying if a given route with specific bandwidth, loss rate
and latency characteristics comply with the specific needs. This information is used by
the Resilient Routing submodule to decide if a given route can or cannot be used for a
specific smart grid application.

3.4.2 Network Graph

One of the advantages of SDN is the centralization of the network global view in the con-
troller. This eases the process of updating a route in case if certain network events such
as link failures, as it avoids the need for complex distributed algorithms to be executed.
The Network Graph submodule is responsible for building that global network view in
the form of a graph. This graph is constantly updated with the current network topol-
ogy, allowing operations such as obtaining the shortest path between two points of the
network by simply running the Dijkstra algorithm. Not having to resort to complex and
time consuming distributed algorithms to re-route traffic around failed links is especially
important in this context, as several smart grid applications are sensitive to latency and
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packet loss.

By maintaining this up-to-date global view of the network our solution is able to
quickly react to changes in the network topology causing less impact on latency and
packet loss.

3.4.3 Resilient Routing

The Resilient Routing submodule is the core of the traffic engineering module. This
submodule is responsible for combining the information provided by the network graph
submodule, smart grid requirements submodule, and the monitoring module to make rout-
ing decisions. It continuously checks the information provided by the monitoring module
and cross-references it with the needs of the smart grid requirements submodule in order
to confirm that every smart grid application is running within its pre-defined limits. If
a given requirement is not being met or if a link goes down on a specific route, it uses
the information of the Network Graph submodule to quickly calculate the best new route
between the affected points, taking in consideration the number of hops and link statistics.
Our solution considers as best route the shortest path (the path with the least number of
hops) that is compliant with the smart grid application requirements.

The existing separation between the control plane and the data plane in SDN is ben-
eficial in multiple ways, but has a few drawbacks. For very time sensitive smart grid
applications, the time it takes for a switch to send the information to the controller that a
link has gone down, added to the time the controller takes to process that information and
propagate the new route to the dataplane devices, may be incompatible with the require-
ments of specific smart grid applications. To cope with this issue, our solution is designed
so that in the case of such event the data-plane devices already have the information on
where to re-route the traffic. This is accomplished by means of backup routes. This route
is installed in switches but is only used when the dataplane device detects that the normal
route for a given packet is no longer valid, such as when the egress port is down due to
link failure.

Taking as example the network depicted in Figure 3.4, while calculating the route
between A and B, the resilient routing module has chosen the route composed by A-S1-
S2-S3-B. This selection was made because at the time this was the shortest path that was
compliant with the smart grid applications requirements. Besides the normal route, the
controller also calculates backup routes and installs them on each dataplane device so that
if a link (or switch) goes down on the normal route, the dataplane device that detects that
failure will quickly divert all packets to the backup route.
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Figure 3.4: Backup route in action

As an example lets assume that the doted line between S2 and S3 represents a link
failure detected by S2. In this case accordingly to the backup route, S2 will send the
packets to S4, which will detect that these packets are using the backup route. Therefore,
it will forward the packets to S6 and then to S3 before final delivery to B, as denoted by
the chained line.
More complex cases are also covered, as when the backup route requires the packets to
return back a few links before being transmitted through an alternative path (as is visible
in 3.5).

Figure 3.5: Complex backup route in action

In this example, the link between S5 and S3 has failed and since S5 had no lateral
path to forward the packets that lead to B, packets will return back to S1 and then will
follow the backup route composed by S1-S6-S7-S8-S3-B. Therefore, a packet that was
sent from A would take the path A-S1-S4-S5-S4-S1-S6-S7-S8-S3-B as denoted by the
chained line. This will guarantee that if there is an alternative path, no packet will be lost
(starting from the moment the dataplane device S5 detects that its link to S3 is no longer
up). After the controller is notified that the link is failed, it will recalculate the routes and
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push the new forwarding rules to the data plane devices. This will result in potentially
novel normal and backup paths.

3.4.4 Forwarding

After the routes are generated (both normal and backup) they need to be converted to data
plane rules, to update the switching devices. The Forwarding submodule is responsible
for this operation and for maintaining the list of routes published in the dataplane devices.
This design allows a clear separation between the routing algorithm and the southbound
protocol, making the solution easier to adapt or evolve in the future.

3.5 Implementation

This section describes the implementation details of each module and submodule of our
solution for resilient Smart Grid communications.

3.5.1 Switch Latency

The typical way to measure network latency is through the use of the ICMP protocol.
More specifically, the sender would measure the time to transmit an ICMP Request and
then receive the ICMP Reply returned by the receiver (using the ping tool). This period
corresponds to the Round Trip Time (RTT), which divided by two gives a rough estimate
of the current link latency. In SDN, a similar result can be attained by means of Packet-
Out messages. These messages are employed by the controller to send packets through
the data plane to a destination output port. If such message is set with output port equal
to OFPort.CONTROLLER then the dataplane device will transmit that packet back
to the controller, mimicking the behaviour of the ICMP Request/Reply messages.

The latency result from this technique includes the latency between the controller and
each switch. To obtain the latency between switches, we need to measure the latency
between the controller and each SDN switch to remove this latter component. For this
purpose, this submodule periodically sends a Packet-Out message containing a sequential
number to each switch, as depicted in Figure 3.6, and saving the time when this message
was sent. When the message arrives at the dataplane device it will be returned to the
controller (the controller sets it to be sent to OFPort.CONTROLLER).

When the packet is received, the controller will compare the timestamp of the re-
ceived packet to the timestamp of when that specific Packet-Out message was sent. By
subtracting the first from the last, and divide the difference by two, it is possible to obtain
the estimate of the one-way latency in the communication between the controller and that
dataplane device. This process can be viewed on Figure 3.6 in which:
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1. The controller sends M1 to the dataplane device and saves a timestamp t1;

2. M1 takes λ1 time to reach the dataplane device;

3. When M1 arrives at the dataplane device, it is processed and the packet M1R is
returned to the controller through the port OFPort.CONTROLLER;

4. M1R takes λ2 time to reach the controller;

5. The controller saves the timestamp t2 of the M1R packet

Figure 3.6: Method to Measure the Latency.

6. The controller performs a lookup on a list for that dataplane device, searching for
the sequencial number included in M1R;

7. The latency is then calculated by performing (t2 - t1)/2

Security considerations

The link connecting the controller to the dataplane device is assumed correct in our threat
model. Nevertheless, the fact that a TLS [24] channel is used to protect the communica-
tion, guarantees that an attacker is unable to spoof packets. The attacker is also prevented
from antecipating probe packets because they are not sent at a constant frequency. An-
other possibility for the attacker would be to identify the probe packets from their size,
but the padding added by the TLS tunnel solves this problem.

3.5.2 Throughput

The throughput submodule periodically requests traffic statistics from all dataplane de-
vices. These statistics include the amount of received/transmitted traffic on any given port
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since the last time that port became active. By comparing the results of two consecutive
requests to the same port, one can get the throughput estimate for that period. To detect
throughput inflation or throughput deflation attacks, the calculated throughput on each
source switch port is compared with the corresponding destination switch port of every
link, and if it exceeds a pre-defined value then that link is double checked with an addi-
tional measurement. This extra check serves the purpose of minimizing the false positive
rate. The following points elaborate on the finer details of the throughput calculation and
discrepancy checking.

Estimating data throughput

The throughput submodule sends an Openflow port-statistics request and records the in-
formation on every port of every datapath device. Each port-statistics reply includes
the duration of the port activity and the number of bytes received/transmitted since the
last time the port became active. Using the difference between the number of bytes
received/transmitted in two consecutive statistics requests, the submodule obtains the
amount of bytes received/transmitted by the measured port in the time interval between
the two requests. The submodule then calculates the time interval from the difference
between the port activity durations of both requests1. Finally, we estimate the recep-
tion/transmission throughput by dividing the amount of bytes by the interval.

Checking for discrepancies in data throughput

For each datapath link it is expected, in ideal conditions, for its exit throughput τd to
(approximately) match its entry throughput τs whenever both values are estimated closely
in time. However, if a significant portion of the traffic traversing a link is dropped, or if a
significant amount of foreign traffic is injected into the link, then τs and τd should differ
by a larger than usual margin.

The submodule detects a throughput discrepancy if (|τs−τd|/τs)∗100 > τx, where τx
is a configurable value that represents the percentage difference having in consideration
the total throughput measured at the source switch.

If a discrepancy is detected, the submodule performs a rapid double check on both
entry and exit throughput values of the link by immediately sending a port-statistics re-
quest to each link’s datapath, and recalculating both throughput values upon receiving
the replies. If there is no discrepancy in the newly calculated values, then our applica-
tion signals a mild traffic interference event (e.g., caused by a sudden spike in user traffic
throughput). However, if the discrepancy persists in the second calculation, then our ap-
plication signals a stronger traffic interference event (e.g., eventually caused by an attack).

1We use the time difference between the activity durations announced by the datapath device, instead of
the time difference between the arrival instants of the replies, since the activity durations are set closer in
time to the update of traffic counters. This enables more accurate results.
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Security considerations

By using the technique described in the previous sections, the submodule is unable to
identify attacks on the datapath link in which an adversary with packet interception ca-
pabilities affects the user traffic without changing its perceived throughput. By simply
modifying packets, without dropping them or adding additional ones, the adversary can
potentially fool the aforementioned check for throughput discrepancy. Such an attack can-
not be reliably detected by the throughput submodule since its function does not extend
to packet content verification.

3.5.3 Sampling

To extend the capabilities of the throughput submodule to enable the detection of the
above attacks, and also to measure both packet delay and loss, we employ our version of
trajectory sampling. As explained, this submodule performs, at random periods (within
specified limits), trajectory sampling to a group of active (unidirectional) links chosen
randomly. The same set of packets have to be sampled (mirrored) in both the source and
the destination dataplane devices, requiring the controller to add rules to both switches,
taking in consideration the link latency to connect to each switch, but also the delay of the
sampled link. By sampling the same packets we are able to determine if any packet was
changed, dropped, or inserted in the link, allowing the detection of ongoing attacks. This
submodule has some configuration parameters that should be set to reduce the overhead
and optimize performance. Table 3.1 contains a small description of each parameter.

Sampling on Openflow switches

According to the Openflow specification, a flow entry contains a set of instructions (or
“actions”) that are executed when a packet matches that entry. Examples include sending
the packet to a specific output port (output action), sending the packet to the controller
(controller action), sending the packet to another switch table (Goto − Table), among
others.
To perform sampling without adding latency to existing communications, the packet needs
to be duplicated, with one copy sent to the controller and the other following the normal
path to its destination. Since a flow entry only supports a set of instructions, we cannot
add more than one output instructions (one to put the packet in the normal path, and the
other to send it to the controller). To circumvent this problem we added one instruction
to output one copy to the controller, and one Goto− table instruction to force the packet
to be processed in a second flow table. This second flow table contains the flow entries
added by the other SDN applications that will transmit this copy on the normal path to its
destination.
This technique allows the duplication of a packet, ensuring that a copy is forwarded to the
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Parameter Value

numberOfSamplesPerCycle Number of unidirectional links that should be
sampled in each sampling cycle

cycleTimeInMiliSeconds Average sampling cycle period in milliseconds
maxSamplingDelayInMiliSeconds Maximum delay to start the sampling process

on the chosen unidirectional link in millisec-
onds

hashAlgorithm Hashing algorithm used to summarize packets
maxSamplingPeriodInMiliSeconds Maximum sampling period in milliseconds
defaultSamplingPeriodMiliSeconds Target average sampling period in milliseconds
defaultLatencyInMiliSeconds Default latency for a link with unknown latency

in milliseconds
defaultCatchWindowInMiliSeconds Default duration for the catch window in mil-

liseconds
defaultCatchWindowOverheadPercentage Target overhead percentage of the catch win-

dow
catchWindowIncrementMiliSeconds Number of milliseconds that the catch win-

dow should be increased when at least one of
the samples was not received in the destination
switch

catchWindowDecrementMiliSeconds Number of milliseconds that the
catch windows should be decremented
when the overhead at the destination
switch is superior to the value set in
defaultCatchWindowOverheadPercentage

Table 3.1: Sampling configuration parameters description.

controller while the original packet continues through its normal path.

Openflow flow tables management

To perform sampling, our submodule has to control the insertion, deletion and modifi-
cation of all entries in the switches’ forwarding tables. Otherwise, the sampling process
could be compromised, if other SDN applications inserted flow entries that would overlap
with the ones from the sampling submodule.

To cope with this issue while being transparent to SDN applications, we have devel-
oped a proxy submodule that intercepts all updates to the flow tables. Specifically, we
proxy the writeMessage function, and are thus able to reserve the first and last flow
tables to the sampling submodule, in a transparent way to the applications. These two
flow tables are essential to perform sampling on the source and destination switches. We
employ the last table on the source switch to send packets being sampled to the controller.
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Then, in the destination switch, the first table is used to send a copy of the sampled pack-
ets to the controller.

The algorithm for sampling in the source switch is thus as follows:

1. A new packet arrives at the source switch;

2. The packet is processed by the flow entries of the other SDN applications following
the logic set by them;

3. Since any output instruction was replaced by the same output instruction and an
additional Goto-Table instruction, the packet will be sent to the normal output port
and a copy of it will be forwarded to the last table, with additional metadata infor-
mation containing the port through which the packet was transmitted;

4. If a sampling rule on the last table matches the metadata information, then the
packet is copied to the controller.

The algorithm for sampling at the destination switch is as follows:

1. A new packet arrives at the destination switch;

2. The switch will look for a matching flow entry on the first table, which is reserved
for sampling;

3. If a sampling flow entry is found, a copy of the packet is performed and forwarded
to the controller, while the other copy is sent to the second flow table to be processed
by the flow entries of the other SDN Applications. If the packet does not match,
then the default flow entry is applied sending the packet to the second table.

Sampling the same traffic on both switches

The goal of trajectory sampling is to enable the same set of traffic to be sampled in both
switches. In our case, as we want to use only normal Openflow switches, we cannot
resort to hashing techniques for this purpose, as is common. The algorithm we propose
tries to sample the same (small) window of packets from the switches where sampling
is occurring. The window has to be very small, as otherwise the switch CPU would
not be able to cope with the rate at which packets are received (that is why sampling is
needed in the first place). The challenge is therefore one of timing: when to instruct the
various switches to start and stop sampling. Our solution takes into consideration the
measurements made by the monitoring module, namely, the latency between the switches
being sampled and the controller, and also the latency of the link itself. By using this
information it is possible to calculate the moment when the controller should send the
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Figure 3.7: Sampling example

messages to add and remove sampling flow entries to each switch, so that a similar slice
of traffic is mirrored to the controller.

One challenge to the effectiveness of this scheme is network jitter (inter-packet de-
lays). If the inter-packet delays in the links being monitored are different, the result is
that some (or all) of the packets sampled at the source switch may not to be sampled at
the destination switch. See Figure 3.7 for an example. A network with high jitter may
cause the timing of M1 and M2 to change, causing P1, P2, P3 and P4 to be sampled at the
source switch but not at the destination switch.

To address this challenge we have added a safety window. This safety window is an
extra period of time in which the sampling flow entries are active at the destination switch.
So, if the algorithm calculates that the rules in the destination switch should be applied
between the instants t1 and t2, with the safety window the flow entries will be applied
between the instants t1− (safety window/2) and t2 + ( safety window/2 ) making the
value of the actual sampling period equal to t2 - t1 + safety window.
Since jitter may vary, the safety window is dynamic, decreasing when all sampled packets
at the source switch were also sampled at the destination switch, and increasing otherwise,
up to a maximum value that is set in the configuration file. This limit is a security mea-
sure because an attacker could perform a Denial of Service attack (especially in links with
high throughput) by forcing an increase in the safety window, causing a high volume of
traffic to be forwarded to the controller.

To calculate the moments t1 and t2 when the controller should send flow entry mes-
sages M1 and M2 (as per Figure 3.7 above) we use Algorithm 1.

To calculate when the sampling flow entries should be removed, we use a similar al-
gorithm. The main difference is that instead of sending the delete flow entries messages
M ′

1 and M ′
2 in a way that M ′

2 is applied (safety window/2) seconds before the slice of
traffic to be sampled arrives at the destination switch, we make it arrive at the destina-
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diff = λ+ α− (β + (safety window/2));
if diff > 0 then

t1 = 0;
t2 = diff ;

else
t1 = (β + (safety window/2))− (λ+ α);
t2 = 0;

end
Algorithm 1: Add sampling flow entries algorithm

tion switch (safety window/2) after the slice of traffic to be sampled has traversed the
switch. We present Algorithm 2 next.

diff = λ+ α + (safety window/2)− β;
if diff > 0 then

t1 = 0;
t2 = diff ;

else
t1 = (β − λ+ α + (safety window/2));
t2 = 0;

end
Algorithm 2: Delete sampling flow entries algorithm

Sampling a link with unknown latency

In the previous section we have detailed how the sampling submodule calculates the in-
stants of time when it should send the add/delete flow entry messages. At is base, it uses
the latency between switches and the controller and the link latency between switches.
Since this last parameter is obtained through the trajectory sampling process itself, when
the system starts this value is not available. To overcome this issue, we set a configurable
predefined value. In the beginning, there is a high probability of this value not being ac-
curate. This is not a problem as the safety window will increase automatically, and that
eventually makes the same set of packets start being sampled in both switches. When this
happens, the monitoring submodule is able to calculate the latency on the sampled link,
and use that latency in the sampling procedure.

Sampling process

At this point we are able to obtain the same slice of sampled packets on both switches.
When each Openflow message that carries a packet arrives at the controller our submodule
is notified, and a hash of the packet, including all headers and the payload, is obtained
using the SHA-256 algorithm. The hash of each packet is then kept in a list with the
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corresponding timestamp. When the sampling period ends the list of hashes from packets
received from the source switch is compared with the one from the destination switch,
and the controller updates the information about each link according to Algorithm 3:

for hash in source switch messages do
if hash exists in destination switch messages then

Add latency to the link information;
Increment correct samples count;
if count(hash) > 1 then

Decrease by one the count for that hash in
destination switch messages;

else
Remove hash from destination switch message;

end
else

Increment missing samples count;
end

end
for hash in destination switch messages do

if hash exists in source switch messages then
Save packet as duplicate

else
Save packet as foreign

end
end
error rate = (missing samples count /
count(source switch messages))∗100

Algorithm 3: Compare sampling messages

Where:

• latency is the time it took for the packet to arrive at the destination switch;

• correct samples count is the number of packets that were sampled at both source
and destination switches;

• missing samples count is the number of packets that were sampled at the source
switch but not at the destination switch;

• foreign is the number of packets that were sampled at the destination switch that do
not match any of the packets sampled at the source switch;

• duplicate is the number of duplicate packets that were sampled at the destination
switch.

This information is then used in order to set a LinkSuspicionLevel, which is then
made available through the monitoring API.
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3.5.4 Network Graph

The network graph submodule represents the network in a graph form. It supports differ-
ent weights for physical links and tunnels, and provides path calculation functions. This
submodule contains a Dijkstra algorithm implementation allowing any other module to
find the K-shortest paths between two given nodes. This is then used by the Resilient
Routing submodule to obtain the shortest paths between two network devices.

3.5.5 Resilient Routing

The resilient routing submodule is the core of the routing and traffic engineering module.
It listens for events provided by the monitoring module and other network events, such as
link up/down events and updates in the network graph.

Routes consist of an ordered list of graph nodes that are interconnected through a link.
This submodule maintains information on the number of hops, latency, error rate,
minimum available bandwidth and route suspicion level.

When this submodule receives an update on a given link, it will retrieve information
to understand if that link is being used in any route, and update the information on those
routes. After updating the route information, it also checks if any parameter is not com-
pliant with the smart grid application that is flowing through that route. If it is not,
then it will search for a new route that meets the smart grid application requirements.
If such route exists, the new route will be applied, from the last switch to the first switch
(by applying the flow entries in this way we reduce packet loss during the convergence
period).

3.5.6 Forwarding

When the resilient routing submodule creates the best routes, the forwarding submodule
uses this information and converts them to flow entries, which are then applied to the
switches.

3.6 Summary

In this section we have described the design and implementation of our solution. The
different components of the monitoring module complement each other and fill the previ-
ously identified security gaps. The routing module uses that information to chose among
the existing possibilities the shortest path that is compliant with the specified application’s
restrictions. Additionally by only using functionalities defined in the Openflow specifica-
tion our solution can be used with standard Openflow compliant SDN switches.
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Chapter 4

Evaluation

The main goal of our evaluation is to answer three questions. First, how fast can the mon-
itoring application get to a stable state? By stable we mean the amount of time required
for the monitoring algorithm to adapt to the current network conditions and correctly per-
form trajectory sampling on a given link. Second, how long does it take for the system
to detect that there is an ongoing attack? Finally, how quick is the solution in re-routing
once an attack has been detected?

4.1 Test Environment

In order to generate traffic we have used iperf 2.0.5. We have set iperf to generate UDP
traffic at varying speeds, 1Mbps, 10Mbps and 100Mbps for the evaluation. The topology
used is depicted in Figure 4.1, and it is a small scale representation of a real topology used
by power grid operators. This allows us to evaluate both monitoring and resilient routing
solution in a similar setting to where they will be used in practice, given our resource
constraints.

The test machine is a MacBook Pro with one quad-core 2.8Ghz Intel Core i7 and
16Gb of RAM. The controller is Floodlight version 1.1 and the network is emulated us-
ing mininet 2.2.1 (described in Section 2.5), with each of them running separate virtual
machines, each with 2 cores and 4Gb of RAM. We have guaranteed in all experiments
that the CPU and memory resources were not the bottleneck, in order for the emulation to
present results with the required fidelity. Virtual machines were interconnected through a
virtual interface.
The software environment for the controller virtual machine was Ubuntu 16.04.3 LTS
with Java(TM) SE Runtime Environment 1.8.0 141 64bits. The Mininet virtual machine
was running Ubuntu 16.04.1 LTS.

The algorithms were adjusted with the values described in Table 4.1. For our eval-
uation we have chosen SHA-256 since it is, nowadays, considered a secure hashing al-

41



Chapter 4. Evaluation 42

Figure 4.1: Evaluation network

gorithm. The maxRouteLatencyMiliseconds, maxRouteErrorRate and minimum
AvailableBandwidthBits parameters were defined based on the requirements of the
SEGRID project1. The numberOfSamplesPerCycle, cycleT imeInMiliSeconds,max
SamplingPeriodInMiliSeconds parameters control the number of packets that are sam-
pled and therefore have a direct impact on the performance requirements of the solution.
For example, by increasing numberOfSamplesPerCycle and decreasing cycleT imeIn
MiliSeconds one is effectively increasing the number of sampled packets across the net-
work and therefore the probability of detecting an ongoing attack at the expense of perfor-
mance. In the same way, increasing the value of maxSamplingPeriodInMiliSeconds

will lead to a faster sampling configuration time. The values we chose for these pa-
rameters reflect the best values for our test environment, considering the performance
of the hardware used. The parameters defaultCatchWindowOverheadPercentage,
defaultLatencyInMiliSeconds, defaultLatencyInMiliSeconds, defaultCatchWin

dowInMiliSeconds and defaultSamplingPeriodMiliSeconds are used as a starting
point and are adjusted by the monitoring application. These are the configurations that
cause the least impact on the operation of the application and the chosen values should
suit most environments.

1This work was funded by the SEGRID project
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Parameter Value

numberOfSamplesPerCycle 10
cycleTimeInMiliSeconds 1000
maxSamplingDelayInMiliSeconds 100
hashAlgorithm SHA-256
maxSamplingPeriodInMiliSeconds 1000
defaultSamplingPeriodMiliSeconds 30
defaultLatencyInMiliSeconds 1
defaultCatchWindowInMiliSeconds 30
defaultCatchWindowOverheadPercentage 50
catchWindowIncrementMiliSeconds 10
catchWindowDecrementMiliSeconds 10
maxRouteLatencyMiliseconds 100
maxRouteErrorRate 5
minimumAvailableBandwidthBits 1048576

Table 4.1: Configuration parameters value used in evaluation

4.2 Monitoring

In order to evaluate the monitoring algorithm it is important to measure both its accuracy
and its efficiency.
We consider that it has adapted to the network conditions when all the packets that were
sampled at the source switch of a link, are also sampled at the destination switch. This
will allow us to determine how long it takes for the system to reach operating conditions.
These metrics can be obtained by measuring, respectively, the:

• Number of correct samples and the Number of missing samples - The number
of correct samples is the number of packets that were sampled both at the source
and the destination switches of the unidirectional link being sampled, whereas the
number of missing samples is the difference between the number of samples ob-
tained at the source switch and the correct samples. These values allow us to verify
the accuracy of our monitoring solution.

• Difference of the number of sampled packets at the source and destination
switches - The difference in the number of sampled packets in the source and desti-
nation switches of the unidirectional link. This metric will allow us to measure the
overhead of our monitoring solution.

In the rest of this chapter we will use these metrics to evaluate the accuracy and effi-
ciency of the monitoring solution.
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4.2.1 Monitoring startup time

The monitoring startup time is defined as the time elapsed between the first sample and
the sample in which there are no missing packets. In other words, the elapsed time
between the first sample and the solution reaching a stable state. When the monitor
starts it does not have an actual latency value, and therefore the value of the variable
defaultLatencyInMiliSeconds is used for the initial calculations.

In Figure 4.2, Figure 4.3 and Figure 4.4, we show, from the moment the monitor-
ing solution starts, namely the number of packets received, missing packets, and correct
packets, for throughputs of 1Mbps, 10Mbps, and 100Mbps, respectively. The number of
packets received represents the number of packets that were sampled at the destination
switch during that specific sampling cycle. By comparing this value with the number
of correct packets (which represent the number of matching packets that were sampled at
both source and destination switches), one can obtain the overhead (in number of packets)
that the solution is generating. If these two values are equal then the overhead is zero. The
number of missing packets represent the packets that were sampled at the source switch
but did not have a matching sample at the destination switch. This can occur in the event
of packets being changed, dropped or delayed in transit, or due to the the solution not hav-
ing adapted to the current network conditions. The results show that the solution is able
to reach a stable state in a very short time interval. The results also show that the solu-
tion maintains a average overhead close to the one defined in the configuration parameters.

Figure 4.2: Monitoring startup time at 1Mbps

Similarly, Figure 4.5, Figure 4.6, and Figure 4.7 show how the catch window, used to
cope with the diferences between the link latency and the latency information currently
known by the controller, evolves throughout the first 60 seconds.
In these figures one can observe that the module is optimizing the catch window for the
monitored link. This optimization occurs at second 3, and again at second 14, for the
1Mbps evaluation, and is due to the overhead on the destination switch to have exceeded



Chapter 4. Evaluation 45

Figure 4.3: Monitoring startup time at 10Mbps

Figure 4.4: Monitoring startup time at 100Mbps

the configured defaultCatchWindow- OverheadPercentage. (in this case, it reached
200% and 100%, respectively, which is higher then the configured 50%). After this opti-
mization it is clear that the number of received packets is closer to the number of correct
packets, thus the overhead is smaller.

Figure 4.5: Monitoring startup catch window at 1Mbps

At 10Mbps and 100Mbps we obtain similar behaviours, as Figure 4.6 and 4.7 demon-
strate.
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Figure 4.6: Monitoring startup catch window at 10Mbps

Figure 4.7: Monitoring startup catch window at 100Mbps

4.2.2 Failure detection time

The second metric we consider in our analysis is the amount of time our solution takes to
detect a failure. A failure can be either malicious, as when an attacker influences the flow
of packets through the network, or accidental, such as when a link goes down due to some
hardware failure. Our solution abstracts this diference, since in either case the impact is
the same. The time to detect such failures is directly related to the number of samples per
second that the module was configured to perform on the network. Since the links being
sampled are selected at random, and the instant in which they are sampled is also random,
the detection time varies. Moreover, since the module is configurable, if required one can
reduce the cycle time, and consequently reduce the time of detection, at the expense of
performance.
For this evaluation we considered an attacker that has control of a network link, and that
starts to drop 5% of the packets in that link. We have set the maximum acceptable error
rate for any link to be 5% (emulating an application that has an error rate limit of 5%) not
tolerating higher drop rates. We have run 15 iterations at 10Mbps and 100Mbps, allowing
for the link to reach a stable state before introducing the failures. We record the instant
the attacker starts dropping the packets, the instant when the module detects the failure
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and also the number of samples until the detection. Figure 4.8 shows that at 10Mbps the
module needs, in average, 3 seconds to detect the failure, with a standard deviation of
around 2 seconds.

Figure 4.8: Experiment until detection at 10Mbps and 100Mbps

At 100Mbps the module is able to detect the attack faster, with an average of 1,5
seconds to detect the failure, and a standard deviation of 1 second.

The higher number of packets that flow in a 100Mbps link results in a higher number
of packets dropped, when the link has the same drop rate of 5%. Such a higher number of
dropped packets accelerates the process of detection of failures. Increasing the sampling
duration in links that are experiencing less throughput will improve the effectiveness of
the algorithm at detecting failures. This value may be considered high for some critical
Smart Grid applications, and therefore should be addressed in future work.

4.3 Routing

Once a failure has been detected by the monitoring module it is important to recalculate
a new valid route (if one exists) as fast as possible. This will minimize the impact of
the failure, which is specially important in critical services. To evaluate our re-routing
algorithm, we measure the time elapsed from detection of the failure up to the time the
rules are pushed to the dataplane devices.
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Using the evaluation network described previously, we have measured the recovery
time from a failure we ran each experiment 20 times. Figure 4.9 shows the average re-
route time.

Figure 4.9: Time to re-route on failure

As we can verify, the solution takes an average 1,3ms (with a maximum of 2ms) to
re-route traffic, in the topology present in Figure 4.1.
Since the number of switches managed by the controller directly impacts the calculations
necessary to obtain a route, and therefore its performance, we also evaluate how the rout-
ing algorithm scales. For this part of the evaluation we automated the process of creating
ring type networks on mininet and in each iteration we added a new ring composed of 5
switches, creating a chain like network. We recall that we have chosen to use this topol-
ogy since it is commonly used in Smart Grids. Figure 4.10 shows the increase in recovery
time from a failure, as more dataplane devices are added to the network. By increasing

Figure 4.10: Reroute time after a failure on networks with different number of switches.
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the number of switches in the network from 10 to 100, there is an increase in the recovery
time, from around 1,5ms to around 4,3ms. Still, this is within the limits of the most time
sensitive Smart Grid applications.

4.4 Summary

The evaluation shows that our solution has the ability to quickly adapt to network condi-
tions specially in links with throughput higher then 10Mbps. Error detection also benefits
from a higher throughput as Figure 4.8 shows. The slower failure detection time in links
with lower throughput is a point of improvement that should be considered in future work.
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Chapter 5

Conclusions

In this work we have proposed a solution for resilient communications in Smart Grids.
Our approach is composed of two major components: a secure monitoring module and
a resilient routing module. The monitoring module is a SDN application that periodi-
cally probes each switch of the network to update its current view. The main conceptual
contribution is an algorithm that takes advantage of Openflow functionalities to obtain
information on ongoing attacks to the monitoring system. The solution includes adapt-
able trajectory sampling, cryptographically secure verification of the sampled packets,
and employs randomness on critical actions, resulting in a secure base for the resilient
routing module. The solution was designed as a standalone component making it possi-
ble to be used with other routing/traffic engineering modules, tailored for their specific
requirements. Importantly the monitoring algorithm was developed in compliance with
the Openflow specification, and requires no special hardware features. The second com-
ponent is a resilient routing module, that aims to minimize the recovery time from failures
by creating and installing backup routes in network switches.
We have evaluated our solution by means of network evaluation, using mininet, assuming
real Smart Grid topologies. The main conclusions are that SDN is suited for being used
in Smart Grids, it is possible to use SDN to perform secure monitoring using common
SDN switches, and that having a centralized view of the network is beneficial in latency
sensitive networks.

51
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